ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.30 by jsr166, Tue Oct 6 19:02:48 2009 UTC vs.
Revision 1.70 by jsr166, Wed Jul 4 20:13:53 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
11 import java.util.Collection;
12
9   /**
10 < * A thread managed by a {@link ForkJoinPool}.  This class is
11 < * subclassable solely for the sake of adding functionality -- there
12 < * are no overridable methods dealing with scheduling or execution.
13 < * However, you can override initialization and termination methods
14 < * surrounding the main task processing loop.  If you do create such a
15 < * subclass, you will also need to supply a custom {@link
16 < * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
17 < * ForkJoinPool}.
10 > * A thread managed by a {@link ForkJoinPool}, which executes
11 > * {@link ForkJoinTask}s.
12 > * This class is subclassable solely for the sake of adding
13 > * functionality -- there are no overridable methods dealing with
14 > * scheduling or execution.  However, you can override initialization
15 > * and termination methods surrounding the main task processing loop.
16 > * If you do create such a subclass, you will also need to supply a
17 > * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it
18 > * in a {@code ForkJoinPool}.
19   *
20   * @since 1.7
21   * @author Doug Lea
22   */
23   public class ForkJoinWorkerThread extends Thread {
24      /*
25 <     * Algorithm overview:
26 <     *
27 <     * 1. Work-Stealing: Work-stealing queues are special forms of
31 <     * Deques that support only three of the four possible
32 <     * end-operations -- push, pop, and deq (aka steal), and only do
33 <     * so under the constraints that push and pop are called only from
34 <     * the owning thread, while deq may be called from other threads.
35 <     * (If you are unfamiliar with them, you probably want to read
36 <     * Herlihy and Shavit's book "The Art of Multiprocessor
37 <     * programming", chapter 16 describing these in more detail before
38 <     * proceeding.)  The main work-stealing queue design is roughly
39 <     * similar to "Dynamic Circular Work-Stealing Deque" by David
40 <     * Chase and Yossi Lev, SPAA 2005
41 <     * (http://research.sun.com/scalable/pubs/index.html).  The main
42 <     * difference ultimately stems from gc requirements that we null
43 <     * out taken slots as soon as we can, to maintain as small a
44 <     * footprint as possible even in programs generating huge numbers
45 <     * of tasks. To accomplish this, we shift the CAS arbitrating pop
46 <     * vs deq (steal) from being on the indices ("base" and "sp") to
47 <     * the slots themselves (mainly via method "casSlotNull()"). So,
48 <     * both a successful pop and deq mainly entail CAS'ing a non-null
49 <     * slot to null.  Because we rely on CASes of references, we do
50 <     * not need tag bits on base or sp.  They are simple ints as used
51 <     * in any circular array-based queue (see for example ArrayDeque).
52 <     * Updates to the indices must still be ordered in a way that
53 <     * guarantees that (sp - base) > 0 means the queue is empty, but
54 <     * otherwise may err on the side of possibly making the queue
55 <     * appear nonempty when a push, pop, or deq have not fully
56 <     * committed. Note that this means that the deq operation,
57 <     * considered individually, is not wait-free. One thief cannot
58 <     * successfully continue until another in-progress one (or, if
59 <     * previously empty, a push) completes.  However, in the
60 <     * aggregate, we ensure at least probabilistic
61 <     * non-blockingness. If an attempted steal fails, a thief always
62 <     * chooses a different random victim target to try next. So, in
63 <     * order for one thief to progress, it suffices for any
64 <     * in-progress deq or new push on any empty queue to complete. One
65 <     * reason this works well here is that apparently-nonempty often
66 <     * means soon-to-be-stealable, which gives threads a chance to
67 <     * activate if necessary before stealing (see below).
68 <     *
69 <     * This approach also enables support for "async mode" where local
70 <     * task processing is in FIFO, not LIFO order; simply by using a
71 <     * version of deq rather than pop when locallyFifo is true (as set
72 <     * by the ForkJoinPool).  This allows use in message-passing
73 <     * frameworks in which tasks are never joined.
74 <     *
75 <     * Efficient implementation of this approach currently relies on
76 <     * an uncomfortable amount of "Unsafe" mechanics. To maintain
77 <     * correct orderings, reads and writes of variable base require
78 <     * volatile ordering.  Variable sp does not require volatile write
79 <     * but needs cheaper store-ordering on writes.  Because they are
80 <     * protected by volatile base reads, reads of the queue array and
81 <     * its slots do not need volatile load semantics, but writes (in
82 <     * push) require store order and CASes (in pop and deq) require
83 <     * (volatile) CAS semantics.  (See "Idempotent work stealing" by
84 <     * Michael, Saraswat, and Vechev, PPoPP 2009
85 <     * http://portal.acm.org/citation.cfm?id=1504186 for an algorithm
86 <     * with similar properties, but without support for nulling
87 <     * slots.)  Since these combinations aren't supported using
88 <     * ordinary volatiles, the only way to accomplish these
89 <     * efficiently is to use direct Unsafe calls. (Using external
90 <     * AtomicIntegers and AtomicReferenceArrays for the indices and
91 <     * array is significantly slower because of memory locality and
92 <     * indirection effects.)
93 <     *
94 <     * Further, performance on most platforms is very sensitive to
95 <     * placement and sizing of the (resizable) queue array.  Even
96 <     * though these queues don't usually become all that big, the
97 <     * initial size must be large enough to counteract cache
98 <     * contention effects across multiple queues (especially in the
99 <     * presence of GC cardmarking). Also, to improve thread-locality,
100 <     * queues are currently initialized immediately after the thread
101 <     * gets the initial signal to start processing tasks.  However,
102 <     * all queue-related methods except pushTask are written in a way
103 <     * that allows them to instead be lazily allocated and/or disposed
104 <     * of when empty. All together, these low-level implementation
105 <     * choices produce as much as a factor of 4 performance
106 <     * improvement compared to naive implementations, and enable the
107 <     * processing of billions of tasks per second, sometimes at the
108 <     * expense of ugliness.
109 <     *
110 <     * 2. Run control: The primary run control is based on a global
111 <     * counter (activeCount) held by the pool. It uses an algorithm
112 <     * similar to that in Herlihy and Shavit section 17.6 to cause
113 <     * threads to eventually block when all threads declare they are
114 <     * inactive. For this to work, threads must be declared active
115 <     * when executing tasks, and before stealing a task. They must be
116 <     * inactive before blocking on the Pool Barrier (awaiting a new
117 <     * submission or other Pool event). In between, there is some free
118 <     * play which we take advantage of to avoid contention and rapid
119 <     * flickering of the global activeCount: If inactive, we activate
120 <     * only if a victim queue appears to be nonempty (see above).
121 <     * Similarly, a thread tries to inactivate only after a full scan
122 <     * of other threads.  The net effect is that contention on
123 <     * activeCount is rarely a measurable performance issue. (There
124 <     * are also a few other cases where we scan for work rather than
125 <     * retry/block upon contention.)
126 <     *
127 <     * 3. Selection control. We maintain policy of always choosing to
128 <     * run local tasks rather than stealing, and always trying to
129 <     * steal tasks before trying to run a new submission. All steals
130 <     * are currently performed in randomly-chosen deq-order. It may be
131 <     * worthwhile to bias these with locality / anti-locality
132 <     * information, but doing this well probably requires more
133 <     * lower-level information from JVMs than currently provided.
134 <     */
135 <
136 <    /**
137 <     * Capacity of work-stealing queue array upon initialization.
138 <     * Must be a power of two. Initial size must be at least 2, but is
139 <     * padded to minimize cache effects.
140 <     */
141 <    private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
142 <
143 <    /**
144 <     * Maximum work-stealing queue array size.  Must be less than or
145 <     * equal to 1 << 28 to ensure lack of index wraparound. (This
146 <     * is less than usual bounds, because we need leftshift by 3
147 <     * to be in int range).
148 <     */
149 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
150 <
151 <    /**
152 <     * The pool this thread works in. Accessed directly by ForkJoinTask.
153 <     */
154 <    final ForkJoinPool pool;
155 <
156 <    /**
157 <     * The work-stealing queue array. Size must be a power of two.
158 <     * Initialized when thread starts, to improve memory locality.
159 <     */
160 <    private ForkJoinTask<?>[] queue;
161 <
162 <    /**
163 <     * Index (mod queue.length) of next queue slot to push to or pop
164 <     * from. It is written only by owner thread, via ordered store.
165 <     * Both sp and base are allowed to wrap around on overflow, but
166 <     * (sp - base) still estimates size.
167 <     */
168 <    private volatile int sp;
169 <
170 <    /**
171 <     * Index (mod queue.length) of least valid queue slot, which is
172 <     * always the next position to steal from if nonempty.
173 <     */
174 <    private volatile int base;
175 <
176 <    /**
177 <     * Activity status. When true, this worker is considered active.
178 <     * Must be false upon construction. It must be true when executing
179 <     * tasks, and BEFORE stealing a task. It must be false before
180 <     * calling pool.sync.
181 <     */
182 <    private boolean active;
183 <
184 <    /**
185 <     * Run state of this worker. Supports simple versions of the usual
186 <     * shutdown/shutdownNow control.
187 <     */
188 <    private volatile int runState;
189 <
190 <    /**
191 <     * Seed for random number generator for choosing steal victims.
192 <     * Uses Marsaglia xorshift. Must be nonzero upon initialization.
193 <     */
194 <    private int seed;
195 <
196 <    /**
197 <     * Number of steals, transferred to pool when idle
25 >     * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
26 >     * ForkJoinTasks. For explanation, see the internal documentation
27 >     * of class ForkJoinPool.
28       */
199    private int stealCount;
29  
30 <    /**
31 <     * Index of this worker in pool array. Set once by pool before
203 <     * running, and accessed directly by pool during cleanup etc.
204 <     */
205 <    int poolIndex;
206 <
207 <    /**
208 <     * The last barrier event waited for. Accessed in pool callback
209 <     * methods, but only by current thread.
210 <     */
211 <    long lastEventCount;
212 <
213 <    /**
214 <     * True if use local fifo, not default lifo, for local polling
215 <     */
216 <    private boolean locallyFifo;
30 >    final ForkJoinPool.WorkQueue workQueue; // Work-stealing mechanics
31 >    final ForkJoinPool pool;                // the pool this thread works in
32  
33      /**
34       * Creates a ForkJoinWorkerThread operating in the given pool.
# Line 222 | Line 37 | public class ForkJoinWorkerThread extend
37       * @throws NullPointerException if pool is null
38       */
39      protected ForkJoinWorkerThread(ForkJoinPool pool) {
40 <        if (pool == null) throw new NullPointerException();
40 >        super(pool.nextWorkerName());
41 >        setDaemon(true);
42 >        Thread.UncaughtExceptionHandler ueh = pool.ueh;
43 >        if (ueh != null)
44 >            setUncaughtExceptionHandler(ueh);
45          this.pool = pool;
46 <        // Note: poolIndex is set by pool during construction
47 <        // Remaining initialization is deferred to onStart
46 >        pool.registerWorker(this.workQueue = new ForkJoinPool.WorkQueue
47 >                            (pool, this, pool.localMode));
48      }
49  
231    // Public access methods
232
50      /**
51       * Returns the pool hosting this thread.
52       *
# Line 249 | Line 66 | public class ForkJoinWorkerThread extend
66       * @return the index number
67       */
68      public int getPoolIndex() {
69 <        return poolIndex;
253 <    }
254 <
255 <    /**
256 <     * Establishes local first-in-first-out scheduling mode for forked
257 <     * tasks that are never joined.
258 <     *
259 <     * @param async if true, use locally FIFO scheduling
260 <     */
261 <    void setAsyncMode(boolean async) {
262 <        locallyFifo = async;
263 <    }
264 <
265 <    // Runstate management
266 <
267 <    // Runstate values. Order matters
268 <    private static final int RUNNING     = 0;
269 <    private static final int SHUTDOWN    = 1;
270 <    private static final int TERMINATING = 2;
271 <    private static final int TERMINATED  = 3;
272 <
273 <    final boolean isShutdown()    { return runState >= SHUTDOWN;  }
274 <    final boolean isTerminating() { return runState >= TERMINATING;  }
275 <    final boolean isTerminated()  { return runState == TERMINATED; }
276 <    final boolean shutdown()      { return transitionRunStateTo(SHUTDOWN); }
277 <    final boolean shutdownNow()   { return transitionRunStateTo(TERMINATING); }
278 <
279 <    /**
280 <     * Transitions to at least the given state.
281 <     *
282 <     * @return {@code true} if not already at least at given state
283 <     */
284 <    private boolean transitionRunStateTo(int state) {
285 <        for (;;) {
286 <            int s = runState;
287 <            if (s >= state)
288 <                return false;
289 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, state))
290 <                return true;
291 <        }
292 <    }
293 <
294 <    /**
295 <     * Tries to set status to active; fails on contention.
296 <     */
297 <    private boolean tryActivate() {
298 <        if (!active) {
299 <            if (!pool.tryIncrementActiveCount())
300 <                return false;
301 <            active = true;
302 <        }
303 <        return true;
304 <    }
305 <
306 <    /**
307 <     * Tries to set status to inactive; fails on contention.
308 <     */
309 <    private boolean tryInactivate() {
310 <        if (active) {
311 <            if (!pool.tryDecrementActiveCount())
312 <                return false;
313 <            active = false;
314 <        }
315 <        return true;
316 <    }
317 <
318 <    /**
319 <     * Computes next value for random victim probe.  Scans don't
320 <     * require a very high quality generator, but also not a crummy
321 <     * one.  Marsaglia xor-shift is cheap and works well.
322 <     */
323 <    private static int xorShift(int r) {
324 <        r ^= (r << 13);
325 <        r ^= (r >>> 17);
326 <        return r ^ (r << 5);
327 <    }
328 <
329 <    // Lifecycle methods
330 <
331 <    /**
332 <     * This method is required to be public, but should never be
333 <     * called explicitly. It performs the main run loop to execute
334 <     * ForkJoinTasks.
335 <     */
336 <    public void run() {
337 <        Throwable exception = null;
338 <        try {
339 <            onStart();
340 <            pool.sync(this); // await first pool event
341 <            mainLoop();
342 <        } catch (Throwable ex) {
343 <            exception = ex;
344 <        } finally {
345 <            onTermination(exception);
346 <        }
347 <    }
348 <
349 <    /**
350 <     * Executes tasks until shut down.
351 <     */
352 <    private void mainLoop() {
353 <        while (!isShutdown()) {
354 <            ForkJoinTask<?> t = pollTask();
355 <            if (t != null || (t = pollSubmission()) != null)
356 <                t.quietlyExec();
357 <            else if (tryInactivate())
358 <                pool.sync(this);
359 <        }
69 >        return workQueue.poolIndex;
70      }
71  
72      /**
73       * Initializes internal state after construction but before
74       * processing any tasks. If you override this method, you must
75 <     * invoke super.onStart() at the beginning of the method.
75 >     * invoke {@code super.onStart()} at the beginning of the method.
76       * Initialization requires care: Most fields must have legal
77       * default values, to ensure that attempted accesses from other
78       * threads work correctly even before this thread starts
79       * processing tasks.
80       */
81      protected void onStart() {
372        // Allocate while starting to improve chances of thread-local
373        // isolation
374        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
375        // Initial value of seed need not be especially random but
376        // should differ across workers and must be nonzero
377        int p = poolIndex + 1;
378        seed = p + (p << 8) + (p << 16) + (p << 24); // spread bits
82      }
83  
84      /**
# Line 387 | Line 90 | public class ForkJoinWorkerThread extend
90       * to an unrecoverable error, or {@code null} if completed normally
91       */
92      protected void onTermination(Throwable exception) {
390        // Execute remaining local tasks unless aborting or terminating
391        while (exception == null && pool.isProcessingTasks() && base != sp) {
392            try {
393                ForkJoinTask<?> t = popTask();
394                if (t != null)
395                    t.quietlyExec();
396            } catch (Throwable ex) {
397                exception = ex;
398            }
399        }
400        // Cancel other tasks, transition status, notify pool, and
401        // propagate exception to uncaught exception handler
402        try {
403            do {} while (!tryInactivate()); // ensure inactive
404            cancelTasks();
405            runState = TERMINATED;
406            pool.workerTerminated(this);
407        } catch (Throwable ex) {        // Shouldn't ever happen
408            if (exception == null)      // but if so, at least rethrown
409                exception = ex;
410        } finally {
411            if (exception != null)
412                ForkJoinTask.rethrowException(exception);
413        }
414    }
415
416    // Intrinsics-based support for queue operations.
417
418    private static long slotOffset(int i) {
419        return ((long) i << qShift) + qBase;
93      }
94  
95      /**
96 <     * Adds in store-order the given task at given slot of q to null.
97 <     * Caller must ensure q is non-null and index is in range.
98 <     */
426 <    private static void setSlot(ForkJoinTask<?>[] q, int i,
427 <                                ForkJoinTask<?> t) {
428 <        UNSAFE.putOrderedObject(q, slotOffset(i), t);
429 <    }
430 <
431 <    /**
432 <     * CAS given slot of q to null. Caller must ensure q is non-null
433 <     * and index is in range.
434 <     */
435 <    private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
436 <                                       ForkJoinTask<?> t) {
437 <        return UNSAFE.compareAndSwapObject(q, slotOffset(i), t, null);
438 <    }
439 <
440 <    /**
441 <     * Sets sp in store-order.
442 <     */
443 <    private void storeSp(int s) {
444 <        UNSAFE.putOrderedInt(this, spOffset, s);
445 <    }
446 <
447 <    // Main queue methods
448 <
449 <    /**
450 <     * Pushes a task. Called only by current thread.
451 <     *
452 <     * @param t the task. Caller must ensure non-null.
453 <     */
454 <    final void pushTask(ForkJoinTask<?> t) {
455 <        ForkJoinTask<?>[] q = queue;
456 <        int mask = q.length - 1;
457 <        int s = sp;
458 <        setSlot(q, s & mask, t);
459 <        storeSp(++s);
460 <        if ((s -= base) == 1)
461 <            pool.signalWork();
462 <        else if (s >= mask)
463 <            growQueue();
464 <    }
465 <
466 <    /**
467 <     * Tries to take a task from the base of the queue, failing if
468 <     * either empty or contended.
469 <     *
470 <     * @return a task, or null if none or contended
471 <     */
472 <    final ForkJoinTask<?> deqTask() {
473 <        ForkJoinTask<?> t;
474 <        ForkJoinTask<?>[] q;
475 <        int i;
476 <        int b;
477 <        if (sp != (b = base) &&
478 <            (q = queue) != null && // must read q after b
479 <            (t = q[i = (q.length - 1) & b]) != null &&
480 <            casSlotNull(q, i, t)) {
481 <            base = b + 1;
482 <            return t;
483 <        }
484 <        return null;
485 <    }
486 <
487 <    /**
488 <     * Tries to take a task from the base of own queue, activating if
489 <     * necessary, failing only if empty. Called only by current thread.
490 <     *
491 <     * @return a task, or null if none
492 <     */
493 <    final ForkJoinTask<?> locallyDeqTask() {
494 <        int b;
495 <        while (sp != (b = base)) {
496 <            if (tryActivate()) {
497 <                ForkJoinTask<?>[] q = queue;
498 <                int i = (q.length - 1) & b;
499 <                ForkJoinTask<?> t = q[i];
500 <                if (t != null && casSlotNull(q, i, t)) {
501 <                    base = b + 1;
502 <                    return t;
503 <                }
504 <            }
505 <        }
506 <        return null;
507 <    }
508 <
509 <    /**
510 <     * Returns a popped task, or null if empty. Ensures active status
511 <     * if non-null. Called only by current thread.
512 <     */
513 <    final ForkJoinTask<?> popTask() {
514 <        int s = sp;
515 <        while (s != base) {
516 <            if (tryActivate()) {
517 <                ForkJoinTask<?>[] q = queue;
518 <                int mask = q.length - 1;
519 <                int i = (s - 1) & mask;
520 <                ForkJoinTask<?> t = q[i];
521 <                if (t == null || !casSlotNull(q, i, t))
522 <                    break;
523 <                storeSp(s - 1);
524 <                return t;
525 <            }
526 <        }
527 <        return null;
528 <    }
529 <
530 <    /**
531 <     * Specialized version of popTask to pop only if
532 <     * topmost element is the given task. Called only
533 <     * by current thread while active.
534 <     *
535 <     * @param t the task. Caller must ensure non-null.
536 <     */
537 <    final boolean unpushTask(ForkJoinTask<?> t) {
538 <        ForkJoinTask<?>[] q = queue;
539 <        int mask = q.length - 1;
540 <        int s = sp - 1;
541 <        if (casSlotNull(q, s & mask, t)) {
542 <            storeSp(s);
543 <            return true;
544 <        }
545 <        return false;
546 <    }
547 <
548 <    /**
549 <     * Returns next task or null if empty or contended
550 <     */
551 <    final ForkJoinTask<?> peekTask() {
552 <        ForkJoinTask<?>[] q = queue;
553 <        if (q == null)
554 <            return null;
555 <        int mask = q.length - 1;
556 <        int i = locallyFifo ? base : (sp - 1);
557 <        return q[i & mask];
558 <    }
559 <
560 <    /**
561 <     * Doubles queue array size. Transfers elements by emulating
562 <     * steals (deqs) from old array and placing, oldest first, into
563 <     * new array.
564 <     */
565 <    private void growQueue() {
566 <        ForkJoinTask<?>[] oldQ = queue;
567 <        int oldSize = oldQ.length;
568 <        int newSize = oldSize << 1;
569 <        if (newSize > MAXIMUM_QUEUE_CAPACITY)
570 <            throw new RejectedExecutionException("Queue capacity exceeded");
571 <        ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
572 <
573 <        int b = base;
574 <        int bf = b + oldSize;
575 <        int oldMask = oldSize - 1;
576 <        int newMask = newSize - 1;
577 <        do {
578 <            int oldIndex = b & oldMask;
579 <            ForkJoinTask<?> t = oldQ[oldIndex];
580 <            if (t != null && !casSlotNull(oldQ, oldIndex, t))
581 <                t = null;
582 <            setSlot(newQ, b & newMask, t);
583 <        } while (++b != bf);
584 <        pool.signalWork();
585 <    }
586 <
587 <    /**
588 <     * Tries to steal a task from another worker. Starts at a random
589 <     * index of workers array, and probes workers until finding one
590 <     * with non-empty queue or finding that all are empty.  It
591 <     * randomly selects the first n probes. If these are empty, it
592 <     * resorts to a full circular traversal, which is necessary to
593 <     * accurately set active status by caller. Also restarts if pool
594 <     * events occurred since last scan, which forces refresh of
595 <     * workers array, in case barrier was associated with resize.
596 <     *
597 <     * This method must be both fast and quiet -- usually avoiding
598 <     * memory accesses that could disrupt cache sharing etc other than
599 <     * those needed to check for and take tasks. This accounts for,
600 <     * among other things, updating random seed in place without
601 <     * storing it until exit.
602 <     *
603 <     * @return a task, or null if none found
604 <     */
605 <    private ForkJoinTask<?> scan() {
606 <        ForkJoinTask<?> t = null;
607 <        int r = seed;                    // extract once to keep scan quiet
608 <        ForkJoinWorkerThread[] ws;       // refreshed on outer loop
609 <        int mask;                        // must be power 2 minus 1 and > 0
610 <        outer:do {
611 <            if ((ws = pool.workers) != null && (mask = ws.length - 1) > 0) {
612 <                int idx = r;
613 <                int probes = ~mask;      // use random index while negative
614 <                for (;;) {
615 <                    r = xorShift(r);     // update random seed
616 <                    ForkJoinWorkerThread v = ws[mask & idx];
617 <                    if (v == null || v.sp == v.base) {
618 <                        if (probes <= mask)
619 <                            idx = (probes++ < 0) ? r : (idx + 1);
620 <                        else
621 <                            break;
622 <                    }
623 <                    else if (!tryActivate() || (t = v.deqTask()) == null)
624 <                        continue outer;  // restart on contention
625 <                    else
626 <                        break outer;
627 <                }
628 <            }
629 <        } while (pool.hasNewSyncEvent(this)); // retry on pool events
630 <        seed = r;
631 <        return t;
632 <    }
633 <
634 <    /**
635 <     * Gets and removes a local or stolen task.
636 <     *
637 <     * @return a task, if available
638 <     */
639 <    final ForkJoinTask<?> pollTask() {
640 <        ForkJoinTask<?> t = locallyFifo ? locallyDeqTask() : popTask();
641 <        if (t == null && (t = scan()) != null)
642 <            ++stealCount;
643 <        return t;
644 <    }
645 <
646 <    /**
647 <     * Gets a local task.
648 <     *
649 <     * @return a task, if available
650 <     */
651 <    final ForkJoinTask<?> pollLocalTask() {
652 <        return locallyFifo ? locallyDeqTask() : popTask();
653 <    }
654 <
655 <    /**
656 <     * Returns a pool submission, if one exists, activating first.
657 <     *
658 <     * @return a submission, if available
659 <     */
660 <    private ForkJoinTask<?> pollSubmission() {
661 <        ForkJoinPool p = pool;
662 <        while (p.hasQueuedSubmissions()) {
663 <            ForkJoinTask<?> t;
664 <            if (tryActivate() && (t = p.pollSubmission()) != null)
665 <                return t;
666 <        }
667 <        return null;
668 <    }
669 <
670 <    // Methods accessed only by Pool
671 <
672 <    /**
673 <     * Removes and cancels all tasks in queue.  Can be called from any
674 <     * thread.
675 <     */
676 <    final void cancelTasks() {
677 <        ForkJoinTask<?> t;
678 <        while (base != sp && (t = deqTask()) != null)
679 <            t.cancelIgnoringExceptions();
680 <    }
681 <
682 <    /**
683 <     * Drains tasks to given collection c.
684 <     *
685 <     * @return the number of tasks drained
686 <     */
687 <    final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
688 <        int n = 0;
689 <        ForkJoinTask<?> t;
690 <        while (base != sp && (t = deqTask()) != null) {
691 <            c.add(t);
692 <            ++n;
693 <        }
694 <        return n;
695 <    }
696 <
697 <    /**
698 <     * Gets and clears steal count for accumulation by pool.  Called
699 <     * only when known to be idle (in pool.sync and termination).
700 <     */
701 <    final int getAndClearStealCount() {
702 <        int sc = stealCount;
703 <        stealCount = 0;
704 <        return sc;
705 <    }
706 <
707 <    /**
708 <     * Returns {@code true} if at least one worker in the given array
709 <     * appears to have at least one queued task.
710 <     *
711 <     * @param ws array of workers
712 <     */
713 <    static boolean hasQueuedTasks(ForkJoinWorkerThread[] ws) {
714 <        if (ws != null) {
715 <            int len = ws.length;
716 <            for (int j = 0; j < 2; ++j) { // need two passes for clean sweep
717 <                for (int i = 0; i < len; ++i) {
718 <                    ForkJoinWorkerThread w = ws[i];
719 <                    if (w != null && w.sp != w.base)
720 <                        return true;
721 <                }
722 <            }
723 <        }
724 <        return false;
725 <    }
726 <
727 <    // Support methods for ForkJoinTask
728 <
729 <    /**
730 <     * Returns an estimate of the number of tasks in the queue.
731 <     */
732 <    final int getQueueSize() {
733 <        // suppress momentarily negative values
734 <        return Math.max(0, sp - base);
735 <    }
736 <
737 <    /**
738 <     * Returns an estimate of the number of tasks, offset by a
739 <     * function of number of idle workers.
740 <     */
741 <    final int getEstimatedSurplusTaskCount() {
742 <        // The halving approximates weighting idle vs non-idle workers
743 <        return (sp - base) - (pool.getIdleThreadCount() >>> 1);
744 <    }
745 <
746 <    /**
747 <     * Scans, returning early if joinMe done.
748 <     */
749 <    final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
750 <        ForkJoinTask<?> t = pollTask();
751 <        if (t != null && joinMe.status < 0 && sp == base) {
752 <            pushTask(t); // unsteal if done and this task would be stealable
753 <            t = null;
754 <        }
755 <        return t;
756 <    }
757 <
758 <    /**
759 <     * Runs tasks until {@code pool.isQuiescent()}.
760 <     */
761 <    final void helpQuiescePool() {
762 <        for (;;) {
763 <            ForkJoinTask<?> t = pollTask();
764 <            if (t != null)
765 <                t.quietlyExec();
766 <            else if (tryInactivate() && pool.isQuiescent())
767 <                break;
768 <        }
769 <        do {} while (!tryActivate()); // re-activate on exit
770 <    }
771 <
772 <    // Unsafe mechanics
773 <
774 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
775 <    private static final long spOffset =
776 <        objectFieldOffset("sp", ForkJoinWorkerThread.class);
777 <    private static final long runStateOffset =
778 <        objectFieldOffset("runState", ForkJoinWorkerThread.class);
779 <    private static final long qBase;
780 <    private static final int qShift;
781 <
782 <    static {
783 <        qBase = UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
784 <        int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
785 <        if ((s & (s-1)) != 0)
786 <            throw new Error("data type scale not a power of two");
787 <        qShift = 31 - Integer.numberOfLeadingZeros(s);
788 <    }
789 <
790 <    private static long objectFieldOffset(String field, Class<?> klazz) {
791 <        try {
792 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
793 <        } catch (NoSuchFieldException e) {
794 <            // Convert Exception to corresponding Error
795 <            NoSuchFieldError error = new NoSuchFieldError(field);
796 <            error.initCause(e);
797 <            throw error;
798 <        }
799 <    }
800 <
801 <    /**
802 <     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
803 <     * Replace with a simple call to Unsafe.getUnsafe when integrating
804 <     * into a jdk.
805 <     *
806 <     * @return a sun.misc.Unsafe
96 >     * This method is required to be public, but should never be
97 >     * called explicitly. It performs the main run loop to execute
98 >     * {@link ForkJoinTask}s.
99       */
100 <    private static sun.misc.Unsafe getUnsafe() {
100 >    public void run() {
101 >        Throwable exception = null;
102          try {
103 <            return sun.misc.Unsafe.getUnsafe();
104 <        } catch (SecurityException se) {
103 >            onStart();
104 >            pool.runWorker(workQueue);
105 >        } catch (Throwable ex) {
106 >            exception = ex;
107 >        } finally {
108              try {
109 <                return java.security.AccessController.doPrivileged
110 <                    (new java.security
111 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
112 <                        public sun.misc.Unsafe run() throws Exception {
113 <                            java.lang.reflect.Field f = sun.misc
114 <                                .Unsafe.class.getDeclaredField("theUnsafe");
819 <                            f.setAccessible(true);
820 <                            return (sun.misc.Unsafe) f.get(null);
821 <                        }});
822 <            } catch (java.security.PrivilegedActionException e) {
823 <                throw new RuntimeException("Could not initialize intrinsics",
824 <                                           e.getCause());
109 >                onTermination(exception);
110 >            } catch (Throwable ex) {
111 >                if (exception == null)
112 >                    exception = ex;
113 >            } finally {
114 >                pool.deregisterWorker(this, exception);
115              }
116          }
117      }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines