ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.32 by dl, Sun Apr 18 12:51:18 2010 UTC vs.
Revision 1.67 by jsr166, Wed Jun 8 05:12:25 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
11 import java.util.Random;
9   import java.util.Collection;
10 < import java.util.concurrent.locks.LockSupport;
10 > import java.util.concurrent.RejectedExecutionException;
11  
12   /**
13 < * A thread managed by a {@link ForkJoinPool}.  This class is
14 < * subclassable solely for the sake of adding functionality -- there
15 < * are no overridable methods dealing with scheduling or execution.
16 < * However, you can override initialization and termination methods
17 < * surrounding the main task processing loop.  If you do create such a
18 < * subclass, you will also need to supply a custom {@link
19 < * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
20 < * ForkJoinPool}.
13 > * A thread managed by a {@link ForkJoinPool}, which executes
14 > * {@link ForkJoinTask}s.
15 > * This class is subclassable solely for the sake of adding
16 > * functionality -- there are no overridable methods dealing with
17 > * scheduling or execution.  However, you can override initialization
18 > * and termination methods surrounding the main task processing loop.
19 > * If you do create such a subclass, you will also need to supply a
20 > * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it
21 > * in a {@code ForkJoinPool}.
22   *
23   * @since 1.7
24   * @author Doug Lea
# Line 55 | Line 53 | public class ForkJoinWorkerThread extend
53       * a footprint as possible even in programs generating huge
54       * numbers of tasks. To accomplish this, we shift the CAS
55       * arbitrating pop vs deq (steal) from being on the indices
56 <     * ("base" and "sp") to the slots themselves (mainly via method
57 <     * "casSlotNull()"). So, both a successful pop and deq mainly
58 <     * entail a CAS of a slot from non-null to null.  Because we rely
59 <     * on CASes of references, we do not need tag bits on base or sp.
60 <     * They are simple ints as used in any circular array-based queue
61 <     * (see for example ArrayDeque).  Updates to the indices must
62 <     * still be ordered in a way that guarantees that sp == base means
63 <     * the queue is empty, but otherwise may err on the side of
64 <     * possibly making the queue appear nonempty when a push, pop, or
65 <     * deq have not fully committed. Note that this means that the deq
66 <     * operation, considered individually, is not wait-free. One thief
67 <     * cannot successfully continue until another in-progress one (or,
68 <     * if previously empty, a push) completes.  However, in the
56 >     * ("queueBase" and "queueTop") to the slots themselves (mainly
57 >     * via method "casSlotNull()"). So, both a successful pop and deq
58 >     * mainly entail a CAS of a slot from non-null to null.  Because
59 >     * we rely on CASes of references, we do not need tag bits on
60 >     * queueBase or queueTop.  They are simple ints as used in any
61 >     * circular array-based queue (see for example ArrayDeque).
62 >     * Updates to the indices must still be ordered in a way that
63 >     * guarantees that queueTop == queueBase means the queue is empty,
64 >     * but otherwise may err on the side of possibly making the queue
65 >     * appear nonempty when a push, pop, or deq have not fully
66 >     * committed. Note that this means that the deq operation,
67 >     * considered individually, is not wait-free. One thief cannot
68 >     * successfully continue until another in-progress one (or, if
69 >     * previously empty, a push) completes.  However, in the
70       * aggregate, we ensure at least probabilistic non-blockingness.
71       * If an attempted steal fails, a thief always chooses a different
72       * random victim target to try next. So, in order for one thief to
73       * progress, it suffices for any in-progress deq or new push on
74 <     * any empty queue to complete. One reason this works well here is
76 <     * that apparently-nonempty often means soon-to-be-stealable,
77 <     * which gives threads a chance to set activation status if
78 <     * necessary before stealing.
74 >     * any empty queue to complete.
75       *
76       * This approach also enables support for "async mode" where local
77       * task processing is in FIFO, not LIFO order; simply by using a
78       * version of deq rather than pop when locallyFifo is true (as set
79       * by the ForkJoinPool).  This allows use in message-passing
80 <     * frameworks in which tasks are never joined.
81 <     *
82 <     * Efficient implementation of this approach currently relies on
83 <     * an uncomfortable amount of "Unsafe" mechanics. To maintain
84 <     * correct orderings, reads and writes of variable base require
85 <     * volatile ordering.  Variable sp does not require volatile
86 <     * writes but still needs store-ordering, which we accomplish by
87 <     * pre-incrementing sp before filling the slot with an ordered
88 <     * store.  (Pre-incrementing also enables backouts used in
89 <     * scanWhileJoining.)  Because they are protected by volatile base
90 <     * reads, reads of the queue array and its slots by other threads
91 <     * do not need volatile load semantics, but writes (in push)
92 <     * require store order and CASes (in pop and deq) require
93 <     * (volatile) CAS semantics.  (Michael, Saraswat, and Vechev's
94 <     * algorithm has similar properties, but without support for
95 <     * nulling slots.)  Since these combinations aren't supported
80 >     * frameworks in which tasks are never joined.  However neither
81 >     * mode considers affinities, loads, cache localities, etc, so
82 >     * rarely provide the best possible performance on a given
83 >     * machine, but portably provide good throughput by averaging over
84 >     * these factors.  (Further, even if we did try to use such
85 >     * information, we do not usually have a basis for exploiting
86 >     * it. For example, some sets of tasks profit from cache
87 >     * affinities, but others are harmed by cache pollution effects.)
88 >     *
89 >     * When a worker would otherwise be blocked waiting to join a
90 >     * task, it first tries a form of linear helping: Each worker
91 >     * records (in field currentSteal) the most recent task it stole
92 >     * from some other worker. Plus, it records (in field currentJoin)
93 >     * the task it is currently actively joining. Method joinTask uses
94 >     * these markers to try to find a worker to help (i.e., steal back
95 >     * a task from and execute it) that could hasten completion of the
96 >     * actively joined task. In essence, the joiner executes a task
97 >     * that would be on its own local deque had the to-be-joined task
98 >     * not been stolen. This may be seen as a conservative variant of
99 >     * the approach in Wagner & Calder "Leapfrogging: a portable
100 >     * technique for implementing efficient futures" SIGPLAN Notices,
101 >     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
102 >     * in that: (1) We only maintain dependency links across workers
103 >     * upon steals, rather than use per-task bookkeeping.  This may
104 >     * require a linear scan of workers array to locate stealers, but
105 >     * usually doesn't because stealers leave hints (that may become
106 >     * stale/wrong) of where to locate them. This isolates cost to
107 >     * when it is needed, rather than adding to per-task overhead.
108 >     * (2) It is "shallow", ignoring nesting and potentially cyclic
109 >     * mutual steals.  (3) It is intentionally racy: field currentJoin
110 >     * is updated only while actively joining, which means that we
111 >     * miss links in the chain during long-lived tasks, GC stalls etc
112 >     * (which is OK since blocking in such cases is usually a good
113 >     * idea).  (4) We bound the number of attempts to find work (see
114 >     * MAX_HELP) and fall back to suspending the worker and if
115 >     * necessary replacing it with another.
116 >     *
117 >     * Efficient implementation of these algorithms currently relies
118 >     * on an uncomfortable amount of "Unsafe" mechanics. To maintain
119 >     * correct orderings, reads and writes of variable queueBase
120 >     * require volatile ordering.  Variable queueTop need not be
121 >     * volatile because non-local reads always follow those of
122 >     * queueBase.  Similarly, because they are protected by volatile
123 >     * queueBase reads, reads of the queue array and its slots by
124 >     * other threads do not need volatile load semantics, but writes
125 >     * (in push) require store order and CASes (in pop and deq)
126 >     * require (volatile) CAS semantics.  (Michael, Saraswat, and
127 >     * Vechev's algorithm has similar properties, but without support
128 >     * for nulling slots.)  Since these combinations aren't supported
129       * using ordinary volatiles, the only way to accomplish these
130       * efficiently is to use direct Unsafe calls. (Using external
131       * AtomicIntegers and AtomicReferenceArrays for the indices and
# Line 109 | Line 138 | public class ForkJoinWorkerThread extend
138       * initial size must be large enough to counteract cache
139       * contention effects across multiple queues (especially in the
140       * presence of GC cardmarking). Also, to improve thread-locality,
141 <     * queues are initialized after starting.  All together, these
113 <     * low-level implementation choices produce as much as a factor of
114 <     * 4 performance improvement compared to naive implementations,
115 <     * and enable the processing of billions of tasks per second,
116 <     * sometimes at the expense of ugliness.
117 <     */
118 <
119 <    /**
120 <     * Generator for initial random seeds for random victim
121 <     * selection. This is used only to create initial seeds. Random
122 <     * steals use a cheaper xorshift generator per steal attempt. We
123 <     * expect only rare contention on seedGenerator, so just use a
124 <     * plain Random.
141 >     * queues are initialized after starting.
142       */
126    private static final Random seedGenerator = new Random();
143  
144      /**
145 <     * The timeout value for suspending spares. Spare workers that
130 <     * remain unsignalled for more than this time may be trimmed
131 <     * (killed and removed from pool).  Since our goal is to avoid
132 <     * long-term thread buildup, the exact value of timeout does not
133 <     * matter too much so long as it avoids most false-alarm timeouts
134 <     * under GC stalls or momentarily high system load.
145 >     * Mask for pool indices encoded as shorts
146       */
147 <    private static final long SPARE_KEEPALIVE_NANOS =
137 <        5L * 1000L * 1000L * 1000L; // 5 secs
147 >    private static final int  SMASK  = 0xffff;
148  
149      /**
150       * Capacity of work-stealing queue array upon initialization.
151 <     * Must be a power of two. Initial size must be at least 2, but is
151 >     * Must be a power of two. Initial size must be at least 4, but is
152       * padded to minimize cache effects.
153       */
154      private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
155  
156      /**
157 <     * Maximum work-stealing queue array size.  Must be less than or
158 <     * equal to 1 << 28 to ensure lack of index wraparound. (This
159 <     * is less than usual bounds, because we need leftshift by 3
160 <     * to be in int range).
157 >     * Maximum size for queue array. Must be a power of two
158 >     * less than or equal to 1 << (31 - width of array entry) to
159 >     * ensure lack of index wraparound, but is capped at a lower
160 >     * value to help users trap runaway computations.
161 >     */
162 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
163 >
164 >    /**
165 >     * The work-stealing queue array. Size must be a power of two.
166 >     * Initialized when started (as opposed to when constructed), to
167 >     * improve memory locality.
168       */
169 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
169 >    ForkJoinTask<?>[] queue;
170  
171      /**
172       * The pool this thread works in. Accessed directly by ForkJoinTask.
# Line 157 | Line 174 | public class ForkJoinWorkerThread extend
174      final ForkJoinPool pool;
175  
176      /**
177 <     * The work-stealing queue array. Size must be a power of two.
178 <     * Initialized in onStart, to improve memory locality.
177 >     * Index (mod queue.length) of next queue slot to push to or pop
178 >     * from. It is written only by owner thread, and accessed by other
179 >     * threads only after reading (volatile) queueBase.  Both queueTop
180 >     * and queueBase are allowed to wrap around on overflow, but
181 >     * (queueTop - queueBase) still estimates size.
182       */
183 <    private ForkJoinTask<?>[] queue;
183 >    int queueTop;
184  
185      /**
186       * Index (mod queue.length) of least valid queue slot, which is
187       * always the next position to steal from if nonempty.
188       */
189 <    private volatile int base;
189 >    volatile int queueBase;
190  
191      /**
192 <     * Index (mod queue.length) of next queue slot to push to or pop
193 <     * from. It is written only by owner thread, and accessed by other
194 <     * threads only after reading (volatile) base.  Both sp and base
195 <     * are allowed to wrap around on overflow, but (sp - base) still
196 <     * estimates size.
192 >     * The index of most recent stealer, used as a hint to avoid
193 >     * traversal in method helpJoinTask. This is only a hint because a
194 >     * worker might have had multiple steals and this only holds one
195 >     * of them (usually the most current). Declared non-volatile,
196 >     * relying on other prevailing sync to keep reasonably current.
197       */
198 <    private int sp;
198 >    int stealHint;
199  
200      /**
201 <     * Run state of this worker. In addition to the usual run levels,
202 <     * tracks if this worker is suspended as a spare, and if it was
203 <     * killed (trimmed) while suspended. However, "active" status is
184 <     * maintained separately.
201 >     * Index of this worker in pool array. Set once by pool before
202 >     * running, and accessed directly by pool to locate this worker in
203 >     * its workers array.
204       */
205 <    private volatile int runState;
187 <
188 <    private static final int TERMINATING = 0x01;
189 <    private static final int TERMINATED  = 0x02;
190 <    private static final int SUSPENDED   = 0x04; // inactive spare
191 <    private static final int TRIMMED     = 0x08; // killed while suspended
205 >    final int poolIndex;
206  
207      /**
208 <     * Number of LockSupport.park calls to block this thread for
209 <     * suspension or event waits. Used for internal instrumention;
196 <     * currently not exported but included because volatile write upon
197 <     * park also provides a workaround for a JVM bug.
208 >     * Encoded record for pool task waits. Usages are always
209 >     * surrounded by volatile reads/writes
210       */
211 <    private volatile int parkCount;
211 >    int nextWait;
212  
213      /**
214 <     * Number of steals, transferred and reset in pool callbacks pool
215 <     * when idle Accessed directly by pool.
214 >     * Complement of poolIndex, offset by count of entries of task
215 >     * waits. Accessed by ForkJoinPool to manage event waiters.
216       */
217 <    int stealCount;
217 >    volatile int eventCount;
218  
219      /**
220       * Seed for random number generator for choosing steal victims.
221       * Uses Marsaglia xorshift. Must be initialized as nonzero.
222       */
223 <    private int seed;
223 >    int seed;
224  
225      /**
226 <     * Activity status. When true, this worker is considered active.
227 <     * Accessed directly by pool.  Must be false upon construction.
226 >     * Number of steals. Directly accessed (and reset) by pool when
227 >     * idle.
228       */
229 <    boolean active;
229 >    int stealCount;
230  
231      /**
232 <     * True if use local fifo, not default lifo, for local polling.
221 <     * Shadows value from ForkJoinPool, which resets it if changed
222 <     * pool-wide.
232 >     * True if this worker should or did terminate
233       */
234 <    private boolean locallyFifo;
234 >    volatile boolean terminate;
235  
236      /**
237 <     * Index of this worker in pool array. Set once by pool before
228 <     * running, and accessed directly by pool to locate this worker in
229 <     * its workers array.
237 >     * Set to true before LockSupport.park; false on return
238       */
239 <    int poolIndex;
239 >    volatile boolean parked;
240  
241      /**
242 <     * The last pool event waited for. Accessed only by pool in
243 <     * callback methods invoked within this thread.
242 >     * True if use local fifo, not default lifo, for local polling.
243 >     * Shadows value from ForkJoinPool.
244 >     */
245 >    final boolean locallyFifo;
246 >
247 >    /**
248 >     * The task most recently stolen from another worker (or
249 >     * submission queue).  All uses are surrounded by enough volatile
250 >     * reads/writes to maintain as non-volatile.
251       */
252 <    int lastEventCount;
252 >    ForkJoinTask<?> currentSteal;
253  
254      /**
255 <     * Encoded index and event count of next event waiter. Used only
256 <     * by ForkJoinPool for managing event waiters.
255 >     * The task currently being joined, set only when actively trying
256 >     * to help other stealers in helpJoinTask. All uses are surrounded
257 >     * by enough volatile reads/writes to maintain as non-volatile.
258       */
259 <    volatile long nextWaiter;
259 >    ForkJoinTask<?> currentJoin;
260  
261      /**
262       * Creates a ForkJoinWorkerThread operating in the given pool.
# Line 249 | Line 265 | public class ForkJoinWorkerThread extend
265       * @throws NullPointerException if pool is null
266       */
267      protected ForkJoinWorkerThread(ForkJoinPool pool) {
268 <        if (pool == null) throw new NullPointerException();
268 >        super(pool.nextWorkerName());
269          this.pool = pool;
270 <        // To avoid exposing construction details to subclasses,
271 <        // remaining initialization is in start() and onStart()
272 <    }
273 <
274 <    /**
259 <     * Performs additional initialization and starts this thread
260 <     */
261 <    final void start(int poolIndex, boolean locallyFifo,
262 <                     UncaughtExceptionHandler ueh) {
263 <        this.poolIndex = poolIndex;
264 <        this.locallyFifo = locallyFifo;
270 >        int k = pool.registerWorker(this);
271 >        poolIndex = k;
272 >        eventCount = ~k & SMASK; // clear wait count
273 >        locallyFifo = pool.locallyFifo;
274 >        Thread.UncaughtExceptionHandler ueh = pool.ueh;
275          if (ueh != null)
276              setUncaughtExceptionHandler(ueh);
277          setDaemon(true);
268        start();
278      }
279  
280 <    // Public/protected methods
280 >    // Public methods
281  
282      /**
283       * Returns the pool hosting this thread.
# Line 292 | Line 301 | public class ForkJoinWorkerThread extend
301          return poolIndex;
302      }
303  
304 +    // Randomization
305 +
306 +    /**
307 +     * Computes next value for random victim probes and backoffs.
308 +     * Scans don't require a very high quality generator, but also not
309 +     * a crummy one.  Marsaglia xor-shift is cheap and works well
310 +     * enough.  Note: This is manually inlined in FJP.scan() to avoid
311 +     * writes inside busy loops.
312 +     */
313 +    private int nextSeed() {
314 +        int r = seed;
315 +        r ^= r << 13;
316 +        r ^= r >>> 17;
317 +        r ^= r << 5;
318 +        return seed = r;
319 +    }
320 +
321 +    // Run State management
322 +
323      /**
324       * Initializes internal state after construction but before
325       * processing any tasks. If you override this method, you must
326 <     * invoke super.onStart() at the beginning of the method.
326 >     * invoke {@code super.onStart()} at the beginning of the method.
327       * Initialization requires care: Most fields must have legal
328       * default values, to ensure that attempted accesses from other
329       * threads work correctly even before this thread starts
330       * processing tasks.
331       */
332      protected void onStart() {
305        int rs = seedGenerator.nextInt();
306        seed = rs == 0? 1 : rs; // seed must be nonzero
307
308        // Allocate name string and queue array in this thread
309        String pid = Integer.toString(pool.getPoolNumber());
310        String wid = Integer.toString(poolIndex);
311        setName("ForkJoinPool-" + pid + "-worker-" + wid);
312
333          queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
334 +        int r = ForkJoinPool.workerSeedGenerator.nextInt();
335 +        seed = (r == 0) ? 1 : r; //  must be nonzero
336      }
337  
338      /**
# Line 323 | Line 345 | public class ForkJoinWorkerThread extend
345       */
346      protected void onTermination(Throwable exception) {
347          try {
348 +            terminate = true;
349              cancelTasks();
350 <            setTerminated();
328 <            pool.workerTerminated(this);
350 >            pool.deregisterWorker(this, exception);
351          } catch (Throwable ex) {        // Shouldn't ever happen
352              if (exception == null)      // but if so, at least rethrown
353                  exception = ex;
# Line 338 | Line 360 | public class ForkJoinWorkerThread extend
360      /**
361       * This method is required to be public, but should never be
362       * called explicitly. It performs the main run loop to execute
363 <     * ForkJoinTasks.
363 >     * {@link ForkJoinTask}s.
364       */
365      public void run() {
366          Throwable exception = null;
367          try {
368              onStart();
369 <            mainLoop();
369 >            pool.work(this);
370          } catch (Throwable ex) {
371              exception = ex;
372          } finally {
# Line 352 | Line 374 | public class ForkJoinWorkerThread extend
374          }
375      }
376  
355    // helpers for run()
356
357    /**
358     * Find and execute tasks and check status while running
359     */
360    private void mainLoop() {
361        boolean ran = false; // true if ran task on previous step
362        ForkJoinPool p = pool;
363        for (;;) {
364            p.preStep(this, ran);
365            if (runState != 0)
366                return;
367            ForkJoinTask<?> t; // try to get and run stolen or submitted task
368            if (ran = (t = scan()) != null || (t = pollSubmission()) != null) {
369                t.tryExec();
370                if (base != sp)
371                    runLocalTasks();
372            }
373        }
374    }
375
376    /**
377     * Runs local tasks until queue is empty or shut down.  Call only
378     * while active.
379     */
380    private void runLocalTasks() {
381        while (runState == 0) {
382            ForkJoinTask<?> t = locallyFifo? locallyDeqTask() : popTask();
383            if (t != null)
384                t.tryExec();
385            else if (base == sp)
386                break;
387        }
388    }
389
390    /**
391     * If a submission exists, try to activate and take it
392     *
393     * @return a task, if available
394     */
395    private ForkJoinTask<?> pollSubmission() {
396        ForkJoinPool p = pool;
397        while (p.hasQueuedSubmissions()) {
398            if (active || (active = p.tryIncrementActiveCount())) {
399                ForkJoinTask<?> t = p.pollSubmission();
400                return t != null ? t : scan(); // if missed, rescan
401            }
402        }
403        return null;
404    }
405
377      /*
378       * Intrinsics-based atomic writes for queue slots. These are
379 <     * basically the same as methods in AtomicObjectArray, but
379 >     * basically the same as methods in AtomicReferenceArray, but
380       * specialized for (1) ForkJoinTask elements (2) requirement that
381       * nullness and bounds checks have already been performed by
382       * callers and (3) effective offsets are known not to overflow
383       * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
384       * need corresponding version for reads: plain array reads are OK
385 <     * because they protected by other volatile reads and are
385 >     * because they are protected by other volatile reads and are
386       * confirmed by CASes.
387       *
388 <     * Most uses don't actually call these methods, but instead contain
389 <     * inlined forms that enable more predictable optimization.  We
390 <     * don't define the version of write used in pushTask at all, but
391 <     * instead inline there a store-fenced array slot write.
388 >     * Most uses don't actually call these methods, but instead
389 >     * contain inlined forms that enable more predictable
390 >     * optimization.  We don't define the version of write used in
391 >     * pushTask at all, but instead inline there a store-fenced array
392 >     * slot write.
393 >     *
394 >     * Also in most methods, as a performance (not correctness) issue,
395 >     * we'd like to encourage compilers not to arbitrarily postpone
396 >     * setting queueTop after writing slot.  Currently there is no
397 >     * intrinsic for arranging this, but using Unsafe putOrderedInt
398 >     * may be a preferable strategy on some compilers even though its
399 >     * main effect is a pre-, not post- fence. To simplify possible
400 >     * changes, the option is left in comments next to the associated
401 >     * assignments.
402       */
403  
404      /**
# Line 426 | Line 407 | public class ForkJoinWorkerThread extend
407       */
408      private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
409                                               ForkJoinTask<?> t) {
410 <        return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
410 >        return UNSAFE.compareAndSwapObject(q, (i << ASHIFT) + ABASE, t, null);
411      }
412  
413      /**
# Line 435 | Line 416 | public class ForkJoinWorkerThread extend
416       * range. This method is used only during resets and backouts.
417       */
418      private static final void writeSlot(ForkJoinTask<?>[] q, int i,
419 <                                              ForkJoinTask<?> t) {
420 <        UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
419 >                                        ForkJoinTask<?> t) {
420 >        UNSAFE.putObjectVolatile(q, (i << ASHIFT) + ABASE, t);
421      }
422  
423      // queue methods
# Line 447 | Line 428 | public class ForkJoinWorkerThread extend
428       * @param t the task. Caller must ensure non-null.
429       */
430      final void pushTask(ForkJoinTask<?> t) {
431 <        int s;
432 <        ForkJoinTask<?>[] q = queue;
433 <        int mask = q.length - 1; // implicit assert q != null
434 <        UNSAFE.putOrderedObject(q, (((s = sp++) & mask) << qShift) + qBase, t);
435 <        if ((s -= base) <= 0)
436 <            pool.signalWork();
437 <        else if (s + 1 >= mask)
438 <            growQueue();
431 >        ForkJoinTask<?>[] q; int s, m;
432 >        if ((q = queue) != null) {    // ignore if queue removed
433 >            long u = (((s = queueTop) & (m = q.length - 1)) << ASHIFT) + ABASE;
434 >            UNSAFE.putOrderedObject(q, u, t);
435 >            queueTop = s + 1;         // or use putOrderedInt
436 >            if ((s -= queueBase) <= 2)
437 >                pool.signalWork();
438 >            else if (s == m)
439 >                growQueue();
440 >        }
441 >    }
442 >
443 >    /**
444 >     * Creates or doubles queue array.  Transfers elements by
445 >     * emulating steals (deqs) from old array and placing, oldest
446 >     * first, into new array.
447 >     */
448 >    private void growQueue() {
449 >        ForkJoinTask<?>[] oldQ = queue;
450 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
451 >        if (size > MAXIMUM_QUEUE_CAPACITY)
452 >            throw new RejectedExecutionException("Queue capacity exceeded");
453 >        if (size < INITIAL_QUEUE_CAPACITY)
454 >            size = INITIAL_QUEUE_CAPACITY;
455 >        ForkJoinTask<?>[] q = queue = new ForkJoinTask<?>[size];
456 >        int mask = size - 1;
457 >        int top = queueTop;
458 >        int oldMask;
459 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
460 >            for (int b = queueBase; b != top; ++b) {
461 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
462 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
463 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
464 >                    UNSAFE.putObjectVolatile
465 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
466 >            }
467 >        }
468      }
469  
470      /**
471       * Tries to take a task from the base of the queue, failing if
472       * empty or contended. Note: Specializations of this code appear
473 <     * in scan and scanWhileJoining.
473 >     * in locallyDeqTask and elsewhere.
474       *
475       * @return a task, or null if none or contended
476       */
477      final ForkJoinTask<?> deqTask() {
478 <        ForkJoinTask<?> t;
479 <        ForkJoinTask<?>[] q;
470 <        int b, i;
471 <        if ((b = base) != sp &&
478 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
479 >        if (queueTop != (b = queueBase) &&
480              (q = queue) != null && // must read q after b
481 <            (t = q[i = (q.length - 1) & b]) != null &&
482 <            UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
483 <            base = b + 1;
481 >            (i = (q.length - 1) & b) >= 0 &&
482 >            (t = q[i]) != null && queueBase == b &&
483 >            UNSAFE.compareAndSwapObject(q, (i << ASHIFT) + ABASE, t, null)) {
484 >            queueBase = b + 1;
485              return t;
486          }
487          return null;
488      }
489  
490      /**
491 <     * Tries to take a task from the base of own queue. Assumes active
492 <     * status.  Called only by current thread.
491 >     * Tries to take a task from the base of own queue.  Called only
492 >     * by this thread.
493       *
494       * @return a task, or null if none
495       */
496      final ForkJoinTask<?> locallyDeqTask() {
497 +        ForkJoinTask<?> t; int m, b, i;
498          ForkJoinTask<?>[] q = queue;
499 <        if (q != null) {
500 <            ForkJoinTask<?> t;
501 <            int b, i;
502 <            while (sp != (b = base)) {
503 <                if ((t = q[i = (q.length - 1) & b]) != null &&
494 <                    UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
499 >        if (q != null && (m = q.length - 1) >= 0) {
500 >            while (queueTop != (b = queueBase)) {
501 >                if ((t = q[i = m & b]) != null &&
502 >                    queueBase == b &&
503 >                    UNSAFE.compareAndSwapObject(q, (i << ASHIFT) + ABASE,
504                                                  t, null)) {
505 <                    base = b + 1;
505 >                    queueBase = b + 1;
506                      return t;
507                  }
508              }
# Line 502 | Line 511 | public class ForkJoinWorkerThread extend
511      }
512  
513      /**
514 <     * Returns a popped task, or null if empty. Assumes active status.
515 <     * Called only by current thread. (Note: a specialization of this
507 <     * code appears in scanWhileJoining.)
514 >     * Returns a popped task, or null if empty.
515 >     * Called only by this thread.
516       */
517 <    final ForkJoinTask<?> popTask() {
518 <        int s;
517 >    private ForkJoinTask<?> popTask() {
518 >        int m;
519          ForkJoinTask<?>[] q = queue;
520 <        if (q != null && (s = sp) != base) {
521 <            int i = (q.length - 1) & --s;
522 <            ForkJoinTask<?> t = q[i];
523 <            if (t != null && UNSAFE.compareAndSwapObject
524 <                (q, (i << qShift) + qBase, t, null)) {
525 <                sp = s;
526 <                return t;
520 >        if (q != null && (m = q.length - 1) >= 0) {
521 >            for (int s; (s = queueTop) != queueBase;) {
522 >                int i = m & --s;
523 >                long u = (i << ASHIFT) + ABASE; // raw offset
524 >                ForkJoinTask<?> t = q[i];
525 >                if (t == null)   // lost to stealer
526 >                    break;
527 >                if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
528 >                    queueTop = s; // or putOrderedInt
529 >                    return t;
530 >                }
531              }
532          }
533          return null;
534      }
535  
536      /**
537 <     * Specialized version of popTask to pop only if
538 <     * topmost element is the given task. Called only
527 <     * by current thread while active.
537 >     * Specialized version of popTask to pop only if topmost element
538 >     * is the given task. Called only by this thread.
539       *
540       * @param t the task. Caller must ensure non-null.
541       */
542      final boolean unpushTask(ForkJoinTask<?> t) {
543 +        ForkJoinTask<?>[] q;
544          int s;
545 <        ForkJoinTask<?>[] q = queue;
546 <        if (q != null && UNSAFE.compareAndSwapObject
547 <            (q, (((q.length - 1) & (s = sp - 1)) << qShift) + qBase, t, null)){
548 <            sp = s;
545 >        if ((q = queue) != null && (s = queueTop) != queueBase &&
546 >            UNSAFE.compareAndSwapObject
547 >            (q, (((q.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
548 >            queueTop = s; // or putOrderedInt
549              return true;
550          }
551          return false;
552      }
553  
554      /**
555 <     * Returns next task or null if empty or contended
555 >     * Returns next task, or null if empty or contended.
556       */
557      final ForkJoinTask<?> peekTask() {
558 +        int m;
559          ForkJoinTask<?>[] q = queue;
560 <        if (q == null)
560 >        if (q == null || (m = q.length - 1) < 0)
561              return null;
562 <        int mask = q.length - 1;
563 <        int i = locallyFifo ? base : (sp - 1);
551 <        return q[i & mask];
562 >        int i = locallyFifo ? queueBase : (queueTop - 1);
563 >        return q[i & m];
564      }
565  
566 <    /**
555 <     * Doubles queue array size. Transfers elements by emulating
556 <     * steals (deqs) from old array and placing, oldest first, into
557 <     * new array.
558 <     */
559 <    private void growQueue() {
560 <        ForkJoinTask<?>[] oldQ = queue;
561 <        int oldSize = oldQ.length;
562 <        int newSize = oldSize << 1;
563 <        if (newSize > MAXIMUM_QUEUE_CAPACITY)
564 <            throw new RejectedExecutionException("Queue capacity exceeded");
565 <        ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
566 <
567 <        int b = base;
568 <        int bf = b + oldSize;
569 <        int oldMask = oldSize - 1;
570 <        int newMask = newSize - 1;
571 <        do {
572 <            int oldIndex = b & oldMask;
573 <            ForkJoinTask<?> t = oldQ[oldIndex];
574 <            if (t != null && !casSlotNull(oldQ, oldIndex, t))
575 <                t = null;
576 <            writeSlot(newQ, b & newMask, t);
577 <        } while (++b != bf);
578 <        pool.signalWork();
579 <    }
566 >    // Support methods for ForkJoinPool
567  
568      /**
569 <     * Computes next value for random victim probe in scan().  Scans
583 <     * don't require a very high quality generator, but also not a
584 <     * crummy one.  Marsaglia xor-shift is cheap and works well enough.
585 <     * Note: This is manually inlined in scan()
569 >     * Runs the given task, plus any local tasks until queue is empty
570       */
571 <    private static final int xorShift(int r) {
572 <        r ^= r << 13;
573 <        r ^= r >>> 17;
574 <        return r ^ (r << 5);
571 >    final void execTask(ForkJoinTask<?> t) {
572 >        currentSteal = t;
573 >        for (;;) {
574 >            if (t != null)
575 >                t.doExec();
576 >            if (queueTop == queueBase)
577 >                break;
578 >            t = locallyFifo ? locallyDeqTask() : popTask();
579 >        }
580 >        ++stealCount;
581 >        currentSteal = null;
582      }
583  
584      /**
585 <     * Tries to steal a task from another worker. Starts at a random
586 <     * index of workers array, and probes workers until finding one
596 <     * with non-empty queue or finding that all are empty.  It
597 <     * randomly selects the first n probes. If these are empty, it
598 <     * resorts to a circular sweep, which is necessary to accurately
599 <     * set active status. (The circular sweep uses steps of
600 <     * approximately half the array size plus 1, to avoid bias
601 <     * stemming from leftmost packing of the array in ForkJoinPool.)
602 <     *
603 <     * This method must be both fast and quiet -- usually avoiding
604 <     * memory accesses that could disrupt cache sharing etc other than
605 <     * those needed to check for and take tasks (or to activate if not
606 <     * already active). This accounts for, among other things,
607 <     * updating random seed in place without storing it until exit.
608 <     *
609 <     * @return a task, or null if none found
585 >     * Removes and cancels all tasks in queue.  Can be called from any
586 >     * thread.
587       */
588 <    private ForkJoinTask<?> scan() {
589 <        ForkJoinPool p = pool;
590 <        ForkJoinWorkerThread[] ws = p.workers;
591 <        int n = ws.length;            // upper bound of #workers
592 <        boolean canSteal = active;    // shadow active status
593 <        int r = seed;                 // extract seed once
594 <        int k = r;                    // index: random if j<0 else step
595 <        for (int j = -n; j < n; ++j) {
596 <            ForkJoinWorkerThread v = ws[k & (n - 1)];
597 <            r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
598 <            if (v != null && v.base != v.sp) {
622 <                if (canSteal ||       // ensure active status
623 <                    (canSteal = active = p.tryIncrementActiveCount())) {
624 <                    int b, i;         // inlined specialization of deqTask
625 <                    ForkJoinTask<?> t;
626 <                    ForkJoinTask<?>[] q;
627 <                    if ((b = v.base) != v.sp &&  // recheck
628 <                        (q = v.queue) != null &&
629 <                        (t = q[i = (q.length - 1) & b]) != null &&
630 <                        UNSAFE.compareAndSwapObject
631 <                        (q, (i << qShift) + qBase, t, null)) {
632 <                        v.base = b + 1;
633 <                        seed = r;
634 <                        ++stealCount;
635 <                        return t;
636 <                    }
637 <                }
638 <                j = -n;           // reset on contention
639 <            }
640 <            k = j >= 0? k + ((n >>> 1) | 1) : r;
588 >    final void cancelTasks() {
589 >        ForkJoinTask<?> cj = currentJoin; // try to cancel ongoing tasks
590 >        if (cj != null && cj.status >= 0)
591 >            cj.cancelIgnoringExceptions();
592 >        ForkJoinTask<?> cs = currentSteal;
593 >        if (cs != null && cs.status >= 0)
594 >            cs.cancelIgnoringExceptions();
595 >        while (queueBase != queueTop) {
596 >            ForkJoinTask<?> t = deqTask();
597 >            if (t != null)
598 >                t.cancelIgnoringExceptions();
599          }
642        return null;
600      }
601  
645    // Run State management
646
647    // status check methods used mainly by ForkJoinPool
648    final boolean isTerminating() { return (runState & TERMINATING) != 0; }
649    final boolean isTerminated()  { return (runState & TERMINATED) != 0; }
650    final boolean isSuspended()   { return (runState & SUSPENDED) != 0; }
651    final boolean isTrimmed()     { return (runState & TRIMMED) != 0; }
652
602      /**
603 <     * Sets state to TERMINATING, also resuming if suspended.
603 >     * Drains tasks to given collection c.
604 >     *
605 >     * @return the number of tasks drained
606       */
607 <    final void shutdown() {
608 <        for (;;) {
609 <            int s = runState;
610 <            if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
611 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
612 <                                             (s & ~SUSPENDED) |
613 <                                             (TRIMMED|TERMINATING))) {
663 <                    LockSupport.unpark(this);
664 <                    break;
665 <                }
607 >    final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
608 >        int n = 0;
609 >        while (queueBase != queueTop) {
610 >            ForkJoinTask<?> t = deqTask();
611 >            if (t != null) {
612 >                c.add(t);
613 >                ++n;
614              }
667            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
668                                              s | TERMINATING))
669                break;
615          }
616 +        return n;
617      }
618  
619 <    /**
674 <     * Sets state to TERMINATED. Called only by this thread.
675 <     */
676 <    private void setTerminated() {
677 <        int s;
678 <        do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
679 <                                               s = runState,
680 <                                               s | (TERMINATING|TERMINATED)));
681 <    }
619 >    // Support methods for ForkJoinTask
620  
621      /**
622 <     * Instrumented version of park. Also used by ForkJoinPool.awaitEvent
622 >     * Returns an estimate of the number of tasks in the queue.
623       */
624 <    final void doPark() {
625 <        ++parkCount;
688 <        LockSupport.park(this);
624 >    final int getQueueSize() {
625 >        return queueTop - queueBase;
626      }
627  
628      /**
629 <     * If suspended, tries to set status to unsuspended.
693 <     * Caller must unpark to actually resume
629 >     * Gets and removes a local task.
630       *
631 <     * @return true if successful
631 >     * @return a task, if available
632       */
633 <    final boolean tryUnsuspend() {
634 <        int s;
699 <        return (((s = runState) & SUSPENDED) != 0 &&
700 <                UNSAFE.compareAndSwapInt(this, runStateOffset, s,
701 <                                         s & ~SUSPENDED));
633 >    final ForkJoinTask<?> pollLocalTask() {
634 >        return locallyFifo ? locallyDeqTask() : popTask();
635      }
636  
637      /**
638 <     * Sets suspended status and blocks as spare until resumed,
706 <     * shutdown, or timed out.
638 >     * Gets and removes a local or stolen task.
639       *
640 <     * @return false if trimmed
640 >     * @return a task, if available
641       */
642 <    final boolean suspendAsSpare() {
643 <        for (;;) {               // set suspended unless terminating
644 <            int s = runState;
645 <            if ((s & TERMINATING) != 0) { // must kill
646 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
647 <                                             s | (TRIMMED | TERMINATING)))
648 <                    return false;
642 >    final ForkJoinTask<?> pollTask() {
643 >        ForkJoinWorkerThread[] ws;
644 >        ForkJoinTask<?> t = pollLocalTask();
645 >        if (t != null || (ws = pool.workers) == null)
646 >            return t;
647 >        int n = ws.length; // cheap version of FJP.scan
648 >        int steps = n << 1;
649 >        int r = nextSeed();
650 >        int i = 0;
651 >        while (i < steps) {
652 >            ForkJoinWorkerThread w = ws[(i++ + r) & (n - 1)];
653 >            if (w != null && w.queueBase != w.queueTop && w.queue != null) {
654 >                if ((t = w.deqTask()) != null)
655 >                    return t;
656 >                i = 0;
657              }
718            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
719                                              s | SUSPENDED))
720                break;
658          }
659 <        lastEventCount = 0;      // reset upon resume
723 <        ForkJoinPool p = pool;
724 <        p.releaseWaiters();      // help others progress
725 <        p.accumulateStealCount(this);
726 <        interrupted();           // clear/ignore interrupts
727 <        if (poolIndex < p.getParallelism()) { // untimed wait
728 <            while ((runState & SUSPENDED) != 0)
729 <                doPark();
730 <            return true;
731 <        }
732 <        return timedSuspend();   // timed wait if apparently non-core
659 >        return null;
660      }
661  
662      /**
663 <     * Blocks as spare until resumed or timed out
664 <     * @return false if trimmed
665 <     */
666 <    private boolean timedSuspend() {
667 <        long nanos = SPARE_KEEPALIVE_NANOS;
668 <        long startTime = System.nanoTime();
669 <        while ((runState & SUSPENDED) != 0) {
670 <            ++parkCount;
671 <            if ((nanos -= (System.nanoTime() - startTime)) > 0)
672 <                LockSupport.parkNanos(this, nanos);
673 <            else { // try to trim on timeout
674 <                int s = runState;
675 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
676 <                                             (s & ~SUSPENDED) |
677 <                                             (TRIMMED|TERMINATING)))
678 <                    return false;
663 >     * The maximum stolen->joining link depth allowed in helpJoinTask,
664 >     * as well as the maximum number of retries (allowing on average
665 >     * one staleness retry per level) per attempt to instead try
666 >     * compensation.  Depths for legitimate chains are unbounded, but
667 >     * we use a fixed constant to avoid (otherwise unchecked) cycles
668 >     * and bound staleness of traversal parameters at the expense of
669 >     * sometimes blocking when we could be helping.
670 >     */
671 >    private static final int MAX_HELP = 16;
672 >
673 >    /**
674 >     * Possibly runs some tasks and/or blocks, until joinMe is done.
675 >     *
676 >     * @param joinMe the task to join
677 >     * @return completion status on exit
678 >     */
679 >    final int joinTask(ForkJoinTask<?> joinMe) {
680 >        ForkJoinTask<?> prevJoin = currentJoin;
681 >        currentJoin = joinMe;
682 >        for (int s, retries = MAX_HELP;;) {
683 >            if ((s = joinMe.status) < 0) {
684 >                currentJoin = prevJoin;
685 >                return s;
686 >            }
687 >            if (retries > 0) {
688 >                if (queueTop != queueBase) {
689 >                    if (!localHelpJoinTask(joinMe))
690 >                        retries = 0;           // cannot help
691 >                }
692 >                else if (retries == MAX_HELP >>> 1) {
693 >                    --retries;                 // check uncommon case
694 >                    if (tryDeqAndExec(joinMe) >= 0)
695 >                        Thread.yield();        // for politeness
696 >                }
697 >                else
698 >                    retries = helpJoinTask(joinMe) ? MAX_HELP : retries - 1;
699 >            }
700 >            else {
701 >                retries = MAX_HELP;           // restart if not done
702 >                pool.tryAwaitJoin(joinMe);
703              }
704          }
754        return true;
755    }
756
757    // Misc support methods for ForkJoinPool
758
759    /**
760     * Returns an estimate of the number of tasks in the queue.  Also
761     * used by ForkJoinTask.
762     */
763    final int getQueueSize() {
764        return -base + sp;
705      }
706  
707      /**
708 <     * Set locallyFifo mode. Called only by ForkJoinPool
708 >     * If present, pops and executes the given task, or any other
709 >     * cancelled task
710 >     *
711 >     * @return false if any other non-cancelled task exists in local queue
712       */
713 <    final void setAsyncMode(boolean async) {
714 <        locallyFifo = async;
713 >    private boolean localHelpJoinTask(ForkJoinTask<?> joinMe) {
714 >        int s, i; ForkJoinTask<?>[] q; ForkJoinTask<?> t;
715 >        if ((s = queueTop) != queueBase && (q = queue) != null &&
716 >            (i = (q.length - 1) & --s) >= 0 &&
717 >            (t = q[i]) != null) {
718 >            if (t != joinMe && t.status >= 0)
719 >                return false;
720 >            if (UNSAFE.compareAndSwapObject
721 >                (q, (i << ASHIFT) + ABASE, t, null)) {
722 >                queueTop = s;           // or putOrderedInt
723 >                t.doExec();
724 >            }
725 >        }
726 >        return true;
727      }
728  
729      /**
730 <     * Removes and cancels all tasks in queue.  Can be called from any
731 <     * thread.
732 <     */
733 <    final void cancelTasks() {
734 <        while (base != sp) {
735 <            ForkJoinTask<?> t = deqTask();
736 <            if (t != null)
737 <                t.cancelIgnoringExceptions();
730 >     * Tries to locate and execute tasks for a stealer of the given
731 >     * task, or in turn one of its stealers, Traces
732 >     * currentSteal->currentJoin links looking for a thread working on
733 >     * a descendant of the given task and with a non-empty queue to
734 >     * steal back and execute tasks from.  The implementation is very
735 >     * branchy to cope with potential inconsistencies or loops
736 >     * encountering chains that are stale, unknown, or of length
737 >     * greater than MAX_HELP links.  All of these cases are dealt with
738 >     * by just retrying by caller.
739 >     *
740 >     * @param joinMe the task to join
741 >     * @param canSteal true if local queue is empty
742 >     * @return true if ran a task
743 >     */
744 >    private boolean helpJoinTask(ForkJoinTask<?> joinMe) {
745 >        boolean helped = false;
746 >        int m = pool.scanGuard & SMASK;
747 >        ForkJoinWorkerThread[] ws = pool.workers;
748 >        if (ws != null && ws.length > m && joinMe.status >= 0) {
749 >            int levels = MAX_HELP;              // remaining chain length
750 >            ForkJoinTask<?> task = joinMe;      // base of chain
751 >            outer:for (ForkJoinWorkerThread thread = this;;) {
752 >                // Try to find v, the stealer of task, by first using hint
753 >                ForkJoinWorkerThread v = ws[thread.stealHint & m];
754 >                if (v == null || v.currentSteal != task) {
755 >                    for (int j = 0; ;) {        // search array
756 >                        if ((v = ws[j]) != null && v.currentSteal == task) {
757 >                            thread.stealHint = j;
758 >                            break;              // save hint for next time
759 >                        }
760 >                        if (++j > m)
761 >                            break outer;        // can't find stealer
762 >                    }
763 >                }
764 >                // Try to help v, using specialized form of deqTask
765 >                for (;;) {
766 >                    ForkJoinTask<?>[] q; int b, i;
767 >                    if (joinMe.status < 0)
768 >                        break outer;
769 >                    if ((b = v.queueBase) == v.queueTop ||
770 >                        (q = v.queue) == null ||
771 >                        (i = (q.length-1) & b) < 0)
772 >                        break;                  // empty
773 >                    long u = (i << ASHIFT) + ABASE;
774 >                    ForkJoinTask<?> t = q[i];
775 >                    if (task.status < 0)
776 >                        break outer;            // stale
777 >                    if (t != null && v.queueBase == b &&
778 >                        UNSAFE.compareAndSwapObject(q, u, t, null)) {
779 >                        v.queueBase = b + 1;
780 >                        v.stealHint = poolIndex;
781 >                        ForkJoinTask<?> ps = currentSteal;
782 >                        currentSteal = t;
783 >                        t.doExec();
784 >                        currentSteal = ps;
785 >                        helped = true;
786 >                    }
787 >                }
788 >                // Try to descend to find v's stealer
789 >                ForkJoinTask<?> next = v.currentJoin;
790 >                if (--levels > 0 && task.status >= 0 &&
791 >                    next != null && next != task) {
792 >                    task = next;
793 >                    thread = v;
794 >                }
795 >                else
796 >                    break;  // max levels, stale, dead-end, or cyclic
797 >            }
798          }
799 +        return helped;
800      }
801  
802      /**
803 <     * Drains tasks to given collection c.
804 <     *
805 <     * @return the number of tasks drained
806 <     */
807 <    final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
808 <        int n = 0;
809 <        while (base != sp) {
810 <            ForkJoinTask<?> t = deqTask();
811 <            if (t != null) {
812 <                c.add(t);
813 <                ++n;
803 >     * Performs an uncommon case for joinTask: If task t is at base of
804 >     * some workers queue, steals and executes it.
805 >     *
806 >     * @param t the task
807 >     * @return t's status
808 >     */
809 >    private int tryDeqAndExec(ForkJoinTask<?> t) {
810 >        int m = pool.scanGuard & SMASK;
811 >        ForkJoinWorkerThread[] ws = pool.workers;
812 >        if (ws != null && ws.length > m && t.status >= 0) {
813 >            for (int j = 0; j <= m; ++j) {
814 >                ForkJoinTask<?>[] q; int b, i;
815 >                ForkJoinWorkerThread v = ws[j];
816 >                if (v != null &&
817 >                    (b = v.queueBase) != v.queueTop &&
818 >                    (q = v.queue) != null &&
819 >                    (i = (q.length - 1) & b) >= 0 &&
820 >                    q[i] ==  t) {
821 >                    long u = (i << ASHIFT) + ABASE;
822 >                    if (v.queueBase == b &&
823 >                        UNSAFE.compareAndSwapObject(q, u, t, null)) {
824 >                        v.queueBase = b + 1;
825 >                        v.stealHint = poolIndex;
826 >                        ForkJoinTask<?> ps = currentSteal;
827 >                        currentSteal = t;
828 >                        t.doExec();
829 >                        currentSteal = ps;
830 >                    }
831 >                    break;
832 >                }
833              }
834          }
835 <        return n;
835 >        return t.status;
836      }
837  
803    // Support methods for ForkJoinTask
804
838      /**
839 <     * Returns an estimate of the number of tasks, offset by a
840 <     * function of number of idle workers.
839 >     * Implements ForkJoinTask.getSurplusQueuedTaskCount().  Returns
840 >     * an estimate of the number of tasks, offset by a function of
841 >     * number of idle workers.
842       *
843       * This method provides a cheap heuristic guide for task
844       * partitioning when programmers, frameworks, tools, or languages
# Line 840 | Line 874 | public class ForkJoinWorkerThread extend
874       * When all threads are active, it is on average OK to estimate
875       * surplus strictly locally. In steady-state, if one thread is
876       * maintaining say 2 surplus tasks, then so are others. So we can
877 <     * just use estimated queue length (although note that (sp - base)
878 <     * can be an overestimate because of stealers lagging increments
879 <     * of base).  However, this strategy alone leads to serious
880 <     * mis-estimates in some non-steady-state conditions (ramp-up,
881 <     * ramp-down, other stalls). We can detect many of these by
882 <     * further considering the number of "idle" threads, that are
877 >     * just use estimated queue length (although note that (queueTop -
878 >     * queueBase) can be an overestimate because of stealers lagging
879 >     * increments of queueBase).  However, this strategy alone leads
880 >     * to serious mis-estimates in some non-steady-state conditions
881 >     * (ramp-up, ramp-down, other stalls). We can detect many of these
882 >     * by further considering the number of "idle" threads, that are
883       * known to have zero queued tasks, so compensate by a factor of
884       * (#idle/#active) threads.
885       */
886      final int getEstimatedSurplusTaskCount() {
887 <        return sp - base - pool.idlePerActive();
887 >        return queueTop - queueBase - pool.idlePerActive();
888      }
889  
890      /**
891 <     * Gets and removes a local task.
892 <     *
893 <     * @return a task, if available
891 >     * Runs tasks until {@code pool.isQuiescent()}. We piggyback on
892 >     * pool's active count ctl maintenance, but rather than blocking
893 >     * when tasks cannot be found, we rescan until all others cannot
894 >     * find tasks either. The bracketing by pool quiescerCounts
895 >     * updates suppresses pool auto-shutdown mechanics that could
896 >     * otherwise prematurely terminate the pool because all threads
897 >     * appear to be inactive.
898       */
899 <    final ForkJoinTask<?> pollLocalTask() {
900 <        while (base != sp) {
901 <            if (active || (active = pool.tryIncrementActiveCount()))
902 <                return locallyFifo? locallyDeqTask() : popTask();
903 <        }
904 <        return null;
867 <    }
868 <
869 <    /**
870 <     * Gets and removes a local or stolen task.
871 <     *
872 <     * @return a task, if available
873 <     */
874 <    final ForkJoinTask<?> pollTask() {
875 <        ForkJoinTask<?> t;
876 <        return (t = pollLocalTask()) != null ? t : scan();
877 <    }
878 <
879 <    /**
880 <     * Returns a popped or stolen task, if available, unless joinMe is done
881 <     *
882 <     * This method is intrinsically nonmodular. To maintain the
883 <     * property that tasks are never stolen if the awaited task is
884 <     * ready, we must interleave mechanics of scan with status
885 <     * checks. We rely here on the commit points of deq that allow us
886 <     * to cancel a steal even after CASing slot to null, but before
887 <     * adjusting base index: If, after the CAS, we see that joinMe is
888 <     * ready, we can back out by placing the task back into the slot,
889 <     * without adjusting index. The scan loop is otherwise the same as
890 <     * in scan.
891 <     *
892 <     */
893 <    final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
894 <        ForkJoinTask<?> popped; // prefer local tasks
895 <        if (base != sp && (popped = popWhileJoining(joinMe)) != null)
896 <            return popped;
897 <        if (joinMe.status >= 0) {
898 <            ForkJoinPool p = pool;
899 >    final void helpQuiescePool() {
900 >        boolean active = true;
901 >        ForkJoinTask<?> ps = currentSteal; // to restore below
902 >        ForkJoinPool p = pool;
903 >        p.addQuiescerCount(1);
904 >        for (;;) {
905              ForkJoinWorkerThread[] ws = p.workers;
906 <            int n = ws.length;
907 <            int r = seed;
908 <            int k = r;
909 <            for (int j = -n; j < n && joinMe.status >= 0; ++j) {
910 <                ForkJoinWorkerThread v = ws[k & (n - 1)];
911 <                r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
912 <                if (v != null) {
913 <                    int b = v.base;
914 <                    ForkJoinTask<?>[] q;
915 <                    if (b != v.sp && (q = v.queue) != null) {
916 <                        int i = (q.length - 1) & b;
917 <                        ForkJoinTask<?> t = q[i];
918 <                        if (t != null && UNSAFE.compareAndSwapObject
913 <                            (q, (i << qShift) + qBase, t, null)) {
914 <                            if (joinMe.status >= 0) {
915 <                                v.base = b + 1;
916 <                                seed = r;
917 <                                ++stealCount;
918 <                                return t;
919 <                            }
920 <                            UNSAFE.putObjectVolatile(q, (i<<qShift)+qBase, t);
921 <                            break; // back out
922 <                        }
923 <                        j = -n;
906 >            ForkJoinWorkerThread v = null;
907 >            int n;
908 >            if (queueTop != queueBase)
909 >                v = this;
910 >            else if (ws != null && (n = ws.length) > 1) {
911 >                ForkJoinWorkerThread w;
912 >                int r = nextSeed(); // cheap version of FJP.scan
913 >                int steps = n << 1;
914 >                for (int i = 0; i < steps; ++i) {
915 >                    if ((w = ws[(i + r) & (n - 1)]) != null &&
916 >                        w.queueBase != w.queueTop) {
917 >                        v = w;
918 >                        break;
919                      }
920                  }
926                k = j >= 0? k + ((n >>> 1) | 1) : r;
921              }
922 <        }
923 <        return null;
924 <    }
925 <
926 <    /**
927 <     * Version of popTask with join checks surrounding extraction.
928 <     * Uses the same backout strategy as scanWhileJoining. Note that
929 <     * we ignore locallyFifo flag for local tasks here since helping
930 <     * joins only make sense in LIFO mode.
931 <     *
932 <     * @return a popped task, if available, unless joinMe is done
939 <     */
940 <    private ForkJoinTask<?> popWhileJoining(ForkJoinTask<?> joinMe) {
941 <        int s;
942 <        ForkJoinTask<?>[] q;
943 <        while ((s = sp) != base && (q = queue) != null && joinMe.status >= 0) {
944 <            int i = (q.length - 1) & --s;
945 <            ForkJoinTask<?> t = q[i];
946 <            if (t != null && UNSAFE.compareAndSwapObject
947 <                (q, (i << qShift) + qBase, t, null)) {
948 <                if (joinMe.status >= 0) {
949 <                    sp = s;
950 <                    return t;
922 >            if (v != null) {
923 >                ForkJoinTask<?> t;
924 >                if (!active) {
925 >                    active = true;
926 >                    p.addActiveCount(1);
927 >                }
928 >                if ((t = (v != this) ? v.deqTask() :
929 >                     locallyFifo ? locallyDeqTask() : popTask()) != null) {
930 >                    currentSteal = t;
931 >                    t.doExec();
932 >                    currentSteal = ps;
933                  }
952                UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
953                break;  // back out
934              }
955        }
956        return null;
957    }
958
959    /**
960     * Runs tasks until {@code pool.isQuiescent()}.
961     */
962    final void helpQuiescePool() {
963        for (;;) {
964            ForkJoinTask<?> t = pollLocalTask();
965            if (t != null || (t = scan()) != null)
966                t.tryExec();
935              else {
968                ForkJoinPool p = pool;
936                  if (active) {
937 <                    active = false; // inactivate
938 <                    do {} while (!p.tryDecrementActiveCount());
937 >                    active = false;
938 >                    p.addActiveCount(-1);
939                  }
940                  if (p.isQuiescent()) {
941 <                    active = true; // re-activate
942 <                    do {} while (!p.tryIncrementActiveCount());
943 <                    return;
941 >                    p.addActiveCount(1);
942 >                    p.addQuiescerCount(-1);
943 >                    break;
944                  }
945              }
946          }
947      }
948  
949      // Unsafe mechanics
950 <
951 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
952 <    private static final long runStateOffset =
986 <        objectFieldOffset("runState", ForkJoinWorkerThread.class);
987 <    private static final long qBase =
988 <        UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
989 <    private static final int qShift;
950 >    private static final sun.misc.Unsafe UNSAFE;
951 >    private static final long ABASE;
952 >    private static final int ASHIFT;
953  
954      static {
955 <        int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
993 <        if ((s & (s-1)) != 0)
994 <            throw new Error("data type scale not a power of two");
995 <        qShift = 31 - Integer.numberOfLeadingZeros(s);
996 <    }
997 <
998 <    private static long objectFieldOffset(String field, Class<?> klazz) {
955 >        int s;
956          try {
957 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
958 <        } catch (NoSuchFieldException e) {
959 <            // Convert Exception to corresponding Error
960 <            NoSuchFieldError error = new NoSuchFieldError(field);
961 <            error.initCause(e);
962 <            throw error;
957 >            UNSAFE = getUnsafe();
958 >            Class<?> a = ForkJoinTask[].class;
959 >            ABASE = UNSAFE.arrayBaseOffset(a);
960 >            s = UNSAFE.arrayIndexScale(a);
961 >        } catch (Exception e) {
962 >            throw new Error(e);
963          }
964 +        if ((s & (s-1)) != 0)
965 +            throw new Error("data type scale not a power of two");
966 +        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
967      }
968  
969      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines