ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.31 by dl, Mon Apr 5 15:52:26 2010 UTC vs.
Revision 1.69 by dl, Mon Feb 20 18:20:06 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
11 import java.util.Random;
12 import java.util.Collection;
13 import java.util.concurrent.locks.LockSupport;
14
9   /**
10 < * A thread managed by a {@link ForkJoinPool}.  This class is
11 < * subclassable solely for the sake of adding functionality -- there
12 < * are no overridable methods dealing with scheduling or execution.
13 < * However, you can override initialization and termination methods
14 < * surrounding the main task processing loop.  If you do create such a
15 < * subclass, you will also need to supply a custom {@link
16 < * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
17 < * ForkJoinPool}.
10 > * A thread managed by a {@link ForkJoinPool}, which executes
11 > * {@link ForkJoinTask}s.
12 > * This class is subclassable solely for the sake of adding
13 > * functionality -- there are no overridable methods dealing with
14 > * scheduling or execution.  However, you can override initialization
15 > * and termination methods surrounding the main task processing loop.
16 > * If you do create such a subclass, you will also need to supply a
17 > * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it
18 > * in a {@code ForkJoinPool}.
19   *
20   * @since 1.7
21   * @author Doug Lea
22   */
23   public class ForkJoinWorkerThread extends Thread {
24      /*
30     * Overview:
31     *
25       * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
26 <     * ForkJoinTasks. This class includes bookkeeping in support of
27 <     * worker activation, suspension, and lifecycle control described
35 <     * in more detail in the internal documentation of class
36 <     * ForkJoinPool. And as described further below, this class also
37 <     * includes special-cased support for some ForkJoinTask
38 <     * methods. But the main mechanics involve work-stealing:
39 <     *
40 <     * Work-stealing queues are special forms of Deques that support
41 <     * only three of the four possible end-operations -- push, pop,
42 <     * and deq (aka steal), under the further constraints that push
43 <     * and pop are called only from the owning thread, while deq may
44 <     * be called from other threads.  (If you are unfamiliar with
45 <     * them, you probably want to read Herlihy and Shavit's book "The
46 <     * Art of Multiprocessor programming", chapter 16 describing these
47 <     * in more detail before proceeding.)  The main work-stealing
48 <     * queue design is roughly similar to those in the papers "Dynamic
49 <     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
50 <     * (http://research.sun.com/scalable/pubs/index.html) and
51 <     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
52 <     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
53 <     * The main differences ultimately stem from gc requirements that
54 <     * we null out taken slots as soon as we can, to maintain as small
55 <     * a footprint as possible even in programs generating huge
56 <     * numbers of tasks. To accomplish this, we shift the CAS
57 <     * arbitrating pop vs deq (steal) from being on the indices
58 <     * ("base" and "sp") to the slots themselves (mainly via method
59 <     * "casSlotNull()"). So, both a successful pop and deq mainly
60 <     * entail a CAS of a slot from non-null to null.  Because we rely
61 <     * on CASes of references, we do not need tag bits on base or sp.
62 <     * They are simple ints as used in any circular array-based queue
63 <     * (see for example ArrayDeque).  Updates to the indices must
64 <     * still be ordered in a way that guarantees that sp == base means
65 <     * the queue is empty, but otherwise may err on the side of
66 <     * possibly making the queue appear nonempty when a push, pop, or
67 <     * deq have not fully committed. Note that this means that the deq
68 <     * operation, considered individually, is not wait-free. One thief
69 <     * cannot successfully continue until another in-progress one (or,
70 <     * if previously empty, a push) completes.  However, in the
71 <     * aggregate, we ensure at least probabilistic non-blockingness.
72 <     * If an attempted steal fails, a thief always chooses a different
73 <     * random victim target to try next. So, in order for one thief to
74 <     * progress, it suffices for any in-progress deq or new push on
75 <     * any empty queue to complete. One reason this works well here is
76 <     * that apparently-nonempty often means soon-to-be-stealable,
77 <     * which gives threads a chance to set activation status if
78 <     * necessary before stealing.
79 <     *
80 <     * This approach also enables support for "async mode" where local
81 <     * task processing is in FIFO, not LIFO order; simply by using a
82 <     * version of deq rather than pop when locallyFifo is true (as set
83 <     * by the ForkJoinPool).  This allows use in message-passing
84 <     * frameworks in which tasks are never joined.
85 <     *
86 <     * Efficient implementation of this approach currently relies on
87 <     * an uncomfortable amount of "Unsafe" mechanics. To maintain
88 <     * correct orderings, reads and writes of variable base require
89 <     * volatile ordering.  Variable sp does not require volatile
90 <     * writes but still needs store-ordering, which we accomplish by
91 <     * pre-incrementing sp before filling the slot with an ordered
92 <     * store.  (Pre-incrementing also enables backouts used in
93 <     * scanWhileJoining.)  Because they are protected by volatile base
94 <     * reads, reads of the queue array and its slots by other threads
95 <     * do not need volatile load semantics, but writes (in push)
96 <     * require store order and CASes (in pop and deq) require
97 <     * (volatile) CAS semantics.  (Michael, Saraswat, and Vechev's
98 <     * algorithm has similar properties, but without support for
99 <     * nulling slots.)  Since these combinations aren't supported
100 <     * using ordinary volatiles, the only way to accomplish these
101 <     * efficiently is to use direct Unsafe calls. (Using external
102 <     * AtomicIntegers and AtomicReferenceArrays for the indices and
103 <     * array is significantly slower because of memory locality and
104 <     * indirection effects.)
105 <     *
106 <     * Further, performance on most platforms is very sensitive to
107 <     * placement and sizing of the (resizable) queue array.  Even
108 <     * though these queues don't usually become all that big, the
109 <     * initial size must be large enough to counteract cache
110 <     * contention effects across multiple queues (especially in the
111 <     * presence of GC cardmarking). Also, to improve thread-locality,
112 <     * queues are initialized after starting.  All together, these
113 <     * low-level implementation choices produce as much as a factor of
114 <     * 4 performance improvement compared to naive implementations,
115 <     * and enable the processing of billions of tasks per second,
116 <     * sometimes at the expense of ugliness.
117 <     */
118 <
119 <    /**
120 <     * Generator for initial random seeds for random victim
121 <     * selection. This is used only to create initial seeds. Random
122 <     * steals use a cheaper xorshift generator per steal attempt. We
123 <     * expect only rare contention on seedGenerator, so just use a
124 <     * plain Random.
125 <     */
126 <    private static final Random seedGenerator = new Random();
127 <
128 <    /**
129 <     * The timeout value for suspending spares. Spare workers that
130 <     * remain unsignalled for more than this time may be trimmed
131 <     * (killed and removed from pool).  Since our goal is to avoid
132 <     * long-term thread buildup, the exact value of timeout does not
133 <     * matter too much so long as it avoids most false-alarm timeouts
134 <     * under GC stalls or momentarily high system load.
135 <     */
136 <    private static final long SPARE_KEEPALIVE_NANOS =
137 <        5L * 1000L * 1000L * 1000L; // 5 secs
138 <
139 <    /**
140 <     * Capacity of work-stealing queue array upon initialization.
141 <     * Must be a power of two. Initial size must be at least 2, but is
142 <     * padded to minimize cache effects.
143 <     */
144 <    private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
145 <
146 <    /**
147 <     * Maximum work-stealing queue array size.  Must be less than or
148 <     * equal to 1 << 28 to ensure lack of index wraparound. (This
149 <     * is less than usual bounds, because we need leftshift by 3
150 <     * to be in int range).
151 <     */
152 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
153 <
154 <    /**
155 <     * The pool this thread works in. Accessed directly by ForkJoinTask.
156 <     */
157 <    final ForkJoinPool pool;
158 <
159 <    /**
160 <     * The work-stealing queue array. Size must be a power of two.
161 <     * Initialized in onStart, to improve memory locality.
162 <     */
163 <    private ForkJoinTask<?>[] queue;
164 <
165 <    /**
166 <     * Index (mod queue.length) of least valid queue slot, which is
167 <     * always the next position to steal from if nonempty.
168 <     */
169 <    private volatile int base;
170 <
171 <    /**
172 <     * Index (mod queue.length) of next queue slot to push to or pop
173 <     * from. It is written only by owner thread, and accessed by other
174 <     * threads only after reading (volatile) base.  Both sp and base
175 <     * are allowed to wrap around on overflow, but (sp - base) still
176 <     * estimates size.
177 <     */
178 <    private int sp;
179 <
180 <    /**
181 <     * Run state of this worker. In addition to the usual run levels,
182 <     * tracks if this worker is suspended as a spare, and if it was
183 <     * killed (trimmed) while suspended. However, "active" status is
184 <     * maintained separately.
26 >     * ForkJoinTasks. For explanation, see the internal documentation
27 >     * of class ForkJoinPool.
28       */
186    private volatile int runState;
29  
30 <    private static final int TERMINATING = 0x01;
31 <    private static final int TERMINATED  = 0x02;
190 <    private static final int SUSPENDED   = 0x04; // inactive spare
191 <    private static final int TRIMMED     = 0x08; // killed while suspended
192 <
193 <    /**
194 <     * Number of LockSupport.park calls to block this thread for
195 <     * suspension or event waits. Used for internal instrumention;
196 <     * currently not exported but included because volatile write upon
197 <     * park also provides a workaround for a JVM bug.
198 <     */
199 <    private volatile int parkCount;
200 <
201 <    /**
202 <     * Number of steals, transferred and reset in pool callbacks pool
203 <     * when idle Accessed directly by pool.
204 <     */
205 <    int stealCount;
206 <
207 <    /**
208 <     * Seed for random number generator for choosing steal victims.
209 <     * Uses Marsaglia xorshift. Must be initialized as nonzero.
210 <     */
211 <    private int seed;
212 <
213 <    /**
214 <     * Activity status. When true, this worker is considered active.
215 <     * Accessed directly by pool.  Must be false upon construction.
216 <     */
217 <    boolean active;
218 <
219 <    /**
220 <     * True if use local fifo, not default lifo, for local polling.
221 <     * Shadows value from ForkJoinPool, which resets it if changed
222 <     * pool-wide.
223 <     */
224 <    private boolean locallyFifo;
225 <
226 <    /**
227 <     * Index of this worker in pool array. Set once by pool before
228 <     * running, and accessed directly by pool to locate this worker in
229 <     * its workers array.
230 <     */
231 <    int poolIndex;
232 <
233 <    /**
234 <     * The last pool event waited for. Accessed only by pool in
235 <     * callback methods invoked within this thread.
236 <     */
237 <    int lastEventCount;
238 <
239 <    /**
240 <     * Encoded index and event count of next event waiter. Used only
241 <     * by ForkJoinPool for managing event waiters.
242 <     */
243 <    volatile long nextWaiter;
30 >    final ForkJoinPool.WorkQueue workQueue; // Work-stealing mechanics
31 >    final ForkJoinPool pool;                // the pool this thread works in
32  
33      /**
34       * Creates a ForkJoinWorkerThread operating in the given pool.
# Line 249 | Line 37 | public class ForkJoinWorkerThread extend
37       * @throws NullPointerException if pool is null
38       */
39      protected ForkJoinWorkerThread(ForkJoinPool pool) {
40 <        if (pool == null) throw new NullPointerException();
41 <        this.pool = pool;
42 <        // To avoid exposing construction details to subclasses,
255 <        // remaining initialization is in start() and onStart()
256 <    }
257 <
258 <    /**
259 <     * Performs additional initialization and starts this thread
260 <     */
261 <    final void start(int poolIndex, boolean locallyFifo,
262 <                     UncaughtExceptionHandler ueh) {
263 <        this.poolIndex = poolIndex;
264 <        this.locallyFifo = locallyFifo;
40 >        super(pool.nextWorkerName());
41 >        setDaemon(true);
42 >        Thread.UncaughtExceptionHandler ueh = pool.ueh;
43          if (ueh != null)
44              setUncaughtExceptionHandler(ueh);
45 <        setDaemon(true);
46 <        start();
45 >        this.pool = pool;
46 >        pool.registerWorker(this.workQueue = new ForkJoinPool.WorkQueue
47 >                            (pool, this, pool.localMode));
48      }
49  
271    // Public/protected methods
272
50      /**
51       * Returns the pool hosting this thread.
52       *
# Line 289 | Line 66 | public class ForkJoinWorkerThread extend
66       * @return the index number
67       */
68      public int getPoolIndex() {
69 <        return poolIndex;
69 >        return workQueue.poolIndex;
70      }
71  
72      /**
73       * Initializes internal state after construction but before
74       * processing any tasks. If you override this method, you must
75 <     * invoke super.onStart() at the beginning of the method.
75 >     * invoke {@code super.onStart()} at the beginning of the method.
76       * Initialization requires care: Most fields must have legal
77       * default values, to ensure that attempted accesses from other
78       * threads work correctly even before this thread starts
79       * processing tasks.
80       */
81      protected void onStart() {
305        int rs = seedGenerator.nextInt();
306        seed = rs == 0? 1 : rs; // seed must be nonzero
307
308        // Allocate name string and queue array in this thread
309        String pid = Integer.toString(pool.getPoolNumber());
310        String wid = Integer.toString(poolIndex);
311        setName("ForkJoinPool-" + pid + "-worker-" + wid);
312
313        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
82      }
83  
84      /**
# Line 322 | Line 90 | public class ForkJoinWorkerThread extend
90       * to an unrecoverable error, or {@code null} if completed normally
91       */
92      protected void onTermination(Throwable exception) {
325        try {
326            cancelTasks();
327            setTerminated();
328            pool.workerTerminated(this);
329        } catch (Throwable ex) {        // Shouldn't ever happen
330            if (exception == null)      // but if so, at least rethrown
331                exception = ex;
332        } finally {
333            if (exception != null)
334                UNSAFE.throwException(exception);
335        }
93      }
94  
95      /**
96       * This method is required to be public, but should never be
97       * called explicitly. It performs the main run loop to execute
98 <     * ForkJoinTasks.
98 >     * {@link ForkJoinTask}s.
99       */
100      public void run() {
101          Throwable exception = null;
102          try {
103              onStart();
104 <            mainLoop();
104 >            pool.runWorker(workQueue);
105          } catch (Throwable ex) {
106              exception = ex;
107          } finally {
351            onTermination(exception);
352        }
353    }
354
355    // helpers for run()
356
357    /**
358     * Find and execute tasks and check status while running
359     */
360    private void mainLoop() {
361        boolean ran = false; // true if ran task on previous step
362        ForkJoinPool p = pool;
363        for (;;) {
364            p.preStep(this, ran);
365            if (runState != 0)
366                return;
367            ForkJoinTask<?> t; // try to get and run stolen or submitted task
368            if (ran = (t = scan()) != null || (t = pollSubmission()) != null) {
369                t.tryExec();
370                if (base != sp)
371                    runLocalTasks();
372            }
373        }
374    }
375
376    /**
377     * Runs local tasks until queue is empty or shut down.  Call only
378     * while active.
379     */
380    private void runLocalTasks() {
381        while (runState == 0) {
382            ForkJoinTask<?> t = locallyFifo? locallyDeqTask() : popTask();
383            if (t != null)
384                t.tryExec();
385            else if (base == sp)
386                break;
387        }
388    }
389
390    /**
391     * If a submission exists, try to activate and take it
392     *
393     * @return a task, if available
394     */
395    private ForkJoinTask<?> pollSubmission() {
396        ForkJoinPool p = pool;
397        while (p.hasQueuedSubmissions()) {
398            if (active || (active = p.tryIncrementActiveCount())) {
399                ForkJoinTask<?> t = p.pollSubmission();
400                return t != null ? t : scan(); // if missed, rescan
401            }
402        }
403        return null;
404    }
405
406    /*
407     * Intrinsics-based atomic writes for queue slots. These are
408     * basically the same as methods in AtomicObjectArray, but
409     * specialized for (1) ForkJoinTask elements (2) requirement that
410     * nullness and bounds checks have already been performed by
411     * callers and (3) effective offsets are known not to overflow
412     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
413     * need corresponding version for reads: plain array reads are OK
414     * because they protected by other volatile reads and are
415     * confirmed by CASes.
416     *
417     * Most uses don't actually call these methods, but instead contain
418     * inlined forms that enable more predictable optimization.  We
419     * don't define the version of write used in pushTask at all, but
420     * instead inline there a store-fenced array slot write.
421     */
422
423    /**
424     * CASes slot i of array q from t to null. Caller must ensure q is
425     * non-null and index is in range.
426     */
427    private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
428                                             ForkJoinTask<?> t) {
429        return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
430    }
431
432    /**
433     * Performs a volatile write of the given task at given slot of
434     * array q.  Caller must ensure q is non-null and index is in
435     * range. This method is used only during resets and backouts.
436     */
437    private static final void writeSlot(ForkJoinTask<?>[] q, int i,
438                                              ForkJoinTask<?> t) {
439        UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
440    }
441
442    // queue methods
443
444    /**
445     * Pushes a task. Call only from this thread.
446     *
447     * @param t the task. Caller must ensure non-null.
448     */
449    final void pushTask(ForkJoinTask<?> t) {
450        int s;
451        ForkJoinTask<?>[] q = queue;
452        int mask = q.length - 1; // implicit assert q != null
453        UNSAFE.putOrderedObject(q, (((s = sp++) & mask) << qShift) + qBase, t);
454        if ((s -= base) <= 0)
455            pool.signalWork();
456        else if (s + 1 >= mask)
457            growQueue();
458    }
459
460    /**
461     * Tries to take a task from the base of the queue, failing if
462     * empty or contended. Note: Specializations of this code appear
463     * in scan and scanWhileJoining.
464     *
465     * @return a task, or null if none or contended
466     */
467    final ForkJoinTask<?> deqTask() {
468        ForkJoinTask<?> t;
469        ForkJoinTask<?>[] q;
470        int b, i;
471        if ((b = base) != sp &&
472            (q = queue) != null && // must read q after b
473            (t = q[i = (q.length - 1) & b]) != null &&
474            UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
475            base = b + 1;
476            return t;
477        }
478        return null;
479    }
480
481    /**
482     * Tries to take a task from the base of own queue. Assumes active
483     * status.  Called only by current thread.
484     *
485     * @return a task, or null if none
486     */
487    final ForkJoinTask<?> locallyDeqTask() {
488        ForkJoinTask<?>[] q = queue;
489        if (q != null) {
490            ForkJoinTask<?> t;
491            int b, i;
492            while (sp != (b = base)) {
493                if ((t = q[i = (q.length - 1) & b]) != null &&
494                    UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
495                                                t, null)) {
496                    base = b + 1;
497                    return t;
498                }
499            }
500        }
501        return null;
502    }
503
504    /**
505     * Returns a popped task, or null if empty. Assumes active status.
506     * Called only by current thread. (Note: a specialization of this
507     * code appears in scanWhileJoining.)
508     */
509    final ForkJoinTask<?> popTask() {
510        int s;
511        ForkJoinTask<?>[] q = queue;
512        if (q != null && (s = sp) != base) {
513            int i = (q.length - 1) & --s;
514            ForkJoinTask<?> t = q[i];
515            if (t != null && UNSAFE.compareAndSwapObject
516                (q, (i << qShift) + qBase, t, null)) {
517                sp = s;
518                return t;
519            }
520        }
521        return null;
522    }
523
524    /**
525     * Specialized version of popTask to pop only if
526     * topmost element is the given task. Called only
527     * by current thread while active.
528     *
529     * @param t the task. Caller must ensure non-null.
530     */
531    final boolean unpushTask(ForkJoinTask<?> t) {
532        int s;
533        ForkJoinTask<?>[] q = queue;
534        if (q != null && UNSAFE.compareAndSwapObject
535            (q, (((q.length - 1) & (s = sp - 1)) << qShift) + qBase, t, null)){
536            sp = s;
537            return true;
538        }
539        return false;
540    }
541
542    /**
543     * Returns next task or null if empty or contended
544     */
545    final ForkJoinTask<?> peekTask() {
546        ForkJoinTask<?>[] q = queue;
547        if (q == null)
548            return null;
549        int mask = q.length - 1;
550        int i = locallyFifo ? base : (sp - 1);
551        return q[i & mask];
552    }
553
554    /**
555     * Doubles queue array size. Transfers elements by emulating
556     * steals (deqs) from old array and placing, oldest first, into
557     * new array.
558     */
559    private void growQueue() {
560        ForkJoinTask<?>[] oldQ = queue;
561        int oldSize = oldQ.length;
562        int newSize = oldSize << 1;
563        if (newSize > MAXIMUM_QUEUE_CAPACITY)
564            throw new RejectedExecutionException("Queue capacity exceeded");
565        ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
566
567        int b = base;
568        int bf = b + oldSize;
569        int oldMask = oldSize - 1;
570        int newMask = newSize - 1;
571        do {
572            int oldIndex = b & oldMask;
573            ForkJoinTask<?> t = oldQ[oldIndex];
574            if (t != null && !casSlotNull(oldQ, oldIndex, t))
575                t = null;
576            writeSlot(newQ, b & newMask, t);
577        } while (++b != bf);
578        pool.signalWork();
579    }
580
581    /**
582     * Computes next value for random victim probe in scan().  Scans
583     * don't require a very high quality generator, but also not a
584     * crummy one.  Marsaglia xor-shift is cheap and works well enough.
585     * Note: This is manually inlined in scan()
586     */
587    private static final int xorShift(int r) {
588        r ^= r << 13;
589        r ^= r >>> 17;
590        return r ^ (r << 5);
591    }
592
593    /**
594     * Tries to steal a task from another worker. Starts at a random
595     * index of workers array, and probes workers until finding one
596     * with non-empty queue or finding that all are empty.  It
597     * randomly selects the first n probes. If these are empty, it
598     * resorts to a circular sweep, which is necessary to accurately
599     * set active status. (The circular sweep uses steps of
600     * approximately half the array size plus 1, to avoid bias
601     * stemming from leftmost packing of the array in ForkJoinPool.)
602     *
603     * This method must be both fast and quiet -- usually avoiding
604     * memory accesses that could disrupt cache sharing etc other than
605     * those needed to check for and take tasks (or to activate if not
606     * already active). This accounts for, among other things,
607     * updating random seed in place without storing it until exit.
608     *
609     * @return a task, or null if none found
610     */
611    private ForkJoinTask<?> scan() {
612        ForkJoinPool p = pool;
613        ForkJoinWorkerThread[] ws = p.workers;
614        int n = ws.length;            // upper bound of #workers
615        boolean canSteal = active;    // shadow active status
616        int r = seed;                 // extract seed once
617        int k = r;                    // index: random if j<0 else step
618        for (int j = -n; j < n; ++j) {
619            ForkJoinWorkerThread v = ws[k & (n - 1)];
620            r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
621            if (v != null && v.base != v.sp) {
622                if (canSteal ||       // ensure active status
623                    (canSteal = active = p.tryIncrementActiveCount())) {
624                    int b, i;         // inlined specialization of deqTask
625                    ForkJoinTask<?> t;
626                    ForkJoinTask<?>[] q;
627                    if ((b = v.base) != v.sp &&  // recheck
628                        (q = v.queue) != null &&
629                        (t = q[i = (q.length - 1) & b]) != null &&
630                        UNSAFE.compareAndSwapObject
631                        (q, (i << qShift) + qBase, t, null)) {
632                        v.base = b + 1;
633                        seed = r;
634                        ++stealCount;
635                        return t;
636                    }
637                }
638                j = -n;               // reset on contention
639            }
640            k = j >= 0? k + ((n >>> 1) | 1) : r;
641        }
642        return null;
643    }
644
645    // Run State management
646
647    // status check methods used mainly by ForkJoinPool
648    final boolean isTerminating() { return (runState & TERMINATING) != 0; }
649    final boolean isTerminated()  { return (runState & TERMINATED) != 0; }
650    final boolean isSuspended()   { return (runState & SUSPENDED) != 0; }
651    final boolean isTrimmed()     { return (runState & TRIMMED) != 0; }
652
653    /**
654     * Sets state to TERMINATING, also resuming if suspended.
655     */
656    final void shutdown() {
657        for (;;) {
658            int s = runState;
659            if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
660                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
661                                             (s & ~SUSPENDED) |
662                                             (TRIMMED|TERMINATING))) {
663                    LockSupport.unpark(this);
664                    break;
665                }
666            }
667            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
668                                              s | TERMINATING))
669                break;
670        }
671    }
672
673    /**
674     * Sets state to TERMINATED. Called only by this thread.
675     */
676    private void setTerminated() {
677        int s;
678        do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
679                                               s = runState,
680                                               s | (TERMINATING|TERMINATED)));
681    }
682
683    /**
684     * Instrumented version of park. Also used by ForkJoinPool.awaitEvent
685     */
686    final void doPark() {
687        ++parkCount;
688        LockSupport.park(this);
689    }
690
691    /**
692     * If suspended, tries to set status to unsuspended.
693     * Caller must unpark to actually resume
694     *
695     * @return true if successful
696     */
697    final boolean tryUnsuspend() {
698        int s;
699        return (((s = runState) & SUSPENDED) != 0 &&
700                UNSAFE.compareAndSwapInt(this, runStateOffset, s,
701                                         s & ~SUSPENDED));
702    }
703
704    /**
705     * Sets suspended status and blocks as spare until resumed,
706     * shutdown, or timed out.
707     *
708     * @return false if trimmed
709     */
710    final boolean suspendAsSpare() {
711        for (;;) {               // set suspended unless terminating
712            int s = runState;
713            if ((s & TERMINATING) != 0) { // must kill
714                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
715                                             s | (TRIMMED | TERMINATING)))
716                    return false;
717            }
718            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
719                                              s | SUSPENDED))
720                break;
721        }
722        lastEventCount = 0;      // reset upon resume
723        ForkJoinPool p = pool;
724        p.releaseWaiters();      // help others progress
725        p.accumulateStealCount(this);
726        interrupted();           // clear/ignore interrupts
727        if (poolIndex < p.getParallelism()) { // untimed wait
728            while ((runState & SUSPENDED) != 0)
729                doPark();
730            return true;
731        }
732        return timedSuspend();   // timed wait if apparently non-core
733    }
734
735    /**
736     * Blocks as spare until resumed or timed out
737     * @return false if trimmed
738     */
739    private boolean timedSuspend() {
740        long nanos = SPARE_KEEPALIVE_NANOS;
741        long startTime = System.nanoTime();
742        while ((runState & SUSPENDED) != 0) {
743            ++parkCount;
744            if ((nanos -= (System.nanoTime() - startTime)) > 0)
745                LockSupport.parkNanos(this, nanos);
746            else { // try to trim on timeout
747                int s = runState;
748                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
749                                             (s & ~SUSPENDED) |
750                                             (TRIMMED|TERMINATING)))
751                    return false;
752            }
753        }
754        return true;
755    }
756
757    // Misc support methods for ForkJoinPool
758
759    /**
760     * Returns an estimate of the number of tasks in the queue.  Also
761     * used by ForkJoinTask.
762     */
763    final int getQueueSize() {
764        return -base + sp;
765    }
766
767    /**
768     * Set locallyFifo mode. Called only by ForkJoinPool
769     */
770    final void setAsyncMode(boolean async) {
771        locallyFifo = async;
772    }
773
774    /**
775     * Removes and cancels all tasks in queue.  Can be called from any
776     * thread.
777     */
778    final void cancelTasks() {
779        while (base != sp) {
780            ForkJoinTask<?> t = deqTask();
781            if (t != null)
782                t.cancelIgnoringExceptions();
783        }
784    }
785
786    /**
787     * Drains tasks to given collection c.
788     *
789     * @return the number of tasks drained
790     */
791    final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
792        int n = 0;
793        while (base != sp) {
794            ForkJoinTask<?> t = deqTask();
795            if (t != null) {
796                c.add(t);
797                ++n;
798            }
799        }
800        return n;
801    }
802
803    // Support methods for ForkJoinTask
804
805    /**
806     * Returns an estimate of the number of tasks, offset by a
807     * function of number of idle workers.
808     *
809     * This method provides a cheap heuristic guide for task
810     * partitioning when programmers, frameworks, tools, or languages
811     * have little or no idea about task granularity.  In essence by
812     * offering this method, we ask users only about tradeoffs in
813     * overhead vs expected throughput and its variance, rather than
814     * how finely to partition tasks.
815     *
816     * In a steady state strict (tree-structured) computation, each
817     * thread makes available for stealing enough tasks for other
818     * threads to remain active. Inductively, if all threads play by
819     * the same rules, each thread should make available only a
820     * constant number of tasks.
821     *
822     * The minimum useful constant is just 1. But using a value of 1
823     * would require immediate replenishment upon each steal to
824     * maintain enough tasks, which is infeasible.  Further,
825     * partitionings/granularities of offered tasks should minimize
826     * steal rates, which in general means that threads nearer the top
827     * of computation tree should generate more than those nearer the
828     * bottom. In perfect steady state, each thread is at
829     * approximately the same level of computation tree. However,
830     * producing extra tasks amortizes the uncertainty of progress and
831     * diffusion assumptions.
832     *
833     * So, users will want to use values larger, but not much larger
834     * than 1 to both smooth over transient shortages and hedge
835     * against uneven progress; as traded off against the cost of
836     * extra task overhead. We leave the user to pick a threshold
837     * value to compare with the results of this call to guide
838     * decisions, but recommend values such as 3.
839     *
840     * When all threads are active, it is on average OK to estimate
841     * surplus strictly locally. In steady-state, if one thread is
842     * maintaining say 2 surplus tasks, then so are others. So we can
843     * just use estimated queue length (although note that (sp - base)
844     * can be an overestimate because of stealers lagging increments
845     * of base).  However, this strategy alone leads to serious
846     * mis-estimates in some non-steady-state conditions (ramp-up,
847     * ramp-down, other stalls). We can detect many of these by
848     * further considering the number of "idle" threads, that are
849     * known to have zero queued tasks, so compensate by a factor of
850     * (#idle/#active) threads.
851     */
852    final int getEstimatedSurplusTaskCount() {
853        return sp - base - pool.idlePerActive();
854    }
855
856    /**
857     * Gets and removes a local task.
858     *
859     * @return a task, if available
860     */
861    final ForkJoinTask<?> pollLocalTask() {
862        while (base != sp) {
863            if (active || (active = pool.tryIncrementActiveCount()))
864                return locallyFifo? locallyDeqTask() : popTask();
865        }
866        return null;
867    }
868
869    /**
870     * Gets and removes a local or stolen task.
871     *
872     * @return a task, if available
873     */
874    final ForkJoinTask<?> pollTask() {
875        ForkJoinTask<?> t;
876        return (t = pollLocalTask()) != null ? t : scan();
877    }
878
879    /**
880     * Returns a stolen task, if available, unless joinMe is done
881     *
882     * This method is intrinsically nonmodular. To maintain the
883     * property that tasks are never stolen if the awaited task is
884     * ready, we must interleave mechanics of scan with status
885     * checks. We rely here on the commit points of deq that allow us
886     * to cancel a steal even after CASing slot to null, but before
887     * adjusting base index: If, after the CAS, we see that joinMe is
888     * ready, we can back out by placing the task back into the slot,
889     * without adjusting index. The scan loop is otherwise the same as
890     * in scan.
891     *
892     * The outer loop cannot be allowed to run forever, because it
893     * could lead to a form of deadlock if all threads are executing
894     * this method. However, we must also be patient before giving up,
895     * to cope with GC stalls, transient high loads, etc. The loop
896     * terminates (causing caller to possibly block this thread and
897     * create a replacement) only after #workers clean sweeps during
898     * which all running threads are active.
899     */
900    final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
901        int sweeps = 0;
902        int r = seed;
903        ForkJoinPool p = pool;
904        p.releaseWaiters(); // help other threads progress
905        while (joinMe.status >= 0) {
906            ForkJoinWorkerThread[] ws = p.workers;
907            int n = ws.length;
908            int k = r;
909            for (int j = -n; j < n; ++j) {
910                ForkJoinWorkerThread v = ws[k & (n - 1)];
911                r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
912                if (v != null) {
913                    int b = v.base;
914                    ForkJoinTask<?>[] q;
915                    if (b != v.sp && (q = v.queue) != null) {
916                        int i = (q.length - 1) & b;
917                        ForkJoinTask<?> t = q[i];
918                        if (t != null) {
919                            if (joinMe.status < 0)
920                                return null;
921                            if (UNSAFE.compareAndSwapObject
922                                (q, (i << qShift) + qBase, t, null)) {
923                                if (joinMe.status < 0) {
924                                    writeSlot(q, i, t); // back out
925                                    return null;
926                                }
927                                v.base = b + 1;
928                                seed = r;
929                                ++stealCount;
930                                return t;
931                            }
932                        }
933                        sweeps = 0; // ensure rescan on contention
934                    }
935                }
936                k = j >= 0? k + ((n >>> 1) | 1) : r;
937                if ((j & 7) == 0 && joinMe.status < 0) // periodically recheck
938                    return null;
939            }
940            if ((sweeps = p.inactiveCount() == 0 ? sweeps + 1 : 0) > n)
941                return null;
942        }
943        return null;
944    }
945
946    /**
947     * Runs tasks until {@code pool.isQuiescent()}.
948     */
949    final void helpQuiescePool() {
950        for (;;) {
951            ForkJoinTask<?> t = pollLocalTask();
952            if (t != null || (t = scan()) != null)
953                t.tryExec();
954            else {
955                ForkJoinPool p = pool;
956                if (active) {
957                    active = false; // inactivate
958                    do {} while (!p.tryDecrementActiveCount());
959                }
960                if (p.isQuiescent()) {
961                    active = true; // re-activate
962                    do {} while (!p.tryIncrementActiveCount());
963                    return;
964                }
965            }
966        }
967    }
968
969    // Unsafe mechanics
970
971    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
972    private static final long runStateOffset =
973        objectFieldOffset("runState", ForkJoinWorkerThread.class);
974    private static final long qBase =
975        UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
976    private static final int qShift;
977
978    static {
979        int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
980        if ((s & (s-1)) != 0)
981            throw new Error("data type scale not a power of two");
982        qShift = 31 - Integer.numberOfLeadingZeros(s);
983    }
984
985    private static long objectFieldOffset(String field, Class<?> klazz) {
986        try {
987            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
988        } catch (NoSuchFieldException e) {
989            // Convert Exception to corresponding Error
990            NoSuchFieldError error = new NoSuchFieldError(field);
991            error.initCause(e);
992            throw error;
993        }
994    }
995
996    /**
997     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
998     * Replace with a simple call to Unsafe.getUnsafe when integrating
999     * into a jdk.
1000     *
1001     * @return a sun.misc.Unsafe
1002     */
1003    private static sun.misc.Unsafe getUnsafe() {
1004        try {
1005            return sun.misc.Unsafe.getUnsafe();
1006        } catch (SecurityException se) {
108              try {
109 <                return java.security.AccessController.doPrivileged
110 <                    (new java.security
111 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
112 <                        public sun.misc.Unsafe run() throws Exception {
113 <                            java.lang.reflect.Field f = sun.misc
114 <                                .Unsafe.class.getDeclaredField("theUnsafe");
1014 <                            f.setAccessible(true);
1015 <                            return (sun.misc.Unsafe) f.get(null);
1016 <                        }});
1017 <            } catch (java.security.PrivilegedActionException e) {
1018 <                throw new RuntimeException("Could not initialize intrinsics",
1019 <                                           e.getCause());
109 >                onTermination(exception);
110 >            } catch (Throwable ex) {
111 >                if (exception == null)
112 >                    exception = ex;
113 >            } finally {
114 >                pool.deregisterWorker(this, exception);
115              }
116          }
117      }
118   }
119 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines