ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.12 by jsr166, Tue Jul 21 18:11:44 2009 UTC vs.
Revision 1.31 by dl, Mon Apr 5 15:52:26 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
11 < import java.util.concurrent.locks.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
10 >
11 > import java.util.Random;
12 > import java.util.Collection;
13 > import java.util.concurrent.locks.LockSupport;
14  
15   /**
16   * A thread managed by a {@link ForkJoinPool}.  This class is
17   * subclassable solely for the sake of adding functionality -- there
18 < * are no overridable methods dealing with scheduling or
19 < * execution. However, you can override initialization and termination
20 < * methods surrounding the main task processing loop.  If you do
21 < * create such a subclass, you will also need to supply a custom
22 < * ForkJoinWorkerThreadFactory to use it in a ForkJoinPool.
18 > * are no overridable methods dealing with scheduling or execution.
19 > * However, you can override initialization and termination methods
20 > * surrounding the main task processing loop.  If you do create such a
21 > * subclass, you will also need to supply a custom {@link
22 > * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
23 > * ForkJoinPool}.
24   *
25 + * @since 1.7
26 + * @author Doug Lea
27   */
28   public class ForkJoinWorkerThread extends Thread {
29      /*
30 <     * Algorithm overview:
30 >     * Overview:
31       *
32 <     * 1. Work-Stealing: Work-stealing queues are special forms of
33 <     * Deques that support only three of the four possible
34 <     * end-operations -- push, pop, and deq (aka steal), and only do
35 <     * so under the constraints that push and pop are called only from
36 <     * the owning thread, while deq may be called from other threads.
37 <     * (If you are unfamiliar with them, you probably want to read
38 <     * Herlihy and Shavit's book "The Art of Multiprocessor
39 <     * programming", chapter 16 describing these in more detail before
40 <     * proceeding.)  The main work-stealing queue design is roughly
41 <     * similar to "Dynamic Circular Work-Stealing Deque" by David
42 <     * Chase and Yossi Lev, SPAA 2005
43 <     * (http://research.sun.com/scalable/pubs/index.html).  The main
44 <     * difference ultimately stems from gc requirements that we null
45 <     * out taken slots as soon as we can, to maintain as small a
46 <     * footprint as possible even in programs generating huge numbers
47 <     * of tasks. To accomplish this, we shift the CAS arbitrating pop
48 <     * vs deq (steal) from being on the indices ("base" and "sp") to
49 <     * the slots themselves (mainly via method "casSlotNull()"). So,
50 <     * both a successful pop and deq mainly entail CAS'ing a non-null
51 <     * slot to null.  Because we rely on CASes of references, we do
52 <     * not need tag bits on base or sp.  They are simple ints as used
53 <     * in any circular array-based queue (see for example ArrayDeque).
54 <     * Updates to the indices must still be ordered in a way that
55 <     * guarantees that (sp - base) > 0 means the queue is empty, but
56 <     * otherwise may err on the side of possibly making the queue
57 <     * appear nonempty when a push, pop, or deq have not fully
58 <     * committed. Note that this means that the deq operation,
59 <     * considered individually, is not wait-free. One thief cannot
60 <     * successfully continue until another in-progress one (or, if
61 <     * previously empty, a push) completes.  However, in the
62 <     * aggregate, we ensure at least probabilistic non-blockingness. If
63 <     * an attempted steal fails, a thief always chooses a different
32 >     * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
33 >     * ForkJoinTasks. This class includes bookkeeping in support of
34 >     * worker activation, suspension, and lifecycle control described
35 >     * in more detail in the internal documentation of class
36 >     * ForkJoinPool. And as described further below, this class also
37 >     * includes special-cased support for some ForkJoinTask
38 >     * methods. But the main mechanics involve work-stealing:
39 >     *
40 >     * Work-stealing queues are special forms of Deques that support
41 >     * only three of the four possible end-operations -- push, pop,
42 >     * and deq (aka steal), under the further constraints that push
43 >     * and pop are called only from the owning thread, while deq may
44 >     * be called from other threads.  (If you are unfamiliar with
45 >     * them, you probably want to read Herlihy and Shavit's book "The
46 >     * Art of Multiprocessor programming", chapter 16 describing these
47 >     * in more detail before proceeding.)  The main work-stealing
48 >     * queue design is roughly similar to those in the papers "Dynamic
49 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
50 >     * (http://research.sun.com/scalable/pubs/index.html) and
51 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
52 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
53 >     * The main differences ultimately stem from gc requirements that
54 >     * we null out taken slots as soon as we can, to maintain as small
55 >     * a footprint as possible even in programs generating huge
56 >     * numbers of tasks. To accomplish this, we shift the CAS
57 >     * arbitrating pop vs deq (steal) from being on the indices
58 >     * ("base" and "sp") to the slots themselves (mainly via method
59 >     * "casSlotNull()"). So, both a successful pop and deq mainly
60 >     * entail a CAS of a slot from non-null to null.  Because we rely
61 >     * on CASes of references, we do not need tag bits on base or sp.
62 >     * They are simple ints as used in any circular array-based queue
63 >     * (see for example ArrayDeque).  Updates to the indices must
64 >     * still be ordered in a way that guarantees that sp == base means
65 >     * the queue is empty, but otherwise may err on the side of
66 >     * possibly making the queue appear nonempty when a push, pop, or
67 >     * deq have not fully committed. Note that this means that the deq
68 >     * operation, considered individually, is not wait-free. One thief
69 >     * cannot successfully continue until another in-progress one (or,
70 >     * if previously empty, a push) completes.  However, in the
71 >     * aggregate, we ensure at least probabilistic non-blockingness.
72 >     * If an attempted steal fails, a thief always chooses a different
73       * random victim target to try next. So, in order for one thief to
74       * progress, it suffices for any in-progress deq or new push on
75       * any empty queue to complete. One reason this works well here is
76       * that apparently-nonempty often means soon-to-be-stealable,
77 <     * which gives threads a chance to activate if necessary before
78 <     * stealing (see below).
77 >     * which gives threads a chance to set activation status if
78 >     * necessary before stealing.
79 >     *
80 >     * This approach also enables support for "async mode" where local
81 >     * task processing is in FIFO, not LIFO order; simply by using a
82 >     * version of deq rather than pop when locallyFifo is true (as set
83 >     * by the ForkJoinPool).  This allows use in message-passing
84 >     * frameworks in which tasks are never joined.
85       *
86       * Efficient implementation of this approach currently relies on
87       * an uncomfortable amount of "Unsafe" mechanics. To maintain
88       * correct orderings, reads and writes of variable base require
89 <     * volatile ordering.  Variable sp does not require volatile write
90 <     * but needs cheaper store-ordering on writes.  Because they are
91 <     * protected by volatile base reads, reads of the queue array and
92 <     * its slots do not need volatile load semantics, but writes (in
93 <     * push) require store order and CASes (in pop and deq) require
94 <     * (volatile) CAS semantics. Since these combinations aren't
95 <     * supported using ordinary volatiles, the only way to accomplish
96 <     * these efficiently is to use direct Unsafe calls. (Using external
89 >     * volatile ordering.  Variable sp does not require volatile
90 >     * writes but still needs store-ordering, which we accomplish by
91 >     * pre-incrementing sp before filling the slot with an ordered
92 >     * store.  (Pre-incrementing also enables backouts used in
93 >     * scanWhileJoining.)  Because they are protected by volatile base
94 >     * reads, reads of the queue array and its slots by other threads
95 >     * do not need volatile load semantics, but writes (in push)
96 >     * require store order and CASes (in pop and deq) require
97 >     * (volatile) CAS semantics.  (Michael, Saraswat, and Vechev's
98 >     * algorithm has similar properties, but without support for
99 >     * nulling slots.)  Since these combinations aren't supported
100 >     * using ordinary volatiles, the only way to accomplish these
101 >     * efficiently is to use direct Unsafe calls. (Using external
102       * AtomicIntegers and AtomicReferenceArrays for the indices and
103       * array is significantly slower because of memory locality and
104 <     * indirection effects.) Further, performance on most platforms is
105 <     * very sensitive to placement and sizing of the (resizable) queue
106 <     * array.  Even though these queues don't usually become all that
107 <     * big, the initial size must be large enough to counteract cache
104 >     * indirection effects.)
105 >     *
106 >     * Further, performance on most platforms is very sensitive to
107 >     * placement and sizing of the (resizable) queue array.  Even
108 >     * though these queues don't usually become all that big, the
109 >     * initial size must be large enough to counteract cache
110       * contention effects across multiple queues (especially in the
111       * presence of GC cardmarking). Also, to improve thread-locality,
112 <     * queues are currently initialized immediately after the thread
113 <     * gets the initial signal to start processing tasks.  However,
114 <     * all queue-related methods except pushTask are written in a way
115 <     * that allows them to instead be lazily allocated and/or disposed
116 <     * of when empty. All together, these low-level implementation
117 <     * choices produce as much as a factor of 4 performance
118 <     * improvement compared to naive implementations, and enable the
119 <     * processing of billions of tasks per second, sometimes at the
120 <     * expense of ugliness.
121 <     *
122 <     * 2. Run control: The primary run control is based on a global
123 <     * counter (activeCount) held by the pool. It uses an algorithm
124 <     * similar to that in Herlihy and Shavit section 17.6 to cause
125 <     * threads to eventually block when all threads declare they are
126 <     * inactive. (See variable "scans".)  For this to work, threads
127 <     * must be declared active when executing tasks, and before
128 <     * stealing a task. They must be inactive before blocking on the
129 <     * Pool Barrier (awaiting a new submission or other Pool
130 <     * event). In between, there is some free play which we take
131 <     * advantage of to avoid contention and rapid flickering of the
132 <     * global activeCount: If inactive, we activate only if a victim
133 <     * queue appears to be nonempty (see above).  Similarly, a thread
134 <     * tries to inactivate only after a full scan of other threads.
110 <     * The net effect is that contention on activeCount is rarely a
111 <     * measurable performance issue. (There are also a few other cases
112 <     * where we scan for work rather than retry/block upon
113 <     * contention.)
114 <     *
115 <     * 3. Selection control. We maintain policy of always choosing to
116 <     * run local tasks rather than stealing, and always trying to
117 <     * steal tasks before trying to run a new submission. All steals
118 <     * are currently performed in randomly-chosen deq-order. It may be
119 <     * worthwhile to bias these with locality / anti-locality
120 <     * information, but doing this well probably requires more
121 <     * lower-level information from JVMs than currently provided.
112 >     * queues are initialized after starting.  All together, these
113 >     * low-level implementation choices produce as much as a factor of
114 >     * 4 performance improvement compared to naive implementations,
115 >     * and enable the processing of billions of tasks per second,
116 >     * sometimes at the expense of ugliness.
117 >     */
118 >
119 >    /**
120 >     * Generator for initial random seeds for random victim
121 >     * selection. This is used only to create initial seeds. Random
122 >     * steals use a cheaper xorshift generator per steal attempt. We
123 >     * expect only rare contention on seedGenerator, so just use a
124 >     * plain Random.
125 >     */
126 >    private static final Random seedGenerator = new Random();
127 >
128 >    /**
129 >     * The timeout value for suspending spares. Spare workers that
130 >     * remain unsignalled for more than this time may be trimmed
131 >     * (killed and removed from pool).  Since our goal is to avoid
132 >     * long-term thread buildup, the exact value of timeout does not
133 >     * matter too much so long as it avoids most false-alarm timeouts
134 >     * under GC stalls or momentarily high system load.
135       */
136 +    private static final long SPARE_KEEPALIVE_NANOS =
137 +        5L * 1000L * 1000L * 1000L; // 5 secs
138  
139      /**
140       * Capacity of work-stealing queue array upon initialization.
# Line 137 | Line 152 | public class ForkJoinWorkerThread extend
152      private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
153  
154      /**
155 <     * The pool this thread works in. Accessed directly by ForkJoinTask
155 >     * The pool this thread works in. Accessed directly by ForkJoinTask.
156       */
157      final ForkJoinPool pool;
158  
159      /**
160       * The work-stealing queue array. Size must be a power of two.
161 <     * Initialized when thread starts, to improve memory locality.
161 >     * Initialized in onStart, to improve memory locality.
162       */
163      private ForkJoinTask<?>[] queue;
164  
165      /**
151     * Index (mod queue.length) of next queue slot to push to or pop
152     * from. It is written only by owner thread, via ordered store.
153     * Both sp and base are allowed to wrap around on overflow, but
154     * (sp - base) still estimates size.
155     */
156    private volatile int sp;
157
158    /**
166       * Index (mod queue.length) of least valid queue slot, which is
167       * always the next position to steal from if nonempty.
168       */
169      private volatile int base;
170  
171      /**
172 <     * Activity status. When true, this worker is considered active.
173 <     * Must be false upon construction. It must be true when executing
174 <     * tasks, and BEFORE stealing a task. It must be false before
175 <     * calling pool.sync
176 <     */
177 <    private boolean active;
172 >     * Index (mod queue.length) of next queue slot to push to or pop
173 >     * from. It is written only by owner thread, and accessed by other
174 >     * threads only after reading (volatile) base.  Both sp and base
175 >     * are allowed to wrap around on overflow, but (sp - base) still
176 >     * estimates size.
177 >     */
178 >    private int sp;
179  
180      /**
181 <     * Run state of this worker. Supports simple versions of the usual
182 <     * shutdown/shutdownNow control.
181 >     * Run state of this worker. In addition to the usual run levels,
182 >     * tracks if this worker is suspended as a spare, and if it was
183 >     * killed (trimmed) while suspended. However, "active" status is
184 >     * maintained separately.
185       */
186      private volatile int runState;
187  
188 +    private static final int TERMINATING = 0x01;
189 +    private static final int TERMINATED  = 0x02;
190 +    private static final int SUSPENDED   = 0x04; // inactive spare
191 +    private static final int TRIMMED     = 0x08; // killed while suspended
192 +
193 +    /**
194 +     * Number of LockSupport.park calls to block this thread for
195 +     * suspension or event waits. Used for internal instrumention;
196 +     * currently not exported but included because volatile write upon
197 +     * park also provides a workaround for a JVM bug.
198 +     */
199 +    private volatile int parkCount;
200 +
201 +    /**
202 +     * Number of steals, transferred and reset in pool callbacks pool
203 +     * when idle Accessed directly by pool.
204 +     */
205 +    int stealCount;
206 +
207      /**
208       * Seed for random number generator for choosing steal victims.
209 <     * Uses Marsaglia xorshift. Must be nonzero upon initialization.
209 >     * Uses Marsaglia xorshift. Must be initialized as nonzero.
210       */
211      private int seed;
212  
213      /**
214 <     * Number of steals, transferred to pool when idle
214 >     * Activity status. When true, this worker is considered active.
215 >     * Accessed directly by pool.  Must be false upon construction.
216 >     */
217 >    boolean active;
218 >
219 >    /**
220 >     * True if use local fifo, not default lifo, for local polling.
221 >     * Shadows value from ForkJoinPool, which resets it if changed
222 >     * pool-wide.
223       */
224 <    private int stealCount;
224 >    private boolean locallyFifo;
225  
226      /**
227       * Index of this worker in pool array. Set once by pool before
228 <     * running, and accessed directly by pool during cleanup etc
228 >     * running, and accessed directly by pool to locate this worker in
229 >     * its workers array.
230       */
231      int poolIndex;
232  
233      /**
234 <     * The last barrier event waited for. Accessed in pool callback
235 <     * methods, but only by current thread.
234 >     * The last pool event waited for. Accessed only by pool in
235 >     * callback methods invoked within this thread.
236       */
237 <    long lastEventCount;
237 >    int lastEventCount;
238  
239      /**
240 <     * True if use local fifo, not default lifo, for local polling
240 >     * Encoded index and event count of next event waiter. Used only
241 >     * by ForkJoinPool for managing event waiters.
242       */
243 <    private boolean locallyFifo;
243 >    volatile long nextWaiter;
244  
245      /**
246       * Creates a ForkJoinWorkerThread operating in the given pool.
# Line 212 | Line 251 | public class ForkJoinWorkerThread extend
251      protected ForkJoinWorkerThread(ForkJoinPool pool) {
252          if (pool == null) throw new NullPointerException();
253          this.pool = pool;
254 <        // Note: poolIndex is set by pool during construction
255 <        // Remaining initialization is deferred to onStart
254 >        // To avoid exposing construction details to subclasses,
255 >        // remaining initialization is in start() and onStart()
256 >    }
257 >
258 >    /**
259 >     * Performs additional initialization and starts this thread
260 >     */
261 >    final void start(int poolIndex, boolean locallyFifo,
262 >                     UncaughtExceptionHandler ueh) {
263 >        this.poolIndex = poolIndex;
264 >        this.locallyFifo = locallyFifo;
265 >        if (ueh != null)
266 >            setUncaughtExceptionHandler(ueh);
267 >        setDaemon(true);
268 >        start();
269      }
270  
271 <    // Public access methods
271 >    // Public/protected methods
272  
273      /**
274       * Returns the pool hosting this thread.
# Line 241 | Line 293 | public class ForkJoinWorkerThread extend
293      }
294  
295      /**
296 <     * Establishes local first-in-first-out scheduling mode for forked
297 <     * tasks that are never joined.
298 <     *
299 <     * @param async if true, use locally FIFO scheduling
296 >     * Initializes internal state after construction but before
297 >     * processing any tasks. If you override this method, you must
298 >     * invoke super.onStart() at the beginning of the method.
299 >     * Initialization requires care: Most fields must have legal
300 >     * default values, to ensure that attempted accesses from other
301 >     * threads work correctly even before this thread starts
302 >     * processing tasks.
303       */
304 <    void setAsyncMode(boolean async) {
305 <        locallyFifo = async;
306 <    }
252 <
253 <    // Runstate management
254 <
255 <    // Runstate values. Order matters
256 <    private static final int RUNNING     = 0;
257 <    private static final int SHUTDOWN    = 1;
258 <    private static final int TERMINATING = 2;
259 <    private static final int TERMINATED  = 3;
260 <
261 <    final boolean isShutdown()    { return runState >= SHUTDOWN;  }
262 <    final boolean isTerminating() { return runState >= TERMINATING;  }
263 <    final boolean isTerminated()  { return runState == TERMINATED; }
264 <    final boolean shutdown()      { return transitionRunStateTo(SHUTDOWN); }
265 <    final boolean shutdownNow()   { return transitionRunStateTo(TERMINATING); }
304 >    protected void onStart() {
305 >        int rs = seedGenerator.nextInt();
306 >        seed = rs == 0? 1 : rs; // seed must be nonzero
307  
308 <    /**
309 <     * Transitions to at least the given state.  Returns true if not
310 <     * already at least at given state.
311 <     */
271 <    private boolean transitionRunStateTo(int state) {
272 <        for (;;) {
273 <            int s = runState;
274 <            if (s >= state)
275 <                return false;
276 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, state))
277 <                return true;
278 <        }
279 <    }
308 >        // Allocate name string and queue array in this thread
309 >        String pid = Integer.toString(pool.getPoolNumber());
310 >        String wid = Integer.toString(poolIndex);
311 >        setName("ForkJoinPool-" + pid + "-worker-" + wid);
312  
313 <    /**
282 <     * Tries to set status to active; fails on contention.
283 <     */
284 <    private boolean tryActivate() {
285 <        if (!active) {
286 <            if (!pool.tryIncrementActiveCount())
287 <                return false;
288 <            active = true;
289 <        }
290 <        return true;
313 >        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
314      }
315  
316      /**
317 <     * Tries to set status to active; fails on contention.
317 >     * Performs cleanup associated with termination of this worker
318 >     * thread.  If you override this method, you must invoke
319 >     * {@code super.onTermination} at the end of the overridden method.
320 >     *
321 >     * @param exception the exception causing this thread to abort due
322 >     * to an unrecoverable error, or {@code null} if completed normally
323       */
324 <    private boolean tryInactivate() {
325 <        if (active) {
326 <            if (!pool.tryDecrementActiveCount())
327 <                return false;
328 <            active = false;
324 >    protected void onTermination(Throwable exception) {
325 >        try {
326 >            cancelTasks();
327 >            setTerminated();
328 >            pool.workerTerminated(this);
329 >        } catch (Throwable ex) {        // Shouldn't ever happen
330 >            if (exception == null)      // but if so, at least rethrown
331 >                exception = ex;
332 >        } finally {
333 >            if (exception != null)
334 >                UNSAFE.throwException(exception);
335          }
302        return true;
303    }
304
305    /**
306     * Computes next value for random victim probe.  Scans don't
307     * require a very high quality generator, but also not a crummy
308     * one.  Marsaglia xor-shift is cheap and works well.
309     */
310    private static int xorShift(int r) {
311        r ^= r << 1;
312        r ^= r >>> 3;
313        r ^= r << 10;
314        return r;
336      }
337  
317    // Lifecycle methods
318
338      /**
339       * This method is required to be public, but should never be
340       * called explicitly. It performs the main run loop to execute
# Line 325 | Line 344 | public class ForkJoinWorkerThread extend
344          Throwable exception = null;
345          try {
346              onStart();
328            pool.sync(this); // await first pool event
347              mainLoop();
348          } catch (Throwable ex) {
349              exception = ex;
# Line 334 | Line 352 | public class ForkJoinWorkerThread extend
352          }
353      }
354  
355 +    // helpers for run()
356 +
357      /**
358 <     * Executes tasks until shut down.
358 >     * Find and execute tasks and check status while running
359       */
360      private void mainLoop() {
361 <        while (!isShutdown()) {
362 <            ForkJoinTask<?> t = pollTask();
363 <            if (t != null || (t = pollSubmission()) != null)
364 <                t.quietlyExec();
365 <            else if (tryInactivate())
366 <                pool.sync(this);
361 >        boolean ran = false; // true if ran task on previous step
362 >        ForkJoinPool p = pool;
363 >        for (;;) {
364 >            p.preStep(this, ran);
365 >            if (runState != 0)
366 >                return;
367 >            ForkJoinTask<?> t; // try to get and run stolen or submitted task
368 >            if (ran = (t = scan()) != null || (t = pollSubmission()) != null) {
369 >                t.tryExec();
370 >                if (base != sp)
371 >                    runLocalTasks();
372 >            }
373          }
374      }
375  
376      /**
377 <     * Initializes internal state after construction but before
378 <     * processing any tasks. If you override this method, you must
353 <     * invoke super.onStart() at the beginning of the method.
354 <     * Initialization requires care: Most fields must have legal
355 <     * default values, to ensure that attempted accesses from other
356 <     * threads work correctly even before this thread starts
357 <     * processing tasks.
377 >     * Runs local tasks until queue is empty or shut down.  Call only
378 >     * while active.
379       */
380 <    protected void onStart() {
381 <        // Allocate while starting to improve chances of thread-local
382 <        // isolation
383 <        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
384 <        // Initial value of seed need not be especially random but
385 <        // should differ across workers and must be nonzero
386 <        int p = poolIndex + 1;
387 <        seed = p + (p << 8) + (p << 16) + (p << 24); // spread bits
380 >    private void runLocalTasks() {
381 >        while (runState == 0) {
382 >            ForkJoinTask<?> t = locallyFifo? locallyDeqTask() : popTask();
383 >            if (t != null)
384 >                t.tryExec();
385 >            else if (base == sp)
386 >                break;
387 >        }
388      }
389  
390      /**
391 <     * Performs cleanup associated with termination of this worker
371 <     * thread.  If you override this method, you must invoke
372 <     * super.onTermination at the end of the overridden method.
391 >     * If a submission exists, try to activate and take it
392       *
393 <     * @param exception the exception causing this thread to abort due
375 <     * to an unrecoverable error, or null if completed normally
393 >     * @return a task, if available
394       */
395 <    protected void onTermination(Throwable exception) {
396 <        // Execute remaining local tasks unless aborting or terminating
397 <        while (exception == null &&  !pool.isTerminating() && base != sp) {
398 <            try {
399 <                ForkJoinTask<?> t = popTask();
400 <                if (t != null)
383 <                    t.quietlyExec();
384 <            } catch(Throwable ex) {
385 <                exception = ex;
395 >    private ForkJoinTask<?> pollSubmission() {
396 >        ForkJoinPool p = pool;
397 >        while (p.hasQueuedSubmissions()) {
398 >            if (active || (active = p.tryIncrementActiveCount())) {
399 >                ForkJoinTask<?> t = p.pollSubmission();
400 >                return t != null ? t : scan(); // if missed, rescan
401              }
402          }
403 <        // Cancel other tasks, transition status, notify pool, and
389 <        // propagate exception to uncaught exception handler
390 <        try {
391 <            do;while (!tryInactivate()); // ensure inactive
392 <            cancelTasks();
393 <            runState = TERMINATED;
394 <            pool.workerTerminated(this);
395 <        } catch (Throwable ex) {        // Shouldn't ever happen
396 <            if (exception == null)      // but if so, at least rethrown
397 <                exception = ex;
398 <        } finally {
399 <            if (exception != null)
400 <                ForkJoinTask.rethrowException(exception);
401 <        }
403 >        return null;
404      }
405  
406 <    // Intrinsics-based support for queue operations.
407 <
408 <    /**
409 <     * Adds in store-order the given task at given slot of q to null.
410 <     * Caller must ensure q is non-null and index is in range.
406 >    /*
407 >     * Intrinsics-based atomic writes for queue slots. These are
408 >     * basically the same as methods in AtomicObjectArray, but
409 >     * specialized for (1) ForkJoinTask elements (2) requirement that
410 >     * nullness and bounds checks have already been performed by
411 >     * callers and (3) effective offsets are known not to overflow
412 >     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
413 >     * need corresponding version for reads: plain array reads are OK
414 >     * because they protected by other volatile reads and are
415 >     * confirmed by CASes.
416 >     *
417 >     * Most uses don't actually call these methods, but instead contain
418 >     * inlined forms that enable more predictable optimization.  We
419 >     * don't define the version of write used in pushTask at all, but
420 >     * instead inline there a store-fenced array slot write.
421       */
410    private static void setSlot(ForkJoinTask<?>[] q, int i,
411                                ForkJoinTask<?> t){
412        UNSAFE.putOrderedObject(q, (i << qShift) + qBase, t);
413    }
422  
423      /**
424 <     * CAS given slot of q to null. Caller must ensure q is non-null
425 <     * and index is in range.
424 >     * CASes slot i of array q from t to null. Caller must ensure q is
425 >     * non-null and index is in range.
426       */
427 <    private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
428 <                                       ForkJoinTask<?> t) {
427 >    private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
428 >                                             ForkJoinTask<?> t) {
429          return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
430      }
431  
432      /**
433 <     * Sets sp in store-order.
433 >     * Performs a volatile write of the given task at given slot of
434 >     * array q.  Caller must ensure q is non-null and index is in
435 >     * range. This method is used only during resets and backouts.
436       */
437 <    private void storeSp(int s) {
438 <        UNSAFE.putOrderedInt(this, spOffset, s);
437 >    private static final void writeSlot(ForkJoinTask<?>[] q, int i,
438 >                                              ForkJoinTask<?> t) {
439 >        UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
440      }
441  
442 <    // Main queue methods
442 >    // queue methods
443  
444      /**
445 <     * Pushes a task. Called only by current thread.
445 >     * Pushes a task. Call only from this thread.
446       *
447       * @param t the task. Caller must ensure non-null.
448       */
449      final void pushTask(ForkJoinTask<?> t) {
450 +        int s;
451          ForkJoinTask<?>[] q = queue;
452 <        int mask = q.length - 1;
453 <        int s = sp;
454 <        setSlot(q, s & mask, t);
443 <        storeSp(++s);
444 <        if ((s -= base) == 1)
452 >        int mask = q.length - 1; // implicit assert q != null
453 >        UNSAFE.putOrderedObject(q, (((s = sp++) & mask) << qShift) + qBase, t);
454 >        if ((s -= base) <= 0)
455              pool.signalWork();
456 <        else if (s >= mask)
456 >        else if (s + 1 >= mask)
457              growQueue();
458      }
459  
460      /**
461       * Tries to take a task from the base of the queue, failing if
462 <     * either empty or contended.
462 >     * empty or contended. Note: Specializations of this code appear
463 >     * in scan and scanWhileJoining.
464       *
465       * @return a task, or null if none or contended
466       */
467      final ForkJoinTask<?> deqTask() {
468          ForkJoinTask<?> t;
469          ForkJoinTask<?>[] q;
470 <        int i;
471 <        int b;
461 <        if (sp != (b = base) &&
470 >        int b, i;
471 >        if ((b = base) != sp &&
472              (q = queue) != null && // must read q after b
473              (t = q[i = (q.length - 1) & b]) != null &&
474 <            casSlotNull(q, i, t)) {
474 >            UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
475              base = b + 1;
476              return t;
477          }
# Line 469 | Line 479 | public class ForkJoinWorkerThread extend
479      }
480  
481      /**
482 <     * Returns a popped task, or null if empty. Ensures active status
483 <     * if non-null. Called only by current thread.
482 >     * Tries to take a task from the base of own queue. Assumes active
483 >     * status.  Called only by current thread.
484 >     *
485 >     * @return a task, or null if none
486 >     */
487 >    final ForkJoinTask<?> locallyDeqTask() {
488 >        ForkJoinTask<?>[] q = queue;
489 >        if (q != null) {
490 >            ForkJoinTask<?> t;
491 >            int b, i;
492 >            while (sp != (b = base)) {
493 >                if ((t = q[i = (q.length - 1) & b]) != null &&
494 >                    UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
495 >                                                t, null)) {
496 >                    base = b + 1;
497 >                    return t;
498 >                }
499 >            }
500 >        }
501 >        return null;
502 >    }
503 >
504 >    /**
505 >     * Returns a popped task, or null if empty. Assumes active status.
506 >     * Called only by current thread. (Note: a specialization of this
507 >     * code appears in scanWhileJoining.)
508       */
509      final ForkJoinTask<?> popTask() {
510 <        int s = sp;
511 <        while (s != base) {
512 <            if (tryActivate()) {
513 <                ForkJoinTask<?>[] q = queue;
514 <                int mask = q.length - 1;
515 <                int i = (s - 1) & mask;
516 <                ForkJoinTask<?> t = q[i];
517 <                if (t == null || !casSlotNull(q, i, t))
484 <                    break;
485 <                storeSp(s - 1);
510 >        int s;
511 >        ForkJoinTask<?>[] q = queue;
512 >        if (q != null && (s = sp) != base) {
513 >            int i = (q.length - 1) & --s;
514 >            ForkJoinTask<?> t = q[i];
515 >            if (t != null && UNSAFE.compareAndSwapObject
516 >                (q, (i << qShift) + qBase, t, null)) {
517 >                sp = s;
518                  return t;
519              }
520          }
# Line 497 | Line 529 | public class ForkJoinWorkerThread extend
529       * @param t the task. Caller must ensure non-null.
530       */
531      final boolean unpushTask(ForkJoinTask<?> t) {
532 +        int s;
533          ForkJoinTask<?>[] q = queue;
534 <        int mask = q.length - 1;
535 <        int s = sp - 1;
536 <        if (casSlotNull(q, s & mask, t)) {
504 <            storeSp(s);
534 >        if (q != null && UNSAFE.compareAndSwapObject
535 >            (q, (((q.length - 1) & (s = sp - 1)) << qShift) + qBase, t, null)){
536 >            sp = s;
537              return true;
538          }
539          return false;
540      }
541  
542      /**
543 <     * Returns next task.
543 >     * Returns next task or null if empty or contended
544       */
545      final ForkJoinTask<?> peekTask() {
546          ForkJoinTask<?>[] q = queue;
547          if (q == null)
548              return null;
549          int mask = q.length - 1;
550 <        int i = locallyFifo? base : (sp - 1);
550 >        int i = locallyFifo ? base : (sp - 1);
551          return q[i & mask];
552      }
553  
# Line 541 | Line 573 | public class ForkJoinWorkerThread extend
573              ForkJoinTask<?> t = oldQ[oldIndex];
574              if (t != null && !casSlotNull(oldQ, oldIndex, t))
575                  t = null;
576 <            setSlot(newQ, b & newMask, t);
576 >            writeSlot(newQ, b & newMask, t);
577          } while (++b != bf);
578          pool.signalWork();
579      }
580  
581      /**
582 +     * Computes next value for random victim probe in scan().  Scans
583 +     * don't require a very high quality generator, but also not a
584 +     * crummy one.  Marsaglia xor-shift is cheap and works well enough.
585 +     * Note: This is manually inlined in scan()
586 +     */
587 +    private static final int xorShift(int r) {
588 +        r ^= r << 13;
589 +        r ^= r >>> 17;
590 +        return r ^ (r << 5);
591 +    }
592 +
593 +    /**
594       * Tries to steal a task from another worker. Starts at a random
595       * index of workers array, and probes workers until finding one
596       * with non-empty queue or finding that all are empty.  It
597       * randomly selects the first n probes. If these are empty, it
598 <     * resorts to a full circular traversal, which is necessary to
599 <     * accurately set active status by caller. Also restarts if pool
600 <     * events occurred since last scan, which forces refresh of
601 <     * workers array, in case barrier was associated with resize.
598 >     * resorts to a circular sweep, which is necessary to accurately
599 >     * set active status. (The circular sweep uses steps of
600 >     * approximately half the array size plus 1, to avoid bias
601 >     * stemming from leftmost packing of the array in ForkJoinPool.)
602       *
603       * This method must be both fast and quiet -- usually avoiding
604       * memory accesses that could disrupt cache sharing etc other than
605 <     * those needed to check for and take tasks. This accounts for,
606 <     * among other things, updating random seed in place without
607 <     * storing it until exit.
605 >     * those needed to check for and take tasks (or to activate if not
606 >     * already active). This accounts for, among other things,
607 >     * updating random seed in place without storing it until exit.
608       *
609       * @return a task, or null if none found
610       */
611      private ForkJoinTask<?> scan() {
612 <        ForkJoinTask<?> t = null;
613 <        int r = seed;                    // extract once to keep scan quiet
614 <        ForkJoinWorkerThread[] ws;       // refreshed on outer loop
615 <        int mask;                        // must be power 2 minus 1 and > 0
616 <        outer:do {
617 <            if ((ws = pool.workers) != null && (mask = ws.length - 1) > 0) {
618 <                int idx = r;
619 <                int probes = ~mask;      // use random index while negative
620 <                for (;;) {
621 <                    r = xorShift(r);     // update random seed
622 <                    ForkJoinWorkerThread v = ws[mask & idx];
623 <                    if (v == null || v.sp == v.base) {
624 <                        if (probes <= mask)
625 <                            idx = (probes++ < 0)? r : (idx + 1);
626 <                        else
627 <                            break;
612 >        ForkJoinPool p = pool;
613 >        ForkJoinWorkerThread[] ws = p.workers;
614 >        int n = ws.length;            // upper bound of #workers
615 >        boolean canSteal = active;    // shadow active status
616 >        int r = seed;                 // extract seed once
617 >        int k = r;                    // index: random if j<0 else step
618 >        for (int j = -n; j < n; ++j) {
619 >            ForkJoinWorkerThread v = ws[k & (n - 1)];
620 >            r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
621 >            if (v != null && v.base != v.sp) {
622 >                if (canSteal ||       // ensure active status
623 >                    (canSteal = active = p.tryIncrementActiveCount())) {
624 >                    int b, i;         // inlined specialization of deqTask
625 >                    ForkJoinTask<?> t;
626 >                    ForkJoinTask<?>[] q;
627 >                    if ((b = v.base) != v.sp &&  // recheck
628 >                        (q = v.queue) != null &&
629 >                        (t = q[i = (q.length - 1) & b]) != null &&
630 >                        UNSAFE.compareAndSwapObject
631 >                        (q, (i << qShift) + qBase, t, null)) {
632 >                        v.base = b + 1;
633 >                        seed = r;
634 >                        ++stealCount;
635 >                        return t;
636                      }
585                    else if (!tryActivate() || (t = v.deqTask()) == null)
586                        continue outer;  // restart on contention
587                    else
588                        break outer;
637                  }
638 +                j = -n;               // reset on contention
639              }
640 <        } while (pool.hasNewSyncEvent(this)); // retry on pool events
641 <        seed = r;
642 <        return t;
640 >            k = j >= 0? k + ((n >>> 1) | 1) : r;
641 >        }
642 >        return null;
643      }
644  
645 +    // Run State management
646 +
647 +    // status check methods used mainly by ForkJoinPool
648 +    final boolean isTerminating() { return (runState & TERMINATING) != 0; }
649 +    final boolean isTerminated()  { return (runState & TERMINATED) != 0; }
650 +    final boolean isSuspended()   { return (runState & SUSPENDED) != 0; }
651 +    final boolean isTrimmed()     { return (runState & TRIMMED) != 0; }
652 +
653      /**
654 <     * Gets and removes a local or stolen task.
598 <     *
599 <     * @return a task, if available
654 >     * Sets state to TERMINATING, also resuming if suspended.
655       */
656 <    final ForkJoinTask<?> pollTask() {
657 <        ForkJoinTask<?> t = locallyFifo? deqTask() : popTask();
658 <        if (t == null && (t = scan()) != null)
659 <            ++stealCount;
660 <        return t;
656 >    final void shutdown() {
657 >        for (;;) {
658 >            int s = runState;
659 >            if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
660 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
661 >                                             (s & ~SUSPENDED) |
662 >                                             (TRIMMED|TERMINATING))) {
663 >                    LockSupport.unpark(this);
664 >                    break;
665 >                }
666 >            }
667 >            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
668 >                                              s | TERMINATING))
669 >                break;
670 >        }
671 >    }
672 >
673 >    /**
674 >     * Sets state to TERMINATED. Called only by this thread.
675 >     */
676 >    private void setTerminated() {
677 >        int s;
678 >        do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
679 >                                               s = runState,
680 >                                               s | (TERMINATING|TERMINATED)));
681 >    }
682 >
683 >    /**
684 >     * Instrumented version of park. Also used by ForkJoinPool.awaitEvent
685 >     */
686 >    final void doPark() {
687 >        ++parkCount;
688 >        LockSupport.park(this);
689      }
690  
691      /**
692 <     * Gets a local task.
692 >     * If suspended, tries to set status to unsuspended.
693 >     * Caller must unpark to actually resume
694       *
695 <     * @return a task, if available
695 >     * @return true if successful
696       */
697 <    final ForkJoinTask<?> pollLocalTask() {
698 <        return locallyFifo? deqTask() : popTask();
697 >    final boolean tryUnsuspend() {
698 >        int s;
699 >        return (((s = runState) & SUSPENDED) != 0 &&
700 >                UNSAFE.compareAndSwapInt(this, runStateOffset, s,
701 >                                         s & ~SUSPENDED));
702      }
703  
704      /**
705 <     * Returns a pool submission, if one exists, activating first.
705 >     * Sets suspended status and blocks as spare until resumed,
706 >     * shutdown, or timed out.
707       *
708 <     * @return a submission, if available
708 >     * @return false if trimmed
709       */
710 <    private ForkJoinTask<?> pollSubmission() {
710 >    final boolean suspendAsSpare() {
711 >        for (;;) {               // set suspended unless terminating
712 >            int s = runState;
713 >            if ((s & TERMINATING) != 0) { // must kill
714 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
715 >                                             s | (TRIMMED | TERMINATING)))
716 >                    return false;
717 >            }
718 >            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
719 >                                              s | SUSPENDED))
720 >                break;
721 >        }
722 >        lastEventCount = 0;      // reset upon resume
723          ForkJoinPool p = pool;
724 <        while (p.hasQueuedSubmissions()) {
725 <            ForkJoinTask<?> t;
726 <            if (tryActivate() && (t = p.pollSubmission()) != null)
727 <                return t;
724 >        p.releaseWaiters();      // help others progress
725 >        p.accumulateStealCount(this);
726 >        interrupted();           // clear/ignore interrupts
727 >        if (poolIndex < p.getParallelism()) { // untimed wait
728 >            while ((runState & SUSPENDED) != 0)
729 >                doPark();
730 >            return true;
731          }
732 <        return null;
732 >        return timedSuspend();   // timed wait if apparently non-core
733 >    }
734 >
735 >    /**
736 >     * Blocks as spare until resumed or timed out
737 >     * @return false if trimmed
738 >     */
739 >    private boolean timedSuspend() {
740 >        long nanos = SPARE_KEEPALIVE_NANOS;
741 >        long startTime = System.nanoTime();
742 >        while ((runState & SUSPENDED) != 0) {
743 >            ++parkCount;
744 >            if ((nanos -= (System.nanoTime() - startTime)) > 0)
745 >                LockSupport.parkNanos(this, nanos);
746 >            else { // try to trim on timeout
747 >                int s = runState;
748 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
749 >                                             (s & ~SUSPENDED) |
750 >                                             (TRIMMED|TERMINATING)))
751 >                    return false;
752 >            }
753 >        }
754 >        return true;
755 >    }
756 >
757 >    // Misc support methods for ForkJoinPool
758 >
759 >    /**
760 >     * Returns an estimate of the number of tasks in the queue.  Also
761 >     * used by ForkJoinTask.
762 >     */
763 >    final int getQueueSize() {
764 >        return -base + sp;
765      }
766  
767 <    // Methods accessed only by Pool
767 >    /**
768 >     * Set locallyFifo mode. Called only by ForkJoinPool
769 >     */
770 >    final void setAsyncMode(boolean async) {
771 >        locallyFifo = async;
772 >    }
773  
774      /**
775       * Removes and cancels all tasks in queue.  Can be called from any
776       * thread.
777       */
778      final void cancelTasks() {
779 <        ForkJoinTask<?> t;
780 <        while (base != sp && (t = deqTask()) != null)
781 <            t.cancelIgnoringExceptions();
779 >        while (base != sp) {
780 >            ForkJoinTask<?> t = deqTask();
781 >            if (t != null)
782 >                t.cancelIgnoringExceptions();
783 >        }
784      }
785  
786      /**
# Line 646 | Line 788 | public class ForkJoinWorkerThread extend
788       *
789       * @return the number of tasks drained
790       */
791 <    final int drainTasksTo(Collection<ForkJoinTask<?>> c) {
791 >    final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
792          int n = 0;
793 <        ForkJoinTask<?> t;
794 <        while (base != sp && (t = deqTask()) != null) {
795 <            c.add(t);
796 <            ++n;
793 >        while (base != sp) {
794 >            ForkJoinTask<?> t = deqTask();
795 >            if (t != null) {
796 >                c.add(t);
797 >                ++n;
798 >            }
799          }
800          return n;
801      }
802  
803 <    /**
660 <     * Gets and clears steal count for accumulation by pool.  Called
661 <     * only when known to be idle (in pool.sync and termination).
662 <     */
663 <    final int getAndClearStealCount() {
664 <        int sc = stealCount;
665 <        stealCount = 0;
666 <        return sc;
667 <    }
803 >    // Support methods for ForkJoinTask
804  
805      /**
806 <     * Returns true if at least one worker in the given array appears
807 <     * to have at least one queued task.
808 <     * @param ws array of workers
809 <     */
810 <    static boolean hasQueuedTasks(ForkJoinWorkerThread[] ws) {
811 <        if (ws != null) {
812 <            int len = ws.length;
813 <            for (int j = 0; j < 2; ++j) { // need two passes for clean sweep
814 <                for (int i = 0; i < len; ++i) {
815 <                    ForkJoinWorkerThread w = ws[i];
816 <                    if (w != null && w.sp != w.base)
817 <                        return true;
818 <                }
819 <            }
820 <        }
821 <        return false;
806 >     * Returns an estimate of the number of tasks, offset by a
807 >     * function of number of idle workers.
808 >     *
809 >     * This method provides a cheap heuristic guide for task
810 >     * partitioning when programmers, frameworks, tools, or languages
811 >     * have little or no idea about task granularity.  In essence by
812 >     * offering this method, we ask users only about tradeoffs in
813 >     * overhead vs expected throughput and its variance, rather than
814 >     * how finely to partition tasks.
815 >     *
816 >     * In a steady state strict (tree-structured) computation, each
817 >     * thread makes available for stealing enough tasks for other
818 >     * threads to remain active. Inductively, if all threads play by
819 >     * the same rules, each thread should make available only a
820 >     * constant number of tasks.
821 >     *
822 >     * The minimum useful constant is just 1. But using a value of 1
823 >     * would require immediate replenishment upon each steal to
824 >     * maintain enough tasks, which is infeasible.  Further,
825 >     * partitionings/granularities of offered tasks should minimize
826 >     * steal rates, which in general means that threads nearer the top
827 >     * of computation tree should generate more than those nearer the
828 >     * bottom. In perfect steady state, each thread is at
829 >     * approximately the same level of computation tree. However,
830 >     * producing extra tasks amortizes the uncertainty of progress and
831 >     * diffusion assumptions.
832 >     *
833 >     * So, users will want to use values larger, but not much larger
834 >     * than 1 to both smooth over transient shortages and hedge
835 >     * against uneven progress; as traded off against the cost of
836 >     * extra task overhead. We leave the user to pick a threshold
837 >     * value to compare with the results of this call to guide
838 >     * decisions, but recommend values such as 3.
839 >     *
840 >     * When all threads are active, it is on average OK to estimate
841 >     * surplus strictly locally. In steady-state, if one thread is
842 >     * maintaining say 2 surplus tasks, then so are others. So we can
843 >     * just use estimated queue length (although note that (sp - base)
844 >     * can be an overestimate because of stealers lagging increments
845 >     * of base).  However, this strategy alone leads to serious
846 >     * mis-estimates in some non-steady-state conditions (ramp-up,
847 >     * ramp-down, other stalls). We can detect many of these by
848 >     * further considering the number of "idle" threads, that are
849 >     * known to have zero queued tasks, so compensate by a factor of
850 >     * (#idle/#active) threads.
851 >     */
852 >    final int getEstimatedSurplusTaskCount() {
853 >        return sp - base - pool.idlePerActive();
854      }
855  
688    // Support methods for ForkJoinTask
689
856      /**
857 <     * Returns an estimate of the number of tasks in the queue.
857 >     * Gets and removes a local task.
858 >     *
859 >     * @return a task, if available
860       */
861 <    final int getQueueSize() {
862 <        int n = sp - base;
863 <        return n < 0? 0 : n; // suppress momentarily negative values
861 >    final ForkJoinTask<?> pollLocalTask() {
862 >        while (base != sp) {
863 >            if (active || (active = pool.tryIncrementActiveCount()))
864 >                return locallyFifo? locallyDeqTask() : popTask();
865 >        }
866 >        return null;
867      }
868  
869      /**
870 <     * Returns an estimate of the number of tasks, offset by a
871 <     * function of number of idle workers.
870 >     * Gets and removes a local or stolen task.
871 >     *
872 >     * @return a task, if available
873       */
874 <    final int getEstimatedSurplusTaskCount() {
875 <        // The halving approximates weighting idle vs non-idle workers
876 <        return (sp - base) - (pool.getIdleThreadCount() >>> 1);
874 >    final ForkJoinTask<?> pollTask() {
875 >        ForkJoinTask<?> t;
876 >        return (t = pollLocalTask()) != null ? t : scan();
877      }
878  
879      /**
880 <     * Scans, returning early if joinMe done
880 >     * Returns a stolen task, if available, unless joinMe is done
881 >     *
882 >     * This method is intrinsically nonmodular. To maintain the
883 >     * property that tasks are never stolen if the awaited task is
884 >     * ready, we must interleave mechanics of scan with status
885 >     * checks. We rely here on the commit points of deq that allow us
886 >     * to cancel a steal even after CASing slot to null, but before
887 >     * adjusting base index: If, after the CAS, we see that joinMe is
888 >     * ready, we can back out by placing the task back into the slot,
889 >     * without adjusting index. The scan loop is otherwise the same as
890 >     * in scan.
891 >     *
892 >     * The outer loop cannot be allowed to run forever, because it
893 >     * could lead to a form of deadlock if all threads are executing
894 >     * this method. However, we must also be patient before giving up,
895 >     * to cope with GC stalls, transient high loads, etc. The loop
896 >     * terminates (causing caller to possibly block this thread and
897 >     * create a replacement) only after #workers clean sweeps during
898 >     * which all running threads are active.
899       */
900      final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
901 <        ForkJoinTask<?> t = pollTask();
902 <        if (t != null && joinMe.status < 0 && sp == base) {
903 <            pushTask(t); // unsteal if done and this task would be stealable
904 <            t = null;
901 >        int sweeps = 0;
902 >        int r = seed;
903 >        ForkJoinPool p = pool;
904 >        p.releaseWaiters(); // help other threads progress
905 >        while (joinMe.status >= 0) {
906 >            ForkJoinWorkerThread[] ws = p.workers;
907 >            int n = ws.length;
908 >            int k = r;
909 >            for (int j = -n; j < n; ++j) {
910 >                ForkJoinWorkerThread v = ws[k & (n - 1)];
911 >                r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
912 >                if (v != null) {
913 >                    int b = v.base;
914 >                    ForkJoinTask<?>[] q;
915 >                    if (b != v.sp && (q = v.queue) != null) {
916 >                        int i = (q.length - 1) & b;
917 >                        ForkJoinTask<?> t = q[i];
918 >                        if (t != null) {
919 >                            if (joinMe.status < 0)
920 >                                return null;
921 >                            if (UNSAFE.compareAndSwapObject
922 >                                (q, (i << qShift) + qBase, t, null)) {
923 >                                if (joinMe.status < 0) {
924 >                                    writeSlot(q, i, t); // back out
925 >                                    return null;
926 >                                }
927 >                                v.base = b + 1;
928 >                                seed = r;
929 >                                ++stealCount;
930 >                                return t;
931 >                            }
932 >                        }
933 >                        sweeps = 0; // ensure rescan on contention
934 >                    }
935 >                }
936 >                k = j >= 0? k + ((n >>> 1) | 1) : r;
937 >                if ((j & 7) == 0 && joinMe.status < 0) // periodically recheck
938 >                    return null;
939 >            }
940 >            if ((sweeps = p.inactiveCount() == 0 ? sweeps + 1 : 0) > n)
941 >                return null;
942          }
943 <        return t;
943 >        return null;
944      }
945  
946      /**
947 <     * Runs tasks until pool isQuiescent.
947 >     * Runs tasks until {@code pool.isQuiescent()}.
948       */
949      final void helpQuiescePool() {
950          for (;;) {
951 <            ForkJoinTask<?> t = pollTask();
952 <            if (t != null)
953 <                t.quietlyExec();
954 <            else if (tryInactivate() && pool.isQuiescent())
955 <                break;
951 >            ForkJoinTask<?> t = pollLocalTask();
952 >            if (t != null || (t = scan()) != null)
953 >                t.tryExec();
954 >            else {
955 >                ForkJoinPool p = pool;
956 >                if (active) {
957 >                    active = false; // inactivate
958 >                    do {} while (!p.tryDecrementActiveCount());
959 >                }
960 >                if (p.isQuiescent()) {
961 >                    active = true; // re-activate
962 >                    do {} while (!p.tryIncrementActiveCount());
963 >                    return;
964 >                }
965 >            }
966          }
730        do;while (!tryActivate()); // re-activate on exit
967      }
968  
969 <    // Temporary Unsafe mechanics for preliminary release
970 <    private static Unsafe getUnsafe() throws Throwable {
969 >    // Unsafe mechanics
970 >
971 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
972 >    private static final long runStateOffset =
973 >        objectFieldOffset("runState", ForkJoinWorkerThread.class);
974 >    private static final long qBase =
975 >        UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
976 >    private static final int qShift;
977 >
978 >    static {
979 >        int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
980 >        if ((s & (s-1)) != 0)
981 >            throw new Error("data type scale not a power of two");
982 >        qShift = 31 - Integer.numberOfLeadingZeros(s);
983 >    }
984 >
985 >    private static long objectFieldOffset(String field, Class<?> klazz) {
986          try {
987 <            return Unsafe.getUnsafe();
987 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
988 >        } catch (NoSuchFieldException e) {
989 >            // Convert Exception to corresponding Error
990 >            NoSuchFieldError error = new NoSuchFieldError(field);
991 >            error.initCause(e);
992 >            throw error;
993 >        }
994 >    }
995 >
996 >    /**
997 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
998 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
999 >     * into a jdk.
1000 >     *
1001 >     * @return a sun.misc.Unsafe
1002 >     */
1003 >    private static sun.misc.Unsafe getUnsafe() {
1004 >        try {
1005 >            return sun.misc.Unsafe.getUnsafe();
1006          } catch (SecurityException se) {
1007              try {
1008                  return java.security.AccessController.doPrivileged
1009 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
1010 <                        public Unsafe run() throws Exception {
1011 <                            return getUnsafePrivileged();
1009 >                    (new java.security
1010 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1011 >                        public sun.misc.Unsafe run() throws Exception {
1012 >                            java.lang.reflect.Field f = sun.misc
1013 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1014 >                            f.setAccessible(true);
1015 >                            return (sun.misc.Unsafe) f.get(null);
1016                          }});
1017              } catch (java.security.PrivilegedActionException e) {
1018 <                throw e.getCause();
1018 >                throw new RuntimeException("Could not initialize intrinsics",
1019 >                                           e.getCause());
1020              }
1021          }
1022      }
749
750    private static Unsafe getUnsafePrivileged()
751            throws NoSuchFieldException, IllegalAccessException {
752        Field f = Unsafe.class.getDeclaredField("theUnsafe");
753        f.setAccessible(true);
754        return (Unsafe) f.get(null);
755    }
756
757    private static long fieldOffset(String fieldName)
758            throws NoSuchFieldException {
759        return UNSAFE.objectFieldOffset
760            (ForkJoinWorkerThread.class.getDeclaredField(fieldName));
761    }
762
763    static final Unsafe UNSAFE;
764    static final long baseOffset;
765    static final long spOffset;
766    static final long runStateOffset;
767    static final long qBase;
768    static final int qShift;
769    static {
770        try {
771            UNSAFE = getUnsafe();
772            baseOffset = fieldOffset("base");
773            spOffset = fieldOffset("sp");
774            runStateOffset = fieldOffset("runState");
775            qBase = UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
776            int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
777            if ((s & (s-1)) != 0)
778                throw new Error("data type scale not a power of two");
779            qShift = 31 - Integer.numberOfLeadingZeros(s);
780        } catch (Throwable e) {
781            throw new RuntimeException("Could not initialize intrinsics", e);
782        }
783    }
1023   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines