ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.6 by jsr166, Thu Mar 19 05:10:42 2009 UTC vs.
Revision 1.33 by dl, Thu May 27 16:46:49 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
11 < import java.util.concurrent.locks.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
10 >
11 > import java.util.Random;
12 > import java.util.Collection;
13 > import java.util.concurrent.locks.LockSupport;
14  
15   /**
16   * A thread managed by a {@link ForkJoinPool}.  This class is
17   * subclassable solely for the sake of adding functionality -- there
18 < * are no overridable methods dealing with scheduling or
19 < * execution. However, you can override initialization and termination
20 < * cleanup methods surrounding the main task processing loop.  If you
21 < * do create such a subclass, you will also need to supply a custom
22 < * ForkJoinWorkerThreadFactory to use it in a ForkJoinPool.
18 > * are no overridable methods dealing with scheduling or execution.
19 > * However, you can override initialization and termination methods
20 > * surrounding the main task processing loop.  If you do create such a
21 > * subclass, you will also need to supply a custom {@link
22 > * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
23 > * ForkJoinPool}.
24   *
25 + * @since 1.7
26 + * @author Doug Lea
27   */
28   public class ForkJoinWorkerThread extends Thread {
29      /*
30 <     * Algorithm overview:
30 >     * Overview:
31 >     *
32 >     * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
33 >     * ForkJoinTasks. This class includes bookkeeping in support of
34 >     * worker activation, suspension, and lifecycle control described
35 >     * in more detail in the internal documentation of class
36 >     * ForkJoinPool. And as described further below, this class also
37 >     * includes special-cased support for some ForkJoinTask
38 >     * methods. But the main mechanics involve work-stealing:
39       *
40 <     * 1. Work-Stealing: Work-stealing queues are special forms of
41 <     * Deques that support only three of the four possible
42 <     * end-operations -- push, pop, and deq (aka steal), and only do
43 <     * so under the constraints that push and pop are called only from
44 <     * the owning thread, while deq may be called from other threads.
45 <     * (If you are unfamiliar with them, you probably want to read
46 <     * Herlihy and Shavit's book "The Art of Multiprocessor
47 <     * programming", chapter 16 describing these in more detail before
48 <     * proceeding.)  The main work-stealing queue design is roughly
49 <     * similar to "Dynamic Circular Work-Stealing Deque" by David
50 <     * Chase and Yossi Lev, SPAA 2005
51 <     * (http://research.sun.com/scalable/pubs/index.html).  The main
52 <     * difference ultimately stems from gc requirements that we null
53 <     * out taken slots as soon as we can, to maintain as small a
54 <     * footprint as possible even in programs generating huge numbers
55 <     * of tasks. To accomplish this, we shift the CAS arbitrating pop
56 <     * vs deq (steal) from being on the indices ("base" and "sp") to
57 <     * the slots themselves (mainly via method "casSlotNull()"). So,
58 <     * both a successful pop and deq mainly entail CAS'ing a nonnull
59 <     * slot to null.  Because we rely on CASes of references, we do
60 <     * not need tag bits on base or sp.  They are simple ints as used
61 <     * in any circular array-based queue (see for example ArrayDeque).
62 <     * Updates to the indices must still be ordered in a way that
63 <     * guarantees that (sp - base) > 0 means the queue is empty, but
64 <     * otherwise may err on the side of possibly making the queue
65 <     * appear nonempty when a push, pop, or deq have not fully
66 <     * committed. Note that this means that the deq operation,
67 <     * considered individually, is not wait-free. One thief cannot
68 <     * successfully continue until another in-progress one (or, if
69 <     * previously empty, a push) completes.  However, in the
70 <     * aggregate, we ensure at least probablistic non-blockingness. If
71 <     * an attempted steal fails, a thief always chooses a different
40 >     * Work-stealing queues are special forms of Deques that support
41 >     * only three of the four possible end-operations -- push, pop,
42 >     * and deq (aka steal), under the further constraints that push
43 >     * and pop are called only from the owning thread, while deq may
44 >     * be called from other threads.  (If you are unfamiliar with
45 >     * them, you probably want to read Herlihy and Shavit's book "The
46 >     * Art of Multiprocessor programming", chapter 16 describing these
47 >     * in more detail before proceeding.)  The main work-stealing
48 >     * queue design is roughly similar to those in the papers "Dynamic
49 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
50 >     * (http://research.sun.com/scalable/pubs/index.html) and
51 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
52 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
53 >     * The main differences ultimately stem from gc requirements that
54 >     * we null out taken slots as soon as we can, to maintain as small
55 >     * a footprint as possible even in programs generating huge
56 >     * numbers of tasks. To accomplish this, we shift the CAS
57 >     * arbitrating pop vs deq (steal) from being on the indices
58 >     * ("base" and "sp") to the slots themselves (mainly via method
59 >     * "casSlotNull()"). So, both a successful pop and deq mainly
60 >     * entail a CAS of a slot from non-null to null.  Because we rely
61 >     * on CASes of references, we do not need tag bits on base or sp.
62 >     * They are simple ints as used in any circular array-based queue
63 >     * (see for example ArrayDeque).  Updates to the indices must
64 >     * still be ordered in a way that guarantees that sp == base means
65 >     * the queue is empty, but otherwise may err on the side of
66 >     * possibly making the queue appear nonempty when a push, pop, or
67 >     * deq have not fully committed. Note that this means that the deq
68 >     * operation, considered individually, is not wait-free. One thief
69 >     * cannot successfully continue until another in-progress one (or,
70 >     * if previously empty, a push) completes.  However, in the
71 >     * aggregate, we ensure at least probabilistic non-blockingness.
72 >     * If an attempted steal fails, a thief always chooses a different
73       * random victim target to try next. So, in order for one thief to
74       * progress, it suffices for any in-progress deq or new push on
75       * any empty queue to complete. One reason this works well here is
76       * that apparently-nonempty often means soon-to-be-stealable,
77 <     * which gives threads a chance to activate if necessary before
78 <     * stealing (see below).
77 >     * which gives threads a chance to set activation status if
78 >     * necessary before stealing.
79 >     *
80 >     * This approach also enables support for "async mode" where local
81 >     * task processing is in FIFO, not LIFO order; simply by using a
82 >     * version of deq rather than pop when locallyFifo is true (as set
83 >     * by the ForkJoinPool).  This allows use in message-passing
84 >     * frameworks in which tasks are never joined.
85       *
86       * Efficient implementation of this approach currently relies on
87       * an uncomfortable amount of "Unsafe" mechanics. To maintain
88       * correct orderings, reads and writes of variable base require
89 <     * volatile ordering.  Variable sp does not require volatile write
90 <     * but needs cheaper store-ordering on writes.  Because they are
91 <     * protected by volatile base reads, reads of the queue array and
92 <     * its slots do not need volatile load semantics, but writes (in
93 <     * push) require store order and CASes (in pop and deq) require
94 <     * (volatile) CAS semantics. Since these combinations aren't
95 <     * supported using ordinary volatiles, the only way to accomplish
96 <     * these effciently is to use direct Unsafe calls. (Using external
89 >     * volatile ordering.  Variable sp does not require volatile
90 >     * writes but still needs store-ordering, which we accomplish by
91 >     * pre-incrementing sp before filling the slot with an ordered
92 >     * store.  (Pre-incrementing also enables backouts used in
93 >     * scanWhileJoining.)  Because they are protected by volatile base
94 >     * reads, reads of the queue array and its slots by other threads
95 >     * do not need volatile load semantics, but writes (in push)
96 >     * require store order and CASes (in pop and deq) require
97 >     * (volatile) CAS semantics.  (Michael, Saraswat, and Vechev's
98 >     * algorithm has similar properties, but without support for
99 >     * nulling slots.)  Since these combinations aren't supported
100 >     * using ordinary volatiles, the only way to accomplish these
101 >     * efficiently is to use direct Unsafe calls. (Using external
102       * AtomicIntegers and AtomicReferenceArrays for the indices and
103       * array is significantly slower because of memory locality and
104 <     * indirection effects.) Further, performance on most platforms is
105 <     * very sensitive to placement and sizing of the (resizable) queue
106 <     * array.  Even though these queues don't usually become all that
107 <     * big, the initial size must be large enough to counteract cache
104 >     * indirection effects.)
105 >     *
106 >     * Further, performance on most platforms is very sensitive to
107 >     * placement and sizing of the (resizable) queue array.  Even
108 >     * though these queues don't usually become all that big, the
109 >     * initial size must be large enough to counteract cache
110       * contention effects across multiple queues (especially in the
111       * presence of GC cardmarking). Also, to improve thread-locality,
112 <     * queues are currently initialized immediately after the thread
113 <     * gets the initial signal to start processing tasks.  However,
114 <     * all queue-related methods except pushTask are written in a way
115 <     * that allows them to instead be lazily allocated and/or disposed
116 <     * of when empty. All together, these low-level implementation
117 <     * choices produce as much as a factor of 4 performance
118 <     * improvement compared to naive implementations, and enable the
119 <     * processing of billions of tasks per second, sometimes at the
120 <     * expense of ugliness.
121 <     *
122 <     * 2. Run control: The primary run control is based on a global
123 <     * counter (activeCount) held by the pool. It uses an algorithm
124 <     * similar to that in Herlihy and Shavit section 17.6 to cause
125 <     * threads to eventually block when all threads declare they are
126 <     * inactive. (See variable "scans".)  For this to work, threads
127 <     * must be declared active when executing tasks, and before
128 <     * stealing a task. They must be inactive before blocking on the
129 <     * Pool Barrier (awaiting a new submission or other Pool
130 <     * event). In between, there is some free play which we take
131 <     * advantage of to avoid contention and rapid flickering of the
132 <     * global activeCount: If inactive, we activate only if a victim
133 <     * queue appears to be nonempty (see above).  Similarly, a thread
134 <     * tries to inactivate only after a full scan of other threads.
110 <     * The net effect is that contention on activeCount is rarely a
111 <     * measurable performance issue. (There are also a few other cases
112 <     * where we scan for work rather than retry/block upon
113 <     * contention.)
114 <     *
115 <     * 3. Selection control. We maintain policy of always choosing to
116 <     * run local tasks rather than stealing, and always trying to
117 <     * steal tasks before trying to run a new submission. All steals
118 <     * are currently performed in randomly-chosen deq-order. It may be
119 <     * worthwhile to bias these with locality / anti-locality
120 <     * information, but doing this well probably requires more
121 <     * lower-level information from JVMs than currently provided.
112 >     * queues are initialized after starting.  All together, these
113 >     * low-level implementation choices produce as much as a factor of
114 >     * 4 performance improvement compared to naive implementations,
115 >     * and enable the processing of billions of tasks per second,
116 >     * sometimes at the expense of ugliness.
117 >     */
118 >
119 >    /**
120 >     * Generator for initial random seeds for random victim
121 >     * selection. This is used only to create initial seeds. Random
122 >     * steals use a cheaper xorshift generator per steal attempt. We
123 >     * expect only rare contention on seedGenerator, so just use a
124 >     * plain Random.
125 >     */
126 >    private static final Random seedGenerator = new Random();
127 >
128 >    /**
129 >     * The timeout value for suspending spares. Spare workers that
130 >     * remain unsignalled for more than this time may be trimmed
131 >     * (killed and removed from pool).  Since our goal is to avoid
132 >     * long-term thread buildup, the exact value of timeout does not
133 >     * matter too much so long as it avoids most false-alarm timeouts
134 >     * under GC stalls or momentarily high system load.
135       */
136 +    private static final long SPARE_KEEPALIVE_NANOS =
137 +        5L * 1000L * 1000L * 1000L; // 5 secs
138  
139      /**
140       * Capacity of work-stealing queue array upon initialization.
# Line 137 | Line 152 | public class ForkJoinWorkerThread extend
152      private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
153  
154      /**
155 <     * The pool this thread works in. Accessed directly by ForkJoinTask
155 >     * The pool this thread works in. Accessed directly by ForkJoinTask.
156       */
157      final ForkJoinPool pool;
158  
159      /**
160       * The work-stealing queue array. Size must be a power of two.
161 <     * Initialized when thread starts, to improve memory locality.
161 >     * Initialized in onStart, to improve memory locality.
162       */
163      private ForkJoinTask<?>[] queue;
164  
165      /**
151     * Index (mod queue.length) of next queue slot to push to or pop
152     * from. It is written only by owner thread, via ordered store.
153     * Both sp and base are allowed to wrap around on overflow, but
154     * (sp - base) still estimates size.
155     */
156    private volatile int sp;
157
158    /**
166       * Index (mod queue.length) of least valid queue slot, which is
167       * always the next position to steal from if nonempty.
168       */
169      private volatile int base;
170  
171      /**
172 <     * Activity status. When true, this worker is considered active.
173 <     * Must be false upon construction. It must be true when executing
174 <     * tasks, and BEFORE stealing a task. It must be false before
175 <     * calling pool.sync
176 <     */
177 <    private boolean active;
172 >     * Index (mod queue.length) of next queue slot to push to or pop
173 >     * from. It is written only by owner thread, and accessed by other
174 >     * threads only after reading (volatile) base.  Both sp and base
175 >     * are allowed to wrap around on overflow, but (sp - base) still
176 >     * estimates size.
177 >     */
178 >    private int sp;
179  
180      /**
181 <     * Run state of this worker. Supports simple versions of the usual
182 <     * shutdown/shutdownNow control.
181 >     * Run state of this worker. In addition to the usual run levels,
182 >     * tracks if this worker is suspended as a spare, and if it was
183 >     * killed (trimmed) while suspended. However, "active" status is
184 >     * maintained separately.
185       */
186      private volatile int runState;
187  
188 +    private static final int TERMINATING = 0x01;
189 +    private static final int TERMINATED  = 0x02;
190 +    private static final int SUSPENDED   = 0x04; // inactive spare
191 +    private static final int TRIMMED     = 0x08; // killed while suspended
192 +
193 +    /**
194 +     * Number of LockSupport.park calls to block this thread for
195 +     * suspension or event waits. Used for internal instrumention;
196 +     * currently not exported but included because volatile write upon
197 +     * park also provides a workaround for a JVM bug.
198 +     */
199 +    private volatile int parkCount;
200 +
201 +    /**
202 +     * Number of steals, transferred and reset in pool callbacks pool
203 +     * when idle Accessed directly by pool.
204 +     */
205 +    int stealCount;
206 +
207      /**
208       * Seed for random number generator for choosing steal victims.
209 <     * Uses Marsaglia xorshift. Must be nonzero upon initialization.
209 >     * Uses Marsaglia xorshift. Must be initialized as nonzero.
210       */
211      private int seed;
212  
213      /**
214 <     * Number of steals, transferred to pool when idle
214 >     * Activity status. When true, this worker is considered active.
215 >     * Accessed directly by pool.  Must be false upon construction.
216       */
217 <    private int stealCount;
217 >    boolean active;
218 >
219 >    /**
220 >     * True if use local fifo, not default lifo, for local polling.
221 >     * Shadows value from ForkJoinPool, which resets it if changed
222 >     * pool-wide.
223 >     */
224 >    private boolean locallyFifo;
225  
226      /**
227       * Index of this worker in pool array. Set once by pool before
228 <     * running, and accessed directly by pool during cleanup etc
228 >     * running, and accessed directly by pool to locate this worker in
229 >     * its workers array.
230       */
231      int poolIndex;
232  
233      /**
234 <     * The last barrier event waited for. Accessed in pool callback
235 <     * methods, but only by current thread.
234 >     * The last pool event waited for. Accessed only by pool in
235 >     * callback methods invoked within this thread.
236 >     */
237 >    int lastEventCount;
238 >
239 >    /**
240 >     * Encoded index and event count of next event waiter. Used only
241 >     * by ForkJoinPool for managing event waiters.
242       */
243 <    long lastEventCount;
243 >    volatile long nextWaiter;
244  
245      /**
246       * Creates a ForkJoinWorkerThread operating in the given pool.
247 +     *
248       * @param pool the pool this thread works in
249       * @throws NullPointerException if pool is null
250       */
251      protected ForkJoinWorkerThread(ForkJoinPool pool) {
252          if (pool == null) throw new NullPointerException();
253          this.pool = pool;
254 <        // Note: poolIndex is set by pool during construction
255 <        // Remaining initialization is deferred to onStart
254 >        // To avoid exposing construction details to subclasses,
255 >        // remaining initialization is in start() and onStart()
256      }
257  
258 <    // Public access methods
258 >    /**
259 >     * Performs additional initialization and starts this thread
260 >     */
261 >    final void start(int poolIndex, boolean locallyFifo,
262 >                     UncaughtExceptionHandler ueh) {
263 >        this.poolIndex = poolIndex;
264 >        this.locallyFifo = locallyFifo;
265 >        if (ueh != null)
266 >            setUncaughtExceptionHandler(ueh);
267 >        setDaemon(true);
268 >        start();
269 >    }
270 >
271 >    // Public/protected methods
272  
273      /**
274 <     * Returns the pool hosting this thread
274 >     * Returns the pool hosting this thread.
275 >     *
276       * @return the pool
277       */
278      public ForkJoinPool getPool() {
# Line 226 | Line 285 | public class ForkJoinWorkerThread extend
285       * threads (minus one) that have ever been created in the pool.
286       * This method may be useful for applications that track status or
287       * collect results per-worker rather than per-task.
288 <     * @return the index number.
288 >     *
289 >     * @return the index number
290       */
291      public int getPoolIndex() {
292          return poolIndex;
293      }
294  
235
236    // Runstate management
237
238    // Runstate values. Order matters
239    private static final int RUNNING     = 0;
240    private static final int SHUTDOWN    = 1;
241    private static final int TERMINATING = 2;
242    private static final int TERMINATED  = 3;
243
244    final boolean isShutdown()    { return runState >= SHUTDOWN;  }
245    final boolean isTerminating() { return runState >= TERMINATING;  }
246    final boolean isTerminated()  { return runState == TERMINATED; }
247    final boolean shutdown()      { return transitionRunStateTo(SHUTDOWN); }
248    final boolean shutdownNow()   { return transitionRunStateTo(TERMINATING); }
249
295      /**
296 <     * Transition to at least the given state. Return true if not
297 <     * already at least given state.
296 >     * Initializes internal state after construction but before
297 >     * processing any tasks. If you override this method, you must
298 >     * invoke super.onStart() at the beginning of the method.
299 >     * Initialization requires care: Most fields must have legal
300 >     * default values, to ensure that attempted accesses from other
301 >     * threads work correctly even before this thread starts
302 >     * processing tasks.
303       */
304 <    private boolean transitionRunStateTo(int state) {
305 <        for (;;) {
306 <            int s = runState;
257 <            if (s >= state)
258 <                return false;
259 <            if (_unsafe.compareAndSwapInt(this, runStateOffset, s, state))
260 <                return true;
261 <        }
262 <    }
304 >    protected void onStart() {
305 >        int rs = seedGenerator.nextInt();
306 >        seed = rs == 0? 1 : rs; // seed must be nonzero
307  
308 <    /**
309 <     * Try to set status to active; fail on contention
310 <     */
311 <    private boolean tryActivate() {
312 <        if (!active) {
313 <            if (!pool.tryIncrementActiveCount())
270 <                return false;
271 <            active = true;
272 <        }
273 <        return true;
308 >        // Allocate name string and queue array in this thread
309 >        String pid = Integer.toString(pool.getPoolNumber());
310 >        String wid = Integer.toString(poolIndex);
311 >        setName("ForkJoinPool-" + pid + "-worker-" + wid);
312 >
313 >        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
314      }
315  
316      /**
317 <     * Try to set status to active; fail on contention
317 >     * Performs cleanup associated with termination of this worker
318 >     * thread.  If you override this method, you must invoke
319 >     * {@code super.onTermination} at the end of the overridden method.
320 >     *
321 >     * @param exception the exception causing this thread to abort due
322 >     * to an unrecoverable error, or {@code null} if completed normally
323       */
324 <    private boolean tryInactivate() {
325 <        if (active) {
326 <            if (!pool.tryDecrementActiveCount())
327 <                return false;
328 <            active = false;
324 >    protected void onTermination(Throwable exception) {
325 >        try {
326 >            cancelTasks();
327 >            setTerminated();
328 >            pool.workerTerminated(this);
329 >        } catch (Throwable ex) {        // Shouldn't ever happen
330 >            if (exception == null)      // but if so, at least rethrown
331 >                exception = ex;
332 >        } finally {
333 >            if (exception != null)
334 >                UNSAFE.throwException(exception);
335          }
285        return true;
336      }
337  
338      /**
289     * Computes next value for random victim probe. Scans don't
290     * require a very high quality generator, but also not a crummy
291     * one. Marsaglia xor-shift is cheap and works well.
292     */
293    private static int xorShift(int r) {
294        r ^= r << 1;
295        r ^= r >>> 3;
296        r ^= r << 10;
297        return r;
298    }
299
300    // Lifecycle methods
301
302    /**
339       * This method is required to be public, but should never be
340       * called explicitly. It performs the main run loop to execute
341       * ForkJoinTasks.
# Line 308 | Line 344 | public class ForkJoinWorkerThread extend
344          Throwable exception = null;
345          try {
346              onStart();
311            pool.sync(this); // await first pool event
347              mainLoop();
348          } catch (Throwable ex) {
349              exception = ex;
# Line 317 | Line 352 | public class ForkJoinWorkerThread extend
352          }
353      }
354  
355 +    // helpers for run()
356 +
357      /**
358 <     * Execute tasks until shut down.
358 >     * Find and execute tasks and check status while running
359       */
360      private void mainLoop() {
361 <        while (!isShutdown()) {
362 <            ForkJoinTask<?> t = pollTask();
363 <            if (t != null || (t = pollSubmission()) != null)
364 <                t.quietlyExec();
365 <            else if (tryInactivate())
366 <                pool.sync(this);
361 >        boolean ran = false; // true if ran task on previous step
362 >        ForkJoinPool p = pool;
363 >        for (;;) {
364 >            p.preStep(this, ran);
365 >            if (runState != 0)
366 >                return;
367 >            ForkJoinTask<?> t; // try to get and run stolen or submitted task
368 >            if (ran = (t = scan()) != null || (t = pollSubmission()) != null) {
369 >                t.tryExec();
370 >                if (base != sp)
371 >                    runLocalTasks();
372 >            }
373          }
374      }
375  
376      /**
377 <     * Initializes internal state after construction but before
378 <     * processing any tasks. If you override this method, you must
336 <     * invoke super.onStart() at the beginning of the method.
337 <     * Initialization requires care: Most fields must have legal
338 <     * default values, to ensure that attempted accesses from other
339 <     * threads work correctly even before this thread starts
340 <     * processing tasks.
377 >     * Runs local tasks until queue is empty or shut down.  Call only
378 >     * while active.
379       */
380 <    protected void onStart() {
381 <        // Allocate while starting to improve chances of thread-local
382 <        // isolation
383 <        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
384 <        // Initial value of seed need not be especially random but
385 <        // should differ across workers and must be nonzero
386 <        int p = poolIndex + 1;
387 <        seed = p + (p << 8) + (p << 16) + (p << 24); // spread bits
380 >    private void runLocalTasks() {
381 >        while (runState == 0) {
382 >            ForkJoinTask<?> t = locallyFifo? locallyDeqTask() : popTask();
383 >            if (t != null)
384 >                t.tryExec();
385 >            else if (base == sp)
386 >                break;
387 >        }
388      }
389  
390      /**
391 <     * Perform cleanup associated with termination of this worker
354 <     * thread.  If you override this method, you must invoke
355 <     * super.onTermination at the end of the overridden method.
391 >     * If a submission exists, try to activate and take it
392       *
393 <     * @param exception the exception causing this thread to abort due
358 <     * to an unrecoverable error, or null if completed normally.
393 >     * @return a task, if available
394       */
395 <    protected void onTermination(Throwable exception) {
396 <        // Execute remaining local tasks unless aborting or terminating
397 <        while (exception == null &&  !pool.isTerminating() && base != sp) {
398 <            try {
399 <                ForkJoinTask<?> t = popTask();
400 <                if (t != null)
366 <                    t.quietlyExec();
367 <            } catch(Throwable ex) {
368 <                exception = ex;
395 >    private ForkJoinTask<?> pollSubmission() {
396 >        ForkJoinPool p = pool;
397 >        while (p.hasQueuedSubmissions()) {
398 >            if (active || (active = p.tryIncrementActiveCount())) {
399 >                ForkJoinTask<?> t = p.pollSubmission();
400 >                return t != null ? t : scan(); // if missed, rescan
401              }
402          }
403 <        // Cancel other tasks, transition status, notify pool, and
372 <        // propagate exception to uncaught exception handler
373 <        try {
374 <            do;while (!tryInactivate()); // ensure inactive
375 <            cancelTasks();
376 <            runState = TERMINATED;
377 <            pool.workerTerminated(this);
378 <        } catch (Throwable ex) {        // Shouldn't ever happen
379 <            if (exception == null)      // but if so, at least rethrown
380 <                exception = ex;
381 <        } finally {
382 <            if (exception != null)
383 <                ForkJoinTask.rethrowException(exception);
384 <        }
403 >        return null;
404      }
405  
406 <    // Intrinsics-based support for queue operations.
407 <
408 <    /**
409 <     * Add in store-order the given task at given slot of q to
410 <     * null. Caller must ensure q is nonnull and index is in range.
406 >    /*
407 >     * Intrinsics-based atomic writes for queue slots. These are
408 >     * basically the same as methods in AtomicObjectArray, but
409 >     * specialized for (1) ForkJoinTask elements (2) requirement that
410 >     * nullness and bounds checks have already been performed by
411 >     * callers and (3) effective offsets are known not to overflow
412 >     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
413 >     * need corresponding version for reads: plain array reads are OK
414 >     * because they protected by other volatile reads and are
415 >     * confirmed by CASes.
416 >     *
417 >     * Most uses don't actually call these methods, but instead contain
418 >     * inlined forms that enable more predictable optimization.  We
419 >     * don't define the version of write used in pushTask at all, but
420 >     * instead inline there a store-fenced array slot write.
421       */
393    private static void setSlot(ForkJoinTask<?>[] q, int i,
394                                ForkJoinTask<?> t){
395        _unsafe.putOrderedObject(q, (i << qShift) + qBase, t);
396    }
422  
423      /**
424 <     * CAS given slot of q to null. Caller must ensure q is nonnull
425 <     * and index is in range.
424 >     * CASes slot i of array q from t to null. Caller must ensure q is
425 >     * non-null and index is in range.
426       */
427 <    private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
428 <                                       ForkJoinTask<?> t) {
429 <        return _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
427 >    private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
428 >                                             ForkJoinTask<?> t) {
429 >        return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
430      }
431  
432      /**
433 <     * Sets sp in store-order.
433 >     * Performs a volatile write of the given task at given slot of
434 >     * array q.  Caller must ensure q is non-null and index is in
435 >     * range. This method is used only during resets and backouts.
436       */
437 <    private void storeSp(int s) {
438 <        _unsafe.putOrderedInt(this, spOffset, s);
437 >    private static final void writeSlot(ForkJoinTask<?>[] q, int i,
438 >                                              ForkJoinTask<?> t) {
439 >        UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
440      }
441  
442 <    // Main queue methods
442 >    // queue methods
443  
444      /**
445 <     * Pushes a task. Called only by current thread.
446 <     * @param t the task. Caller must ensure nonnull
445 >     * Pushes a task. Call only from this thread.
446 >     *
447 >     * @param t the task. Caller must ensure non-null.
448       */
449      final void pushTask(ForkJoinTask<?> t) {
450 +        int s;
451          ForkJoinTask<?>[] q = queue;
452 <        int mask = q.length - 1;
453 <        int s = sp;
454 <        setSlot(q, s & mask, t);
425 <        storeSp(++s);
426 <        if ((s -= base) == 1)
452 >        int mask = q.length - 1; // implicit assert q != null
453 >        UNSAFE.putOrderedObject(q, (((s = sp++) & mask) << qShift) + qBase, t);
454 >        if ((s -= base) <= 0)
455              pool.signalWork();
456 <        else if (s >= mask)
456 >        else if (s + 1 >= mask)
457              growQueue();
458      }
459  
460      /**
461       * Tries to take a task from the base of the queue, failing if
462 <     * either empty or contended.
463 <     * @return a task, or null if none or contended.
462 >     * empty or contended. Note: Specializations of this code appear
463 >     * in scan and scanWhileJoining.
464 >     *
465 >     * @return a task, or null if none or contended
466       */
467 <    private ForkJoinTask<?> deqTask() {
467 >    final ForkJoinTask<?> deqTask() {
468          ForkJoinTask<?> t;
469          ForkJoinTask<?>[] q;
470 <        int i;
471 <        int b;
442 <        if (sp != (b = base) &&
470 >        int b, i;
471 >        if ((b = base) != sp &&
472              (q = queue) != null && // must read q after b
473              (t = q[i = (q.length - 1) & b]) != null &&
474 <            casSlotNull(q, i, t)) {
474 >            UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
475              base = b + 1;
476              return t;
477          }
# Line 450 | Line 479 | public class ForkJoinWorkerThread extend
479      }
480  
481      /**
482 <     * Returns a popped task, or null if empty. Ensures active status
483 <     * if nonnull. Called only by current thread.
482 >     * Tries to take a task from the base of own queue. Assumes active
483 >     * status.  Called only by current thread.
484 >     *
485 >     * @return a task, or null if none
486 >     */
487 >    final ForkJoinTask<?> locallyDeqTask() {
488 >        ForkJoinTask<?>[] q = queue;
489 >        if (q != null) {
490 >            ForkJoinTask<?> t;
491 >            int b, i;
492 >            while (sp != (b = base)) {
493 >                if ((t = q[i = (q.length - 1) & b]) != null &&
494 >                    UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
495 >                                                t, null)) {
496 >                    base = b + 1;
497 >                    return t;
498 >                }
499 >            }
500 >        }
501 >        return null;
502 >    }
503 >
504 >    /**
505 >     * Returns a popped task, or null if empty. Assumes active status.
506 >     * Called only by current thread. (Note: a specialization of this
507 >     * code appears in popWhileJoining.)
508       */
509      final ForkJoinTask<?> popTask() {
510 <        int s = sp;
511 <        while (s != base) {
512 <            if (tryActivate()) {
513 <                ForkJoinTask<?>[] q = queue;
514 <                int mask = q.length - 1;
515 <                int i = (s - 1) & mask;
516 <                ForkJoinTask<?> t = q[i];
517 <                if (t == null || !casSlotNull(q, i, t))
465 <                    break;
466 <                storeSp(s - 1);
510 >        int s;
511 >        ForkJoinTask<?>[] q;
512 >        if (base != (s = sp) && (q = queue) != null) {
513 >            int i = (q.length - 1) & --s;
514 >            ForkJoinTask<?> t = q[i];
515 >            if (t != null && UNSAFE.compareAndSwapObject
516 >                (q, (i << qShift) + qBase, t, null)) {
517 >                sp = s;
518                  return t;
519              }
520          }
# Line 471 | Line 522 | public class ForkJoinWorkerThread extend
522      }
523  
524      /**
525 <     * Specialized version of popTask to pop only if
526 <     * topmost element is the given task. Called only
527 <     * by current thread while active.
528 <     * @param t the task. Caller must ensure nonnull
525 >     * Specialized version of popTask to pop only if topmost element
526 >     * is the given task. Called only by current thread while
527 >     * active.
528 >     *
529 >     * @param t the task. Caller must ensure non-null.
530       */
531      final boolean unpushTask(ForkJoinTask<?> t) {
532 <        ForkJoinTask<?>[] q = queue;
533 <        int mask = q.length - 1;
534 <        int s = sp - 1;
535 <        if (casSlotNull(q, s & mask, t)) {
536 <            storeSp(s);
532 >        int s;
533 >        ForkJoinTask<?>[] q;
534 >        if (base != (s = sp) && (q = queue) != null &&
535 >            UNSAFE.compareAndSwapObject
536 >            (q, (((q.length - 1) & --s) << qShift) + qBase, t, null)) {
537 >            sp = s;
538              return true;
539          }
540          return false;
541      }
542  
543      /**
544 <     * Returns next task to pop.
544 >     * Returns next task or null if empty or contended
545       */
546      final ForkJoinTask<?> peekTask() {
547          ForkJoinTask<?>[] q = queue;
548 <        return q == null? null : q[(sp - 1) & (q.length - 1)];
548 >        if (q == null)
549 >            return null;
550 >        int mask = q.length - 1;
551 >        int i = locallyFifo ? base : (sp - 1);
552 >        return q[i & mask];
553      }
554  
555      /**
# Line 517 | Line 574 | public class ForkJoinWorkerThread extend
574              ForkJoinTask<?> t = oldQ[oldIndex];
575              if (t != null && !casSlotNull(oldQ, oldIndex, t))
576                  t = null;
577 <            setSlot(newQ, b & newMask, t);
577 >            writeSlot(newQ, b & newMask, t);
578          } while (++b != bf);
579          pool.signalWork();
580      }
581  
582      /**
583 +     * Computes next value for random victim probe in scan().  Scans
584 +     * don't require a very high quality generator, but also not a
585 +     * crummy one.  Marsaglia xor-shift is cheap and works well enough.
586 +     * Note: This is manually inlined in scan()
587 +     */
588 +    private static final int xorShift(int r) {
589 +        r ^= r << 13;
590 +        r ^= r >>> 17;
591 +        return r ^ (r << 5);
592 +    }
593 +
594 +    /**
595       * Tries to steal a task from another worker. Starts at a random
596       * index of workers array, and probes workers until finding one
597       * with non-empty queue or finding that all are empty.  It
598       * randomly selects the first n probes. If these are empty, it
599 <     * resorts to a full circular traversal, which is necessary to
600 <     * accurately set active status by caller. Also restarts if pool
601 <     * events occurred since last scan, which forces refresh of
602 <     * workers array, in case barrier was associated with resize.
599 >     * resorts to a circular sweep, which is necessary to accurately
600 >     * set active status. (The circular sweep uses steps of
601 >     * approximately half the array size plus 1, to avoid bias
602 >     * stemming from leftmost packing of the array in ForkJoinPool.)
603       *
604       * This method must be both fast and quiet -- usually avoiding
605       * memory accesses that could disrupt cache sharing etc other than
606 <     * those needed to check for and take tasks. This accounts for,
607 <     * among other things, updating random seed in place without
608 <     * storing it until exit.
606 >     * those needed to check for and take tasks (or to activate if not
607 >     * already active). This accounts for, among other things,
608 >     * updating random seed in place without storing it until exit.
609       *
610       * @return a task, or null if none found
611       */
612      private ForkJoinTask<?> scan() {
613 <        ForkJoinTask<?> t = null;
614 <        int r = seed;                    // extract once to keep scan quiet
615 <        ForkJoinWorkerThread[] ws;       // refreshed on outer loop
616 <        int mask;                        // must be power 2 minus 1 and > 0
617 <        outer:do {
618 <            if ((ws = pool.workers) != null && (mask = ws.length - 1) > 0) {
619 <                int idx = r;
620 <                int probes = ~mask;      // use random index while negative
621 <                for (;;) {
622 <                    r = xorShift(r);     // update random seed
623 <                    ForkJoinWorkerThread v = ws[mask & idx];
624 <                    if (v == null || v.sp == v.base) {
625 <                        if (probes <= mask)
626 <                            idx = (probes++ < 0)? r : (idx + 1);
627 <                        else
628 <                            break;
613 >        ForkJoinPool p = pool;
614 >        ForkJoinWorkerThread[] ws;        // worker array
615 >        int n;                            // upper bound of #workers
616 >        if ((ws = p.workers) != null && (n = ws.length) > 1) {
617 >            boolean canSteal = active;    // shadow active status
618 >            int r = seed;                 // extract seed once
619 >            int mask = n - 1;
620 >            int j = -n;                   // loop counter
621 >            int k = r;                    // worker index, random if j < 0
622 >            for (;;) {
623 >                ForkJoinWorkerThread v = ws[k & mask];
624 >                r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // inline xorshift
625 >                if (v != null && v.base != v.sp) {
626 >                    int b, i;             // inline specialized deqTask
627 >                    ForkJoinTask<?>[] q;
628 >                    ForkJoinTask<?> t;
629 >                    if ((canSteal ||      // ensure active status
630 >                         (canSteal = active = p.tryIncrementActiveCount())) &&
631 >                        (q = v.queue) != null &&
632 >                        (t = q[i = (q.length - 1) & (b = v.base)]) != null &&
633 >                        UNSAFE.compareAndSwapObject
634 >                        (q, (i << qShift) + qBase, t, null)) {
635 >                        v.base = b + 1;
636 >                        seed = r;
637 >                        ++stealCount;
638 >                        return t;
639                      }
640 <                    else if (!tryActivate() || (t = v.deqTask()) == null)
641 <                        continue outer;  // restart on contention
563 <                    else
564 <                        break outer;
640 >                    j = -n;
641 >                    k = r;                // restart on contention
642                  }
643 +                else if (++j <= 0)
644 +                    k = r;
645 +                else if (j <= n)
646 +                    k += (n >>> 1) | 1;
647 +                else
648 +                    break;
649              }
650 <        } while (pool.hasNewSyncEvent(this)); // retry on pool events
651 <        seed = r;
569 <        return t;
650 >        }
651 >        return null;
652      }
653  
654 +    // Run State management
655 +
656 +    // status check methods used mainly by ForkJoinPool
657 +    final boolean isTerminating() { return (runState & TERMINATING) != 0; }
658 +    final boolean isTerminated()  { return (runState & TERMINATED) != 0; }
659 +    final boolean isSuspended()   { return (runState & SUSPENDED) != 0; }
660 +    final boolean isTrimmed()     { return (runState & TRIMMED) != 0; }
661 +
662      /**
663 <     * Pops or steals a task
574 <     * @return a task, if available
663 >     * Sets state to TERMINATING, also resuming if suspended.
664       */
665 <    final ForkJoinTask<?> pollTask() {
666 <        ForkJoinTask<?> t = popTask();
667 <        if (t == null && (t = scan()) != null)
668 <            ++stealCount;
669 <        return t;
665 >    final void shutdown() {
666 >        for (;;) {
667 >            int s = runState;
668 >            if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
669 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
670 >                                             (s & ~SUSPENDED) |
671 >                                             (TRIMMED|TERMINATING))) {
672 >                    LockSupport.unpark(this);
673 >                    break;
674 >                }
675 >            }
676 >            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
677 >                                              s | TERMINATING))
678 >                break;
679 >        }
680      }
681  
682      /**
683 <     * Returns a pool submission, if one exists, activating first.
585 <     * @return a submission, if available
683 >     * Sets state to TERMINATED. Called only by this thread.
684       */
685 <    private ForkJoinTask<?> pollSubmission() {
686 <        ForkJoinPool p = pool;
687 <        while (p.hasQueuedSubmissions()) {
688 <            ForkJoinTask<?> t;
689 <            if (tryActivate() && (t = p.pollSubmission()) != null)
592 <                return t;
593 <        }
594 <        return null;
685 >    private void setTerminated() {
686 >        int s;
687 >        do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
688 >                                               s = runState,
689 >                                               s | (TERMINATING|TERMINATED)));
690      }
691  
692 <    // Methods accessed only by Pool
692 >    /**
693 >     * Instrumented version of park. Also used by ForkJoinPool.awaitEvent
694 >     */
695 >    final void doPark() {
696 >        ++parkCount;
697 >        LockSupport.park(this);
698 >    }
699  
700      /**
701 <     * Removes and cancels all tasks in queue.  Can be called from any
702 <     * thread.
701 >     * If suspended, tries to set status to unsuspended.
702 >     * Caller must unpark to actually resume
703 >     *
704 >     * @return true if successful
705       */
706 <    final void cancelTasks() {
707 <        ForkJoinTask<?> t;
708 <        while (base != sp && (t = deqTask()) != null)
709 <            t.cancelIgnoringExceptions();
706 >    final boolean tryUnsuspend() {
707 >        int s;
708 >        return (((s = runState) & SUSPENDED) != 0 &&
709 >                UNSAFE.compareAndSwapInt(this, runStateOffset, s,
710 >                                         s & ~SUSPENDED));
711      }
712  
713      /**
714 <     * Get and clear steal count for accumulation by pool.  Called
715 <     * only when known to be idle (in pool.sync and termination).
714 >     * Sets suspended status and blocks as spare until resumed,
715 >     * shutdown, or timed out.
716 >     *
717 >     * @return false if trimmed
718       */
719 <    final int getAndClearStealCount() {
720 <        int sc = stealCount;
721 <        stealCount = 0;
722 <        return sc;
719 >    final boolean suspendAsSpare() {
720 >        for (;;) {               // set suspended unless terminating
721 >            int s = runState;
722 >            if ((s & TERMINATING) != 0) { // must kill
723 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
724 >                                             s | (TRIMMED | TERMINATING)))
725 >                    return false;
726 >            }
727 >            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
728 >                                              s | SUSPENDED))
729 >                break;
730 >        }
731 >        lastEventCount = 0;      // reset upon resume
732 >        ForkJoinPool p = pool;
733 >        p.releaseWaiters();      // help others progress
734 >        p.accumulateStealCount(this);
735 >        interrupted();           // clear/ignore interrupts
736 >        if (poolIndex < p.getParallelism()) { // untimed wait
737 >            while ((runState & SUSPENDED) != 0)
738 >                doPark();
739 >            return true;
740 >        }
741 >        return timedSuspend();   // timed wait if apparently non-core
742      }
743  
744      /**
745 <     * Returns true if at least one worker in the given array appears
746 <     * to have at least one queued task.
622 <     * @param ws array of workers
745 >     * Blocks as spare until resumed or timed out
746 >     * @return false if trimmed
747       */
748 <    static boolean hasQueuedTasks(ForkJoinWorkerThread[] ws) {
749 <        if (ws != null) {
750 <            int len = ws.length;
751 <            for (int j = 0; j < 2; ++j) { // need two passes for clean sweep
752 <                for (int i = 0; i < len; ++i) {
753 <                    ForkJoinWorkerThread w = ws[i];
754 <                    if (w != null && w.sp != w.base)
755 <                        return true;
756 <                }
748 >    private boolean timedSuspend() {
749 >        long nanos = SPARE_KEEPALIVE_NANOS;
750 >        long startTime = System.nanoTime();
751 >        while ((runState & SUSPENDED) != 0) {
752 >            ++parkCount;
753 >            if ((nanos -= (System.nanoTime() - startTime)) > 0)
754 >                LockSupport.parkNanos(this, nanos);
755 >            else { // try to trim on timeout
756 >                int s = runState;
757 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
758 >                                             (s & ~SUSPENDED) |
759 >                                             (TRIMMED|TERMINATING)))
760 >                    return false;
761              }
762          }
763 <        return false;
763 >        return true;
764      }
765  
766 <    // Support methods for ForkJoinTask
766 >    // Misc support methods for ForkJoinPool
767  
768      /**
769 <     * Returns an estimate of the number of tasks in the queue.
769 >     * Returns an estimate of the number of tasks in the queue.  Also
770 >     * used by ForkJoinTask.
771       */
772      final int getQueueSize() {
773 <        int n = sp - base;
774 <        return n < 0? 0 : n; // suppress momentarily negative values
773 >        return -base + sp;
774 >    }
775 >
776 >    /**
777 >     * Set locallyFifo mode. Called only by ForkJoinPool
778 >     */
779 >    final void setAsyncMode(boolean async) {
780 >        locallyFifo = async;
781      }
782  
783      /**
784 +     * Removes and cancels all tasks in queue.  Can be called from any
785 +     * thread.
786 +     */
787 +    final void cancelTasks() {
788 +        while (base != sp) {
789 +            ForkJoinTask<?> t = deqTask();
790 +            if (t != null)
791 +                t.cancelIgnoringExceptions();
792 +        }
793 +    }
794 +
795 +    /**
796 +     * Drains tasks to given collection c.
797 +     *
798 +     * @return the number of tasks drained
799 +     */
800 +    final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
801 +        int n = 0;
802 +        while (base != sp) {
803 +            ForkJoinTask<?> t = deqTask();
804 +            if (t != null) {
805 +                c.add(t);
806 +                ++n;
807 +            }
808 +        }
809 +        return n;
810 +    }
811 +
812 +    // Support methods for ForkJoinTask
813 +
814 +    /**
815       * Returns an estimate of the number of tasks, offset by a
816       * function of number of idle workers.
817 +     *
818 +     * This method provides a cheap heuristic guide for task
819 +     * partitioning when programmers, frameworks, tools, or languages
820 +     * have little or no idea about task granularity.  In essence by
821 +     * offering this method, we ask users only about tradeoffs in
822 +     * overhead vs expected throughput and its variance, rather than
823 +     * how finely to partition tasks.
824 +     *
825 +     * In a steady state strict (tree-structured) computation, each
826 +     * thread makes available for stealing enough tasks for other
827 +     * threads to remain active. Inductively, if all threads play by
828 +     * the same rules, each thread should make available only a
829 +     * constant number of tasks.
830 +     *
831 +     * The minimum useful constant is just 1. But using a value of 1
832 +     * would require immediate replenishment upon each steal to
833 +     * maintain enough tasks, which is infeasible.  Further,
834 +     * partitionings/granularities of offered tasks should minimize
835 +     * steal rates, which in general means that threads nearer the top
836 +     * of computation tree should generate more than those nearer the
837 +     * bottom. In perfect steady state, each thread is at
838 +     * approximately the same level of computation tree. However,
839 +     * producing extra tasks amortizes the uncertainty of progress and
840 +     * diffusion assumptions.
841 +     *
842 +     * So, users will want to use values larger, but not much larger
843 +     * than 1 to both smooth over transient shortages and hedge
844 +     * against uneven progress; as traded off against the cost of
845 +     * extra task overhead. We leave the user to pick a threshold
846 +     * value to compare with the results of this call to guide
847 +     * decisions, but recommend values such as 3.
848 +     *
849 +     * When all threads are active, it is on average OK to estimate
850 +     * surplus strictly locally. In steady-state, if one thread is
851 +     * maintaining say 2 surplus tasks, then so are others. So we can
852 +     * just use estimated queue length (although note that (sp - base)
853 +     * can be an overestimate because of stealers lagging increments
854 +     * of base).  However, this strategy alone leads to serious
855 +     * mis-estimates in some non-steady-state conditions (ramp-up,
856 +     * ramp-down, other stalls). We can detect many of these by
857 +     * further considering the number of "idle" threads, that are
858 +     * known to have zero queued tasks, so compensate by a factor of
859 +     * (#idle/#active) threads.
860       */
861      final int getEstimatedSurplusTaskCount() {
862 <        // The halving approximates weighting idle vs non-idle workers
654 <        return (sp - base) - (pool.getIdleThreadCount() >>> 1);
862 >        return sp - base - pool.idlePerActive();
863      }
864  
865      /**
866 <     * Scan, returning early if joinMe done
866 >     * Gets and removes a local task.
867 >     *
868 >     * @return a task, if available
869       */
870 <    final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
871 <        ForkJoinTask<?> t = pollTask();
872 <        if (t != null && joinMe.status < 0 && sp == base) {
873 <            pushTask(t); // unsteal if done and this task would be stealable
664 <            t = null;
870 >    final ForkJoinTask<?> pollLocalTask() {
871 >        while (base != sp) {
872 >            if (active || (active = pool.tryIncrementActiveCount()))
873 >                return locallyFifo? locallyDeqTask() : popTask();
874          }
875 <        return t;
875 >        return null;
876      }
877  
878      /**
879 <     * Runs tasks until pool isQuiescent
879 >     * Gets and removes a local or stolen task.
880 >     *
881 >     * @return a task, if available
882       */
883 <    final void helpQuiescePool() {
884 <        for (;;) {
885 <            ForkJoinTask<?> t = pollTask();
883 >    final ForkJoinTask<?> pollTask() {
884 >        ForkJoinTask<?> t;
885 >        return (t = pollLocalTask()) != null ? t : scan();
886 >    }
887 >
888 >    /**
889 >     * Executes or processes other tasks awaiting the given task
890 >     * @return task completion status
891 >     */
892 >    final int execWhileJoining(ForkJoinTask<?> joinMe) {
893 >        int s;
894 >        while ((s = joinMe.status) >= 0) {
895 >            ForkJoinTask<?> t = base != sp?
896 >                popWhileJoining(joinMe) :
897 >                scanWhileJoining(joinMe);
898              if (t != null)
899 <                t.quietlyExec();
677 <            else if (tryInactivate() && pool.isQuiescent())
678 <                break;
899 >                t.tryExec();
900          }
901 <        do;while (!tryActivate()); // re-activate on exit
901 >        return s;
902      }
903  
904 <    // Temporary Unsafe mechanics for preliminary release
905 <    private static Unsafe getUnsafe() throws Throwable {
906 <        try {
907 <            return Unsafe.getUnsafe();
908 <        } catch (SecurityException se) {
909 <            try {
910 <                return java.security.AccessController.doPrivileged
911 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
912 <                        public Unsafe run() throws Exception {
913 <                            return getUnsafePrivileged();
914 <                        }});
915 <            } catch (java.security.PrivilegedActionException e) {
916 <                throw e.getCause();
904 >    /**
905 >     * Returns or stolen task, if available, unless joinMe is done
906 >     *
907 >     * This method is intrinsically nonmodular. To maintain the
908 >     * property that tasks are never stolen if the awaited task is
909 >     * ready, we must interleave mechanics of scan with status
910 >     * checks. We rely here on the commit points of deq that allow us
911 >     * to cancel a steal even after CASing slot to null, but before
912 >     * adjusting base index: If, after the CAS, we see that joinMe is
913 >     * ready, we can back out by placing the task back into the slot,
914 >     * without adjusting index. The loop is otherwise a variant of the
915 >     * one in scan().
916 >     *
917 >     */
918 >    private ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
919 >        int r = seed;
920 >        ForkJoinPool p = pool;
921 >        ForkJoinWorkerThread[] ws;
922 >        int n;
923 >        outer:while ((ws = p.workers) != null && (n = ws.length) > 1) {
924 >            int mask = n - 1;
925 >            int k = r;
926 >            boolean contended = false; // to retry loop if deq contends
927 >            for (int j = -n; j <= n; ++j) {
928 >                if (joinMe.status < 0)
929 >                    break outer;
930 >                int b;
931 >                ForkJoinTask<?>[] q;
932 >                ForkJoinWorkerThread v = ws[k & mask];
933 >                r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
934 >                if (v != null && (b=v.base) != v.sp && (q=v.queue) != null) {
935 >                    int i = (q.length - 1) & b;
936 >                    ForkJoinTask<?> t = q[i];
937 >                    if (t != null && UNSAFE.compareAndSwapObject
938 >                        (q, (i << qShift) + qBase, t, null)) {
939 >                        if (joinMe.status >= 0) {
940 >                            v.base = b + 1;
941 >                            seed = r;
942 >                            ++stealCount;
943 >                            return t;
944 >                        }
945 >                        UNSAFE.putObjectVolatile(q, (i<<qShift)+qBase, t);
946 >                        break outer; // back out
947 >                    }
948 >                    contended = true;
949 >                }
950 >                k = j < 0 ? r : (k + ((n >>> 1) | 1));
951              }
952 +            if (!contended && p.tryAwaitBusyJoin(joinMe))
953 +                break;
954          }
955 +        return null;
956      }
957  
958 <    private static Unsafe getUnsafePrivileged()
959 <            throws NoSuchFieldException, IllegalAccessException {
960 <        Field f = Unsafe.class.getDeclaredField("theUnsafe");
961 <        f.setAccessible(true);
962 <        return (Unsafe) f.get(null);
958 >    /**
959 >     * Version of popTask with join checks surrounding extraction.
960 >     * Uses the same backout strategy as helpJoinTask. Note that
961 >     * we ignore locallyFifo flag for local tasks here since helping
962 >     * joins only make sense in LIFO mode.
963 >     *
964 >     * @return a popped task, if available, unless joinMe is done
965 >     */
966 >    private ForkJoinTask<?> popWhileJoining(ForkJoinTask<?> joinMe) {
967 >        int s;
968 >        ForkJoinTask<?>[] q;
969 >        while ((s = sp) != base && (q = queue) != null && joinMe.status >= 0) {
970 >            int i = (q.length - 1) & --s;
971 >            ForkJoinTask<?> t = q[i];
972 >            if (t != null && UNSAFE.compareAndSwapObject
973 >                (q, (i << qShift) + qBase, t, null)) {
974 >                if (joinMe.status >= 0) {
975 >                    sp = s;
976 >                    return t;
977 >                }
978 >                UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
979 >                break;  // back out
980 >            }
981 >        }
982 >        return null;
983      }
984  
985 <    private static long fieldOffset(String fieldName)
986 <            throws NoSuchFieldException {
987 <        return _unsafe.objectFieldOffset
988 <            (ForkJoinWorkerThread.class.getDeclaredField(fieldName));
985 >    /**
986 >     * Runs tasks until {@code pool.isQuiescent()}.
987 >     */
988 >    final void helpQuiescePool() {
989 >        for (;;) {
990 >            ForkJoinTask<?> t = pollLocalTask();
991 >            if (t != null || (t = scan()) != null)
992 >                t.tryExec();
993 >            else {
994 >                ForkJoinPool p = pool;
995 >                if (active) {
996 >                    active = false; // inactivate
997 >                    do {} while (!p.tryDecrementActiveCount());
998 >                }
999 >                if (p.isQuiescent()) {
1000 >                    active = true; // re-activate
1001 >                    do {} while (!p.tryIncrementActiveCount());
1002 >                    return;
1003 >                }
1004 >            }
1005 >        }
1006      }
1007  
1008 <    static final Unsafe _unsafe;
1009 <    static final long baseOffset;
1010 <    static final long spOffset;
1011 <    static final long runStateOffset;
1012 <    static final long qBase;
1013 <    static final int qShift;
1008 >    // Unsafe mechanics
1009 >
1010 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1011 >    private static final long runStateOffset =
1012 >        objectFieldOffset("runState", ForkJoinWorkerThread.class);
1013 >    private static final long qBase =
1014 >        UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
1015 >    private static final int qShift;
1016 >
1017      static {
1018 +        int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
1019 +        if ((s & (s-1)) != 0)
1020 +            throw new Error("data type scale not a power of two");
1021 +        qShift = 31 - Integer.numberOfLeadingZeros(s);
1022 +    }
1023 +
1024 +    private static long objectFieldOffset(String field, Class<?> klazz) {
1025          try {
1026 <            _unsafe = getUnsafe();
1027 <            baseOffset = fieldOffset("base");
1028 <            spOffset = fieldOffset("sp");
1029 <            runStateOffset = fieldOffset("runState");
1030 <            qBase = _unsafe.arrayBaseOffset(ForkJoinTask[].class);
1031 <            int s = _unsafe.arrayIndexScale(ForkJoinTask[].class);
1032 <            if ((s & (s-1)) != 0)
1033 <                throw new Error("data type scale not a power of two");
1034 <            qShift = 31 - Integer.numberOfLeadingZeros(s);
1035 <        } catch (Throwable e) {
1036 <            throw new RuntimeException("Could not initialize intrinsics", e);
1026 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1027 >        } catch (NoSuchFieldException e) {
1028 >            // Convert Exception to corresponding Error
1029 >            NoSuchFieldError error = new NoSuchFieldError(field);
1030 >            error.initCause(e);
1031 >            throw error;
1032 >        }
1033 >    }
1034 >
1035 >    /**
1036 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1037 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1038 >     * into a jdk.
1039 >     *
1040 >     * @return a sun.misc.Unsafe
1041 >     */
1042 >    private static sun.misc.Unsafe getUnsafe() {
1043 >        try {
1044 >            return sun.misc.Unsafe.getUnsafe();
1045 >        } catch (SecurityException se) {
1046 >            try {
1047 >                return java.security.AccessController.doPrivileged
1048 >                    (new java.security
1049 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1050 >                        public sun.misc.Unsafe run() throws Exception {
1051 >                            java.lang.reflect.Field f = sun.misc
1052 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1053 >                            f.setAccessible(true);
1054 >                            return (sun.misc.Unsafe) f.get(null);
1055 >                        }});
1056 >            } catch (java.security.PrivilegedActionException e) {
1057 >                throw new RuntimeException("Could not initialize intrinsics",
1058 >                                           e.getCause());
1059 >            }
1060          }
1061      }
1062   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines