ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.3 by dl, Wed Jan 7 19:12:36 2009 UTC vs.
Revision 1.50 by dl, Fri Sep 17 14:24:56 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
11 < import java.util.concurrent.locks.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
10 >
11 > import java.util.Random;
12 > import java.util.Collection;
13 > import java.util.concurrent.locks.LockSupport;
14  
15   /**
16   * A thread managed by a {@link ForkJoinPool}.  This class is
17   * subclassable solely for the sake of adding functionality -- there
18 < * are no overridable methods dealing with scheduling or
19 < * execution. However, you can override initialization and termination
20 < * cleanup methods surrounding the main task processing loop.  If you
21 < * do create such a subclass, you will also need to supply a custom
22 < * ForkJoinWorkerThreadFactory to use it in a ForkJoinPool.
23 < *
24 < * <p>This class also provides methods for generating per-thread
25 < * random numbers, with the same properties as {@link
26 < * java.util.Random} but with each generator isolated from those of
27 < * other threads.
18 > * are no overridable methods dealing with scheduling or execution.
19 > * However, you can override initialization and termination methods
20 > * surrounding the main task processing loop.  If you do create such a
21 > * subclass, you will also need to supply a custom {@link
22 > * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
23 > * ForkJoinPool}.
24 > *
25 > * @since 1.7
26 > * @author Doug Lea
27   */
28   public class ForkJoinWorkerThread extends Thread {
29      /*
30 <     * Algorithm overview:
30 >     * Overview:
31 >     *
32 >     * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
33 >     * ForkJoinTasks. This class includes bookkeeping in support of
34 >     * worker activation, suspension, and lifecycle control described
35 >     * in more detail in the internal documentation of class
36 >     * ForkJoinPool. And as described further below, this class also
37 >     * includes special-cased support for some ForkJoinTask
38 >     * methods. But the main mechanics involve work-stealing:
39       *
40 <     * 1. Work-Stealing: Work-stealing queues are special forms of
41 <     * Deques that support only three of the four possible
42 <     * end-operations -- push, pop, and deq (aka steal), and only do
43 <     * so under the constraints that push and pop are called only from
44 <     * the owning thread, while deq may be called from other threads.
45 <     * (If you are unfamiliar with them, you probably want to read
46 <     * Herlihy and Shavit's book "The Art of Multiprocessor
47 <     * programming", chapter 16 describing these in more detail before
48 <     * proceeding.)  The main work-stealing queue design is roughly
49 <     * similar to "Dynamic Circular Work-Stealing Deque" by David
50 <     * Chase and Yossi Lev, SPAA 2005
51 <     * (http://research.sun.com/scalable/pubs/index.html).  The main
52 <     * difference ultimately stems from gc requirements that we null
53 <     * out taken slots as soon as we can, to maintain as small a
54 <     * footprint as possible even in programs generating huge numbers
55 <     * of tasks. To accomplish this, we shift the CAS arbitrating pop
56 <     * vs deq (steal) from being on the indices ("base" and "sp") to
57 <     * the slots themselves (mainly via method "casSlotNull()"). So,
58 <     * both a successful pop and deq mainly entail CAS'ing a nonnull
59 <     * slot to null.  Because we rely on CASes of references, we do
60 <     * not need tag bits on base or sp.  They are simple ints as used
61 <     * in any circular array-based queue (see for example ArrayDeque).
62 <     * Updates to the indices must still be ordered in a way that
63 <     * guarantees that (sp - base) > 0 means the queue is empty, but
64 <     * otherwise may err on the side of possibly making the queue
65 <     * appear nonempty when a push, pop, or deq have not fully
66 <     * committed. Note that this means that the deq operation,
67 <     * considered individually, is not wait-free. One thief cannot
68 <     * successfully continue until another in-progress one (or, if
69 <     * previously empty, a push) completes.  However, in the
70 <     * aggregate, we ensure at least probablistic non-blockingness. If
71 <     * an attempted steal fails, a thief always chooses a different
40 >     * Work-stealing queues are special forms of Deques that support
41 >     * only three of the four possible end-operations -- push, pop,
42 >     * and deq (aka steal), under the further constraints that push
43 >     * and pop are called only from the owning thread, while deq may
44 >     * be called from other threads.  (If you are unfamiliar with
45 >     * them, you probably want to read Herlihy and Shavit's book "The
46 >     * Art of Multiprocessor programming", chapter 16 describing these
47 >     * in more detail before proceeding.)  The main work-stealing
48 >     * queue design is roughly similar to those in the papers "Dynamic
49 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
50 >     * (http://research.sun.com/scalable/pubs/index.html) and
51 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
52 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
53 >     * The main differences ultimately stem from gc requirements that
54 >     * we null out taken slots as soon as we can, to maintain as small
55 >     * a footprint as possible even in programs generating huge
56 >     * numbers of tasks. To accomplish this, we shift the CAS
57 >     * arbitrating pop vs deq (steal) from being on the indices
58 >     * ("base" and "sp") to the slots themselves (mainly via method
59 >     * "casSlotNull()"). So, both a successful pop and deq mainly
60 >     * entail a CAS of a slot from non-null to null.  Because we rely
61 >     * on CASes of references, we do not need tag bits on base or sp.
62 >     * They are simple ints as used in any circular array-based queue
63 >     * (see for example ArrayDeque).  Updates to the indices must
64 >     * still be ordered in a way that guarantees that sp == base means
65 >     * the queue is empty, but otherwise may err on the side of
66 >     * possibly making the queue appear nonempty when a push, pop, or
67 >     * deq have not fully committed. Note that this means that the deq
68 >     * operation, considered individually, is not wait-free. One thief
69 >     * cannot successfully continue until another in-progress one (or,
70 >     * if previously empty, a push) completes.  However, in the
71 >     * aggregate, we ensure at least probabilistic non-blockingness.
72 >     * If an attempted steal fails, a thief always chooses a different
73       * random victim target to try next. So, in order for one thief to
74       * progress, it suffices for any in-progress deq or new push on
75       * any empty queue to complete. One reason this works well here is
76       * that apparently-nonempty often means soon-to-be-stealable,
77 <     * which gives threads a chance to activate if necessary before
78 <     * stealing (see below).
77 >     * which gives threads a chance to set activation status if
78 >     * necessary before stealing.
79       *
80 <     * Efficient implementation of this approach currently relies on
81 <     * an uncomfortable amount of "Unsafe" mechanics. To maintain
80 >     * This approach also enables support for "async mode" where local
81 >     * task processing is in FIFO, not LIFO order; simply by using a
82 >     * version of deq rather than pop when locallyFifo is true (as set
83 >     * by the ForkJoinPool).  This allows use in message-passing
84 >     * frameworks in which tasks are never joined.
85 >     *
86 >     * When a worker would otherwise be blocked waiting to join a
87 >     * task, it first tries a form of linear helping: Each worker
88 >     * records (in field currentSteal) the most recent task it stole
89 >     * from some other worker. Plus, it records (in field currentJoin)
90 >     * the task it is currently actively joining. Method joinTask uses
91 >     * these markers to try to find a worker to help (i.e., steal back
92 >     * a task from and execute it) that could hasten completion of the
93 >     * actively joined task. In essence, the joiner executes a task
94 >     * that would be on its own local deque had the to-be-joined task
95 >     * not been stolen. This may be seen as a conservative variant of
96 >     * the approach in Wagner & Calder "Leapfrogging: a portable
97 >     * technique for implementing efficient futures" SIGPLAN Notices,
98 >     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
99 >     * in that: (1) We only maintain dependency links across workers
100 >     * upon steals, rather than use per-task bookkeeping.  This may
101 >     * require a linear scan of workers array to locate stealers, but
102 >     * usually doesn't because stealers leave hints (that may become
103 >     * stale/wrong) of where to locate them. This isolates cost to
104 >     * when it is needed, rather than adding to per-task overhead.
105 >     * (2) It is "shallow", ignoring nesting and potentially cyclic
106 >     * mutual steals.  (3) It is intentionally racy: field currentJoin
107 >     * is updated only while actively joining, which means that we
108 >     * miss links in the chain during long-lived tasks, GC stalls etc
109 >     * (which is OK since blocking in such cases is usually a good
110 >     * idea).  (4) We bound the number of attempts to find work (see
111 >     * MAX_HELP_DEPTH) and fall back to suspending the worker and if
112 >     * necessary replacing it with a spare (see
113 >     * ForkJoinPool.awaitJoin).
114 >     *
115 >     * Efficient implementation of these algorithms currently relies
116 >     * on an uncomfortable amount of "Unsafe" mechanics. To maintain
117       * correct orderings, reads and writes of variable base require
118 <     * volatile ordering.  Variable sp does not require volatile write
119 <     * but needs cheaper store-ordering on writes.  Because they are
120 <     * protected by volatile base reads, reads of the queue array and
121 <     * its slots do not need volatile load semantics, but writes (in
122 <     * push) require store order and CASes (in pop and deq) require
123 <     * (volatile) CAS semantics. Since these combinations aren't
124 <     * supported using ordinary volatiles, the only way to accomplish
125 <     * these effciently is to use direct Unsafe calls. (Using external
126 <     * AtomicIntegers and AtomicReferenceArrays for the indices and
127 <     * array is significantly slower because of memory locality and
128 <     * indirection effects.) Further, performance on most platforms is
129 <     * very sensitive to placement and sizing of the (resizable) queue
130 <     * array.  Even though these queues don't usually become all that
131 <     * big, the initial size must be large enough to counteract cache
118 >     * volatile ordering.  Variable sp does not require volatile
119 >     * writes but still needs store-ordering, which we accomplish by
120 >     * pre-incrementing sp before filling the slot with an ordered
121 >     * store.  (Pre-incrementing also enables backouts used in
122 >     * joinTask.)  Because they are protected by volatile base reads,
123 >     * reads of the queue array and its slots by other threads do not
124 >     * need volatile load semantics, but writes (in push) require
125 >     * store order and CASes (in pop and deq) require (volatile) CAS
126 >     * semantics.  (Michael, Saraswat, and Vechev's algorithm has
127 >     * similar properties, but without support for nulling slots.)
128 >     * Since these combinations aren't supported using ordinary
129 >     * volatiles, the only way to accomplish these efficiently is to
130 >     * use direct Unsafe calls. (Using external AtomicIntegers and
131 >     * AtomicReferenceArrays for the indices and array is
132 >     * significantly slower because of memory locality and indirection
133 >     * effects.)
134 >     *
135 >     * Further, performance on most platforms is very sensitive to
136 >     * placement and sizing of the (resizable) queue array.  Even
137 >     * though these queues don't usually become all that big, the
138 >     * initial size must be large enough to counteract cache
139       * contention effects across multiple queues (especially in the
140       * presence of GC cardmarking). Also, to improve thread-locality,
141 <     * queues are currently initialized immediately after the thread
142 <     * gets the initial signal to start processing tasks.  However,
143 <     * all queue-related methods except pushTask are written in a way
144 <     * that allows them to instead be lazily allocated and/or disposed
145 <     * of when empty. All together, these low-level implementation
96 <     * choices produce as much as a factor of 4 performance
97 <     * improvement compared to naive implementations, and enable the
98 <     * processing of billions of tasks per second, sometimes at the
99 <     * expense of ugliness.
100 <     *
101 <     * 2. Run control: The primary run control is based on a global
102 <     * counter (activeCount) held by the pool. It uses an algorithm
103 <     * similar to that in Herlihy and Shavit section 17.6 to cause
104 <     * threads to eventually block when all threads declare they are
105 <     * inactive. (See variable "scans".)  For this to work, threads
106 <     * must be declared active when executing tasks, and before
107 <     * stealing a task. They must be inactive before blocking on the
108 <     * Pool Barrier (awaiting a new submission or other Pool
109 <     * event). In between, there is some free play which we take
110 <     * advantage of to avoid contention and rapid flickering of the
111 <     * global activeCount: If inactive, we activate only if a victim
112 <     * queue appears to be nonempty (see above).  Similarly, a thread
113 <     * tries to inactivate only after a full scan of other threads.
114 <     * The net effect is that contention on activeCount is rarely a
115 <     * measurable performance issue. (There are also a few other cases
116 <     * where we scan for work rather than retry/block upon
117 <     * contention.)
118 <     *
119 <     * 3. Selection control. We maintain policy of always choosing to
120 <     * run local tasks rather than stealing, and always trying to
121 <     * steal tasks before trying to run a new submission. All steals
122 <     * are currently performed in randomly-chosen deq-order. It may be
123 <     * worthwhile to bias these with locality / anti-locality
124 <     * information, but doing this well probably requires more
125 <     * lower-level information from JVMs than currently provided.
141 >     * queues are initialized after starting.  All together, these
142 >     * low-level implementation choices produce as much as a factor of
143 >     * 4 performance improvement compared to naive implementations,
144 >     * and enable the processing of billions of tasks per second,
145 >     * sometimes at the expense of ugliness.
146       */
147  
148      /**
149 +     * Generator for initial random seeds for random victim
150 +     * selection. This is used only to create initial seeds. Random
151 +     * steals use a cheaper xorshift generator per steal attempt. We
152 +     * expect only rare contention on seedGenerator, so just use a
153 +     * plain Random.
154 +     */
155 +    private static final Random seedGenerator = new Random();
156 +
157 +    /**
158 +     * The maximum stolen->joining link depth allowed in helpJoinTask.
159 +     * Depths for legitimate chains are unbounded, but we use a fixed
160 +     * constant to avoid (otherwise unchecked) cycles and bound
161 +     * staleness of traversal parameters at the expense of sometimes
162 +     * blocking when we could be helping.
163 +     */
164 +    private static final int MAX_HELP_DEPTH = 8;
165 +
166 +    /**
167       * Capacity of work-stealing queue array upon initialization.
168 <     * Must be a power of two. Initial size must be at least 2, but is
168 >     * Must be a power of two. Initial size must be at least 4, but is
169       * padded to minimize cache effects.
170       */
171      private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
172  
173      /**
174       * Maximum work-stealing queue array size.  Must be less than or
175 <     * equal to 1 << 30 to ensure lack of index wraparound.
175 >     * equal to 1 << (31 - width of array entry) to ensure lack of
176 >     * index wraparound. The value is set in the static block
177 >     * at the end of this file after obtaining width.
178       */
179 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 30;
179 >    private static final int MAXIMUM_QUEUE_CAPACITY;
180  
181      /**
182 <     * Generator of seeds for per-thread random numbers.
182 >     * The pool this thread works in. Accessed directly by ForkJoinTask.
183       */
184 <    private static final Random randomSeedGenerator = new Random();
184 >    final ForkJoinPool pool;
185  
186      /**
187       * The work-stealing queue array. Size must be a power of two.
188 +     * Initialized in onStart, to improve memory locality.
189       */
190      private ForkJoinTask<?>[] queue;
191  
192      /**
193 +     * Index (mod queue.length) of least valid queue slot, which is
194 +     * always the next position to steal from if nonempty.
195 +     */
196 +    private volatile int base;
197 +
198 +    /**
199       * Index (mod queue.length) of next queue slot to push to or pop
200 <     * from. It is written only by owner thread, via ordered store.
201 <     * Both sp and base are allowed to wrap around on overflow, but
202 <     * (sp - base) still estimates size.
200 >     * from. It is written only by owner thread, and accessed by other
201 >     * threads only after reading (volatile) base.  Both sp and base
202 >     * are allowed to wrap around on overflow, but (sp - base) still
203 >     * estimates size.
204       */
205 <    private volatile int sp;
205 >    private int sp;
206  
207      /**
208 <     * Index (mod queue.length) of least valid queue slot, which is
209 <     * always the next position to steal from if nonempty.
208 >     * The index of most recent stealer, used as a hint to avoid
209 >     * traversal in method helpJoinTask. This is only a hint because a
210 >     * worker might have had multiple steals and this only holds one
211 >     * of them (usually the most current). Declared non-volatile,
212 >     * relying on other prevailing sync to keep reasonably current.
213       */
214 <    private volatile int base;
214 >    private int stealHint;
215  
216      /**
217 <     * The pool this thread works in.
217 >     * Run state of this worker. In addition to the usual run levels,
218 >     * tracks if this worker is suspended as a spare, and if it was
219 >     * killed (trimmed) while suspended. However, "active" status is
220 >     * maintained separately and modified only in conjunction with
221 >     * CASes of the pool's runState (which are currently sadly
222 >     * manually inlined for performance.)  Accessed directly by pool
223 >     * to simplify checks for normal (zero) status.
224       */
225 <    final ForkJoinPool pool;
225 >    volatile int runState;
226 >
227 >    private static final int TERMINATING = 0x01;
228 >    private static final int TERMINATED  = 0x02;
229 >    private static final int SUSPENDED   = 0x04; // inactive spare
230 >    private static final int TRIMMED     = 0x08; // killed while suspended
231 >
232 >    /**
233 >     * Number of steals. Directly accessed (and reset) by
234 >     * pool.tryAccumulateStealCount when idle.
235 >     */
236 >    int stealCount;
237 >
238 >    /**
239 >     * Seed for random number generator for choosing steal victims.
240 >     * Uses Marsaglia xorshift. Must be initialized as nonzero.
241 >     */
242 >    private int seed;
243 >
244 >    /**
245 >     * Activity status. When true, this worker is considered active.
246 >     * Accessed directly by pool.  Must be false upon construction.
247 >     */
248 >    boolean active;
249 >
250 >    /**
251 >     * True if use local fifo, not default lifo, for local polling.
252 >     * Shadows value from ForkJoinPool.
253 >     */
254 >    private final boolean locallyFifo;
255  
256      /**
257       * Index of this worker in pool array. Set once by pool before
258 <     * running, and accessed directly by pool during cleanup etc
258 >     * running, and accessed directly by pool to locate this worker in
259 >     * its workers array.
260       */
261      int poolIndex;
262  
263      /**
264 <     * Run state of this worker. Supports simple versions of the usual
265 <     * shutdown/shutdownNow control.
264 >     * The last pool event waited for. Accessed only by pool in
265 >     * callback methods invoked within this thread.
266       */
267 <    private volatile int runState;
181 <
182 <    // Runstate values. Order matters
183 <    private static final int RUNNING     = 0;
184 <    private static final int SHUTDOWN    = 1;
185 <    private static final int TERMINATING = 2;
186 <    private static final int TERMINATED  = 3;
267 >    int lastEventCount;
268  
269      /**
270 <     * Activity status. When true, this worker is considered active.
271 <     * Must be false upon construction. It must be true when executing
191 <     * tasks, and BEFORE stealing a task. It must be false before
192 <     * blocking on the Pool Barrier.
270 >     * Encoded index and event count of next event waiter. Accessed
271 >     * only by ForkJoinPool for managing event waiters.
272       */
273 <    private boolean active;
273 >    volatile long nextWaiter;
274  
275      /**
276 <     * Number of steals, transferred to pool when idle
276 >     * Number of times this thread suspended as spare. Accessed only
277 >     * by pool.
278       */
279 <    private int stealCount;
279 >    int spareCount;
280  
281      /**
282 <     * Seed for random number generator for choosing steal victims
282 >     * Encoded index and count of next spare waiter. Accessed only
283 >     * by ForkJoinPool for managing spares.
284       */
285 <    private int randomVictimSeed;
285 >    volatile int nextSpare;
286  
287      /**
288 <     * Seed for embedded Jurandom
288 >     * The task currently being joined, set only when actively trying
289 >     * to help other stealers in helpJoinTask. Written only by this
290 >     * thread, but read by others.
291       */
292 <    private long juRandomSeed;
292 >    private volatile ForkJoinTask<?> currentJoin;
293  
294      /**
295 <     * The last barrier event waited for
295 >     * The task most recently stolen from another worker (or
296 >     * submission queue).  Written only by this thread, but read by
297 >     * others.
298       */
299 <    private long eventCount;
299 >    private volatile ForkJoinTask<?> currentSteal;
300  
301      /**
302       * Creates a ForkJoinWorkerThread operating in the given pool.
303 +     *
304       * @param pool the pool this thread works in
305       * @throws NullPointerException if pool is null
306       */
307      protected ForkJoinWorkerThread(ForkJoinPool pool) {
222        if (pool == null) throw new NullPointerException();
308          this.pool = pool;
309 <        // remaining initialization deferred to onStart
309 >        this.locallyFifo = pool.locallyFifo;
310 >        setDaemon(true);
311 >        // To avoid exposing construction details to subclasses,
312 >        // remaining initialization is in start() and onStart()
313      }
314  
315 <    // public access methods
315 >    /**
316 >     * Performs additional initialization and starts this thread.
317 >     */
318 >    final void start(int poolIndex, UncaughtExceptionHandler ueh) {
319 >        this.poolIndex = poolIndex;
320 >        if (ueh != null)
321 >            setUncaughtExceptionHandler(ueh);
322 >        start();
323 >    }
324 >
325 >    // Public/protected methods
326  
327      /**
328 <     * Returns the pool hosting the current task execution.
328 >     * Returns the pool hosting this thread.
329 >     *
330       * @return the pool
331       */
332 <    public static ForkJoinPool getPool() {
333 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).pool;
332 >    public ForkJoinPool getPool() {
333 >        return pool;
334 >    }
335 >
336 >    /**
337 >     * Returns the index number of this thread in its pool.  The
338 >     * returned value ranges from zero to the maximum number of
339 >     * threads (minus one) that have ever been created in the pool.
340 >     * This method may be useful for applications that track status or
341 >     * collect results per-worker rather than per-task.
342 >     *
343 >     * @return the index number
344 >     */
345 >    public int getPoolIndex() {
346 >        return poolIndex;
347 >    }
348 >
349 >    /**
350 >     * Initializes internal state after construction but before
351 >     * processing any tasks. If you override this method, you must
352 >     * invoke @code{super.onStart()} at the beginning of the method.
353 >     * Initialization requires care: Most fields must have legal
354 >     * default values, to ensure that attempted accesses from other
355 >     * threads work correctly even before this thread starts
356 >     * processing tasks.
357 >     */
358 >    protected void onStart() {
359 >        int rs = seedGenerator.nextInt();
360 >        seed = rs == 0? 1 : rs; // seed must be nonzero
361 >
362 >        // Allocate name string and arrays in this thread
363 >        String pid = Integer.toString(pool.getPoolNumber());
364 >        String wid = Integer.toString(poolIndex);
365 >        setName("ForkJoinPool-" + pid + "-worker-" + wid);
366 >
367 >        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
368 >    }
369 >
370 >    /**
371 >     * Performs cleanup associated with termination of this worker
372 >     * thread.  If you override this method, you must invoke
373 >     * {@code super.onTermination} at the end of the overridden method.
374 >     *
375 >     * @param exception the exception causing this thread to abort due
376 >     * to an unrecoverable error, or {@code null} if completed normally
377 >     */
378 >    protected void onTermination(Throwable exception) {
379 >        try {
380 >            ForkJoinPool p = pool;
381 >            if (active) {
382 >                int a; // inline p.tryDecrementActiveCount
383 >                active = false;
384 >                do {} while (!UNSAFE.compareAndSwapInt
385 >                             (p, poolRunStateOffset, a = p.runState, a - 1));
386 >            }
387 >            cancelTasks();
388 >            setTerminated();
389 >            p.workerTerminated(this);
390 >        } catch (Throwable ex) {        // Shouldn't ever happen
391 >            if (exception == null)      // but if so, at least rethrown
392 >                exception = ex;
393 >        } finally {
394 >            if (exception != null)
395 >                UNSAFE.throwException(exception);
396 >        }
397      }
398  
399      /**
400 <     * Returns the index number of the current worker thread in its
401 <     * pool.  The returned value ranges from zero to the maximum
402 <     * number of threads (minus one) that have ever been created in
241 <     * the pool.  This method may be useful for applications that
242 <     * track status or collect results on a per-worker basis.
243 <     * @return the index number.
400 >     * This method is required to be public, but should never be
401 >     * called explicitly. It performs the main run loop to execute
402 >     * ForkJoinTasks.
403       */
404 <    public static int getPoolIndex() {
405 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).poolIndex;
404 >    public void run() {
405 >        Throwable exception = null;
406 >        try {
407 >            onStart();
408 >            mainLoop();
409 >        } catch (Throwable ex) {
410 >            exception = ex;
411 >        } finally {
412 >            onTermination(exception);
413 >        }
414      }
415  
416 <    //  Access methods used by Pool
416 >    // helpers for run()
417  
418      /**
419 <     * Get and clear steal count for accumulation by pool.  Called
253 <     * only when known to be idle (in pool.sync and termination).
419 >     * Finds and executes tasks, and checks status while running.
420       */
421 <    final int getAndClearStealCount() {
422 <        int sc = stealCount;
423 <        stealCount = 0;
424 <        return sc;
421 >    private void mainLoop() {
422 >        boolean ran = false; // true if ran a task on last step
423 >        ForkJoinPool p = pool;
424 >        for (;;) {
425 >            p.preStep(this, ran);
426 >            if (runState != 0)
427 >                break;
428 >            ran = tryExecSteal() || tryExecSubmission();
429 >        }
430      }
431  
432      /**
433 <     * Returns estimate of the number of tasks in the queue, without
434 <     * correcting for transient negative values
433 >     * Tries to steal a task and execute it.
434 >     *
435 >     * @return true if ran a task
436       */
437 <    final int getRawQueueSize() {
438 <        return sp - base;
437 >    private boolean tryExecSteal() {
438 >        ForkJoinTask<?> t;
439 >        if ((t = scan()) != null) {
440 >            t.quietlyExec();
441 >            UNSAFE.putOrderedObject(this, currentStealOffset, null);
442 >            if (sp != base)
443 >                execLocalTasks();
444 >            return true;
445 >        }
446 >        return false;
447      }
448  
449 <    // Intrinsics-based support for queue operations.
450 <    // Currently these three (setSp, setSlot, casSlotNull) are
451 <    // usually manually inlined to improve performance
449 >    /**
450 >     * If a submission exists, try to activate and run it.
451 >     *
452 >     * @return true if ran a task
453 >     */
454 >    private boolean tryExecSubmission() {
455 >        ForkJoinPool p = pool;
456 >        // This loop is needed in case attempt to activate fails, in
457 >        // which case we only retry if there still appears to be a
458 >        // submission.
459 >        while (p.hasQueuedSubmissions()) {
460 >            ForkJoinTask<?> t; int a;
461 >            if (active || // inline p.tryIncrementActiveCount
462 >                (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
463 >                                                   a = p.runState, a + 1))) {
464 >                if ((t = p.pollSubmission()) != null) {
465 >                    UNSAFE.putOrderedObject(this, currentStealOffset, t);
466 >                    t.quietlyExec();
467 >                    UNSAFE.putOrderedObject(this, currentStealOffset, null);
468 >                    if (sp != base)
469 >                        execLocalTasks();
470 >                    return true;
471 >                }
472 >            }
473 >        }
474 >        return false;
475 >    }
476  
477      /**
478 <     * Sets sp in store-order.
478 >     * Runs local tasks until queue is empty or shut down.  Call only
479 >     * while active.
480       */
481 <    private void setSp(int s) {
482 <        _unsafe.putOrderedInt(this, spOffset, s);
481 >    private void execLocalTasks() {
482 >        while (runState == 0) {
483 >            ForkJoinTask<?> t = locallyFifo ? locallyDeqTask() : popTask();
484 >            if (t != null)
485 >                t.quietlyExec();
486 >            else if (sp == base)
487 >                break;
488 >        }
489      }
490  
491 +    /*
492 +     * Intrinsics-based atomic writes for queue slots. These are
493 +     * basically the same as methods in AtomicReferenceArray, but
494 +     * specialized for (1) ForkJoinTask elements (2) requirement that
495 +     * nullness and bounds checks have already been performed by
496 +     * callers and (3) effective offsets are known not to overflow
497 +     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
498 +     * need corresponding version for reads: plain array reads are OK
499 +     * because they are protected by other volatile reads and are
500 +     * confirmed by CASes.
501 +     *
502 +     * Most uses don't actually call these methods, but instead contain
503 +     * inlined forms that enable more predictable optimization.  We
504 +     * don't define the version of write used in pushTask at all, but
505 +     * instead inline there a store-fenced array slot write.
506 +     */
507 +
508      /**
509 <     * Add in store-order the given task at given slot of q to
510 <     * null. Caller must ensure q is nonnull and index is in range.
509 >     * CASes slot i of array q from t to null. Caller must ensure q is
510 >     * non-null and index is in range.
511       */
512 <    private static void setSlot(ForkJoinTask<?>[] q, int i,
513 <                                ForkJoinTask<?> t){
514 <        _unsafe.putOrderedObject(q, (i << qShift) + qBase, t);
512 >    private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
513 >                                             ForkJoinTask<?> t) {
514 >        return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
515      }
516  
517      /**
518 <     * CAS given slot of q to null. Caller must ensure q is nonnull
519 <     * and index is in range.
518 >     * Performs a volatile write of the given task at given slot of
519 >     * array q.  Caller must ensure q is non-null and index is in
520 >     * range. This method is used only during resets and backouts.
521       */
522 <    private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
523 <                                       ForkJoinTask<?> t) {
524 <        return _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
522 >    private static final void writeSlot(ForkJoinTask<?>[] q, int i,
523 >                                        ForkJoinTask<?> t) {
524 >        UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
525      }
526  
527 <    // Main queue methods
527 >    // queue methods
528  
529      /**
530 <     * Pushes a task. Called only by current thread.
531 <     * @param t the task. Caller must ensure nonnull
530 >     * Pushes a task. Call only from this thread.
531 >     *
532 >     * @param t the task. Caller must ensure non-null.
533       */
534      final void pushTask(ForkJoinTask<?> t) {
535          ForkJoinTask<?>[] q = queue;
536 <        int mask = q.length - 1;
537 <        int s = sp;
538 <        _unsafe.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
539 <        _unsafe.putOrderedInt(this, spOffset, ++s);
540 <        if ((s -= base) == 1)
541 <            pool.signalNonEmptyWorkerQueue();
542 <        else if (s >= mask)
313 <            growQueue();
536 >        int mask = q.length - 1; // implicit assert q != null
537 >        int s = sp++;            // ok to increment sp before slot write
538 >        UNSAFE.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
539 >        if ((s -= base) == 0)
540 >            pool.signalWork();   // was empty
541 >        else if (s == mask)
542 >            growQueue();         // is full
543      }
544  
545      /**
546       * Tries to take a task from the base of the queue, failing if
547 <     * either empty or contended.
548 <     * @return a task, or null if none or contended.
547 >     * empty or contended. Note: Specializations of this code appear
548 >     * in locallyDeqTask and elsewhere.
549 >     *
550 >     * @return a task, or null if none or contended
551       */
552 <    private ForkJoinTask<?> deqTask() {
322 <        ForkJoinTask<?>[] q;
552 >    final ForkJoinTask<?> deqTask() {
553          ForkJoinTask<?> t;
554 <        int i;
555 <        int b;
554 >        ForkJoinTask<?>[] q;
555 >        int b, i;
556          if (sp != (b = base) &&
557              (q = queue) != null && // must read q after b
558 <            (t = q[i = (q.length - 1) & b]) != null &&
559 <            _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
558 >            (t = q[i = (q.length - 1) & b]) != null && base == b &&
559 >            UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
560              base = b + 1;
561              return t;
562          }
# Line 334 | Line 564 | public class ForkJoinWorkerThread extend
564      }
565  
566      /**
567 <     * Returns a popped task, or null if empty.  Called only by
568 <     * current thread.
567 >     * Tries to take a task from the base of own queue. Assumes active
568 >     * status.  Called only by this thread.
569 >     *
570 >     * @return a task, or null if none
571       */
572 <    final ForkJoinTask<?> popTask() {
341 <        ForkJoinTask<?> t;
342 <        int i;
572 >    final ForkJoinTask<?> locallyDeqTask() {
573          ForkJoinTask<?>[] q = queue;
574 <        int mask = q.length - 1;
575 <        int s = sp;
576 <        if (s != base &&
577 <            (t = q[i = (s - 1) & mask]) != null &&
578 <            _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
579 <            _unsafe.putOrderedInt(this, spOffset, s - 1);
580 <            return t;
574 >        if (q != null) {
575 >            ForkJoinTask<?> t;
576 >            int b, i;
577 >            while (sp != (b = base)) {
578 >                if ((t = q[i = (q.length - 1) & b]) != null && base == b &&
579 >                    UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
580 >                                                t, null)) {
581 >                    base = b + 1;
582 >                    return t;
583 >                }
584 >            }
585 >        }
586 >        return null;
587 >    }
588 >
589 >    /**
590 >     * Returns a popped task, or null if empty. Assumes active status.
591 >     * Called only by this thread.
592 >     */
593 >    private ForkJoinTask<?> popTask() {
594 >        ForkJoinTask<?>[] q = queue;
595 >        if (q != null) {
596 >            int s;
597 >            while ((s = sp) != base) {
598 >                int i = (q.length - 1) & --s;
599 >                long u = (i << qShift) + qBase; // raw offset
600 >                ForkJoinTask<?> t = q[i];
601 >                if (t == null)   // lost to stealer
602 >                    break;
603 >                if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
604 >                    sp = s; // putOrderedInt may encourage more timely write
605 >                    // UNSAFE.putOrderedInt(this, spOffset, s);
606 >                    return t;
607 >                }
608 >            }
609          }
610          return null;
611      }
612  
613      /**
614 <     * Specialized version of popTask to pop only if
615 <     * topmost element is the given task. Called only
616 <     * by current thread.
617 <     * @param t the task. Caller must ensure nonnull
614 >     * Specialized version of popTask to pop only if topmost element
615 >     * is the given task. Called only by this thread while active.
616 >     *
617 >     * @param t the task. Caller must ensure non-null.
618       */
619      final boolean unpushTask(ForkJoinTask<?> t) {
620 +        int s;
621          ForkJoinTask<?>[] q = queue;
622 <        int mask = q.length - 1;
623 <        int s = sp - 1;
624 <        if (_unsafe.compareAndSwapObject(q, ((s & mask) << qShift) + qBase,
625 <                                         t, null)) {
626 <            _unsafe.putOrderedInt(this, spOffset, s);
622 >        if ((s = sp) != base && q != null &&
623 >            UNSAFE.compareAndSwapObject
624 >            (q, (((q.length - 1) & --s) << qShift) + qBase, t, null)) {
625 >            sp = s; // putOrderedInt may encourage more timely write
626 >            // UNSAFE.putOrderedInt(this, spOffset, s);
627              return true;
628          }
629          return false;
630      }
631  
632      /**
633 <     * Returns next task to pop.
633 >     * Returns next task, or null if empty or contended.
634       */
635      final ForkJoinTask<?> peekTask() {
636          ForkJoinTask<?>[] q = queue;
637 <        return q == null? null : q[(sp - 1) & (q.length - 1)];
637 >        if (q == null)
638 >            return null;
639 >        int mask = q.length - 1;
640 >        int i = locallyFifo ? base : (sp - 1);
641 >        return q[i & mask];
642      }
643  
644      /**
# Line 400 | Line 663 | public class ForkJoinWorkerThread extend
663              ForkJoinTask<?> t = oldQ[oldIndex];
664              if (t != null && !casSlotNull(oldQ, oldIndex, t))
665                  t = null;
666 <            setSlot(newQ, b & newMask, t);
666 >            writeSlot(newQ, b & newMask, t);
667          } while (++b != bf);
668 <        pool.signalIdleWorkers(false);
668 >        pool.signalWork();
669      }
670  
408    // Runstate management
409
410    final boolean isShutdown()    { return runState >= SHUTDOWN;  }
411    final boolean isTerminating() { return runState >= TERMINATING;  }
412    final boolean isTerminated()  { return runState == TERMINATED; }
413    final boolean shutdown()      { return transitionRunStateTo(SHUTDOWN); }
414    final boolean shutdownNow()   { return transitionRunStateTo(TERMINATING); }
415
671      /**
672 <     * Transition to at least the given state. Return true if not
673 <     * already at least given state.
672 >     * Computes next value for random victim probe in scan().  Scans
673 >     * don't require a very high quality generator, but also not a
674 >     * crummy one.  Marsaglia xor-shift is cheap and works well enough.
675 >     * Note: This is manually inlined in scan().
676       */
677 <    private boolean transitionRunStateTo(int state) {
678 <        for (;;) {
679 <            int s = runState;
680 <            if (s >= state)
424 <                return false;
425 <            if (_unsafe.compareAndSwapInt(this, runStateOffset, s, state))
426 <                return true;
427 <        }
677 >    private static final int xorShift(int r) {
678 >        r ^= r << 13;
679 >        r ^= r >>> 17;
680 >        return r ^ (r << 5);
681      }
682  
683      /**
684 <     * Ensure status is active and if necessary adjust pool active count
684 >     * Tries to steal a task from another worker. Starts at a random
685 >     * index of workers array, and probes workers until finding one
686 >     * with non-empty queue or finding that all are empty.  It
687 >     * randomly selects the first n probes. If these are empty, it
688 >     * resorts to a circular sweep, which is necessary to accurately
689 >     * set active status. (The circular sweep uses steps of
690 >     * approximately half the array size plus 1, to avoid bias
691 >     * stemming from leftmost packing of the array in ForkJoinPool.)
692 >     *
693 >     * This method must be both fast and quiet -- usually avoiding
694 >     * memory accesses that could disrupt cache sharing etc other than
695 >     * those needed to check for and take tasks (or to activate if not
696 >     * already active). This accounts for, among other things,
697 >     * updating random seed in place without storing it until exit.
698 >     *
699 >     * @return a task, or null if none found
700       */
701 <    final void activate() {
702 <        if (!active) {
703 <            active = true;
704 <            pool.incrementActiveCount();
701 >    private ForkJoinTask<?> scan() {
702 >        ForkJoinPool p = pool;
703 >        ForkJoinWorkerThread[] ws;        // worker array
704 >        int n;                            // upper bound of #workers
705 >        if ((ws = p.workers) != null && (n = ws.length) > 1) {
706 >            boolean canSteal = active;    // shadow active status
707 >            int r = seed;                 // extract seed once
708 >            int mask = n - 1;
709 >            int j = -n;                   // loop counter
710 >            int k = r;                    // worker index, random if j < 0
711 >            for (;;) {
712 >                ForkJoinWorkerThread v = ws[k & mask];
713 >                r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // inline xorshift
714 >                ForkJoinTask<?>[] q; ForkJoinTask<?> t; int b, a;
715 >                if (v != null && (b = v.base) != v.sp &&
716 >                    (q = v.queue) != null) {
717 >                    int i = (q.length - 1) & b;
718 >                    long u = (i << qShift) + qBase; // raw offset
719 >                    int pid = poolIndex;
720 >                    if ((t = q[i]) != null) {
721 >                        if (!canSteal &&  // inline p.tryIncrementActiveCount
722 >                            UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
723 >                                                     a = p.runState, a + 1))
724 >                            canSteal = active = true;
725 >                        if (canSteal && v.base == b++ &&
726 >                            UNSAFE.compareAndSwapObject(q, u, t, null)) {
727 >                            v.base = b;
728 >                            v.stealHint = pid;
729 >                            UNSAFE.putOrderedObject(this,
730 >                                                    currentStealOffset, t);
731 >                            seed = r;
732 >                            ++stealCount;
733 >                            return t;
734 >                        }
735 >                    }
736 >                    j = -n;
737 >                    k = r;                // restart on contention
738 >                }
739 >                else if (++j <= 0)
740 >                    k = r;
741 >                else if (j <= n)
742 >                    k += (n >>> 1) | 1;
743 >                else
744 >                    break;
745 >            }
746          }
747 +        return null;
748 +    }
749 +
750 +    // Run State management
751 +
752 +    // status check methods used mainly by ForkJoinPool
753 +    final boolean isRunning()     { return runState == 0; }
754 +    final boolean isTerminated()  { return (runState & TERMINATED) != 0; }
755 +    final boolean isSuspended()   { return (runState & SUSPENDED) != 0; }
756 +    final boolean isTrimmed()     { return (runState & TRIMMED) != 0; }
757 +
758 +    final boolean isTerminating() {
759 +        if ((runState & TERMINATING) != 0)
760 +            return true;
761 +        if (pool.isAtLeastTerminating()) { // propagate pool state
762 +            shutdown();
763 +            return true;
764 +        }
765 +        return false;
766      }
767  
768      /**
769 <     * Ensure status is inactive and if necessary adjust pool active count
769 >     * Sets state to TERMINATING. Does NOT unpark or interrupt
770 >     * to wake up if currently blocked. Callers must do so if desired.
771       */
772 <    final void inactivate() {
773 <        if (active) {
774 <            active = false;
775 <            pool.decrementActiveCount();
772 >    final void shutdown() {
773 >        for (;;) {
774 >            int s = runState;
775 >            if ((s & (TERMINATING|TERMINATED)) != 0)
776 >                break;
777 >            if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
778 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
779 >                                             (s & ~SUSPENDED) |
780 >                                             (TRIMMED|TERMINATING)))
781 >                    break;
782 >            }
783 >            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
784 >                                              s | TERMINATING))
785 >                break;
786          }
787      }
788  
450    // Lifecycle methods
451
789      /**
790 <     * Initializes internal state after construction but before
454 <     * processing any tasks. If you override this method, you must
455 <     * invoke super.onStart() at the beginning of the method.
456 <     * Initialization requires care: Most fields must have legal
457 <     * default values, to ensure that attempted accesses from other
458 <     * threads work correctly even before this thread starts
459 <     * processing tasks.
790 >     * Sets state to TERMINATED. Called only by onTermination().
791       */
792 <    protected void onStart() {
793 <        juRandomSeed = randomSeedGenerator.nextLong();
794 <        do;while((randomVictimSeed = nextRandomInt()) == 0); // must be nonzero
795 <        if (queue == null)
796 <            queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
466 <
467 <        // Heuristically allow one initial thread to warm up; others wait
468 <        if (poolIndex < pool.getParallelism() - 1) {
469 <            eventCount = pool.sync(this, 0);
470 <            activate();
471 <        }
792 >    private void setTerminated() {
793 >        int s;
794 >        do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
795 >                                               s = runState,
796 >                                               s | (TERMINATING|TERMINATED)));
797      }
798  
799      /**
800 <     * Perform cleanup associated with termination of this worker
801 <     * thread.  If you override this method, you must invoke
477 <     * super.onTermination at the end of the overridden method.
800 >     * If suspended, tries to set status to unsuspended.
801 >     * Does NOT wake up if blocked.
802       *
803 <     * @param exception the exception causing this thread to abort due
480 <     * to an unrecoverable error, or null if completed normally.
803 >     * @return true if successful
804       */
805 <    protected void onTermination(Throwable exception) {
806 <        try {
807 <            clearLocalTasks();
808 <            inactivate();
809 <            cancelTasks();
810 <        } finally {
488 <            terminate(exception);
805 >    final boolean tryUnsuspend() {
806 >        int s;
807 >        while (((s = runState) & SUSPENDED) != 0) {
808 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
809 >                                         s & ~SUSPENDED))
810 >                return true;
811          }
812 +        return false;
813      }
814  
815      /**
816 <     * Notify pool of termination and, if exception is nonnull,
817 <     * rethrow it to trigger this thread's uncaughtExceptionHandler
816 >     * Sets suspended status and blocks as spare until resumed
817 >     * or shutdown.
818       */
819 <    private void terminate(Throwable exception) {
820 <        transitionRunStateTo(TERMINATED);
821 <        try {
822 <            pool.workerTerminated(this);
823 <        } finally {
824 <            if (exception != null)
825 <                ForkJoinTask.rethrowException(exception);
819 >    final void suspendAsSpare() {
820 >        for (;;) {                  // set suspended unless terminating
821 >            int s = runState;
822 >            if ((s & TERMINATING) != 0) { // must kill
823 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
824 >                                             s | (TRIMMED | TERMINATING)))
825 >                    return;
826 >            }
827 >            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
828 >                                              s | SUSPENDED))
829 >                break;
830 >        }
831 >        ForkJoinPool p = pool;
832 >        p.pushSpare(this);
833 >        while ((runState & SUSPENDED) != 0) {
834 >            if (p.tryAccumulateStealCount(this)) {
835 >                interrupted();          // clear/ignore interrupts
836 >                if ((runState & SUSPENDED) == 0)
837 >                    break;
838 >                LockSupport.park(this);
839 >            }
840          }
841      }
842  
843 +    // Misc support methods for ForkJoinPool
844 +
845      /**
846 <     * Run local tasks on exit from main.
846 >     * Returns an estimate of the number of tasks in the queue.  Also
847 >     * used by ForkJoinTask.
848       */
849 <    private void clearLocalTasks() {
850 <        while (base != sp && !pool.isTerminating()) {
851 <            ForkJoinTask<?> t = popTask();
512 <            if (t != null) {
513 <                activate(); // ensure active status
514 <                t.quietlyExec();
515 <            }
516 <        }
849 >    final int getQueueSize() {
850 >        int n; // external calls must read base first
851 >        return (n = -base + sp) <= 0 ? 0 : n;
852      }
853  
854      /**
# Line 521 | Line 856 | public class ForkJoinWorkerThread extend
856       * thread.
857       */
858      final void cancelTasks() {
859 +        ForkJoinTask<?> cj = currentJoin; // try to cancel ongoing tasks
860 +        if (cj != null) {
861 +            currentJoin = null;
862 +            cj.cancelIgnoringExceptions();
863 +            try {
864 +                this.interrupt(); // awaken wait
865 +            } catch (SecurityException ignore) {
866 +            }
867 +        }
868 +        ForkJoinTask<?> cs = currentSteal;
869 +        if (cs != null) {
870 +            currentSteal = null;
871 +            cs.cancelIgnoringExceptions();
872 +        }
873          while (base != sp) {
874              ForkJoinTask<?> t = deqTask();
875              if (t != null)
# Line 529 | Line 878 | public class ForkJoinWorkerThread extend
878      }
879  
880      /**
881 <     * This method is required to be public, but should never be
882 <     * called explicitly. It performs the main run loop to execute
883 <     * ForkJoinTasks.
881 >     * Drains tasks to given collection c.
882 >     *
883 >     * @return the number of tasks drained
884       */
885 <    public void run() {
886 <        Throwable exception = null;
887 <        try {
888 <            onStart();
889 <            while (!isShutdown())
890 <                step();
891 <        } catch (Throwable ex) {
892 <            exception = ex;
544 <        } finally {
545 <            onTermination(exception);
885 >    final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
886 >        int n = 0;
887 >        while (base != sp) {
888 >            ForkJoinTask<?> t = deqTask();
889 >            if (t != null) {
890 >                c.add(t);
891 >                ++n;
892 >            }
893          }
894 +        return n;
895      }
896  
897 +    // Support methods for ForkJoinTask
898 +
899      /**
900 <     * Main top-level action.
900 >     * Gets and removes a local task.
901 >     *
902 >     * @return a task, if available
903       */
904 <    private void step() {
905 <        ForkJoinTask<?> t = sp != base? popTask() : null;
906 <        if (t != null || (t = scan(null, true)) != null) {
907 <            activate();
908 <            t.quietlyExec();
904 >    final ForkJoinTask<?> pollLocalTask() {
905 >        ForkJoinPool p = pool;
906 >        while (sp != base) {
907 >            int a; // inline p.tryIncrementActiveCount
908 >            if (active ||
909 >                (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
910 >                                                   a = p.runState, a + 1)))
911 >                return locallyFifo ? locallyDeqTask() : popTask();
912          }
913 <        else {
914 <            inactivate();
915 <            eventCount = pool.sync(this, eventCount);
913 >        return null;
914 >    }
915 >
916 >    /**
917 >     * Gets and removes a local or stolen task.
918 >     *
919 >     * @return a task, if available
920 >     */
921 >    final ForkJoinTask<?> pollTask() {
922 >        ForkJoinTask<?> t = pollLocalTask();
923 >        if (t == null) {
924 >            t = scan();
925 >            // cannot retain/track/help steal
926 >            UNSAFE.putOrderedObject(this, currentStealOffset, null);
927          }
928 +        return t;
929      }
930  
931 <    // scanning for and stealing tasks
931 >    /**
932 >     * Possibly runs some tasks and/or blocks, until task is done.
933 >     *
934 >     * @param joinMe the task to join
935 >     */
936 >    final void joinTask(ForkJoinTask<?> joinMe) {
937 >        // currentJoin only written by this thread; only need ordered store
938 >        ForkJoinTask<?> prevJoin = currentJoin;
939 >        UNSAFE.putOrderedObject(this, currentJoinOffset, joinMe);
940 >        if (sp != base)
941 >            localHelpJoinTask(joinMe);
942 >        if (joinMe.status >= 0)
943 >            pool.awaitJoin(joinMe, this);
944 >        UNSAFE.putOrderedObject(this, currentJoinOffset, prevJoin);
945 >    }
946  
947      /**
948 <     * Computes next value for random victim probe. Scans don't
568 <     * require a very high quality generator, but also not a crummy
569 <     * one. Marsaglia xor-shift is cheap and works well.
948 >     * Run tasks in local queue until given task is done.
949       *
950 <     * This is currently unused, and manually inlined
950 >     * @param joinMe the task to join
951       */
952 <    private static int xorShift(int r) {
953 <        r ^= r << 1;
954 <        r ^= r >>> 3;
955 <        r ^= r << 10;
956 <        return r;
952 >    private void localHelpJoinTask(ForkJoinTask<?> joinMe) {
953 >        int s;
954 >        ForkJoinTask<?>[] q;
955 >        while (joinMe.status >= 0 && (s = sp) != base && (q = queue) != null) {
956 >            int i = (q.length - 1) & --s;
957 >            long u = (i << qShift) + qBase; // raw offset
958 >            ForkJoinTask<?> t = q[i];
959 >            if (t == null)  // lost to a stealer
960 >                break;
961 >            if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
962 >                /*
963 >                 * This recheck (and similarly in helpJoinTask)
964 >                 * handles cases where joinMe is independently
965 >                 * cancelled or forced even though there is other work
966 >                 * available. Back out of the pop by putting t back
967 >                 * into slot before we commit by writing sp.
968 >                 */
969 >                if (joinMe.status < 0) {
970 >                    UNSAFE.putObjectVolatile(q, u, t);
971 >                    break;
972 >                }
973 >                sp = s;
974 >                // UNSAFE.putOrderedInt(this, spOffset, s);
975 >                t.quietlyExec();
976 >            }
977 >        }
978      }
979  
980      /**
981 <     * Tries to steal a task from another worker and/or, if enabled,
982 <     * submission queue. Starts at a random index of workers array,
983 <     * and probes workers until finding one with non-empty queue or
984 <     * finding that all are empty.  It randomly selects the first n-1
985 <     * probes. If these are empty, it resorts to full circular
586 <     * traversal, which is necessary to accurately set active status
587 <     * by caller. Also restarts if pool barrier has tripped since last
588 <     * scan, which forces refresh of workers array, in case barrier
589 <     * was associated with resize.
981 >     * Unless terminating, tries to locate and help perform tasks for
982 >     * a stealer of the given task, or in turn one of its stealers.
983 >     * Traces currentSteal->currentJoin links looking for a thread
984 >     * working on a descendant of the given task and with a non-empty
985 >     * queue to steal back and execute tasks from.
986       *
987 <     * This method must be both fast and quiet -- usually avoiding
988 <     * memory accesses that could disrupt cache sharing etc other than
989 <     * those needed to check for and take tasks. This accounts for,
990 <     * among other things, updating random seed in place without
991 <     * storing it until exit. (Note that we only need to store it if
992 <     * we found a task; otherwise it doesn't matter if we start at the
597 <     * same place next time.)
987 >     * The implementation is very branchy to cope with potential
988 >     * inconsistencies or loops encountering chains that are stale,
989 >     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
990 >     * of these cases are dealt with by just returning back to the
991 >     * caller, who is expected to retry if other join mechanisms also
992 >     * don't work out.
993       *
994 <     * @param joinMe if non null; exit early if done
600 <     * @param checkSubmissions true if OK to take submissions
601 <     * @return a task, or null if none found
994 >     * @param joinMe the task to join
995       */
996 <    private ForkJoinTask<?> scan(ForkJoinTask<?> joinMe,
997 <                                 boolean checkSubmissions) {
998 <        ForkJoinPool p = pool;
999 <        if (p == null)                    // Never null, but avoids
1000 <            return null;                  //   implicit nullchecks below
1001 <        int r = randomVictimSeed;         // extract once to keep scan quiet
1002 <        restart:                          // outer loop refreshes ws array
1003 <        while (joinMe == null || joinMe.status >= 0) {
1004 <            int mask;
1005 <            ForkJoinWorkerThread[] ws = p.workers;
1006 <            if (ws != null && (mask = ws.length - 1) > 0) {
1007 <                int probes = -mask;       // use random index while negative
1008 <                int idx = r;
1009 <                for (;;) {
1010 <                    ForkJoinWorkerThread v;
1011 <                    // inlined xorshift to update seed
1012 <                    r ^= r << 1;  r ^= r >>> 3; r ^= r << 10;
1013 <                    if ((v = ws[mask & idx]) != null && v.sp != v.base) {
1014 <                        ForkJoinTask<?> t;
1015 <                        activate();
1016 <                        if ((joinMe == null || joinMe.status >= 0) &&
1017 <                            (t = v.deqTask()) != null) {
1018 <                            randomVictimSeed = r;
1019 <                            ++stealCount;
1020 <                            return t;
996 >    final void helpJoinTask(ForkJoinTask<?> joinMe) {
997 >        ForkJoinWorkerThread[] ws;
998 >        int n;
999 >        if (joinMe.status < 0)                // already done
1000 >            return;
1001 >        if ((runState & TERMINATING) != 0) {  // cancel if shutting down
1002 >            joinMe.cancelIgnoringExceptions();
1003 >            return;
1004 >        }
1005 >        if ((ws = pool.workers) == null || (n = ws.length) <= 1)
1006 >            return;                           // need at least 2 workers
1007 >
1008 >        ForkJoinTask<?> task = joinMe;        // base of chain
1009 >        ForkJoinWorkerThread thread = this;   // thread with stolen task
1010 >        for (int d = 0; d < MAX_HELP_DEPTH; ++d) { // chain length
1011 >            // Try to find v, the stealer of task, by first using hint
1012 >            ForkJoinWorkerThread v = ws[thread.stealHint & (n - 1)];
1013 >            if (v == null || v.currentSteal != task) {
1014 >                for (int j = 0; ; ++j) {      // search array
1015 >                    if (j < n) {
1016 >                        ForkJoinTask<?> vs;
1017 >                        if ((v = ws[j]) != null &&
1018 >                            (vs = v.currentSteal) != null) {
1019 >                            if (joinMe.status < 0 || task.status < 0)
1020 >                                return;       // stale or done
1021 >                            if (vs == task) {
1022 >                                thread.stealHint = j;
1023 >                                break;        // save hint for next time
1024 >                            }
1025                          }
629                        continue restart; // restart on contention
1026                      }
631                    if ((probes >> 1) <= mask) // n-1 random then circular
632                        idx = (probes++ < 0)? r : (idx + 1);
1027                      else
1028 <                        break;
1028 >                        return;               // no stealer
1029                  }
1030              }
1031 <            if (checkSubmissions && p.hasQueuedSubmissions()) {
1032 <                activate();
1033 <                ForkJoinTask<?> t = p.pollSubmission();
1034 <                if (t != null)
1035 <                    return t;
1036 <            }
643 <            else {
644 <                long ec = eventCount;     // restart on pool event
645 <                if ((eventCount = p.getEventCount()) == ec)
1031 >            for (;;) { // Try to help v, using specialized form of deqTask
1032 >                if (joinMe.status < 0)
1033 >                    return;
1034 >                int b = v.base;
1035 >                ForkJoinTask<?>[] q = v.queue;
1036 >                if (b == v.sp || q == null)
1037                      break;
1038 +                int i = (q.length - 1) & b;
1039 +                long u = (i << qShift) + qBase;
1040 +                ForkJoinTask<?> t = q[i];
1041 +                int pid = poolIndex;
1042 +                ForkJoinTask<?> ps = currentSteal;
1043 +                if (task.status < 0)
1044 +                    return;                   // stale or done
1045 +                if (t != null && v.base == b++ &&
1046 +                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
1047 +                    if (joinMe.status < 0) {
1048 +                        UNSAFE.putObjectVolatile(q, u, t);
1049 +                        return;               // back out on cancel
1050 +                    }
1051 +                    v.base = b;
1052 +                    v.stealHint = pid;
1053 +                    UNSAFE.putOrderedObject(this, currentStealOffset, t);
1054 +                    t.quietlyExec();
1055 +                    UNSAFE.putOrderedObject(this, currentStealOffset, ps);
1056 +                }
1057              }
1058 <        }
1059 <        return null;
1060 <    }
1061 <
1062 <    /**
1063 <     * Callback from pool.sync to rescan before blocking.  If a
1064 <     * task is found, it is pushed so it can be executed upon return.
655 <     * @return true if found and pushed a task
656 <     */
657 <    final boolean prescan() {
658 <        ForkJoinTask<?> t = scan(null, true);
659 <        if (t != null) {
660 <            pushTask(t);
661 <            return true;
662 <        }
663 <        else {
664 <            inactivate();
665 <            return false;
1058 >            // Try to descend to find v's stealer
1059 >            ForkJoinTask<?> next = v.currentJoin;
1060 >            if (task.status < 0 || next == null || next == task ||
1061 >                joinMe.status < 0)
1062 >                return;
1063 >            task = next;
1064 >            thread = v;
1065          }
1066      }
1067  
669    // Support for ForkJoinTask methods
670
671    /**
672     * Scan, returning early if joinMe done
673     */
674    final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
675        ForkJoinTask<?> t = scan(joinMe, false);
676        if (t != null && joinMe.status < 0 && sp == base) {
677            pushTask(t); // unsteal if done and this task would be stealable
678            t = null;
679        }
680        return t;
681    }
682    
1068      /**
1069 <     * Pops or steals a task
1070 <     * @return task, or null if none available
1069 >     * Implements ForkJoinTask.getSurplusQueuedTaskCount().
1070 >     * Returns an estimate of the number of tasks, offset by a
1071 >     * function of number of idle workers.
1072 >     *
1073 >     * This method provides a cheap heuristic guide for task
1074 >     * partitioning when programmers, frameworks, tools, or languages
1075 >     * have little or no idea about task granularity.  In essence by
1076 >     * offering this method, we ask users only about tradeoffs in
1077 >     * overhead vs expected throughput and its variance, rather than
1078 >     * how finely to partition tasks.
1079 >     *
1080 >     * In a steady state strict (tree-structured) computation, each
1081 >     * thread makes available for stealing enough tasks for other
1082 >     * threads to remain active. Inductively, if all threads play by
1083 >     * the same rules, each thread should make available only a
1084 >     * constant number of tasks.
1085 >     *
1086 >     * The minimum useful constant is just 1. But using a value of 1
1087 >     * would require immediate replenishment upon each steal to
1088 >     * maintain enough tasks, which is infeasible.  Further,
1089 >     * partitionings/granularities of offered tasks should minimize
1090 >     * steal rates, which in general means that threads nearer the top
1091 >     * of computation tree should generate more than those nearer the
1092 >     * bottom. In perfect steady state, each thread is at
1093 >     * approximately the same level of computation tree. However,
1094 >     * producing extra tasks amortizes the uncertainty of progress and
1095 >     * diffusion assumptions.
1096 >     *
1097 >     * So, users will want to use values larger, but not much larger
1098 >     * than 1 to both smooth over transient shortages and hedge
1099 >     * against uneven progress; as traded off against the cost of
1100 >     * extra task overhead. We leave the user to pick a threshold
1101 >     * value to compare with the results of this call to guide
1102 >     * decisions, but recommend values such as 3.
1103 >     *
1104 >     * When all threads are active, it is on average OK to estimate
1105 >     * surplus strictly locally. In steady-state, if one thread is
1106 >     * maintaining say 2 surplus tasks, then so are others. So we can
1107 >     * just use estimated queue length (although note that (sp - base)
1108 >     * can be an overestimate because of stealers lagging increments
1109 >     * of base).  However, this strategy alone leads to serious
1110 >     * mis-estimates in some non-steady-state conditions (ramp-up,
1111 >     * ramp-down, other stalls). We can detect many of these by
1112 >     * further considering the number of "idle" threads, that are
1113 >     * known to have zero queued tasks, so compensate by a factor of
1114 >     * (#idle/#active) threads.
1115       */
1116 <    final ForkJoinTask<?> pollLocalOrStolenTask() {
1117 <        ForkJoinTask<?> t;
689 <        return (t = popTask()) == null? scan(null, false) : t;
1116 >    final int getEstimatedSurplusTaskCount() {
1117 >        return sp - base - pool.idlePerActive();
1118      }
1119  
1120      /**
1121 <     * Runs tasks until pool isQuiescent
1121 >     * Runs tasks until {@code pool.isQuiescent()}.
1122       */
1123      final void helpQuiescePool() {
1124 +        ForkJoinTask<?> ps = currentSteal; // to restore below
1125          for (;;) {
1126 <            ForkJoinTask<?> t = pollLocalOrStolenTask();
1127 <            if (t != null) {
699 <                activate();
1126 >            ForkJoinTask<?> t = pollLocalTask();
1127 >            if (t != null || (t = scan()) != null)
1128                  t.quietlyExec();
701            }
1129              else {
1130 <                inactivate();
1131 <                if (pool.isQuiescent()) {
1132 <                    activate(); // re-activate on exit
1133 <                    break;
1130 >                ForkJoinPool p = pool;
1131 >                int a; // to inline CASes
1132 >                if (active) {
1133 >                    if (!UNSAFE.compareAndSwapInt
1134 >                        (p, poolRunStateOffset, a = p.runState, a - 1))
1135 >                        continue;   // retry later
1136 >                    active = false; // inactivate
1137 >                    UNSAFE.putOrderedObject(this, currentStealOffset, ps);
1138 >                }
1139 >                if (p.isQuiescent()) {
1140 >                    active = true; // re-activate
1141 >                    do {} while (!UNSAFE.compareAndSwapInt
1142 >                                 (p, poolRunStateOffset, a = p.runState, a+1));
1143 >                    return;
1144                  }
1145              }
1146          }
1147      }
1148  
1149 <    /**
713 <     * Returns an estimate of the number of tasks in the queue.
714 <     */
715 <    final int getQueueSize() {
716 <        int n = sp - base;
717 <        return n <= 0? 0 : n; // suppress momentarily negative values
718 <    }
719 <
720 <    /**
721 <     * Returns an estimate of the number of tasks, offset by a
722 <     * function of number of idle workers.
723 <     */
724 <    final int getEstimatedSurplusTaskCount() {
725 <        // The halving approximates weighting idle vs non-idle workers
726 <        return (sp - base) - (pool.getIdleThreadCount() >>> 1);
727 <    }
728 <
729 <    // Per-worker exported random numbers
1149 >    // Unsafe mechanics
1150  
1151 <    // Same constants as java.util.Random
1152 <    final static long JURandomMultiplier = 0x5DEECE66DL;
1153 <    final static long JURandomAddend = 0xBL;
1154 <    final static long JURandomMask = (1L << 48) - 1;
1155 <
1156 <    private final int nextJURandom(int bits) {
1157 <        long next = (juRandomSeed * JURandomMultiplier + JURandomAddend) &
1158 <            JURandomMask;
1159 <        juRandomSeed = next;
1160 <        return (int)(next >>> (48 - bits));
1161 <    }
1162 <
1163 <    private final int nextJURandomInt(int n) {
744 <        if (n <= 0)
745 <            throw new IllegalArgumentException("n must be positive");
746 <        int bits = nextJURandom(31);
747 <        if ((n & -n) == n)
748 <            return (int)((n * (long)bits) >> 31);
1151 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1152 >    private static final long spOffset =
1153 >        objectFieldOffset("sp", ForkJoinWorkerThread.class);
1154 >    private static final long runStateOffset =
1155 >        objectFieldOffset("runState", ForkJoinWorkerThread.class);
1156 >    private static final long currentJoinOffset =
1157 >        objectFieldOffset("currentJoin", ForkJoinWorkerThread.class);
1158 >    private static final long currentStealOffset =
1159 >        objectFieldOffset("currentSteal", ForkJoinWorkerThread.class);
1160 >    private static final long qBase =
1161 >        UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
1162 >    private static final long poolRunStateOffset = // to inline CAS
1163 >        objectFieldOffset("runState", ForkJoinPool.class);
1164  
1165 <        for (;;) {
751 <            int val = bits % n;
752 <            if (bits - val + (n-1) >= 0)
753 <                return val;
754 <            bits = nextJURandom(31);
755 <        }
756 <    }
1165 >    private static final int qShift;
1166  
1167 <    private final long nextJURandomLong() {
1168 <        return ((long)(nextJURandom(32)) << 32) + nextJURandom(32);
1167 >    static {
1168 >        int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
1169 >        if ((s & (s-1)) != 0)
1170 >            throw new Error("data type scale not a power of two");
1171 >        qShift = 31 - Integer.numberOfLeadingZeros(s);
1172 >        MAXIMUM_QUEUE_CAPACITY = 1 << (31 - qShift);
1173      }
1174  
1175 <    private final long nextJURandomLong(long n) {
1176 <        if (n <= 0)
1177 <            throw new IllegalArgumentException("n must be positive");
1178 <        long offset = 0;
1179 <        while (n >= Integer.MAX_VALUE) { // randomly pick half range
1180 <            int bits = nextJURandom(2); // 2nd bit for odd vs even split
1181 <            long half = n >>> 1;
1182 <            long nextn = ((bits & 2) == 0)? half : n - half;
770 <            if ((bits & 1) == 0)
771 <                offset += n - nextn;
772 <            n = nextn;
1175 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1176 >        try {
1177 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1178 >        } catch (NoSuchFieldException e) {
1179 >            // Convert Exception to corresponding Error
1180 >            NoSuchFieldError error = new NoSuchFieldError(field);
1181 >            error.initCause(e);
1182 >            throw error;
1183          }
774        return offset + nextJURandomInt((int)n);
775    }
776
777    private final double nextJURandomDouble() {
778        return (((long)(nextJURandom(26)) << 27) + nextJURandom(27))
779            / (double)(1L << 53);
780    }
781
782    /**
783     * Returns a random integer using a per-worker random
784     * number generator with the same properties as
785     * {@link java.util.Random#nextInt}
786     * @return the next pseudorandom, uniformly distributed {@code int}
787     *         value from this worker's random number generator's sequence
788     */
789    public static int nextRandomInt() {
790        return ((ForkJoinWorkerThread)(Thread.currentThread())).
791            nextJURandom(32);
792    }
793
794    /**
795     * Returns a random integer using a per-worker random
796     * number generator with the same properties as
797     * {@link java.util.Random#nextInt(int)}
798     * @param n the bound on the random number to be returned.  Must be
799     *        positive.
800     * @return the next pseudorandom, uniformly distributed {@code int}
801     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
802     *         from this worker's random number generator's sequence
803     * @throws IllegalArgumentException if n is not positive
804     */
805    public static int nextRandomInt(int n) {
806        return ((ForkJoinWorkerThread)(Thread.currentThread())).
807            nextJURandomInt(n);
808    }
809
810    /**
811     * Returns a random long using a per-worker random
812     * number generator with the same properties as
813     * {@link java.util.Random#nextLong}
814     * @return the next pseudorandom, uniformly distributed {@code long}
815     *         value from this worker's random number generator's sequence
816     */
817    public static long nextRandomLong() {
818        return ((ForkJoinWorkerThread)(Thread.currentThread())).
819            nextJURandomLong();
1184      }
1185  
1186      /**
1187 <     * Returns a random integer using a per-worker random
1188 <     * number generator with the same properties as
1189 <     * {@link java.util.Random#nextInt(int)}
1190 <     * @param n the bound on the random number to be returned.  Must be
1191 <     *        positive.
828 <     * @return the next pseudorandom, uniformly distributed {@code int}
829 <     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
830 <     *         from this worker's random number generator's sequence
831 <     * @throws IllegalArgumentException if n is not positive
832 <     */
833 <    public static long nextRandomLong(long n) {
834 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
835 <            nextJURandomLong(n);
836 <    }
837 <
838 <    /**
839 <     * Returns a random double using a per-worker random
840 <     * number generator with the same properties as
841 <     * {@link java.util.Random#nextDouble}
842 <     * @return the next pseudorandom, uniformly distributed {@code double}
843 <     *         value between {@code 0.0} and {@code 1.0} from this
844 <     *         worker's random number generator's sequence
1187 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1188 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1189 >     * into a jdk.
1190 >     *
1191 >     * @return a sun.misc.Unsafe
1192       */
1193 <    public static double nextRandomDouble() {
847 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
848 <            nextJURandomDouble();
849 <    }
850 <
851 <    // Temporary Unsafe mechanics for preliminary release
852 <
853 <    static final Unsafe _unsafe;
854 <    static final long baseOffset;
855 <    static final long spOffset;
856 <    static final long qBase;
857 <    static final int qShift;
858 <    static final long runStateOffset;
859 <    static {
1193 >    private static sun.misc.Unsafe getUnsafe() {
1194          try {
1195 <            if (ForkJoinWorkerThread.class.getClassLoader() != null) {
1196 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1197 <                f.setAccessible(true);
1198 <                _unsafe = (Unsafe)f.get(null);
1199 <            }
1200 <            else
1201 <                _unsafe = Unsafe.getUnsafe();
1202 <            baseOffset = _unsafe.objectFieldOffset
1203 <                (ForkJoinWorkerThread.class.getDeclaredField("base"));
1204 <            spOffset = _unsafe.objectFieldOffset
1205 <                (ForkJoinWorkerThread.class.getDeclaredField("sp"));
1206 <            runStateOffset = _unsafe.objectFieldOffset
1207 <                (ForkJoinWorkerThread.class.getDeclaredField("runState"));
1208 <            qBase = _unsafe.arrayBaseOffset(ForkJoinTask[].class);
1209 <            int s = _unsafe.arrayIndexScale(ForkJoinTask[].class);
1210 <            if ((s & (s-1)) != 0)
877 <                throw new Error("data type scale not a power of two");
878 <            qShift = 31 - Integer.numberOfLeadingZeros(s);
879 <        } catch (Exception e) {
880 <            throw new RuntimeException("Could not initialize intrinsics", e);
1195 >            return sun.misc.Unsafe.getUnsafe();
1196 >        } catch (SecurityException se) {
1197 >            try {
1198 >                return java.security.AccessController.doPrivileged
1199 >                    (new java.security
1200 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1201 >                        public sun.misc.Unsafe run() throws Exception {
1202 >                            java.lang.reflect.Field f = sun.misc
1203 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1204 >                            f.setAccessible(true);
1205 >                            return (sun.misc.Unsafe) f.get(null);
1206 >                        }});
1207 >            } catch (java.security.PrivilegedActionException e) {
1208 >                throw new RuntimeException("Could not initialize intrinsics",
1209 >                                           e.getCause());
1210 >            }
1211          }
1212      }
1213   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines