ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.2 by dl, Wed Jan 7 16:07:37 2009 UTC vs.
Revision 1.71 by dl, Wed Nov 14 17:20:38 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 import java.util.*;
9 import java.util.concurrent.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.concurrent.locks.*;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
8  
9   /**
10 < * A thread managed by a {@link ForkJoinPool}.  This class is
11 < * subclassable solely for the sake of adding functionality -- there
12 < * are no overridable methods dealing with scheduling or
13 < * execution. However, you can override initialization and termination
14 < * cleanup methods surrounding the main task processing loop.  If you
15 < * do create such a subclass, you will also need to supply a custom
16 < * ForkJoinWorkerThreadFactory to use it in a ForkJoinPool.
17 < *
18 < * <p>This class also provides methods for generating per-thread
19 < * random numbers, with the same properties as {@link
20 < * java.util.Random} but with each generator isolated from those of
21 < * other threads.
10 > * A thread managed by a {@link ForkJoinPool}, which executes
11 > * {@link ForkJoinTask}s.
12 > * This class is subclassable solely for the sake of adding
13 > * functionality -- there are no overridable methods dealing with
14 > * scheduling or execution.  However, you can override initialization
15 > * and termination methods surrounding the main task processing loop.
16 > * If you do create such a subclass, you will also need to supply a
17 > * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it
18 > * in a {@code ForkJoinPool}.
19 > *
20 > * @since 1.7
21 > * @author Doug Lea
22   */
23   public class ForkJoinWorkerThread extends Thread {
24      /*
25 <     * Algorithm overview:
26 <     *
27 <     * 1. Work-Stealing: Work-stealing queues are special forms of
34 <     * Deques that support only three of the four possible
35 <     * end-operations -- push, pop, and deq (aka steal), and only do
36 <     * so under the constraints that push and pop are called only from
37 <     * the owning thread, while deq may be called from other threads.
38 <     * (If you are unfamiliar with them, you probably want to read
39 <     * Herlihy and Shavit's book "The Art of Multiprocessor
40 <     * programming", chapter 16 describing these in more detail before
41 <     * proceeding.)  The main work-stealing queue design is roughly
42 <     * similar to "Dynamic Circular Work-Stealing Deque" by David
43 <     * Chase and Yossi Lev, SPAA 2005
44 <     * (http://research.sun.com/scalable/pubs/index.html).  The main
45 <     * difference ultimately stems from gc requirements that we null
46 <     * out taken slots as soon as we can, to maintain as small a
47 <     * footprint as possible even in programs generating huge numbers
48 <     * of tasks. To accomplish this, we shift the CAS arbitrating pop
49 <     * vs deq (steal) from being on the indices ("base" and "sp") to
50 <     * the slots themselves (mainly via method "casSlotNull()"). So,
51 <     * both a successful pop and deq mainly entail CAS'ing a nonnull
52 <     * slot to null.  Because we rely on CASes of references, we do
53 <     * not need tag bits on base or sp.  They are simple ints as used
54 <     * in any circular array-based queue (see for example ArrayDeque).
55 <     * Updates to the indices must still be ordered in a way that
56 <     * guarantees that (sp - base) > 0 means the queue is empty, but
57 <     * otherwise may err on the side of possibly making the queue
58 <     * appear nonempty when a push, pop, or deq have not fully
59 <     * committed. Note that this means that the deq operation,
60 <     * considered individually, is not wait-free. One thief cannot
61 <     * successfully continue until another in-progress one (or, if
62 <     * previously empty, a push) completes.  However, in the
63 <     * aggregate, we ensure at least probablistic non-blockingness. If
64 <     * an attempted steal fails, a thief always chooses a different
65 <     * random victim target to try next. So, in order for one thief to
66 <     * progress, it suffices for any in-progress deq or new push on
67 <     * any empty queue to complete. One reason this works well here is
68 <     * that apparently-nonempty often means soon-to-be-stealable,
69 <     * which gives threads a chance to activate if necessary before
70 <     * stealing (see below).
71 <     *
72 <     * Efficient implementation of this approach currently relies on
73 <     * an uncomfortable amount of "Unsafe" mechanics. To maintain
74 <     * correct orderings, reads and writes of variable base require
75 <     * volatile ordering.  Variable sp does not require volatile write
76 <     * but needs cheaper store-ordering on writes.  Because they are
77 <     * protected by volatile base reads, reads of the queue array and
78 <     * its slots do not need volatile load semantics, but writes (in
79 <     * push) require store order and CASes (in pop and deq) require
80 <     * (volatile) CAS semantics. Since these combinations aren't
81 <     * supported using ordinary volatiles, the only way to accomplish
82 <     * these effciently is to use direct Unsafe calls. (Using external
83 <     * AtomicIntegers and AtomicReferenceArrays for the indices and
84 <     * array is significantly slower because of memory locality and
85 <     * indirection effects.) Further, performance on most platforms is
86 <     * very sensitive to placement and sizing of the (resizable) queue
87 <     * array.  Even though these queues don't usually become all that
88 <     * big, the initial size must be large enough to counteract cache
89 <     * contention effects across multiple queues (especially in the
90 <     * presence of GC cardmarking). Also, to improve thread-locality,
91 <     * queues are currently initialized immediately after the thread
92 <     * gets the initial signal to start processing tasks.  However,
93 <     * all queue-related methods except pushTask are written in a way
94 <     * that allows them to instead be lazily allocated and/or disposed
95 <     * of when empty. All together, these low-level implementation
96 <     * choices produce as much as a factor of 4 performance
97 <     * improvement compared to naive implementations, and enable the
98 <     * processing of billions of tasks per second, sometimes at the
99 <     * expense of ugliness.
100 <     *
101 <     * 2. Run control: The primary run control is based on a global
102 <     * counter (activeCount) held by the pool. It uses an algorithm
103 <     * similar to that in Herlihy and Shavit section 17.6 to cause
104 <     * threads to eventually block when all threads declare they are
105 <     * inactive. (See variable "scans".)  For this to work, threads
106 <     * must be declared active when executing tasks, and before
107 <     * stealing a task. They must be inactive before blocking on the
108 <     * Pool Barrier (awaiting a new submission or other Pool
109 <     * event). In between, there is some free play which we take
110 <     * advantage of to avoid contention and rapid flickering of the
111 <     * global activeCount: If inactive, we activate only if a victim
112 <     * queue appears to be nonempty (see above).  Similarly, a thread
113 <     * tries to inactivate only after a full scan of other threads.
114 <     * The net effect is that contention on activeCount is rarely a
115 <     * measurable performance issue. (There are also a few other cases
116 <     * where we scan for work rather than retry/block upon
117 <     * contention.)
118 <     *
119 <     * 3. Selection control. We maintain policy of always choosing to
120 <     * run local tasks rather than stealing, and always trying to
121 <     * steal tasks before trying to run a new submission. All steals
122 <     * are currently performed in randomly-chosen deq-order. It may be
123 <     * worthwhile to bias these with locality / anti-locality
124 <     * information, but doing this well probably requires more
125 <     * lower-level information from JVMs than currently provided.
126 <     */
127 <
128 <    /**
129 <     * Capacity of work-stealing queue array upon initialization.
130 <     * Must be a power of two. Initial size must be at least 2, but is
131 <     * padded to minimize cache effects.
132 <     */
133 <    private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
134 <
135 <    /**
136 <     * Maximum work-stealing queue array size.  Must be less than or
137 <     * equal to 1 << 30 to ensure lack of index wraparound.
138 <     */
139 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 30;
140 <
141 <    /**
142 <     * Generator of seeds for per-thread random numbers.
143 <     */
144 <    private static final Random randomSeedGenerator = new Random();
145 <
146 <    /**
147 <     * The work-stealing queue array. Size must be a power of two.
148 <     */
149 <    private ForkJoinTask<?>[] queue;
150 <
151 <    /**
152 <     * Index (mod queue.length) of next queue slot to push to or pop
153 <     * from. It is written only by owner thread, via ordered store.
154 <     * Both sp and base are allowed to wrap around on overflow, but
155 <     * (sp - base) still estimates size.
25 >     * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
26 >     * ForkJoinTasks. For explanation, see the internal documentation
27 >     * of class ForkJoinPool.
28       */
157    private volatile int sp;
29  
30 <    /**
31 <     * Index (mod queue.length) of least valid queue slot, which is
161 <     * always the next position to steal from if nonempty.
162 <     */
163 <    private volatile int base;
30 >    final ForkJoinPool.WorkQueue workQueue; // Work-stealing mechanics
31 >    final ForkJoinPool pool;                // the pool this thread works in
32  
33      /**
34 <     * The pool this thread works in.
34 >     * An initial name for a newly constructed worker, used until
35 >     * onStart can establish a useful name. This removes need to
36 >     * establish a name from worker startup path.
37       */
38 <    final ForkJoinPool pool;
169 <
170 <    /**
171 <     * Index of this worker in pool array. Set once by pool before
172 <     * running, and accessed directly by pool during cleanup etc
173 <     */
174 <    int poolIndex;
175 <
176 <    /**
177 <     * Run state of this worker. Supports simple versions of the usual
178 <     * shutdown/shutdownNow control.
179 <     */
180 <    private volatile int runState;
181 <
182 <    // Runstate values. Order matters
183 <    private static final int RUNNING     = 0;
184 <    private static final int SHUTDOWN    = 1;
185 <    private static final int TERMINATING = 2;
186 <    private static final int TERMINATED  = 3;
187 <
188 <    /**
189 <     * Activity status. When true, this worker is considered active.
190 <     * Must be false upon construction. It must be true when executing
191 <     * tasks, and BEFORE stealing a task. It must be false before
192 <     * blocking on the Pool Barrier.
193 <     */
194 <    private boolean active;
195 <
196 <    /**
197 <     * Number of steals, transferred to pool when idle
198 <     */
199 <    private int stealCount;
200 <
201 <    /**
202 <     * Seed for random number generator for choosing steal victims
203 <     */
204 <    private int randomVictimSeed;
205 <
206 <    /**
207 <     * Seed for embedded Jurandom
208 <     */
209 <    private long juRandomSeed;
210 <
211 <    /**
212 <     * The last barrier event waited for
213 <     */
214 <    private long eventCount;
38 >    static final String provisionalName = "aForkJoinWorkerThread";
39  
40      /**
41       * Creates a ForkJoinWorkerThread operating in the given pool.
42 +     *
43       * @param pool the pool this thread works in
44       * @throws NullPointerException if pool is null
45       */
46      protected ForkJoinWorkerThread(ForkJoinPool pool) {
47 <        if (pool == null) throw new NullPointerException();
47 >        super(provisionalName); // bootstrap name
48 >        Thread.UncaughtExceptionHandler ueh = pool.ueh;
49 >        if (ueh != null)
50 >            setUncaughtExceptionHandler(ueh);
51 >        setDaemon(true);
52          this.pool = pool;
53 <        // remaining initialization deferred to onStart
53 >        pool.registerWorker(this.workQueue = new ForkJoinPool.WorkQueue
54 >                            (pool, this, pool.localMode));
55      }
56  
227    // public access methods
228
57      /**
58 <     * Returns the pool hosting the current task execution.
58 >     * Returns the pool hosting this thread.
59 >     *
60       * @return the pool
61       */
62 <    public static ForkJoinPool getPool() {
63 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).pool;
235 <    }
236 <
237 <    /**
238 <     * Returns the index number of the current worker thread in its
239 <     * pool.  The returned value ranges from zero to the maximum
240 <     * number of threads (minus one) that have ever been created in
241 <     * the pool.  This method may be useful for applications that
242 <     * track status or collect results on a per-worker basis.
243 <     * @return the index number.
244 <     */
245 <    public static int getPoolIndex() {
246 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).poolIndex;
247 <    }
248 <
249 <    //  Access methods used by Pool
250 <
251 <    /**
252 <     * Get and clear steal count for accumulation by pool.  Called
253 <     * only when known to be idle (in pool.sync and termination).
254 <     */
255 <    final int getAndClearStealCount() {
256 <        int sc = stealCount;
257 <        stealCount = 0;
258 <        return sc;
62 >    public ForkJoinPool getPool() {
63 >        return pool;
64      }
65  
66      /**
67 <     * Returns estimate of the number of tasks in the queue, without
68 <     * correcting for transient negative values
69 <     */
70 <    final int getRawQueueSize() {
71 <        return sp - base;
72 <    }
73 <
269 <    // Intrinsics-based support for queue operations.
270 <    // Currently these three (setSp, setSlot, casSlotNull) are
271 <    // usually manually inlined to improve performance
272 <
273 <    /**
274 <     * Sets sp in store-order.
275 <     */
276 <    private void setSp(int s) {
277 <        _unsafe.putOrderedInt(this, spOffset, s);
278 <    }
279 <
280 <    /**
281 <     * Add in store-order the given task at given slot of q to
282 <     * null. Caller must ensure q is nonnull and index is in range.
283 <     */
284 <    private static void setSlot(ForkJoinTask<?>[] q, int i,
285 <                                ForkJoinTask<?> t){
286 <        _unsafe.putOrderedObject(q, (i << qShift) + qBase, t);
287 <    }
288 <
289 <    /**
290 <     * CAS given slot of q to null. Caller must ensure q is nonnull
291 <     * and index is in range.
292 <     */
293 <    private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
294 <                                       ForkJoinTask<?> t) {
295 <        return _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
296 <    }
297 <
298 <    // Main queue methods
299 <
300 <    /**
301 <     * Pushes a task. Called only by current thread.
302 <     * @param t the task. Caller must ensure nonnull
303 <     */
304 <    final void pushTask(ForkJoinTask<?> t) {
305 <        ForkJoinTask<?>[] q = queue;
306 <        int mask = q.length - 1;
307 <        int s = sp;
308 <        _unsafe.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
309 <        _unsafe.putOrderedInt(this, spOffset, ++s);
310 <        if ((s -= base) == 1)
311 <            pool.signalNonEmptyWorkerQueue();
312 <        else if (s >= mask)
313 <            growQueue();
314 <    }
315 <
316 <    /**
317 <     * Tries to take a task from the base of the queue, failing if
318 <     * either empty or contended.
319 <     * @return a task, or null if none or contended.
320 <     */
321 <    private ForkJoinTask<?> deqTask() {
322 <        ForkJoinTask<?>[] q;
323 <        ForkJoinTask<?> t;
324 <        int i;
325 <        int b;
326 <        if (sp != (b = base) &&
327 <            (q = queue) != null && // must read q after b
328 <            (t = q[i = (q.length - 1) & b]) != null &&
329 <            _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
330 <            base = b + 1;
331 <            return t;
332 <        }
333 <        return null;
334 <    }
335 <
336 <    /**
337 <     * Returns a popped task, or null if empty.  Called only by
338 <     * current thread.
339 <     */
340 <    final ForkJoinTask<?> popTask() {
341 <        ForkJoinTask<?> t;
342 <        int i;
343 <        ForkJoinTask<?>[] q = queue;
344 <        int mask = q.length - 1;
345 <        int s = sp;
346 <        if (s != base &&
347 <            (t = q[i = (s - 1) & mask]) != null &&
348 <            _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
349 <            _unsafe.putOrderedInt(this, spOffset, s - 1);
350 <            return t;
351 <        }
352 <        return null;
353 <    }
354 <
355 <    /**
356 <     * Specialized version of popTask to pop only if
357 <     * topmost element is the given task. Called only
358 <     * by current thread.
359 <     * @param t the task. Caller must ensure nonnull
360 <     */
361 <    final boolean unpushTask(ForkJoinTask<?> t) {
362 <        ForkJoinTask<?>[] q = queue;
363 <        int mask = q.length - 1;
364 <        int s = sp - 1;
365 <        if (_unsafe.compareAndSwapObject(q, ((s & mask) << qShift) + qBase,
366 <                                         t, null)) {
367 <            _unsafe.putOrderedInt(this, spOffset, s);
368 <            return true;
369 <        }
370 <        return false;
371 <    }
372 <
373 <    /**
374 <     * Returns next task to pop.
375 <     */
376 <    final ForkJoinTask<?> peekTask() {
377 <        ForkJoinTask<?>[] q = queue;
378 <        return q == null? null : q[(sp - 1) & (q.length - 1)];
379 <    }
380 <
381 <    /**
382 <     * Doubles queue array size. Transfers elements by emulating
383 <     * steals (deqs) from old array and placing, oldest first, into
384 <     * new array.
385 <     */
386 <    private void growQueue() {
387 <        ForkJoinTask<?>[] oldQ = queue;
388 <        int oldSize = oldQ.length;
389 <        int newSize = oldSize << 1;
390 <        if (newSize > MAXIMUM_QUEUE_CAPACITY)
391 <            throw new RejectedExecutionException("Queue capacity exceeded");
392 <        ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
393 <
394 <        int b = base;
395 <        int bf = b + oldSize;
396 <        int oldMask = oldSize - 1;
397 <        int newMask = newSize - 1;
398 <        do {
399 <            int oldIndex = b & oldMask;
400 <            ForkJoinTask<?> t = oldQ[oldIndex];
401 <            if (t != null && !casSlotNull(oldQ, oldIndex, t))
402 <                t = null;
403 <            setSlot(newQ, b & newMask, t);
404 <        } while (++b != bf);
405 <        pool.signalIdleWorkers(false);
406 <    }
407 <
408 <    // Runstate management
409 <
410 <    final boolean isShutdown()    { return runState >= SHUTDOWN;  }
411 <    final boolean isTerminating() { return runState >= TERMINATING;  }
412 <    final boolean isTerminated()  { return runState == TERMINATED; }
413 <    final boolean shutdown()      { return transitionRunStateTo(SHUTDOWN); }
414 <    final boolean shutdownNow()   { return transitionRunStateTo(TERMINATING); }
415 <
416 <    /**
417 <     * Transition to at least the given state. Return true if not
418 <     * already at least given state.
419 <     */
420 <    private boolean transitionRunStateTo(int state) {
421 <        for (;;) {
422 <            int s = runState;
423 <            if (s >= state)
424 <                return false;
425 <            if (_unsafe.compareAndSwapInt(this, runStateOffset, s, state))
426 <                return true;
427 <        }
428 <    }
429 <
430 <    /**
431 <     * Ensure status is active and if necessary adjust pool active count
432 <     */
433 <    final void activate() {
434 <        if (!active) {
435 <            active = true;
436 <            pool.incrementActiveCount();
437 <        }
438 <    }
439 <
440 <    /**
441 <     * Ensure status is inactive and if necessary adjust pool active count
67 >     * Returns the index number of this thread in its pool.  The
68 >     * returned value ranges from zero to the maximum number of
69 >     * threads (minus one) that have ever been created in the pool.
70 >     * This method may be useful for applications that track status or
71 >     * collect results per-worker rather than per-task.
72 >     *
73 >     * @return the index number
74       */
75 <    final void inactivate() {
76 <        if (active) {
445 <            active = false;
446 <            pool.decrementActiveCount();
447 <        }
75 >    public int getPoolIndex() {
76 >        return workQueue.poolIndex;
77      }
78  
450    // Lifecycle methods
451
79      /**
80       * Initializes internal state after construction but before
81       * processing any tasks. If you override this method, you must
82 <     * invoke super.onStart() at the beginning of the method.
82 >     * invoke {@code super.onStart()} at the beginning of the method.
83       * Initialization requires care: Most fields must have legal
84       * default values, to ensure that attempted accesses from other
85       * threads work correctly even before this thread starts
86       * processing tasks.
87       */
88      protected void onStart() {
89 <        juRandomSeed = randomSeedGenerator.nextLong();
90 <        do;while((randomVictimSeed = nextRandomInt()) == 0); // must be nonzero
91 <        if (queue == null)
92 <            queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
466 <
467 <        // Heuristically allow one initial thread to warm up; others wait
468 <        if (poolIndex < pool.getParallelism() - 1) {
469 <            eventCount = pool.sync(this, 0);
470 <            activate();
471 <        }
89 >        String pref; // replace bootstrap name
90 >        if (provisionalName.equals(getName()) &&
91 >            (pref = pool.workerNamePrefix) != null)
92 >            setName(pref.concat(Long.toString(getId())));
93      }
94  
95      /**
96 <     * Perform cleanup associated with termination of this worker
96 >     * Performs cleanup associated with termination of this worker
97       * thread.  If you override this method, you must invoke
98 <     * super.onTermination at the end of the overridden method.
98 >     * {@code super.onTermination} at the end of the overridden method.
99       *
100       * @param exception the exception causing this thread to abort due
101 <     * to an unrecoverable error, or null if completed normally.
101 >     * to an unrecoverable error, or {@code null} if completed normally
102       */
103      protected void onTermination(Throwable exception) {
483        try {
484            clearLocalTasks();
485            inactivate();
486            cancelTasks();
487        } finally {
488            terminate(exception);
489        }
490    }
491
492    /**
493     * Notify pool of termination and, if exception is nonnull,
494     * rethrow it to trigger this thread's uncaughtExceptionHandler
495     */
496    private void terminate(Throwable exception) {
497        transitionRunStateTo(TERMINATED);
498        try {
499            pool.workerTerminated(this);
500        } finally {
501            if (exception != null)
502                ForkJoinTask.rethrowException(exception);
503        }
504    }
505
506    /**
507     * Run local tasks on exit from main.
508     */
509    private void clearLocalTasks() {
510        while (base != sp && !pool.isTerminating()) {
511            ForkJoinTask<?> t = popTask();
512            if (t != null) {
513                activate(); // ensure active status
514                t.quietlyExec();
515            }
516        }
517    }
518
519    /**
520     * Removes and cancels all tasks in queue.  Can be called from any
521     * thread.
522     */
523    final void cancelTasks() {
524        while (base != sp) {
525            ForkJoinTask<?> t = deqTask();
526            if (t != null)
527                t.cancelIgnoreExceptions();
528        }
104      }
105  
106      /**
107       * This method is required to be public, but should never be
108       * called explicitly. It performs the main run loop to execute
109 <     * ForkJoinTasks.
109 >     * {@link ForkJoinTask}s.
110       */
111      public void run() {
112          Throwable exception = null;
113          try {
114              onStart();
115 <            while (!isShutdown())
541 <                step();
115 >            pool.runWorker(workQueue);
116          } catch (Throwable ex) {
117              exception = ex;
118          } finally {
119 <            onTermination(exception);
120 <        }
121 <    }
122 <
123 <    /**
124 <     * Main top-level action.
125 <     */
552 <    private void step() {
553 <        ForkJoinTask<?> t = sp != base? popTask() : null;
554 <        if (t != null || (t = scan(null, true)) != null) {
555 <            activate();
556 <            t.quietlyExec();
557 <        }
558 <        else {
559 <            inactivate();
560 <            eventCount = pool.sync(this, eventCount);
561 <        }
562 <    }
563 <
564 <    // scanning for and stealing tasks
565 <
566 <    /**
567 <     * Computes next value for random victim probe. Scans don't
568 <     * require a very high quality generator, but also not a crummy
569 <     * one. Marsaglia xor-shift is cheap and works well.
570 <     *
571 <     * This is currently unused, and manually inlined
572 <     */
573 <    private static int xorShift(int r) {
574 <        r ^= r << 1;
575 <        r ^= r >>> 3;
576 <        r ^= r << 10;
577 <        return r;
578 <    }
579 <
580 <    /**
581 <     * Tries to steal a task from another worker and/or, if enabled,
582 <     * submission queue. Starts at a random index of workers array,
583 <     * and probes workers until finding one with non-empty queue or
584 <     * finding that all are empty.  It randomly selects the first n-1
585 <     * probes. If these are empty, it resorts to full circular
586 <     * traversal, which is necessary to accurately set active status
587 <     * by caller. Also restarts if pool barrier has tripped since last
588 <     * scan, which forces refresh of workers array, in case barrier
589 <     * was associated with resize.
590 <     *
591 <     * This method must be both fast and quiet -- usually avoiding
592 <     * memory accesses that could disrupt cache sharing etc other than
593 <     * those needed to check for and take tasks. This accounts for,
594 <     * among other things, updating random seed in place without
595 <     * storing it until exit. (Note that we only need to store it if
596 <     * we found a task; otherwise it doesn't matter if we start at the
597 <     * same place next time.)
598 <     *
599 <     * @param joinMe if non null; exit early if done
600 <     * @param checkSubmissions true if OK to take submissions
601 <     * @return a task, or null if none found
602 <     */
603 <    private ForkJoinTask<?> scan(ForkJoinTask<?> joinMe,
604 <                                 boolean checkSubmissions) {
605 <        ForkJoinPool p = pool;
606 <        if (p == null)                    // Never null, but avoids
607 <            return null;                  //   implicit nullchecks below
608 <        int r = randomVictimSeed;         // extract once to keep scan quiet
609 <        restart:                          // outer loop refreshes ws array
610 <        while (joinMe == null || joinMe.status >= 0) {
611 <            int mask;
612 <            ForkJoinWorkerThread[] ws = p.workers;
613 <            if (ws != null && (mask = ws.length - 1) > 0) {
614 <                int probes = -mask;       // use random index while negative
615 <                int idx = r;
616 <                for (;;) {
617 <                    ForkJoinWorkerThread v;
618 <                    // inlined xorshift to update seed
619 <                    r ^= r << 1;  r ^= r >>> 3; r ^= r << 10;
620 <                    if ((v = ws[mask & idx]) != null && v.sp != v.base) {
621 <                        ForkJoinTask<?> t;
622 <                        activate();
623 <                        if ((joinMe == null || joinMe.status >= 0) &&
624 <                            (t = v.deqTask()) != null) {
625 <                            randomVictimSeed = r;
626 <                            ++stealCount;
627 <                            return t;
628 <                        }
629 <                        continue restart; // restart on contention
630 <                    }
631 <                    if ((probes >> 1) <= mask) // n-1 random then circular
632 <                        idx = (probes++ < 0)? r : (idx + 1);
633 <                    else
634 <                        break;
635 <                }
636 <            }
637 <            if (checkSubmissions && p.hasQueuedSubmissions()) {
638 <                activate();
639 <                ForkJoinTask<?> t = p.pollSubmission();
640 <                if (t != null)
641 <                    return t;
642 <            }
643 <            else {
644 <                long ec = eventCount;     // restart on pool event
645 <                if ((eventCount = p.getEventCount()) == ec)
646 <                    break;
647 <            }
648 <        }
649 <        return null;
650 <    }
651 <
652 <    /**
653 <     * Callback from pool.sync to rescan before blocking.  If a
654 <     * task is found, it is pushed so it can be executed upon return.
655 <     * @return true if found and pushed a task
656 <     */
657 <    final boolean prescan() {
658 <        ForkJoinTask<?> t = scan(null, true);
659 <        if (t != null) {
660 <            pushTask(t);
661 <            return true;
662 <        }
663 <        else {
664 <            inactivate();
665 <            return false;
666 <        }
667 <    }
668 <
669 <    // Support for ForkJoinTask methods
670 <
671 <    /**
672 <     * Implements ForkJoinTask.helpJoin
673 <     */
674 <    final int helpJoinTask(ForkJoinTask<?> joinMe) {
675 <        ForkJoinTask<?> t = null;
676 <        int s;
677 <        while ((s = joinMe.status) >= 0) {
678 <            if (t == null) {
679 <                if ((t = scan(joinMe, false)) == null)  // block if no work
680 <                    return joinMe.awaitDone(this, false);
681 <                // else recheck status before exec
682 <            }
683 <            else {
684 <                t.quietlyExec();
685 <                t = null;
686 <            }
687 <        }
688 <        if (t != null) // unsteal
689 <            pushTask(t);
690 <        return s;
691 <    }
692 <
693 <    /**
694 <     * Pops or steals a task
695 <     * @return task, or null if none available
696 <     */
697 <    final ForkJoinTask<?> getLocalOrStolenTask() {
698 <        ForkJoinTask<?> t = popTask();
699 <        return t != null? t : scan(null, false);
700 <    }
701 <
702 <    /**
703 <     * Runs tasks until pool isQuiescent
704 <     */
705 <    final void helpQuiescePool() {
706 <        for (;;) {
707 <            ForkJoinTask<?> t = getLocalOrStolenTask();
708 <            if (t != null) {
709 <                activate();
710 <                t.quietlyExec();
711 <            }
712 <            else {
713 <                inactivate();
714 <                if (pool.isQuiescent()) {
715 <                    activate(); // re-activate on exit
716 <                    break;
717 <                }
718 <            }
719 <        }
720 <    }
721 <
722 <    /**
723 <     * Returns an estimate of the number of tasks in the queue.
724 <     */
725 <    final int getQueueSize() {
726 <        int b = base;
727 <        int n = sp - b;
728 <        return n <= 0? 0 : n; // suppress momentarily negative values
729 <    }
730 <
731 <    /**
732 <     * Returns an estimate of the number of tasks, offset by a
733 <     * function of number of idle workers.
734 <     */
735 <    final int getEstimatedSurplusTaskCount() {
736 <        return (sp - base) - (pool.getIdleThreadCount() >>> 1);
737 <    }
738 <
739 <    // Per-worker exported random numbers
740 <
741 <    // Same constants as java.util.Random
742 <    final static long JURandomMultiplier = 0x5DEECE66DL;
743 <    final static long JURandomAddend = 0xBL;
744 <    final static long JURandomMask = (1L << 48) - 1;
745 <
746 <    private final int nextJURandom(int bits) {
747 <        long next = (juRandomSeed * JURandomMultiplier + JURandomAddend) &
748 <            JURandomMask;
749 <        juRandomSeed = next;
750 <        return (int)(next >>> (48 - bits));
751 <    }
752 <
753 <    private final int nextJURandomInt(int n) {
754 <        if (n <= 0)
755 <            throw new IllegalArgumentException("n must be positive");
756 <        int bits = nextJURandom(31);
757 <        if ((n & -n) == n)
758 <            return (int)((n * (long)bits) >> 31);
759 <
760 <        for (;;) {
761 <            int val = bits % n;
762 <            if (bits - val + (n-1) >= 0)
763 <                return val;
764 <            bits = nextJURandom(31);
765 <        }
766 <    }
767 <
768 <    private final long nextJURandomLong() {
769 <        return ((long)(nextJURandom(32)) << 32) + nextJURandom(32);
770 <    }
771 <
772 <    private final long nextJURandomLong(long n) {
773 <        if (n <= 0)
774 <            throw new IllegalArgumentException("n must be positive");
775 <        long offset = 0;
776 <        while (n >= Integer.MAX_VALUE) { // randomly pick half range
777 <            int bits = nextJURandom(2); // 2nd bit for odd vs even split
778 <            long half = n >>> 1;
779 <            long nextn = ((bits & 2) == 0)? half : n - half;
780 <            if ((bits & 1) == 0)
781 <                offset += n - nextn;
782 <            n = nextn;
783 <        }
784 <        return offset + nextJURandomInt((int)n);
785 <    }
786 <
787 <    private final double nextJURandomDouble() {
788 <        return (((long)(nextJURandom(26)) << 27) + nextJURandom(27))
789 <            / (double)(1L << 53);
790 <    }
791 <
792 <    /**
793 <     * Returns a random integer using a per-worker random
794 <     * number generator with the same properties as
795 <     * {@link java.util.Random#nextInt}
796 <     * @return the next pseudorandom, uniformly distributed {@code int}
797 <     *         value from this worker's random number generator's sequence
798 <     */
799 <    public static int nextRandomInt() {
800 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
801 <            nextJURandom(32);
802 <    }
803 <
804 <    /**
805 <     * Returns a random integer using a per-worker random
806 <     * number generator with the same properties as
807 <     * {@link java.util.Random#nextInt(int)}
808 <     * @param n the bound on the random number to be returned.  Must be
809 <     *        positive.
810 <     * @return the next pseudorandom, uniformly distributed {@code int}
811 <     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
812 <     *         from this worker's random number generator's sequence
813 <     * @throws IllegalArgumentException if n is not positive
814 <     */
815 <    public static int nextRandomInt(int n) {
816 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
817 <            nextJURandomInt(n);
818 <    }
819 <
820 <    /**
821 <     * Returns a random long using a per-worker random
822 <     * number generator with the same properties as
823 <     * {@link java.util.Random#nextLong}
824 <     * @return the next pseudorandom, uniformly distributed {@code long}
825 <     *         value from this worker's random number generator's sequence
826 <     */
827 <    public static long nextRandomLong() {
828 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
829 <            nextJURandomLong();
830 <    }
831 <
832 <    /**
833 <     * Returns a random integer using a per-worker random
834 <     * number generator with the same properties as
835 <     * {@link java.util.Random#nextInt(int)}
836 <     * @param n the bound on the random number to be returned.  Must be
837 <     *        positive.
838 <     * @return the next pseudorandom, uniformly distributed {@code int}
839 <     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
840 <     *         from this worker's random number generator's sequence
841 <     * @throws IllegalArgumentException if n is not positive
842 <     */
843 <    public static long nextRandomLong(long n) {
844 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
845 <            nextJURandomLong(n);
846 <    }
847 <
848 <    /**
849 <     * Returns a random double using a per-worker random
850 <     * number generator with the same properties as
851 <     * {@link java.util.Random#nextDouble}
852 <     * @return the next pseudorandom, uniformly distributed {@code double}
853 <     *         value between {@code 0.0} and {@code 1.0} from this
854 <     *         worker's random number generator's sequence
855 <     */
856 <    public static double nextRandomDouble() {
857 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
858 <            nextJURandomDouble();
859 <    }
860 <
861 <    // Temporary Unsafe mechanics for preliminary release
862 <
863 <    static final Unsafe _unsafe;
864 <    static final long baseOffset;
865 <    static final long spOffset;
866 <    static final long qBase;
867 <    static final int qShift;
868 <    static final long runStateOffset;
869 <    static {
870 <        try {
871 <            if (ForkJoinWorkerThread.class.getClassLoader() != null) {
872 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
873 <                f.setAccessible(true);
874 <                _unsafe = (Unsafe)f.get(null);
119 >            try {
120 >                onTermination(exception);
121 >            } catch (Throwable ex) {
122 >                if (exception == null)
123 >                    exception = ex;
124 >            } finally {
125 >                pool.deregisterWorker(this, exception);
126              }
876            else
877                _unsafe = Unsafe.getUnsafe();
878            baseOffset = _unsafe.objectFieldOffset
879                (ForkJoinWorkerThread.class.getDeclaredField("base"));
880            spOffset = _unsafe.objectFieldOffset
881                (ForkJoinWorkerThread.class.getDeclaredField("sp"));
882            runStateOffset = _unsafe.objectFieldOffset
883                (ForkJoinWorkerThread.class.getDeclaredField("runState"));
884            qBase = _unsafe.arrayBaseOffset(ForkJoinTask[].class);
885            int s = _unsafe.arrayIndexScale(ForkJoinTask[].class);
886            if ((s & (s-1)) != 0)
887                throw new Error("data type scale not a power of two");
888            qShift = 31 - Integer.numberOfLeadingZeros(s);
889        } catch (Exception e) {
890            throw new RuntimeException("Could not initialize intrinsics", e);
127          }
128      }
129   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines