ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.1 by dl, Tue Jan 6 14:30:31 2009 UTC vs.
Revision 1.70 by jsr166, Wed Jul 4 20:13:53 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 import java.util.*;
9 import java.util.concurrent.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.concurrent.locks.*;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
8  
9   /**
10 < * A thread that is internally managed by a ForkJoinPool to execute
11 < * ForkJoinTasks. This class additionally provides public
12 < * <tt>static</tt> methods accessing some basic scheduling and
19 < * execution mechanics for the <em>current</em>
20 < * ForkJoinWorkerThread. These methods may be invoked only from within
21 < * other ForkJoinTask computations. Attempts to invoke in other
22 < * contexts result in exceptions or errors including
23 < * ClassCastException.  These methods enable construction of
24 < * special-purpose task classes, as well as specialized idioms
25 < * occasionally useful in ForkJoinTask processing.
26 < *
27 < * <p>The form of supported static methods reflects the fact that
28 < * worker threads may access and process tasks obtained in any of
29 < * three ways. In preference order: <em>Local</em> tasks are processed
30 < * in LIFO (newest first) order. <em>Stolen</em> tasks are obtained
31 < * from other threads in FIFO (oldest first) order, only if there are
32 < * no local tasks to run.  <em>Submissions</em> form a FIFO queue
33 < * common to the entire pool, and are started only if no other
34 < * work is available.
35 < *
36 < * <p> This class is subclassable solely for the sake of adding
10 > * A thread managed by a {@link ForkJoinPool}, which executes
11 > * {@link ForkJoinTask}s.
12 > * This class is subclassable solely for the sake of adding
13   * functionality -- there are no overridable methods dealing with
14 < * scheduling or execution. However, you can override initialization
15 < * and termination cleanup methods surrounding the main task
16 < * processing loop.  If you do create such a subclass, you will also
17 < * need to supply a custom ForkJoinWorkerThreadFactory to use it in a
18 < * ForkJoinPool.
14 > * scheduling or execution.  However, you can override initialization
15 > * and termination methods surrounding the main task processing loop.
16 > * If you do create such a subclass, you will also need to supply a
17 > * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it
18 > * in a {@code ForkJoinPool}.
19 > *
20 > * @since 1.7
21 > * @author Doug Lea
22   */
23   public class ForkJoinWorkerThread extends Thread {
24      /*
25 <     * Algorithm overview:
26 <     *
27 <     * 1. Work-Stealing: Work-stealing queues are special forms of
49 <     * Deques that support only three of the four possible
50 <     * end-operations -- push, pop, and deq (aka steal), and only do
51 <     * so under the constraints that push and pop are called only from
52 <     * the owning thread, while deq may be called from other threads.
53 <     * (If you are unfamiliar with them, you probably want to read
54 <     * Herlihy and Shavit's book "The Art of Multiprocessor
55 <     * programming", chapter 16 describing these in more detail before
56 <     * proceeding.)  The main work-stealing queue design is roughly
57 <     * similar to "Dynamic Circular Work-Stealing Deque" by David
58 <     * Chase and Yossi Lev, SPAA 2005
59 <     * (http://research.sun.com/scalable/pubs/index.html).  The main
60 <     * difference ultimately stems from gc requirements that we null
61 <     * out taken slots as soon as we can, to maintain as small a
62 <     * footprint as possible even in programs generating huge numbers
63 <     * of tasks. To accomplish this, we shift the CAS arbitrating pop
64 <     * vs deq (steal) from being on the indices ("base" and "sp") to
65 <     * the slots themselves (mainly via method "casSlotNull()"). So,
66 <     * both a successful pop and deq mainly entail CAS'ing a nonnull
67 <     * slot to null.  Because we rely on CASes of references, we do
68 <     * not need tag bits on base or sp.  They are simple ints as used
69 <     * in any circular array-based queue (see for example ArrayDeque).
70 <     * Updates to the indices must still be ordered in a way that
71 <     * guarantees that (sp - base) > 0 means the queue is empty, but
72 <     * otherwise may err on the side of possibly making the queue
73 <     * appear nonempty when a push, pop, or deq have not fully
74 <     * committed. Note that this means that the deq operation,
75 <     * considered individually, is not wait-free. One thief cannot
76 <     * successfully continue until another in-progress one (or, if
77 <     * previously empty, a push) completes.  However, in the
78 <     * aggregate, we ensure at least probablistic non-blockingness. If
79 <     * an attempted steal fails, a thief always chooses a different
80 <     * random victim target to try next. So, in order for one thief to
81 <     * progress, it suffices for any in-progress deq or new push on
82 <     * any empty queue to complete. One reason this works well here is
83 <     * that apparently-nonempty often means soon-to-be-stealable,
84 <     * which gives threads a chance to activate if necessary before
85 <     * stealing (see below).
86 <     *
87 <     * Efficient implementation of this approach currently relies on
88 <     * an uncomfortable amount of "Unsafe" mechanics. To maintain
89 <     * correct orderings, reads and writes of variable base require
90 <     * volatile ordering.  Variable sp does not require volatile write
91 <     * but needs cheaper store-ordering on writes.  Because they are
92 <     * protected by volatile base reads, reads of the queue array and
93 <     * its slots do not need volatile load semantics, but writes (in
94 <     * push) require store order and CASes (in pop and deq) require
95 <     * (volatile) CAS semantics. Since these combinations aren't
96 <     * supported using ordinary volatiles, the only way to accomplish
97 <     * these effciently is to use direct Unsafe calls. (Using external
98 <     * AtomicIntegers and AtomicReferenceArrays for the indices and
99 <     * array is significantly slower because of memory locality and
100 <     * indirection effects.) Further, performance on most platforms is
101 <     * very sensitive to placement and sizing of the (resizable) queue
102 <     * array.  Even though these queues don't usually become all that
103 <     * big, the initial size must be large enough to counteract cache
104 <     * contention effects across multiple queues (especially in the
105 <     * presence of GC cardmarking). Also, to improve thread-locality,
106 <     * queues are currently initialized immediately after the thread
107 <     * gets the initial signal to start processing tasks.  However,
108 <     * all queue-related methods except pushTask are written in a way
109 <     * that allows them to instead be lazily allocated and/or disposed
110 <     * of when empty. All together, these low-level implementation
111 <     * choices produce as much as a factor of 4 performance
112 <     * improvement compared to naive implementations, and enable the
113 <     * processing of billions of tasks per second, sometimes at the
114 <     * expense of ugliness.
115 <     *
116 <     * 2. Run control: The primary run control is based on a global
117 <     * counter (activeCount) held by the pool. It uses an algorithm
118 <     * similar to that in Herlihy and Shavit section 17.6 to cause
119 <     * threads to eventually block when all threads declare they are
120 <     * inactive. (See variable "scans".)  For this to work, threads
121 <     * must be declared active when executing tasks, and before
122 <     * stealing a task. They must be inactive before blocking on the
123 <     * Pool Barrier (awaiting a new submission or other Pool
124 <     * event). In between, there is some free play which we take
125 <     * advantage of to avoid contention and rapid flickering of the
126 <     * global activeCount: If inactive, we activate only if a victim
127 <     * queue appears to be nonempty (see above).  Similarly, a thread
128 <     * tries to inactivate only after a full scan of other threads.
129 <     * The net effect is that contention on activeCount is rarely a
130 <     * measurable performance issue. (There are also a few other cases
131 <     * where we scan for work rather than retry/block upon
132 <     * contention.)
133 <     *
134 <     * 3. Selection control. We maintain policy of always choosing to
135 <     * run local tasks rather than stealing, and always trying to
136 <     * steal tasks before trying to run a new submission. All steals
137 <     * are currently performed in randomly-chosen deq-order. It may be
138 <     * worthwhile to bias these with locality / anti-locality
139 <     * information, but doing this well probably requires more
140 <     * lower-level information from JVMs than currently provided.
141 <     */
142 <
143 <    /**
144 <     * Capacity of work-stealing queue array upon initialization.
145 <     * Must be a power of two. Initial size must be at least 2, but is
146 <     * padded to minimize cache effects.
25 >     * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
26 >     * ForkJoinTasks. For explanation, see the internal documentation
27 >     * of class ForkJoinPool.
28       */
148    private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
29  
30 <    /**
31 <     * Maximum work-stealing queue array size.  Must be less than or
152 <     * equal to 1 << 30 to ensure lack of index wraparound.
153 <     */
154 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 30;
155 <
156 <    /**
157 <     * Generator of seeds for per-thread random numbers.
158 <     */
159 <    private static final Random randomSeedGenerator = new Random();
160 <
161 <    /**
162 <     * The work-stealing queue array. Size must be a power of two.
163 <     */
164 <    private ForkJoinTask<?>[] queue;
165 <
166 <    /**
167 <     * Index (mod queue.length) of next queue slot to push to or pop
168 <     * from. It is written only by owner thread, via ordered store.
169 <     * Both sp and base are allowed to wrap around on overflow, but
170 <     * (sp - base) still estimates size.
171 <     */
172 <    private volatile int sp;
173 <
174 <    /**
175 <     * Index (mod queue.length) of least valid queue slot, which is
176 <     * always the next position to steal from if nonempty.
177 <     */
178 <    private volatile int base;
179 <
180 <    /**
181 <     * The pool this thread works in.
182 <     */
183 <    final ForkJoinPool pool;
184 <
185 <    /**
186 <     * Index of this worker in pool array. Set once by pool before
187 <     * running, and accessed directly by pool during cleanup etc
188 <     */
189 <    int poolIndex;
190 <
191 <    /**
192 <     * Run state of this worker. Supports simple versions of the usual
193 <     * shutdown/shutdownNow control.
194 <     */
195 <    private volatile int runState;
196 <
197 <    // Runstate values. Order matters
198 <    private static final int RUNNING     = 0;
199 <    private static final int SHUTDOWN    = 1;
200 <    private static final int TERMINATING = 2;
201 <    private static final int TERMINATED  = 3;
202 <
203 <    /**
204 <     * Activity status. When true, this worker is considered active.
205 <     * Must be false upon construction. It must be true when executing
206 <     * tasks, and BEFORE stealing a task. It must be false before
207 <     * blocking on the Pool Barrier.
208 <     */
209 <    private boolean active;
210 <
211 <    /**
212 <     * Number of steals, transferred to pool when idle
213 <     */
214 <    private int stealCount;
215 <
216 <    /**
217 <     * Seed for random number generator for choosing steal victims
218 <     */
219 <    private int randomVictimSeed;
220 <
221 <    /**
222 <     * Seed for embedded Jurandom
223 <     */
224 <    private long juRandomSeed;
225 <
226 <    /**
227 <     * The last barrier event waited for
228 <     */
229 <    private long eventCount;
30 >    final ForkJoinPool.WorkQueue workQueue; // Work-stealing mechanics
31 >    final ForkJoinPool pool;                // the pool this thread works in
32  
33      /**
34       * Creates a ForkJoinWorkerThread operating in the given pool.
35 +     *
36       * @param pool the pool this thread works in
37       * @throws NullPointerException if pool is null
38       */
39      protected ForkJoinWorkerThread(ForkJoinPool pool) {
40 <        if (pool == null) throw new NullPointerException();
40 >        super(pool.nextWorkerName());
41 >        setDaemon(true);
42 >        Thread.UncaughtExceptionHandler ueh = pool.ueh;
43 >        if (ueh != null)
44 >            setUncaughtExceptionHandler(ueh);
45          this.pool = pool;
46 <        // remaining initialization deferred to onStart
47 <    }
241 <
242 <    //  Access methods used by Pool
243 <
244 <    /**
245 <     * Get and clear steal count for accumulation by pool.  Called
246 <     * only when known to be idle (in pool.sync and termination).
247 <     */
248 <    final int getAndClearStealCount() {
249 <        int sc = stealCount;
250 <        stealCount = 0;
251 <        return sc;
252 <    }
253 <
254 <    /**
255 <     * Returns estimate of the number of tasks in the queue, without
256 <     * correcting for transient negative values
257 <     */
258 <    final int getRawQueueSize() {
259 <        return sp - base;
260 <    }
261 <
262 <    // Intrinsics-based support for queue operations.
263 <    // Currently these three (setSp, setSlot, casSlotNull) are
264 <    // usually manually inlined to improve performance
265 <
266 <    /**
267 <     * Sets sp in store-order.
268 <     */
269 <    private void setSp(int s) {
270 <        _unsafe.putOrderedInt(this, spOffset, s);
271 <    }
272 <
273 <    /**
274 <     * Add in store-order the given task at given slot of q to
275 <     * null. Caller must ensure q is nonnull and index is in range.
276 <     */
277 <    private static void setSlot(ForkJoinTask<?>[] q, int i,
278 <                                ForkJoinTask<?> t){
279 <        _unsafe.putOrderedObject(q, (i << qShift) + qBase, t);
280 <    }
281 <
282 <    /**
283 <     * CAS given slot of q to null. Caller must ensure q is nonnull
284 <     * and index is in range.
285 <     */
286 <    private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
287 <                                       ForkJoinTask<?> t) {
288 <        return _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
289 <    }
290 <
291 <    // Main queue methods
292 <
293 <    /**
294 <     * Pushes a task. Called only by current thread.
295 <     * @param t the task. Caller must ensure nonnull
296 <     */
297 <    final void pushTask(ForkJoinTask<?> t) {
298 <        ForkJoinTask<?>[] q = queue;
299 <        int mask = q.length - 1;
300 <        int s = sp;
301 <        _unsafe.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
302 <        _unsafe.putOrderedInt(this, spOffset, ++s);
303 <        if ((s -= base) == 1)
304 <            pool.signalNonEmptyWorkerQueue();
305 <        else if (s >= mask)
306 <            growQueue();
307 <    }
308 <
309 <    /**
310 <     * Tries to take a task from the base of the queue, failing if
311 <     * either empty or contended.
312 <     * @return a task, or null if none or contended.
313 <     */
314 <    private ForkJoinTask<?> deqTask() {
315 <        ForkJoinTask<?>[] q;
316 <        ForkJoinTask<?> t;
317 <        int i;
318 <        int b;
319 <        if (sp != (b = base) &&
320 <            (q = queue) != null && // must read q after b
321 <            (t = q[i = (q.length - 1) & b]) != null &&
322 <            _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
323 <            base = b + 1;
324 <            return t;
325 <        }
326 <        return null;
327 <    }
328 <
329 <    /**
330 <     * Returns a popped task, or null if empty.  Called only by
331 <     * current thread.
332 <     */
333 <    final ForkJoinTask<?> popTask() {
334 <        ForkJoinTask<?> t;
335 <        int i;
336 <        ForkJoinTask<?>[] q = queue;
337 <        int mask = q.length - 1;
338 <        int s = sp;
339 <        if (s != base &&
340 <            (t = q[i = (s - 1) & mask]) != null &&
341 <            _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
342 <            _unsafe.putOrderedInt(this, spOffset, s - 1);
343 <            return t;
344 <        }
345 <        return null;
46 >        pool.registerWorker(this.workQueue = new ForkJoinPool.WorkQueue
47 >                            (pool, this, pool.localMode));
48      }
49  
50      /**
51 <     * Specialized version of popTask to pop only if
52 <     * topmost element is the given task. Called only
53 <     * by current thread.
352 <     * @param t the task. Caller must ensure nonnull
353 <     */
354 <    final boolean unpushTask(ForkJoinTask<?> t) {
355 <        ForkJoinTask<?>[] q = queue;
356 <        int mask = q.length - 1;
357 <        int s = sp - 1;
358 <        if (_unsafe.compareAndSwapObject(q, ((s & mask) << qShift) + qBase,
359 <                                         t, null)) {
360 <            _unsafe.putOrderedInt(this, spOffset, s);
361 <            return true;
362 <        }
363 <        return false;
364 <    }
365 <
366 <    /**
367 <     * Returns next task to pop.
368 <     */
369 <    private ForkJoinTask<?> peekTask() {
370 <        ForkJoinTask<?>[] q = queue;
371 <        return q == null? null : q[(sp - 1) & (q.length - 1)];
372 <    }
373 <
374 <    /**
375 <     * Doubles queue array size. Transfers elements by emulating
376 <     * steals (deqs) from old array and placing, oldest first, into
377 <     * new array.
378 <     */
379 <    private void growQueue() {
380 <        ForkJoinTask<?>[] oldQ = queue;
381 <        int oldSize = oldQ.length;
382 <        int newSize = oldSize << 1;
383 <        if (newSize > MAXIMUM_QUEUE_CAPACITY)
384 <            throw new RejectedExecutionException("Queue capacity exceeded");
385 <        ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
386 <
387 <        int b = base;
388 <        int bf = b + oldSize;
389 <        int oldMask = oldSize - 1;
390 <        int newMask = newSize - 1;
391 <        do {
392 <            int oldIndex = b & oldMask;
393 <            ForkJoinTask<?> t = oldQ[oldIndex];
394 <            if (t != null && !casSlotNull(oldQ, oldIndex, t))
395 <                t = null;
396 <            setSlot(newQ, b & newMask, t);
397 <        } while (++b != bf);
398 <        pool.signalIdleWorkers(false);
399 <    }
400 <
401 <    // Runstate management
402 <
403 <    final boolean isShutdown()    { return runState >= SHUTDOWN;  }
404 <    final boolean isTerminating() { return runState >= TERMINATING;  }
405 <    final boolean isTerminated()  { return runState == TERMINATED; }
406 <    final boolean shutdown()      { return transitionRunStateTo(SHUTDOWN); }
407 <    final boolean shutdownNow()   { return transitionRunStateTo(TERMINATING); }
408 <
409 <    /**
410 <     * Transition to at least the given state. Return true if not
411 <     * already at least given state.
412 <     */
413 <    private boolean transitionRunStateTo(int state) {
414 <        for (;;) {
415 <            int s = runState;
416 <            if (s >= state)
417 <                return false;
418 <            if (_unsafe.compareAndSwapInt(this, runStateOffset, s, state))
419 <                return true;
420 <        }
421 <    }
422 <
423 <    /**
424 <     * Ensure status is active and if necessary adjust pool active count
51 >     * Returns the pool hosting this thread.
52 >     *
53 >     * @return the pool
54       */
55 <    final void activate() {
56 <        if (!active) {
428 <            active = true;
429 <            pool.incrementActiveCount();
430 <        }
55 >    public ForkJoinPool getPool() {
56 >        return pool;
57      }
58  
59      /**
60 <     * Ensure status is inactive and if necessary adjust pool active count
60 >     * Returns the index number of this thread in its pool.  The
61 >     * returned value ranges from zero to the maximum number of
62 >     * threads (minus one) that have ever been created in the pool.
63 >     * This method may be useful for applications that track status or
64 >     * collect results per-worker rather than per-task.
65 >     *
66 >     * @return the index number
67       */
68 <    final void inactivate() {
69 <        if (active) {
438 <            active = false;
439 <            pool.decrementActiveCount();
440 <        }
68 >    public int getPoolIndex() {
69 >        return workQueue.poolIndex;
70      }
71  
443    // Lifecycle methods
444
72      /**
73       * Initializes internal state after construction but before
74       * processing any tasks. If you override this method, you must
75 <     * invoke super.onStart() at the beginning of the method.
75 >     * invoke {@code super.onStart()} at the beginning of the method.
76       * Initialization requires care: Most fields must have legal
77       * default values, to ensure that attempted accesses from other
78       * threads work correctly even before this thread starts
79       * processing tasks.
80       */
81      protected void onStart() {
455        juRandomSeed = randomSeedGenerator.nextLong();
456        do;while((randomVictimSeed = nextRandomInt()) == 0); // must be nonzero
457        if (queue == null)
458            queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
459
460        // Heuristically allow one initial thread to warm up; others wait
461        if (poolIndex < pool.getParallelism() - 1) {
462            eventCount = pool.sync(this, 0);
463            activate();
464        }
82      }
83  
84      /**
85 <     * Perform cleanup associated with termination of this worker
85 >     * Performs cleanup associated with termination of this worker
86       * thread.  If you override this method, you must invoke
87 <     * super.onTermination at the end of the overridden method.
87 >     * {@code super.onTermination} at the end of the overridden method.
88       *
89       * @param exception the exception causing this thread to abort due
90 <     * to an unrecoverable error, or null if completed normally.
90 >     * to an unrecoverable error, or {@code null} if completed normally
91       */
92      protected void onTermination(Throwable exception) {
476        try {
477            clearLocalTasks();
478            inactivate();
479            cancelTasks();
480        } finally {
481            terminate(exception);
482        }
483    }
484
485    /**
486     * Notify pool of termination and, if exception is nonnull,
487     * rethrow it to trigger this thread's uncaughtExceptionHandler
488     */
489    private void terminate(Throwable exception) {
490        transitionRunStateTo(TERMINATED);
491        try {
492            pool.workerTerminated(this);
493        } finally {
494            if (exception != null)
495                ForkJoinTask.rethrowException(exception);
496        }
497    }
498
499    /**
500     * Run local tasks on exit from main.
501     */
502    private void clearLocalTasks() {
503        while (base != sp && !pool.isTerminating()) {
504            ForkJoinTask<?> t = popTask();
505            if (t != null) {
506                activate(); // ensure active status
507                t.quietlyExec();
508            }
509        }
510    }
511
512    /**
513     * Removes and cancels all tasks in queue.  Can be called from any
514     * thread.
515     */
516    final void cancelTasks() {
517        while (base != sp) {
518            ForkJoinTask<?> t = deqTask();
519            if (t != null)
520                t.cancelIgnoreExceptions();
521        }
93      }
94  
95      /**
96       * This method is required to be public, but should never be
97       * called explicitly. It performs the main run loop to execute
98 <     * ForkJoinTasks.
98 >     * {@link ForkJoinTask}s.
99       */
100      public void run() {
101          Throwable exception = null;
102          try {
103              onStart();
104 <            while (!isShutdown())
534 <                step();
104 >            pool.runWorker(workQueue);
105          } catch (Throwable ex) {
106              exception = ex;
107          } finally {
108 <            onTermination(exception);
109 <        }
110 <    }
111 <
112 <    /**
113 <     * Main top-level action.
114 <     */
545 <    private void step() {
546 <        ForkJoinTask<?> t = sp != base? popTask() : null;
547 <        if (t != null || (t = scan(null, true)) != null) {
548 <            activate();
549 <            t.quietlyExec();
550 <        }
551 <        else {
552 <            inactivate();
553 <            eventCount = pool.sync(this, eventCount);
554 <        }
555 <    }
556 <
557 <    // scanning for and stealing tasks
558 <
559 <    /**
560 <     * Computes next value for random victim probe. Scans don't
561 <     * require a very high quality generator, but also not a crummy
562 <     * one. Marsaglia xor-shift is cheap and works well.
563 <     *
564 <     * This is currently unused, and manually inlined
565 <     */
566 <    private static int xorShift(int r) {
567 <        r ^= r << 1;
568 <        r ^= r >>> 3;
569 <        r ^= r << 10;
570 <        return r;
571 <    }
572 <
573 <    /**
574 <     * Tries to steal a task from another worker and/or, if enabled,
575 <     * submission queue. Starts at a random index of workers array,
576 <     * and probes workers until finding one with non-empty queue or
577 <     * finding that all are empty.  It randomly selects the first n-1
578 <     * probes. If these are empty, it resorts to full circular
579 <     * traversal, which is necessary to accurately set active status
580 <     * by caller. Also restarts if pool barrier has tripped since last
581 <     * scan, which forces refresh of workers array, in case barrier
582 <     * was associated with resize.
583 <     *
584 <     * This method must be both fast and quiet -- usually avoiding
585 <     * memory accesses that could disrupt cache sharing etc other than
586 <     * those needed to check for and take tasks. This accounts for,
587 <     * among other things, updating random seed in place without
588 <     * storing it until exit. (Note that we only need to store it if
589 <     * we found a task; otherwise it doesn't matter if we start at the
590 <     * same place next time.)
591 <     *
592 <     * @param joinMe if non null; exit early if done
593 <     * @param checkSubmissions true if OK to take submissions
594 <     * @return a task, or null if none found
595 <     */
596 <    private ForkJoinTask<?> scan(ForkJoinTask<?> joinMe,
597 <                                 boolean checkSubmissions) {
598 <        ForkJoinPool p = pool;
599 <        if (p == null)                    // Never null, but avoids
600 <            return null;                  //   implicit nullchecks below
601 <        int r = randomVictimSeed;         // extract once to keep scan quiet
602 <        restart:                          // outer loop refreshes ws array
603 <        while (joinMe == null || joinMe.status >= 0) {
604 <            int mask;
605 <            ForkJoinWorkerThread[] ws = p.workers;
606 <            if (ws != null && (mask = ws.length - 1) > 0) {
607 <                int probes = -mask;       // use random index while negative
608 <                int idx = r;
609 <                for (;;) {
610 <                    ForkJoinWorkerThread v;
611 <                    // inlined xorshift to update seed
612 <                    r ^= r << 1;  r ^= r >>> 3; r ^= r << 10;
613 <                    if ((v = ws[mask & idx]) != null && v.sp != v.base) {
614 <                        ForkJoinTask<?> t;
615 <                        activate();
616 <                        if ((joinMe == null || joinMe.status >= 0) &&
617 <                            (t = v.deqTask()) != null) {
618 <                            randomVictimSeed = r;
619 <                            ++stealCount;
620 <                            return t;
621 <                        }
622 <                        continue restart; // restart on contention
623 <                    }
624 <                    if ((probes >> 1) <= mask) // n-1 random then circular
625 <                        idx = (probes++ < 0)? r : (idx + 1);
626 <                    else
627 <                        break;
628 <                }
629 <            }
630 <            if (checkSubmissions && p.hasQueuedSubmissions()) {
631 <                activate();
632 <                ForkJoinTask<?> t = p.pollSubmission();
633 <                if (t != null)
634 <                    return t;
635 <            }
636 <            else {
637 <                long ec = eventCount;     // restart on pool event
638 <                if ((eventCount = p.getEventCount()) == ec)
639 <                    break;
640 <            }
641 <        }
642 <        return null;
643 <    }
644 <
645 <    /**
646 <     * Callback from pool.sync to rescan before blocking.  If a
647 <     * task is found, it is pushed so it can be executed upon return.
648 <     * @return true if found and pushed a task
649 <     */
650 <    final boolean prescan() {
651 <        ForkJoinTask<?> t = scan(null, true);
652 <        if (t != null) {
653 <            pushTask(t);
654 <            return true;
655 <        }
656 <        else {
657 <            inactivate();
658 <            return false;
659 <        }
660 <    }
661 <
662 <    /**
663 <     * Implements ForkJoinTask.helpJoin
664 <     */
665 <    final int helpJoinTask(ForkJoinTask<?> joinMe) {
666 <        ForkJoinTask<?> t = null;
667 <        int s;
668 <        while ((s = joinMe.status) >= 0) {
669 <            if (t == null) {
670 <                if ((t = scan(joinMe, false)) == null)  // block if no work
671 <                    return joinMe.awaitDone(this, false);
672 <                // else recheck status before exec
673 <            }
674 <            else {
675 <                t.quietlyExec();
676 <                t = null;
677 <            }
678 <        }
679 <        if (t != null) // unsteal
680 <            pushTask(t);
681 <        return s;
682 <    }
683 <
684 <    // Support for public static and/or ForkJoinTask methods
685 <
686 <    /**
687 <     * Returns an estimate of the number of tasks in the queue.
688 <     */
689 <    final int getQueueSize() {
690 <        int b = base;
691 <        int n = sp - b;
692 <        return n <= 0? 0 : n; // suppress momentarily negative values
693 <    }
694 <
695 <    /**
696 <     * Runs one popped task, if available
697 <     * @return true if ran a task
698 <     */
699 <    private boolean runLocalTask() {
700 <        ForkJoinTask<?> t = popTask();
701 <        if (t == null)
702 <            return false;
703 <        t.quietlyExec();
704 <        return true;
705 <    }
706 <
707 <    /**
708 <     * Pops or steals a task
709 <     * @return task, or null if none available
710 <     */
711 <    private ForkJoinTask<?> getLocalOrStolenTask() {
712 <        ForkJoinTask<?> t = popTask();
713 <        return t != null? t : scan(null, false);
714 <    }
715 <
716 <    /**
717 <     * Runs a popped or stolen task, if available
718 <     * @return true if ran a task
719 <     */
720 <    private boolean runLocalOrStolenTask() {
721 <        ForkJoinTask<?> t = getLocalOrStolenTask();
722 <        if (t == null)
723 <            return false;
724 <        t.quietlyExec();
725 <        return true;
726 <    }
727 <
728 <    /**
729 <     * Runs tasks until pool isQuiescent
730 <     */
731 <    final void helpQuiescePool() {
732 <        activate();
733 <        for (;;) {
734 <            if (!runLocalOrStolenTask()) {
735 <                inactivate();
736 <                if (pool.isQuiescent()) {
737 <                    activate(); // re-activate on exit
738 <                    break;
739 <                }
740 <            }
741 <        }
742 <    }
743 <
744 <    /**
745 <     * Returns an estimate of the number of tasks, offset by a
746 <     * function of number of idle workers.
747 <     */
748 <    final int getEstimatedSurplusTaskCount() {
749 <        return (sp - base) - (pool.getIdleThreadCount() >>> 1);
750 <    }
751 <
752 <    // Public methods on current thread
753 <
754 <    /**
755 <     * Returns the pool hosting the current task execution.
756 <     * @return the pool
757 <     */
758 <    public static ForkJoinPool getPool() {
759 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).pool;
760 <    }
761 <
762 <    /**
763 <     * Returns the index number of the current worker thread in its
764 <     * pool.  The returned value ranges from zero to the maximum
765 <     * number of threads (minus one) that have ever been created in
766 <     * the pool.  This method may be useful for applications that
767 <     * track status or collect results per-worker rather than
768 <     * per-task.
769 <     * @return the index number.
770 <     */
771 <    public static int getPoolIndex() {
772 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).poolIndex;
773 <    }
774 <
775 <    /**
776 <     * Returns an estimate of the number of tasks waiting to be run by
777 <     * the current worker thread. This value may be useful for
778 <     * heuristic decisions about whether to fork other tasks.
779 <     * @return the number of tasks
780 <     */
781 <    public static int getLocalQueueSize() {
782 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
783 <            getQueueSize();
784 <    }
785 <
786 <    /**
787 <     * Returns, but does not remove or execute, the next task locally
788 <     * queued for execution by the current worker thread. There is no
789 <     * guarantee that this task will be the next one actually returned
790 <     * or executed from other polling or execution methods.
791 <     * @return the next task or null if none
792 <     */
793 <    public static ForkJoinTask<?> peekLocalTask() {
794 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).peekTask();
795 <    }
796 <
797 <    /**
798 <     * Removes and returns, without executing, the next task queued
799 <     * for execution in the current worker thread's local queue.
800 <     * @return the next task to execute, or null if none
801 <     */
802 <    public static ForkJoinTask<?> pollLocalTask() {
803 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).popTask();
804 <    }
805 <
806 <    /**
807 <     * Execute the next task locally queued by the current worker, if
808 <     * one is available.
809 <     * @return true if a task was run; a false return indicates
810 <     * that no task was available.
811 <     */
812 <    public static boolean executeLocalTask() {
813 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
814 <            runLocalTask();
815 <    }
816 <
817 <    /**
818 <     * Removes and returns, without executing, the next task queued
819 <     * for execution in the current worker thread's local queue or if
820 <     * none, a task stolen from another worker, if one is available.
821 <     * A null return does not necessarily imply that all tasks are
822 <     * completed, only that there are currently none available.
823 <     * @return the next task to execute, or null if none
824 <     */
825 <    public static ForkJoinTask<?> pollTask() {
826 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
827 <            getLocalOrStolenTask();
828 <    }
829 <
830 <    /**
831 <     * Helps this program complete by processing a local or stolen
832 <     * task, if one is available.  This method may be useful when
833 <     * several tasks are forked, and only one of them must be joined,
834 <     * as in:
835 <     *
836 <     * <pre>
837 <     *   while (!t1.isDone() &amp;&amp; !t2.isDone())
838 <     *     ForkJoinWorkerThread.executeTask();
839 <     * </pre>
840 <     *
841 <     * @return true if a task was run; a false return indicates
842 <     * that no task was available.
843 <     */
844 <    public static boolean executeTask() {
845 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
846 <            runLocalOrStolenTask();
847 <    }
848 <
849 <    // Per-worker exported random numbers
850 <
851 <    // Same constants as java.util.Random
852 <    final static long JURandomMultiplier = 0x5DEECE66DL;
853 <    final static long JURandomAddend = 0xBL;
854 <    final static long JURandomMask = (1L << 48) - 1;
855 <
856 <    private final int nextJURandom(int bits) {
857 <        long next = (juRandomSeed * JURandomMultiplier + JURandomAddend) &
858 <            JURandomMask;
859 <        juRandomSeed = next;
860 <        return (int)(next >>> (48 - bits));
861 <    }
862 <
863 <    private final int nextJURandomInt(int n) {
864 <        if (n <= 0)
865 <            throw new IllegalArgumentException("n must be positive");
866 <        int bits = nextJURandom(31);
867 <        if ((n & -n) == n)
868 <            return (int)((n * (long)bits) >> 31);
869 <
870 <        for (;;) {
871 <            int val = bits % n;
872 <            if (bits - val + (n-1) >= 0)
873 <                return val;
874 <            bits = nextJURandom(31);
875 <        }
876 <    }
877 <
878 <    private final long nextJURandomLong() {
879 <        return ((long)(nextJURandom(32)) << 32) + nextJURandom(32);
880 <    }
881 <
882 <    private final long nextJURandomLong(long n) {
883 <        if (n <= 0)
884 <            throw new IllegalArgumentException("n must be positive");
885 <        long offset = 0;
886 <        while (n >= Integer.MAX_VALUE) { // randomly pick half range
887 <            int bits = nextJURandom(2); // 2nd bit for odd vs even split
888 <            long half = n >>> 1;
889 <            long nextn = ((bits & 2) == 0)? half : n - half;
890 <            if ((bits & 1) == 0)
891 <                offset += n - nextn;
892 <            n = nextn;
893 <        }
894 <        return offset + nextJURandomInt((int)n);
895 <    }
896 <
897 <    private final double nextJURandomDouble() {
898 <        return (((long)(nextJURandom(26)) << 27) + nextJURandom(27))
899 <            / (double)(1L << 53);
900 <    }
901 <
902 <    /**
903 <     * Returns a random integer using a per-worker random
904 <     * number generator with the same properties as
905 <     * {@link java.util.Random#nextInt}
906 <     * @return the next pseudorandom, uniformly distributed {@code int}
907 <     *         value from this worker's random number generator's sequence
908 <     */
909 <    public static int nextRandomInt() {
910 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
911 <            nextJURandom(32);
912 <    }
913 <
914 <    /**
915 <     * Returns a random integer using a per-worker random
916 <     * number generator with the same properties as
917 <     * {@link java.util.Random#nextInt(int)}
918 <     * @param n the bound on the random number to be returned.  Must be
919 <     *        positive.
920 <     * @return the next pseudorandom, uniformly distributed {@code int}
921 <     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
922 <     *         from this worker's random number generator's sequence
923 <     * @throws IllegalArgumentException if n is not positive
924 <     */
925 <    public static int nextRandomInt(int n) {
926 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
927 <            nextJURandomInt(n);
928 <    }
929 <
930 <    /**
931 <     * Returns a random long using a per-worker random
932 <     * number generator with the same properties as
933 <     * {@link java.util.Random#nextLong}
934 <     * @return the next pseudorandom, uniformly distributed {@code long}
935 <     *         value from this worker's random number generator's sequence
936 <     */
937 <    public static long nextRandomLong() {
938 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
939 <            nextJURandomLong();
940 <    }
941 <
942 <    /**
943 <     * Returns a random integer using a per-worker random
944 <     * number generator with the same properties as
945 <     * {@link java.util.Random#nextInt(int)}
946 <     * @param n the bound on the random number to be returned.  Must be
947 <     *        positive.
948 <     * @return the next pseudorandom, uniformly distributed {@code int}
949 <     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
950 <     *         from this worker's random number generator's sequence
951 <     * @throws IllegalArgumentException if n is not positive
952 <     */
953 <    public static long nextRandomLong(long n) {
954 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
955 <            nextJURandomLong(n);
956 <    }
957 <
958 <    /**
959 <     * Returns a random double using a per-worker random
960 <     * number generator with the same properties as
961 <     * {@link java.util.Random#nextDouble}
962 <     * @return the next pseudorandom, uniformly distributed {@code double}
963 <     *         value between {@code 0.0} and {@code 1.0} from this
964 <     *         worker's random number generator's sequence
965 <     */
966 <    public static double nextRandomDouble() {
967 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
968 <            nextJURandomDouble();
969 <    }
970 <
971 <    // Temporary Unsafe mechanics for preliminary release
972 <
973 <    static final Unsafe _unsafe;
974 <    static final long baseOffset;
975 <    static final long spOffset;
976 <    static final long qBase;
977 <    static final int qShift;
978 <    static final long runStateOffset;
979 <    static {
980 <        try {
981 <            if (ForkJoinWorkerThread.class.getClassLoader() != null) {
982 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
983 <                f.setAccessible(true);
984 <                _unsafe = (Unsafe)f.get(null);
108 >            try {
109 >                onTermination(exception);
110 >            } catch (Throwable ex) {
111 >                if (exception == null)
112 >                    exception = ex;
113 >            } finally {
114 >                pool.deregisterWorker(this, exception);
115              }
986            else
987                _unsafe = Unsafe.getUnsafe();
988            baseOffset = _unsafe.objectFieldOffset
989                (ForkJoinWorkerThread.class.getDeclaredField("base"));
990            spOffset = _unsafe.objectFieldOffset
991                (ForkJoinWorkerThread.class.getDeclaredField("sp"));
992            runStateOffset = _unsafe.objectFieldOffset
993                (ForkJoinWorkerThread.class.getDeclaredField("runState"));
994            qBase = _unsafe.arrayBaseOffset(ForkJoinTask[].class);
995            int s = _unsafe.arrayIndexScale(ForkJoinTask[].class);
996            if ((s & (s-1)) != 0)
997                throw new Error("data type scale not a power of two");
998            qShift = 31 - Integer.numberOfLeadingZeros(s);
999        } catch (Exception e) {
1000            throw new RuntimeException("Could not initialize intrinsics", e);
116          }
117      }
118   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines