ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.4 by dl, Wed Jan 7 20:51:36 2009 UTC vs.
Revision 1.41 by dl, Tue Aug 17 18:30:33 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
11 < import java.util.concurrent.locks.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
10 >
11 > import java.util.Random;
12 > import java.util.Collection;
13 > import java.util.concurrent.locks.LockSupport;
14  
15   /**
16   * A thread managed by a {@link ForkJoinPool}.  This class is
17   * subclassable solely for the sake of adding functionality -- there
18 < * are no overridable methods dealing with scheduling or
19 < * execution. However, you can override initialization and termination
20 < * cleanup methods surrounding the main task processing loop.  If you
21 < * do create such a subclass, you will also need to supply a custom
22 < * ForkJoinWorkerThreadFactory to use it in a ForkJoinPool.
23 < *
24 < * <p>This class also provides methods for generating per-thread
25 < * random numbers, with the same properties as {@link
26 < * java.util.Random} but with each generator isolated from those of
27 < * other threads.
18 > * are no overridable methods dealing with scheduling or execution.
19 > * However, you can override initialization and termination methods
20 > * surrounding the main task processing loop.  If you do create such a
21 > * subclass, you will also need to supply a custom {@link
22 > * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
23 > * ForkJoinPool}.
24 > *
25 > * @since 1.7
26 > * @author Doug Lea
27   */
28   public class ForkJoinWorkerThread extends Thread {
29      /*
30 <     * Algorithm overview:
30 >     * Overview:
31 >     *
32 >     * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
33 >     * ForkJoinTasks. This class includes bookkeeping in support of
34 >     * worker activation, suspension, and lifecycle control described
35 >     * in more detail in the internal documentation of class
36 >     * ForkJoinPool. And as described further below, this class also
37 >     * includes special-cased support for some ForkJoinTask
38 >     * methods. But the main mechanics involve work-stealing:
39       *
40 <     * 1. Work-Stealing: Work-stealing queues are special forms of
41 <     * Deques that support only three of the four possible
42 <     * end-operations -- push, pop, and deq (aka steal), and only do
43 <     * so under the constraints that push and pop are called only from
44 <     * the owning thread, while deq may be called from other threads.
45 <     * (If you are unfamiliar with them, you probably want to read
46 <     * Herlihy and Shavit's book "The Art of Multiprocessor
47 <     * programming", chapter 16 describing these in more detail before
48 <     * proceeding.)  The main work-stealing queue design is roughly
49 <     * similar to "Dynamic Circular Work-Stealing Deque" by David
50 <     * Chase and Yossi Lev, SPAA 2005
51 <     * (http://research.sun.com/scalable/pubs/index.html).  The main
52 <     * difference ultimately stems from gc requirements that we null
53 <     * out taken slots as soon as we can, to maintain as small a
54 <     * footprint as possible even in programs generating huge numbers
55 <     * of tasks. To accomplish this, we shift the CAS arbitrating pop
56 <     * vs deq (steal) from being on the indices ("base" and "sp") to
57 <     * the slots themselves (mainly via method "casSlotNull()"). So,
58 <     * both a successful pop and deq mainly entail CAS'ing a nonnull
59 <     * slot to null.  Because we rely on CASes of references, we do
60 <     * not need tag bits on base or sp.  They are simple ints as used
61 <     * in any circular array-based queue (see for example ArrayDeque).
62 <     * Updates to the indices must still be ordered in a way that
63 <     * guarantees that (sp - base) > 0 means the queue is empty, but
64 <     * otherwise may err on the side of possibly making the queue
65 <     * appear nonempty when a push, pop, or deq have not fully
66 <     * committed. Note that this means that the deq operation,
67 <     * considered individually, is not wait-free. One thief cannot
68 <     * successfully continue until another in-progress one (or, if
69 <     * previously empty, a push) completes.  However, in the
70 <     * aggregate, we ensure at least probablistic non-blockingness. If
71 <     * an attempted steal fails, a thief always chooses a different
40 >     * Work-stealing queues are special forms of Deques that support
41 >     * only three of the four possible end-operations -- push, pop,
42 >     * and deq (aka steal), under the further constraints that push
43 >     * and pop are called only from the owning thread, while deq may
44 >     * be called from other threads.  (If you are unfamiliar with
45 >     * them, you probably want to read Herlihy and Shavit's book "The
46 >     * Art of Multiprocessor programming", chapter 16 describing these
47 >     * in more detail before proceeding.)  The main work-stealing
48 >     * queue design is roughly similar to those in the papers "Dynamic
49 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
50 >     * (http://research.sun.com/scalable/pubs/index.html) and
51 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
52 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
53 >     * The main differences ultimately stem from gc requirements that
54 >     * we null out taken slots as soon as we can, to maintain as small
55 >     * a footprint as possible even in programs generating huge
56 >     * numbers of tasks. To accomplish this, we shift the CAS
57 >     * arbitrating pop vs deq (steal) from being on the indices
58 >     * ("base" and "sp") to the slots themselves (mainly via method
59 >     * "casSlotNull()"). So, both a successful pop and deq mainly
60 >     * entail a CAS of a slot from non-null to null.  Because we rely
61 >     * on CASes of references, we do not need tag bits on base or sp.
62 >     * They are simple ints as used in any circular array-based queue
63 >     * (see for example ArrayDeque).  Updates to the indices must
64 >     * still be ordered in a way that guarantees that sp == base means
65 >     * the queue is empty, but otherwise may err on the side of
66 >     * possibly making the queue appear nonempty when a push, pop, or
67 >     * deq have not fully committed. Note that this means that the deq
68 >     * operation, considered individually, is not wait-free. One thief
69 >     * cannot successfully continue until another in-progress one (or,
70 >     * if previously empty, a push) completes.  However, in the
71 >     * aggregate, we ensure at least probabilistic non-blockingness.
72 >     * If an attempted steal fails, a thief always chooses a different
73       * random victim target to try next. So, in order for one thief to
74       * progress, it suffices for any in-progress deq or new push on
75       * any empty queue to complete. One reason this works well here is
76       * that apparently-nonempty often means soon-to-be-stealable,
77 <     * which gives threads a chance to activate if necessary before
78 <     * stealing (see below).
77 >     * which gives threads a chance to set activation status if
78 >     * necessary before stealing.
79       *
80 <     * Efficient implementation of this approach currently relies on
81 <     * an uncomfortable amount of "Unsafe" mechanics. To maintain
80 >     * This approach also enables support for "async mode" where local
81 >     * task processing is in FIFO, not LIFO order; simply by using a
82 >     * version of deq rather than pop when locallyFifo is true (as set
83 >     * by the ForkJoinPool).  This allows use in message-passing
84 >     * frameworks in which tasks are never joined.
85 >     *
86 >     * When a worker would otherwise be blocked waiting to join a
87 >     * task, it first tries a form of linear helping: Each worker
88 >     * records (in field currentSteal) the most recent task it stole
89 >     * from some other worker. Plus, it records (in field currentJoin)
90 >     * the task it is currently actively joining. Method joinTask uses
91 >     * these markers to try to find a worker to help (i.e., steal back
92 >     * a task from and execute it) that could hasten completion of the
93 >     * actively joined task. In essence, the joiner executes a task
94 >     * that would be on its own local deque had the to-be-joined task
95 >     * not been stolen. This may be seen as a conservative variant of
96 >     * the approach in Wagner & Calder "Leapfrogging: a portable
97 >     * technique for implementing efficient futures" SIGPLAN Notices,
98 >     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
99 >     * in that: (1) We only maintain dependency links across workers
100 >     * upon steals, rather than use per-task bookkeeping.  This may
101 >     * require a linear scan of workers array to locate stealers, but
102 >     * usually doesn't because stealers leave hints (that may become
103 >     * stale/wrong) of where to locate them. This isolates cost to
104 >     * when it is needed, rather than adding to per-task overhead.
105 >     * (2) It is "shallow", ignoring nesting and potentially cyclic
106 >     * mutual steals.  (3) It is intentionally racy: field currentJoin
107 >     * is updated only while actively joining, which means that we
108 >     * miss links in the chain during long-lived tasks, GC stalls etc
109 >     * (which is OK since blocking in such cases is usually a good
110 >     * idea).  (4) We bound the number of attempts to find work (see
111 >     * MAX_HELP_DEPTH) and fall back to suspending the worker and if
112 >     * necessary replacing it with a spare (see
113 >     * ForkJoinPool.tryAwaitJoin).
114 >     *
115 >     * Efficient implementation of these algorithms currently relies
116 >     * on an uncomfortable amount of "Unsafe" mechanics. To maintain
117       * correct orderings, reads and writes of variable base require
118 <     * volatile ordering.  Variable sp does not require volatile write
119 <     * but needs cheaper store-ordering on writes.  Because they are
120 <     * protected by volatile base reads, reads of the queue array and
121 <     * its slots do not need volatile load semantics, but writes (in
122 <     * push) require store order and CASes (in pop and deq) require
123 <     * (volatile) CAS semantics. Since these combinations aren't
124 <     * supported using ordinary volatiles, the only way to accomplish
125 <     * these effciently is to use direct Unsafe calls. (Using external
126 <     * AtomicIntegers and AtomicReferenceArrays for the indices and
127 <     * array is significantly slower because of memory locality and
128 <     * indirection effects.) Further, performance on most platforms is
129 <     * very sensitive to placement and sizing of the (resizable) queue
130 <     * array.  Even though these queues don't usually become all that
131 <     * big, the initial size must be large enough to counteract cache
118 >     * volatile ordering.  Variable sp does not require volatile
119 >     * writes but still needs store-ordering, which we accomplish by
120 >     * pre-incrementing sp before filling the slot with an ordered
121 >     * store.  (Pre-incrementing also enables backouts used in
122 >     * joinTask.)  Because they are protected by volatile base reads,
123 >     * reads of the queue array and its slots by other threads do not
124 >     * need volatile load semantics, but writes (in push) require
125 >     * store order and CASes (in pop and deq) require (volatile) CAS
126 >     * semantics.  (Michael, Saraswat, and Vechev's algorithm has
127 >     * similar properties, but without support for nulling slots.)
128 >     * Since these combinations aren't supported using ordinary
129 >     * volatiles, the only way to accomplish these efficiently is to
130 >     * use direct Unsafe calls. (Using external AtomicIntegers and
131 >     * AtomicReferenceArrays for the indices and array is
132 >     * significantly slower because of memory locality and indirection
133 >     * effects.)
134 >     *
135 >     * Further, performance on most platforms is very sensitive to
136 >     * placement and sizing of the (resizable) queue array.  Even
137 >     * though these queues don't usually become all that big, the
138 >     * initial size must be large enough to counteract cache
139       * contention effects across multiple queues (especially in the
140       * presence of GC cardmarking). Also, to improve thread-locality,
141 <     * queues are currently initialized immediately after the thread
142 <     * gets the initial signal to start processing tasks.  However,
143 <     * all queue-related methods except pushTask are written in a way
144 <     * that allows them to instead be lazily allocated and/or disposed
145 <     * of when empty. All together, these low-level implementation
96 <     * choices produce as much as a factor of 4 performance
97 <     * improvement compared to naive implementations, and enable the
98 <     * processing of billions of tasks per second, sometimes at the
99 <     * expense of ugliness.
100 <     *
101 <     * 2. Run control: The primary run control is based on a global
102 <     * counter (activeCount) held by the pool. It uses an algorithm
103 <     * similar to that in Herlihy and Shavit section 17.6 to cause
104 <     * threads to eventually block when all threads declare they are
105 <     * inactive. (See variable "scans".)  For this to work, threads
106 <     * must be declared active when executing tasks, and before
107 <     * stealing a task. They must be inactive before blocking on the
108 <     * Pool Barrier (awaiting a new submission or other Pool
109 <     * event). In between, there is some free play which we take
110 <     * advantage of to avoid contention and rapid flickering of the
111 <     * global activeCount: If inactive, we activate only if a victim
112 <     * queue appears to be nonempty (see above).  Similarly, a thread
113 <     * tries to inactivate only after a full scan of other threads.
114 <     * The net effect is that contention on activeCount is rarely a
115 <     * measurable performance issue. (There are also a few other cases
116 <     * where we scan for work rather than retry/block upon
117 <     * contention.)
118 <     *
119 <     * 3. Selection control. We maintain policy of always choosing to
120 <     * run local tasks rather than stealing, and always trying to
121 <     * steal tasks before trying to run a new submission. All steals
122 <     * are currently performed in randomly-chosen deq-order. It may be
123 <     * worthwhile to bias these with locality / anti-locality
124 <     * information, but doing this well probably requires more
125 <     * lower-level information from JVMs than currently provided.
141 >     * queues are initialized after starting.  All together, these
142 >     * low-level implementation choices produce as much as a factor of
143 >     * 4 performance improvement compared to naive implementations,
144 >     * and enable the processing of billions of tasks per second,
145 >     * sometimes at the expense of ugliness.
146       */
147  
148      /**
149 +     * Generator for initial random seeds for random victim
150 +     * selection. This is used only to create initial seeds. Random
151 +     * steals use a cheaper xorshift generator per steal attempt. We
152 +     * expect only rare contention on seedGenerator, so just use a
153 +     * plain Random.
154 +     */
155 +    private static final Random seedGenerator = new Random();
156 +
157 +    /**
158 +     * The maximum stolen->joining link depth allowed in helpJoinTask.
159 +     * Depths for legitimate chains are unbounded, but we use a fixed
160 +     * constant to avoid (otherwise unchecked) cycles and bound
161 +     * staleness of traversal parameters at the expense of sometimes
162 +     * blocking when we could be helping.
163 +     */
164 +    private static final int MAX_HELP_DEPTH = 8;
165 +
166 +    /**
167 +     * The wakeup interval (in nanoseconds) for the oldest worker
168 +     * suspended as spare.  On each wakeup not signalled by a
169 +     * resumption, it may ask the pool to reduce the number of spares.
170 +     */
171 +    private static final long TRIM_RATE_NANOS =
172 +        5L * 1000L * 1000L * 1000L; // 5sec
173 +
174 +    /**
175       * Capacity of work-stealing queue array upon initialization.
176 <     * Must be a power of two. Initial size must be at least 2, but is
176 >     * Must be a power of two. Initial size must be at least 4, but is
177       * padded to minimize cache effects.
178       */
179      private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
180  
181      /**
182       * Maximum work-stealing queue array size.  Must be less than or
183 <     * equal to 1 << 30 to ensure lack of index wraparound.
183 >     * equal to 1 << 28 to ensure lack of index wraparound. (This
184 >     * is less than usual bounds, because we need leftshift by 3
185 >     * to be in int range).
186       */
187 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 30;
187 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
188  
189      /**
190 <     * Generator of seeds for per-thread random numbers.
190 >     * The pool this thread works in. Accessed directly by ForkJoinTask.
191       */
192 <    private static final Random randomSeedGenerator = new Random();
192 >    final ForkJoinPool pool;
193  
194      /**
195       * The work-stealing queue array. Size must be a power of two.
196 +     * Initialized in onStart, to improve memory locality.
197       */
198      private ForkJoinTask<?>[] queue;
199  
200      /**
152     * Index (mod queue.length) of next queue slot to push to or pop
153     * from. It is written only by owner thread, via ordered store.
154     * Both sp and base are allowed to wrap around on overflow, but
155     * (sp - base) still estimates size.
156     */
157    private volatile int sp;
158
159    /**
201       * Index (mod queue.length) of least valid queue slot, which is
202       * always the next position to steal from if nonempty.
203       */
204      private volatile int base;
205  
206      /**
207 <     * The pool this thread works in.
207 >     * Index (mod queue.length) of next queue slot to push to or pop
208 >     * from. It is written only by owner thread, and accessed by other
209 >     * threads only after reading (volatile) base.  Both sp and base
210 >     * are allowed to wrap around on overflow, but (sp - base) still
211 >     * estimates size.
212       */
213 <    final ForkJoinPool pool;
213 >    private int sp;
214  
215      /**
216 <     * Index of this worker in pool array. Set once by pool before
217 <     * running, and accessed directly by pool during cleanup etc
216 >     * The index of most recent stealer, used as a hint to avoid
217 >     * traversal in method helpJoinTask. This is only a hint because a
218 >     * worker might have had multiple steals and this only holds one
219 >     * of them (usually the most current). Declared non-volatile,
220 >     * relying on other prevailing sync to keep reasonably current.
221       */
222 <    int poolIndex;
222 >    private int stealHint;
223  
224      /**
225 <     * Run state of this worker. Supports simple versions of the usual
226 <     * shutdown/shutdownNow control.
225 >     * Run state of this worker. In addition to the usual run levels,
226 >     * tracks if this worker is suspended as a spare, and if it was
227 >     * killed (trimmed) while suspended. However, "active" status is
228 >     * maintained separately and modified only in conjunction with
229 >     * CASes of the pool's runState (which are currently sadly manually
230 >     * inlined for performance.)
231       */
232      private volatile int runState;
233  
234 <    // Runstate values. Order matters
235 <    private static final int RUNNING     = 0;
236 <    private static final int SHUTDOWN    = 1;
237 <    private static final int TERMINATING = 2;
238 <    private static final int TERMINATED  = 3;
234 >    private static final int TERMINATING = 0x01;
235 >    private static final int TERMINATED  = 0x02;
236 >    private static final int SUSPENDED   = 0x04; // inactive spare
237 >    private static final int TRIMMED     = 0x08; // killed while suspended
238 >
239 >    /**
240 >     * Number of steals, transferred and reset in pool callbacks pool
241 >     * when idle Accessed directly by pool.
242 >     */
243 >    int stealCount;
244 >
245 >    /**
246 >     * Seed for random number generator for choosing steal victims.
247 >     * Uses Marsaglia xorshift. Must be initialized as nonzero.
248 >     */
249 >    private int seed;
250  
251      /**
252       * Activity status. When true, this worker is considered active.
253 <     * Must be false upon construction. It must be true when executing
254 <     * tasks, and BEFORE stealing a task. It must be false before
255 <     * blocking on the Pool Barrier.
253 >     * Accessed directly by pool.  Must be false upon construction.
254 >     */
255 >    boolean active;
256 >
257 >    /**
258 >     * True if use local fifo, not default lifo, for local polling.
259 >     * Shadows value from ForkJoinPool.
260 >     */
261 >    private final boolean locallyFifo;
262 >
263 >    /**
264 >     * Index of this worker in pool array. Set once by pool before
265 >     * running, and accessed directly by pool to locate this worker in
266 >     * its workers array.
267 >     */
268 >    int poolIndex;
269 >
270 >    /**
271 >     * The last pool event waited for. Accessed only by pool in
272 >     * callback methods invoked within this thread.
273       */
274 <    private boolean active;
274 >    int lastEventCount;
275  
276      /**
277 <     * Number of steals, transferred to pool when idle
277 >     * Encoded index and event count of next event waiter. Used only
278 >     * by ForkJoinPool for managing event waiters.
279       */
280 <    private int stealCount;
280 >    volatile long nextWaiter;
281  
282      /**
283 <     * Seed for random number generator for choosing steal victims
283 >     * Number of times this thread suspended as spare
284       */
285 <    private int randomVictimSeed;
285 >    int spareCount;
286  
287      /**
288 <     * Seed for embedded Jurandom
288 >     * Encoded index and count of next spare waiter. Used only
289 >     * by ForkJoinPool for managing spares.
290       */
291 <    private long juRandomSeed;
291 >    volatile int nextSpare;
292  
293      /**
294 <     * The last barrier event waited for
294 >     * The task currently being joined, set only when actively trying
295 >     * to helpStealer. Written only by current thread, but read by
296 >     * others.
297       */
298 <    private long eventCount;
298 >    private volatile ForkJoinTask<?> currentJoin;
299 >
300 >    /**
301 >     * The task most recently stolen from another worker (or
302 >     * submission queue).  Not volatile because always read/written in
303 >     * presence of related volatiles in those cases where it matters.
304 >     */
305 >    private ForkJoinTask<?> currentSteal;
306  
307      /**
308       * Creates a ForkJoinWorkerThread operating in the given pool.
309 +     *
310       * @param pool the pool this thread works in
311       * @throws NullPointerException if pool is null
312       */
313      protected ForkJoinWorkerThread(ForkJoinPool pool) {
222        if (pool == null) throw new NullPointerException();
314          this.pool = pool;
315 <        // remaining initialization deferred to onStart
315 >        this.locallyFifo = pool.locallyFifo;
316 >        setDaemon(true);
317 >        // To avoid exposing construction details to subclasses,
318 >        // remaining initialization is in start() and onStart()
319      }
320  
321 <    // public access methods
321 >    /**
322 >     * Performs additional initialization and starts this thread
323 >     */
324 >    final void start(int poolIndex, UncaughtExceptionHandler ueh) {
325 >        this.poolIndex = poolIndex;
326 >        if (ueh != null)
327 >            setUncaughtExceptionHandler(ueh);
328 >        start();
329 >    }
330 >
331 >    // Public/protected methods
332  
333      /**
334 <     * Returns the pool hosting this thread
334 >     * Returns the pool hosting this thread.
335 >     *
336       * @return the pool
337       */
338      public ForkJoinPool getPool() {
# Line 239 | Line 344 | public class ForkJoinWorkerThread extend
344       * returned value ranges from zero to the maximum number of
345       * threads (minus one) that have ever been created in the pool.
346       * This method may be useful for applications that track status or
347 <     * collect results on a per-worker basis.
348 <     * @return the index number.
347 >     * collect results per-worker rather than per-task.
348 >     *
349 >     * @return the index number
350       */
351      public int getPoolIndex() {
352          return poolIndex;
353      }
354  
355 <    //  Access methods used by Pool
355 >    /**
356 >     * Initializes internal state after construction but before
357 >     * processing any tasks. If you override this method, you must
358 >     * invoke super.onStart() at the beginning of the method.
359 >     * Initialization requires care: Most fields must have legal
360 >     * default values, to ensure that attempted accesses from other
361 >     * threads work correctly even before this thread starts
362 >     * processing tasks.
363 >     */
364 >    protected void onStart() {
365 >        int rs = seedGenerator.nextInt();
366 >        seed = rs == 0? 1 : rs; // seed must be nonzero
367 >
368 >        // Allocate name string and arrays in this thread
369 >        String pid = Integer.toString(pool.getPoolNumber());
370 >        String wid = Integer.toString(poolIndex);
371 >        setName("ForkJoinPool-" + pid + "-worker-" + wid);
372 >
373 >        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
374 >    }
375 >
376 >    /**
377 >     * Performs cleanup associated with termination of this worker
378 >     * thread.  If you override this method, you must invoke
379 >     * {@code super.onTermination} at the end of the overridden method.
380 >     *
381 >     * @param exception the exception causing this thread to abort due
382 >     * to an unrecoverable error, or {@code null} if completed normally
383 >     */
384 >    protected void onTermination(Throwable exception) {
385 >        try {
386 >            ForkJoinPool p = pool;
387 >            if (active) {
388 >                int a; // inline p.tryDecrementActiveCount
389 >                active = false;
390 >                do {} while(!UNSAFE.compareAndSwapInt
391 >                            (p, poolRunStateOffset, a = p.runState, a - 1));
392 >            }
393 >            cancelTasks();
394 >            setTerminated();
395 >            p.workerTerminated(this);
396 >        } catch (Throwable ex) {        // Shouldn't ever happen
397 >            if (exception == null)      // but if so, at least rethrown
398 >                exception = ex;
399 >        } finally {
400 >            if (exception != null)
401 >                UNSAFE.throwException(exception);
402 >        }
403 >    }
404 >
405 >    /**
406 >     * This method is required to be public, but should never be
407 >     * called explicitly. It performs the main run loop to execute
408 >     * ForkJoinTasks.
409 >     */
410 >    public void run() {
411 >        Throwable exception = null;
412 >        try {
413 >            onStart();
414 >            mainLoop();
415 >        } catch (Throwable ex) {
416 >            exception = ex;
417 >        } finally {
418 >            onTermination(exception);
419 >        }
420 >    }
421 >
422 >    // helpers for run()
423  
424      /**
425 <     * Get and clear steal count for accumulation by pool.  Called
253 <     * only when known to be idle (in pool.sync and termination).
425 >     * Find and execute tasks and check status while running
426       */
427 <    final int getAndClearStealCount() {
428 <        int sc = stealCount;
429 <        stealCount = 0;
430 <        return sc;
427 >    private void mainLoop() {
428 >        int misses = 0; // track consecutive times failed to find work; max 2
429 >        ForkJoinPool p = pool;
430 >        for (;;) {
431 >            p.preStep(this, misses);
432 >            if (runState != 0)
433 >                break;
434 >            misses = ((tryExecSteal() || tryExecSubmission()) ? 0 :
435 >                      (misses < 2 ? misses + 1 : 2));
436 >        }
437      }
438  
439      /**
440 <     * Returns estimate of the number of tasks in the queue, without
441 <     * correcting for transient negative values
440 >     * Try to steal a task and execute it
441 >     *
442 >     * @return true if ran a task
443       */
444 <    final int getRawQueueSize() {
445 <        return sp - base;
444 >    private boolean tryExecSteal() {
445 >        ForkJoinTask<?> t;
446 >        if ((t  = scan()) != null) {
447 >            t.quietlyExec();
448 >            currentSteal = null;
449 >            if (sp != base)
450 >                execLocalTasks();
451 >            return true;
452 >        }
453 >        return false;
454      }
455  
456 <    // Intrinsics-based support for queue operations.
457 <    // Currently these three (setSp, setSlot, casSlotNull) are
458 <    // usually manually inlined to improve performance
456 >    /**
457 >     * If a submission exists, try to activate and run it;
458 >     *
459 >     * @return true if ran a task
460 >     */
461 >    private boolean tryExecSubmission() {
462 >        ForkJoinPool p = pool;
463 >        while (p.hasQueuedSubmissions()) {
464 >            ForkJoinTask<?> t; int a;
465 >            if (active || // ugly/hacky: inline p.tryIncrementActiveCount
466 >                (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
467 >                                                   a = p.runState, a + 1))) {
468 >                if ((t = p.pollSubmission()) != null) {
469 >                    currentSteal = t;
470 >                    t.quietlyExec();
471 >                    currentSteal = null;
472 >                    if (sp != base)
473 >                        execLocalTasks();
474 >                    return true;
475 >                }
476 >            }
477 >        }
478 >        return false;
479 >    }
480  
481      /**
482 <     * Sets sp in store-order.
482 >     * Runs local tasks until queue is empty or shut down.  Call only
483 >     * while active.
484       */
485 <    private void setSp(int s) {
486 <        _unsafe.putOrderedInt(this, spOffset, s);
485 >    private void execLocalTasks() {
486 >        while (runState == 0) {
487 >            ForkJoinTask<?> t = locallyFifo? locallyDeqTask() : popTask();
488 >            if (t != null)
489 >                t.quietlyExec();
490 >            else if (sp == base)
491 >                break;
492 >        }
493      }
494  
495 +    /*
496 +     * Intrinsics-based atomic writes for queue slots. These are
497 +     * basically the same as methods in AtomicObjectArray, but
498 +     * specialized for (1) ForkJoinTask elements (2) requirement that
499 +     * nullness and bounds checks have already been performed by
500 +     * callers and (3) effective offsets are known not to overflow
501 +     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
502 +     * need corresponding version for reads: plain array reads are OK
503 +     * because they protected by other volatile reads and are
504 +     * confirmed by CASes.
505 +     *
506 +     * Most uses don't actually call these methods, but instead contain
507 +     * inlined forms that enable more predictable optimization.  We
508 +     * don't define the version of write used in pushTask at all, but
509 +     * instead inline there a store-fenced array slot write.
510 +     */
511 +
512      /**
513 <     * Add in store-order the given task at given slot of q to
514 <     * null. Caller must ensure q is nonnull and index is in range.
513 >     * CASes slot i of array q from t to null. Caller must ensure q is
514 >     * non-null and index is in range.
515       */
516 <    private static void setSlot(ForkJoinTask<?>[] q, int i,
517 <                                ForkJoinTask<?> t){
518 <        _unsafe.putOrderedObject(q, (i << qShift) + qBase, t);
516 >    private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
517 >                                             ForkJoinTask<?> t) {
518 >        return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
519      }
520  
521      /**
522 <     * CAS given slot of q to null. Caller must ensure q is nonnull
523 <     * and index is in range.
522 >     * Performs a volatile write of the given task at given slot of
523 >     * array q.  Caller must ensure q is non-null and index is in
524 >     * range. This method is used only during resets and backouts.
525       */
526 <    private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
527 <                                       ForkJoinTask<?> t) {
528 <        return _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
526 >    private static final void writeSlot(ForkJoinTask<?>[] q, int i,
527 >                                              ForkJoinTask<?> t) {
528 >        UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
529      }
530  
531 <    // Main queue methods
531 >    // queue methods
532  
533      /**
534 <     * Pushes a task. Called only by current thread.
535 <     * @param t the task. Caller must ensure nonnull
534 >     * Pushes a task. Call only from this thread.
535 >     *
536 >     * @param t the task. Caller must ensure non-null.
537       */
538      final void pushTask(ForkJoinTask<?> t) {
539          ForkJoinTask<?>[] q = queue;
540 <        int mask = q.length - 1;
541 <        int s = sp;
542 <        _unsafe.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
543 <        _unsafe.putOrderedInt(this, spOffset, ++s);
544 <        if ((s -= base) == 1)
545 <            pool.signalNonEmptyWorkerQueue();
546 <        else if (s >= mask)
313 <            growQueue();
540 >        int mask = q.length - 1; // implicit assert q != null
541 >        int s = sp++;            // ok to increment sp before slot write
542 >        UNSAFE.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
543 >        if ((s -= base) == 0)
544 >            pool.signalWork();   // was empty
545 >        else if (s == mask)
546 >            growQueue();         // is full
547      }
548  
549      /**
550       * Tries to take a task from the base of the queue, failing if
551 <     * either empty or contended.
552 <     * @return a task, or null if none or contended.
551 >     * empty or contended. Note: Specializations of this code appear
552 >     * in locallyDeqTask and elsewhere.
553 >     *
554 >     * @return a task, or null if none or contended
555       */
556 <    private ForkJoinTask<?> deqTask() {
322 <        ForkJoinTask<?>[] q;
556 >    final ForkJoinTask<?> deqTask() {
557          ForkJoinTask<?> t;
558 <        int i;
559 <        int b;
558 >        ForkJoinTask<?>[] q;
559 >        int b, i;
560          if (sp != (b = base) &&
561              (q = queue) != null && // must read q after b
562 <            (t = q[i = (q.length - 1) & b]) != null &&
563 <            _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
562 >            (t = q[i = (q.length - 1) & b]) != null && base == b &&
563 >            UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
564              base = b + 1;
565              return t;
566          }
# Line 334 | Line 568 | public class ForkJoinWorkerThread extend
568      }
569  
570      /**
571 <     * Returns a popped task, or null if empty.  Called only by
572 <     * current thread.
571 >     * Tries to take a task from the base of own queue. Assumes active
572 >     * status.  Called only by current thread.
573 >     *
574 >     * @return a task, or null if none
575       */
576 <    final ForkJoinTask<?> popTask() {
341 <        ForkJoinTask<?> t;
342 <        int i;
576 >    final ForkJoinTask<?> locallyDeqTask() {
577          ForkJoinTask<?>[] q = queue;
578 <        int mask = q.length - 1;
579 <        int s = sp;
580 <        if (s != base &&
581 <            (t = q[i = (s - 1) & mask]) != null &&
582 <            _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
583 <            _unsafe.putOrderedInt(this, spOffset, s - 1);
584 <            return t;
578 >        if (q != null) {
579 >            ForkJoinTask<?> t;
580 >            int b, i;
581 >            while (sp != (b = base)) {
582 >                if ((t = q[i = (q.length - 1) & b]) != null && base == b &&
583 >                    UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
584 >                                                t, null)) {
585 >                    base = b + 1;
586 >                    return t;
587 >                }
588 >            }
589          }
590          return null;
591      }
592  
593      /**
594 <     * Specialized version of popTask to pop only if
595 <     * topmost element is the given task. Called only
596 <     * by current thread.
597 <     * @param t the task. Caller must ensure nonnull
594 >     * Returns a popped task, or null if empty. Assumes active status.
595 >     * Called only by current thread.
596 >     */
597 >    private ForkJoinTask<?> popTask() {
598 >        ForkJoinTask<?>[] q = queue;
599 >        if (q != null) {
600 >            int s;
601 >            while ((s = sp) != base) {
602 >                int i = (q.length - 1) & --s;
603 >                long u = (i << qShift) + qBase; // raw offset
604 >                ForkJoinTask<?> t = q[i];
605 >                if (t == null)   // lost to stealer
606 >                    break;
607 >                if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
608 >                    sp = s; // putOrderedInt may encourage more timely write
609 >                    // UNSAFE.putOrderedInt(this, spOffset, s);
610 >                    return t;
611 >                }
612 >            }
613 >        }
614 >        return null;
615 >    }
616 >
617 >    /**
618 >     * Specialized version of popTask to pop only if topmost element
619 >     * is the given task. Called only by current thread while
620 >     * active.
621 >     *
622 >     * @param t the task. Caller must ensure non-null.
623       */
624      final boolean unpushTask(ForkJoinTask<?> t) {
625 +        int s;
626          ForkJoinTask<?>[] q = queue;
627 <        int mask = q.length - 1;
628 <        int s = sp - 1;
629 <        if (_unsafe.compareAndSwapObject(q, ((s & mask) << qShift) + qBase,
630 <                                         t, null)) {
631 <            _unsafe.putOrderedInt(this, spOffset, s);
627 >        if ((s = sp) != base && q != null &&
628 >            UNSAFE.compareAndSwapObject
629 >            (q, (((q.length - 1) & --s) << qShift) + qBase, t, null)) {
630 >            sp = s;
631 >            // UNSAFE.putOrderedInt(this, spOffset, s);
632              return true;
633          }
634          return false;
635      }
636  
637      /**
638 <     * Returns next task to pop.
638 >     * Returns next task or null if empty or contended
639       */
640      final ForkJoinTask<?> peekTask() {
641          ForkJoinTask<?>[] q = queue;
642 <        return q == null? null : q[(sp - 1) & (q.length - 1)];
642 >        if (q == null)
643 >            return null;
644 >        int mask = q.length - 1;
645 >        int i = locallyFifo ? base : (sp - 1);
646 >        return q[i & mask];
647      }
648  
649      /**
# Line 400 | Line 668 | public class ForkJoinWorkerThread extend
668              ForkJoinTask<?> t = oldQ[oldIndex];
669              if (t != null && !casSlotNull(oldQ, oldIndex, t))
670                  t = null;
671 <            setSlot(newQ, b & newMask, t);
671 >            writeSlot(newQ, b & newMask, t);
672          } while (++b != bf);
673 <        pool.signalIdleWorkers(false);
673 >        pool.signalWork();
674      }
675  
408    // Runstate management
409
410    final boolean isShutdown()    { return runState >= SHUTDOWN;  }
411    final boolean isTerminating() { return runState >= TERMINATING;  }
412    final boolean isTerminated()  { return runState == TERMINATED; }
413    final boolean shutdown()      { return transitionRunStateTo(SHUTDOWN); }
414    final boolean shutdownNow()   { return transitionRunStateTo(TERMINATING); }
415
676      /**
677 <     * Transition to at least the given state. Return true if not
678 <     * already at least given state.
677 >     * Computes next value for random victim probe in scan().  Scans
678 >     * don't require a very high quality generator, but also not a
679 >     * crummy one.  Marsaglia xor-shift is cheap and works well enough.
680 >     * Note: This is manually inlined in scan()
681       */
682 <    private boolean transitionRunStateTo(int state) {
683 <        for (;;) {
684 <            int s = runState;
685 <            if (s >= state)
424 <                return false;
425 <            if (_unsafe.compareAndSwapInt(this, runStateOffset, s, state))
426 <                return true;
427 <        }
682 >    private static final int xorShift(int r) {
683 >        r ^= r << 13;
684 >        r ^= r >>> 17;
685 >        return r ^ (r << 5);
686      }
687  
688      /**
689 <     * Ensure status is active and if necessary adjust pool active count
689 >     * Tries to steal a task from another worker. Starts at a random
690 >     * index of workers array, and probes workers until finding one
691 >     * with non-empty queue or finding that all are empty.  It
692 >     * randomly selects the first n probes. If these are empty, it
693 >     * resorts to a circular sweep, which is necessary to accurately
694 >     * set active status. (The circular sweep uses steps of
695 >     * approximately half the array size plus 1, to avoid bias
696 >     * stemming from leftmost packing of the array in ForkJoinPool.)
697 >     *
698 >     * This method must be both fast and quiet -- usually avoiding
699 >     * memory accesses that could disrupt cache sharing etc other than
700 >     * those needed to check for and take tasks (or to activate if not
701 >     * already active). This accounts for, among other things,
702 >     * updating random seed in place without storing it until exit.
703 >     *
704 >     * @return a task, or null if none found
705       */
706 <    final void activate() {
707 <        if (!active) {
708 <            active = true;
709 <            pool.incrementActiveCount();
706 >    private ForkJoinTask<?> scan() {
707 >        ForkJoinPool p = pool;
708 >        ForkJoinWorkerThread[] ws;        // worker array
709 >        int n;                            // upper bound of #workers
710 >        if ((ws = p.workers) != null && (n = ws.length) > 1) {
711 >            boolean canSteal = active;    // shadow active status
712 >            int r = seed;                 // extract seed once
713 >            int mask = n - 1;
714 >            int j = -n;                   // loop counter
715 >            int k = r;                    // worker index, random if j < 0
716 >            for (;;) {
717 >                ForkJoinWorkerThread v = ws[k & mask];
718 >                r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // inline xorshift
719 >                if (v != null && v.base != v.sp) {
720 >                    ForkJoinTask<?>[] q; int b, a;
721 >                    if ((canSteal ||      // Ugly/hacky: inline
722 >                         (canSteal = active =  // p.tryIncrementActiveCount
723 >                          UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
724 >                                                   a = p.runState, a + 1))) &&
725 >                        (q = v.queue) != null && (b = v.base) != v.sp) {
726 >                        int i = (q.length - 1) & b;
727 >                        long u = (i << qShift) + qBase; // raw offset
728 >                        ForkJoinTask<?> t = q[i];
729 >                        if (v.base == b && t != null &&
730 >                            UNSAFE.compareAndSwapObject(q, u, t, null)) {
731 >                            int pid = poolIndex;
732 >                            currentSteal = t;
733 >                            v.stealHint = pid;
734 >                            v.base = b + 1;
735 >                            seed = r;
736 >                            ++stealCount;
737 >                            return t;
738 >                        }
739 >                    }
740 >                    j = -n;
741 >                    k = r;                // restart on contention
742 >                }
743 >                else if (++j <= 0)
744 >                    k = r;
745 >                else if (j <= n)
746 >                    k += (n >>> 1) | 1;
747 >                else
748 >                    break;
749 >            }
750          }
751 +        return null;
752      }
753  
754 +    // Run State management
755 +
756 +    // status check methods used mainly by ForkJoinPool
757 +    final boolean isRunning()     { return runState == 0; }
758 +    final boolean isTerminating() { return (runState & TERMINATING) != 0; }
759 +    final boolean isTerminated()  { return (runState & TERMINATED) != 0; }
760 +    final boolean isSuspended()   { return (runState & SUSPENDED) != 0; }
761 +    final boolean isTrimmed()     { return (runState & TRIMMED) != 0; }
762 +
763      /**
764 <     * Ensure status is inactive and if necessary adjust pool active count
764 >     * Sets state to TERMINATING. Does NOT unpark or interrupt
765 >     * to wake up if currently blocked.
766       */
767 <    final void inactivate() {
768 <        if (active) {
769 <            active = false;
770 <            pool.decrementActiveCount();
767 >    final void shutdown() {
768 >        for (;;) {
769 >            int s = runState;
770 >            if ((s & (TERMINATING|TERMINATED)) != 0)
771 >                break;
772 >            if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
773 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
774 >                                             (s & ~SUSPENDED) |
775 >                                             (TRIMMED|TERMINATING)))
776 >                    break;
777 >            }
778 >            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
779 >                                              s | TERMINATING))
780 >                break;
781          }
782      }
783  
450    // Lifecycle methods
451
784      /**
785 <     * Initializes internal state after construction but before
454 <     * processing any tasks. If you override this method, you must
455 <     * invoke super.onStart() at the beginning of the method.
456 <     * Initialization requires care: Most fields must have legal
457 <     * default values, to ensure that attempted accesses from other
458 <     * threads work correctly even before this thread starts
459 <     * processing tasks.
785 >     * Sets state to TERMINATED. Called only by onTermination()
786       */
787 <    protected void onStart() {
788 <        juRandomSeed = randomSeedGenerator.nextLong();
789 <        do;while((randomVictimSeed = nextRandomInt()) == 0); // must be nonzero
790 <        if (queue == null)
791 <            queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
466 <
467 <        // Heuristically allow one initial thread to warm up; others wait
468 <        if (poolIndex < pool.getParallelism() - 1) {
469 <            eventCount = pool.sync(this, 0);
470 <            activate();
471 <        }
787 >    private void setTerminated() {
788 >        int s;
789 >        do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
790 >                                               s = runState,
791 >                                               s | (TERMINATING|TERMINATED)));
792      }
793  
794      /**
795 <     * Perform cleanup associated with termination of this worker
476 <     * thread.  If you override this method, you must invoke
477 <     * super.onTermination at the end of the overridden method.
795 >     * If suspended, tries to set status to unsuspended.
796       *
797 <     * @param exception the exception causing this thread to abort due
480 <     * to an unrecoverable error, or null if completed normally.
797 >     * @return true if successful
798       */
799 <    protected void onTermination(Throwable exception) {
800 <        try {
801 <            clearLocalTasks();
802 <            inactivate();
803 <            cancelTasks();
804 <        } finally {
488 <            terminate(exception);
799 >    final boolean tryUnsuspend() {
800 >        int s;
801 >        while (((s = runState) & SUSPENDED) != 0) {
802 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
803 >                                         s & ~SUSPENDED))
804 >                return true;
805          }
806 +        return false;
807      }
808  
809      /**
810 <     * Notify pool of termination and, if exception is nonnull,
811 <     * rethrow it to trigger this thread's uncaughtExceptionHandler
810 >     * Sets suspended status and blocks as spare until resumed
811 >     * or shutdown.
812       */
813 <    private void terminate(Throwable exception) {
814 <        transitionRunStateTo(TERMINATED);
815 <        try {
816 <            pool.workerTerminated(this);
817 <        } finally {
818 <            if (exception != null)
819 <                ForkJoinTask.rethrowException(exception);
813 >    final void suspendAsSpare() {
814 >        for (;;) {                  // set suspended unless terminating
815 >            int s = runState;
816 >            if ((s & TERMINATING) != 0) { // must kill
817 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
818 >                                             s | (TRIMMED | TERMINATING)))
819 >                    return;
820 >            }
821 >            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
822 >                                              s | SUSPENDED))
823 >                break;
824 >        }
825 >        ForkJoinPool p = pool;
826 >        p.pushSpare(this);
827 >        lastEventCount = 0;         // reset upon resume
828 >        while ((runState & SUSPENDED) != 0) {
829 >            if (p.tryAccumulateStealCount(this)) {
830 >                boolean untimed = nextSpare != 0;
831 >                long startTime = untimed? 0 : System.nanoTime();
832 >                interrupted();          // clear/ignore interrupts
833 >                if ((runState & SUSPENDED) == 0)
834 >                    break;
835 >                if (untimed)     // untimed
836 >                    LockSupport.park(this);
837 >                else {
838 >                    LockSupport.parkNanos(this, TRIM_RATE_NANOS);
839 >                    if ((runState & SUSPENDED) == 0)
840 >                        break;
841 >                    if (System.nanoTime() - startTime >= TRIM_RATE_NANOS)
842 >                        p.tryShutdownSpare();
843 >                }
844 >            }
845          }
846      }
847  
848 +    // Misc support methods for ForkJoinPool
849 +
850      /**
851 <     * Run local tasks on exit from main.
851 >     * Returns an estimate of the number of tasks in the queue.  Also
852 >     * used by ForkJoinTask.
853       */
854 <    private void clearLocalTasks() {
855 <        while (base != sp && !pool.isTerminating()) {
856 <            ForkJoinTask<?> t = popTask();
512 <            if (t != null) {
513 <                activate(); // ensure active status
514 <                t.quietlyExec();
515 <            }
516 <        }
854 >    final int getQueueSize() {
855 >        int n; // external calls must read base first
856 >        return (n = -base + sp) <= 0 ? 0 : n;
857      }
858  
859      /**
# Line 521 | Line 861 | public class ForkJoinWorkerThread extend
861       * thread.
862       */
863      final void cancelTasks() {
864 +        ForkJoinTask<?> cj = currentJoin; // try to cancel ongoing tasks
865 +        if (cj != null) {
866 +            currentJoin = null;
867 +            cj.cancelIgnoringExceptions();
868 +            try {
869 +                this.interrupt(); // awaken wait
870 +            } catch (SecurityException ignore) {
871 +            }
872 +        }
873 +        ForkJoinTask<?> cs = currentSteal;
874 +        if (cs != null) {
875 +            currentSteal = null;
876 +            cs.cancelIgnoringExceptions();
877 +        }
878          while (base != sp) {
879              ForkJoinTask<?> t = deqTask();
880              if (t != null)
# Line 529 | Line 883 | public class ForkJoinWorkerThread extend
883      }
884  
885      /**
886 <     * This method is required to be public, but should never be
887 <     * called explicitly. It performs the main run loop to execute
888 <     * ForkJoinTasks.
535 <     */
536 <    public void run() {
537 <        Throwable exception = null;
538 <        try {
539 <            onStart();
540 <            while (!isShutdown())
541 <                step();
542 <        } catch (Throwable ex) {
543 <            exception = ex;
544 <        } finally {
545 <            onTermination(exception);
546 <        }
547 <    }
548 <
549 <    /**
550 <     * Main top-level action.
886 >     * Drains tasks to given collection c.
887 >     *
888 >     * @return the number of tasks drained
889       */
890 <    private void step() {
891 <        ForkJoinTask<?> t = sp != base? popTask() : null;
892 <        if (t != null || (t = scan(null, true)) != null) {
893 <            activate();
894 <            t.quietlyExec();
895 <        }
896 <        else {
897 <            inactivate();
560 <            eventCount = pool.sync(this, eventCount);
890 >    final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
891 >        int n = 0;
892 >        while (base != sp) {
893 >            ForkJoinTask<?> t = deqTask();
894 >            if (t != null) {
895 >                c.add(t);
896 >                ++n;
897 >            }
898          }
899 +        return n;
900      }
901  
902 <    // scanning for and stealing tasks
565 <
566 <    /**
567 <     * Computes next value for random victim probe. Scans don't
568 <     * require a very high quality generator, but also not a crummy
569 <     * one. Marsaglia xor-shift is cheap and works well.
570 <     *
571 <     * This is currently unused, and manually inlined
572 <     */
573 <    private static int xorShift(int r) {
574 <        r ^= r << 1;
575 <        r ^= r >>> 3;
576 <        r ^= r << 10;
577 <        return r;
578 <    }
902 >    // Support methods for ForkJoinTask
903  
904      /**
905 <     * Tries to steal a task from another worker and/or, if enabled,
582 <     * submission queue. Starts at a random index of workers array,
583 <     * and probes workers until finding one with non-empty queue or
584 <     * finding that all are empty.  It randomly selects the first n-1
585 <     * probes. If these are empty, it resorts to full circular
586 <     * traversal, which is necessary to accurately set active status
587 <     * by caller. Also restarts if pool barrier has tripped since last
588 <     * scan, which forces refresh of workers array, in case barrier
589 <     * was associated with resize.
590 <     *
591 <     * This method must be both fast and quiet -- usually avoiding
592 <     * memory accesses that could disrupt cache sharing etc other than
593 <     * those needed to check for and take tasks. This accounts for,
594 <     * among other things, updating random seed in place without
595 <     * storing it until exit. (Note that we only need to store it if
596 <     * we found a task; otherwise it doesn't matter if we start at the
597 <     * same place next time.)
905 >     * Gets and removes a local task.
906       *
907 <     * @param joinMe if non null; exit early if done
600 <     * @param checkSubmissions true if OK to take submissions
601 <     * @return a task, or null if none found
907 >     * @return a task, if available
908       */
909 <    private ForkJoinTask<?> scan(ForkJoinTask<?> joinMe,
604 <                                 boolean checkSubmissions) {
909 >    final ForkJoinTask<?> pollLocalTask() {
910          ForkJoinPool p = pool;
911 <        if (p == null)                    // Never null, but avoids
912 <            return null;                  //   implicit nullchecks below
913 <        int r = randomVictimSeed;         // extract once to keep scan quiet
914 <        restart:                          // outer loop refreshes ws array
915 <        while (joinMe == null || joinMe.status >= 0) {
916 <            int mask;
612 <            ForkJoinWorkerThread[] ws = p.workers;
613 <            if (ws != null && (mask = ws.length - 1) > 0) {
614 <                int probes = -mask;       // use random index while negative
615 <                int idx = r;
616 <                for (;;) {
617 <                    ForkJoinWorkerThread v;
618 <                    // inlined xorshift to update seed
619 <                    r ^= r << 1;  r ^= r >>> 3; r ^= r << 10;
620 <                    if ((v = ws[mask & idx]) != null && v.sp != v.base) {
621 <                        ForkJoinTask<?> t;
622 <                        activate();
623 <                        if ((joinMe == null || joinMe.status >= 0) &&
624 <                            (t = v.deqTask()) != null) {
625 <                            randomVictimSeed = r;
626 <                            ++stealCount;
627 <                            return t;
628 <                        }
629 <                        continue restart; // restart on contention
630 <                    }
631 <                    if ((probes >> 1) <= mask) // n-1 random then circular
632 <                        idx = (probes++ < 0)? r : (idx + 1);
633 <                    else
634 <                        break;
635 <                }
636 <            }
637 <            if (checkSubmissions && p.hasQueuedSubmissions()) {
638 <                activate();
639 <                ForkJoinTask<?> t = p.pollSubmission();
640 <                if (t != null)
641 <                    return t;
642 <            }
643 <            else {
644 <                long ec = eventCount;     // restart on pool event
645 <                if ((eventCount = p.getEventCount()) == ec)
646 <                    break;
647 <            }
911 >        while (sp != base) {
912 >            int a; // inline p.tryIncrementActiveCount
913 >            if (active ||
914 >                (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
915 >                                                   a = p.runState, a + 1)))
916 >                return locallyFifo? locallyDeqTask() : popTask();
917          }
918          return null;
919      }
920  
921      /**
922 <     * Callback from pool.sync to rescan before blocking.  If a
923 <     * task is found, it is pushed so it can be executed upon return.
924 <     * @return true if found and pushed a task
656 <     */
657 <    final boolean prescan() {
658 <        ForkJoinTask<?> t = scan(null, true);
659 <        if (t != null) {
660 <            pushTask(t);
661 <            return true;
662 <        }
663 <        else {
664 <            inactivate();
665 <            return false;
666 <        }
667 <    }
668 <
669 <    // Support for ForkJoinTask methods
670 <
671 <    /**
672 <     * Scan, returning early if joinMe done
922 >     * Gets and removes a local or stolen task.
923 >     *
924 >     * @return a task, if available
925       */
926 <    final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
927 <        ForkJoinTask<?> t = scan(joinMe, false);
928 <        if (t != null && joinMe.status < 0 && sp == base) {
929 <            pushTask(t); // unsteal if done and this task would be stealable
930 <            t = null;
926 >    final ForkJoinTask<?> pollTask() {
927 >        ForkJoinTask<?> t = pollLocalTask();
928 >        if (t == null) {
929 >            t = scan();
930 >            currentSteal = null; // cannot retain/track/help
931          }
932          return t;
933      }
934 <    
934 >
935      /**
936 <     * Pops or steals a task
937 <     * @return task, or null if none available
936 >     * Possibly runs some tasks and/or blocks, until task is done.
937 >     *
938 >     * @param joinMe the task to join
939       */
940 <    final ForkJoinTask<?> pollLocalOrStolenTask() {
941 <        ForkJoinTask<?> t;
942 <        return (t = popTask()) == null? scan(null, false) : t;
940 >    final void joinTask(ForkJoinTask<?> joinMe) {
941 >        // currentJoin only written by this thread; only need ordered store
942 >        ForkJoinTask<?> prevJoin = currentJoin;
943 >        UNSAFE.putOrderedObject(this, currentJoinOffset, joinMe);
944 >        if (sp != base)
945 >            localHelpJoinTask(joinMe);
946 >        if (joinMe.status >= 0)
947 >            pool.awaitJoin(joinMe, this);
948 >        UNSAFE.putOrderedObject(this, currentJoinOffset, prevJoin);
949      }
950  
951      /**
952 <     * Runs tasks until pool isQuiescent
952 >     * Run tasks in local queue until given task is done.
953 >     *
954 >     * @param joinMe the task to join
955       */
956 <    final void helpQuiescePool() {
957 <        for (;;) {
958 <            ForkJoinTask<?> t = pollLocalOrStolenTask();
959 <            if (t != null) {
960 <                activate();
961 <                t.quietlyExec();
962 <            }
963 <            else {
964 <                inactivate();
965 <                if (pool.isQuiescent()) {
966 <                    activate(); // re-activate on exit
956 >    private void localHelpJoinTask(ForkJoinTask<?> joinMe) {
957 >        int s;
958 >        ForkJoinTask<?>[] q;
959 >        while (joinMe.status >= 0 && (s = sp) != base && (q = queue) != null) {
960 >            int i = (q.length - 1) & --s;
961 >            long u = (i << qShift) + qBase; // raw offset
962 >            ForkJoinTask<?> t = q[i];
963 >            if (t == null)  // lost to a stealer
964 >                break;
965 >            if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
966 >                /*
967 >                 * This recheck (and similarly in helpJoinTask)
968 >                 * handles cases where joinMe is independently
969 >                 * cancelled or forced even though there is other work
970 >                 * available. Back out of the pop by putting t back
971 >                 * into slot before we commit by writing sp.
972 >                 */
973 >                if (joinMe.status < 0) {
974 >                    UNSAFE.putObjectVolatile(q, u, t);
975                      break;
976                  }
977 +                sp = s;
978 +                // UNSAFE.putOrderedInt(this, spOffset, s);
979 +                t.quietlyExec();
980              }
981          }
982      }
983  
984      /**
985 <     * Returns an estimate of the number of tasks in the queue.
985 >     * Tries to locate and help perform tasks for a stealer of the
986 >     * given task, or in turn one of its stealers.  Traces
987 >     * currentSteal->currentJoin links looking for a thread working on
988 >     * a descendant of the given task and with a non-empty queue to
989 >     * steal back and execute tasks from.
990 >     *
991 >     * The implementation is very branchy to cope with the potential
992 >     * inconsistencies or loops encountering chains that are stale,
993 >     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
994 >     * of these cases are dealt with by just returning back to the
995 >     * caller, who is expected to retry if other join mechanisms also
996 >     * don't work out.
997 >     *
998 >     * @param joinMe the task to join
999       */
1000 <    final int getQueueSize() {
1001 <        int n = sp - base;
1002 <        return n <= 0? 0 : n; // suppress momentarily negative values
1000 >    final void helpJoinTask(ForkJoinTask<?> joinMe) {
1001 >        ForkJoinWorkerThread[] ws = pool.workers;
1002 >        int n; // need at least 2 workers
1003 >        if (ws != null && (n = ws.length) > 1 && joinMe.status >= 0) {
1004 >            ForkJoinTask<?> task = joinMe;        // base of chain
1005 >            ForkJoinWorkerThread thread = this;   // thread with stolen task
1006 >            for (int d = 0; d < MAX_HELP_DEPTH; ++d) { // chain length
1007 >                // Try to find v, the stealer of task, by first using hint
1008 >                ForkJoinWorkerThread v = ws[thread.stealHint & (n - 1)];
1009 >                if (v == null || v.currentSteal != task) {
1010 >                    for (int j = 0; ; ++j) {      // search array
1011 >                        if (j < n) {
1012 >                            if ((v = ws[j]) != null) {
1013 >                                if (task.status < 0)
1014 >                                    return;       // stale or done
1015 >                                if (v.currentSteal == task) {
1016 >                                    thread.stealHint = j;
1017 >                                    break;        // save hint for next time
1018 >                                }
1019 >                            }
1020 >                        }
1021 >                        else
1022 >                            return;               // no stealer
1023 >                    }
1024 >                }
1025 >                // Try to help v, using specialized form of deqTask
1026 >                int b;
1027 >                ForkJoinTask<?>[] q;
1028 >                while ((b = v.base) != v.sp && (q = v.queue) != null) {
1029 >                    int i = (q.length - 1) & b;
1030 >                    long u = (i << qShift) + qBase;
1031 >                    ForkJoinTask<?> t = q[i];
1032 >                    if (task.status < 0)
1033 >                        return;                   // stale or done
1034 >                    if (v.base == b) {
1035 >                        if (t == null)
1036 >                            return;               // producer stalled
1037 >                        if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
1038 >                            if (joinMe.status < 0) {
1039 >                                UNSAFE.putObjectVolatile(q, u, t);
1040 >                                return;           // back out on cancel
1041 >                            }
1042 >                            int pid = poolIndex;
1043 >                            ForkJoinTask<?> prevSteal = currentSteal;
1044 >                            currentSteal = t;
1045 >                            v.stealHint = pid;
1046 >                            v.base = b + 1;
1047 >                            t.quietlyExec();
1048 >                            currentSteal = prevSteal;
1049 >                        }
1050 >                    }
1051 >                    if (joinMe.status < 0)
1052 >                        return;
1053 >                }
1054 >                // Try to descend to find v's stealer
1055 >                ForkJoinTask<?> next = v.currentJoin;
1056 >                if (task.status < 0 || next == null || next == task ||
1057 >                    joinMe.status < 0)
1058 >                    return;
1059 >                task = next;
1060 >                thread = v;
1061 >            }
1062 >        }
1063      }
1064  
1065      /**
1066       * Returns an estimate of the number of tasks, offset by a
1067       * function of number of idle workers.
1068 +     *
1069 +     * This method provides a cheap heuristic guide for task
1070 +     * partitioning when programmers, frameworks, tools, or languages
1071 +     * have little or no idea about task granularity.  In essence by
1072 +     * offering this method, we ask users only about tradeoffs in
1073 +     * overhead vs expected throughput and its variance, rather than
1074 +     * how finely to partition tasks.
1075 +     *
1076 +     * In a steady state strict (tree-structured) computation, each
1077 +     * thread makes available for stealing enough tasks for other
1078 +     * threads to remain active. Inductively, if all threads play by
1079 +     * the same rules, each thread should make available only a
1080 +     * constant number of tasks.
1081 +     *
1082 +     * The minimum useful constant is just 1. But using a value of 1
1083 +     * would require immediate replenishment upon each steal to
1084 +     * maintain enough tasks, which is infeasible.  Further,
1085 +     * partitionings/granularities of offered tasks should minimize
1086 +     * steal rates, which in general means that threads nearer the top
1087 +     * of computation tree should generate more than those nearer the
1088 +     * bottom. In perfect steady state, each thread is at
1089 +     * approximately the same level of computation tree. However,
1090 +     * producing extra tasks amortizes the uncertainty of progress and
1091 +     * diffusion assumptions.
1092 +     *
1093 +     * So, users will want to use values larger, but not much larger
1094 +     * than 1 to both smooth over transient shortages and hedge
1095 +     * against uneven progress; as traded off against the cost of
1096 +     * extra task overhead. We leave the user to pick a threshold
1097 +     * value to compare with the results of this call to guide
1098 +     * decisions, but recommend values such as 3.
1099 +     *
1100 +     * When all threads are active, it is on average OK to estimate
1101 +     * surplus strictly locally. In steady-state, if one thread is
1102 +     * maintaining say 2 surplus tasks, then so are others. So we can
1103 +     * just use estimated queue length (although note that (sp - base)
1104 +     * can be an overestimate because of stealers lagging increments
1105 +     * of base).  However, this strategy alone leads to serious
1106 +     * mis-estimates in some non-steady-state conditions (ramp-up,
1107 +     * ramp-down, other stalls). We can detect many of these by
1108 +     * further considering the number of "idle" threads, that are
1109 +     * known to have zero queued tasks, so compensate by a factor of
1110 +     * (#idle/#active) threads.
1111       */
1112      final int getEstimatedSurplusTaskCount() {
1113 <        // The halving approximates weighting idle vs non-idle workers
726 <        return (sp - base) - (pool.getIdleThreadCount() >>> 1);
1113 >        return sp - base - pool.idlePerActive();
1114      }
1115  
1116 <    // Per-worker exported random numbers
1117 <
1118 <    // Same constants as java.util.Random
1119 <    final static long JURandomMultiplier = 0x5DEECE66DL;
733 <    final static long JURandomAddend = 0xBL;
734 <    final static long JURandomMask = (1L << 48) - 1;
735 <
736 <    private final int nextJURandom(int bits) {
737 <        long next = (juRandomSeed * JURandomMultiplier + JURandomAddend) &
738 <            JURandomMask;
739 <        juRandomSeed = next;
740 <        return (int)(next >>> (48 - bits));
741 <    }
742 <
743 <    private final int nextJURandomInt(int n) {
744 <        if (n <= 0)
745 <            throw new IllegalArgumentException("n must be positive");
746 <        int bits = nextJURandom(31);
747 <        if ((n & -n) == n)
748 <            return (int)((n * (long)bits) >> 31);
749 <
1116 >    /**
1117 >     * Runs tasks until {@code pool.isQuiescent()}.
1118 >     */
1119 >    final void helpQuiescePool() {
1120          for (;;) {
1121 <            int val = bits % n;
1122 <            if (bits - val + (n-1) >= 0)
1123 <                return val;
1124 <            bits = nextJURandom(31);
1125 <        }
1126 <    }
1127 <
1128 <    private final long nextJURandomLong() {
1129 <        return ((long)(nextJURandom(32)) << 32) + nextJURandom(32);
1130 <    }
1131 <
1132 <    private final long nextJURandomLong(long n) {
1133 <        if (n <= 0)
1134 <            throw new IllegalArgumentException("n must be positive");
1135 <        long offset = 0;
1136 <        while (n >= Integer.MAX_VALUE) { // randomly pick half range
1137 <            int bits = nextJURandom(2); // 2nd bit for odd vs even split
1138 <            long half = n >>> 1;
1139 <            long nextn = ((bits & 2) == 0)? half : n - half;
1140 <            if ((bits & 1) == 0)
1141 <                offset += n - nextn;
772 <            n = nextn;
1121 >            ForkJoinTask<?> t = pollLocalTask();
1122 >            if (t != null || (t = scan()) != null) {
1123 >                t.quietlyExec();
1124 >                currentSteal = null;
1125 >            }
1126 >            else {
1127 >                ForkJoinPool p = pool;
1128 >                int a; // to inline CASes
1129 >                if (active) {
1130 >                    if (!UNSAFE.compareAndSwapInt
1131 >                        (p, poolRunStateOffset, a = p.runState, a - 1))
1132 >                        continue;   // retry later
1133 >                    active = false; // inactivate
1134 >                }
1135 >                if (p.isQuiescent()) {
1136 >                    active = true; // re-activate
1137 >                    do {} while(!UNSAFE.compareAndSwapInt
1138 >                                (p, poolRunStateOffset, a = p.runState, a+1));
1139 >                    return;
1140 >                }
1141 >            }
1142          }
774        return offset + nextJURandomInt((int)n);
1143      }
1144  
1145 <    private final double nextJURandomDouble() {
778 <        return (((long)(nextJURandom(26)) << 27) + nextJURandom(27))
779 <            / (double)(1L << 53);
780 <    }
1145 >    // Unsafe mechanics
1146  
1147 <    /**
1148 <     * Returns a random integer using a per-worker random
1149 <     * number generator with the same properties as
1150 <     * {@link java.util.Random#nextInt}
1151 <     * @return the next pseudorandom, uniformly distributed {@code int}
1152 <     *         value from this worker's random number generator's sequence
1153 <     */
1154 <    public static int nextRandomInt() {
1155 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
1156 <            nextJURandom(32);
1157 <    }
1147 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1148 >    private static final long spOffset =
1149 >        objectFieldOffset("sp", ForkJoinWorkerThread.class);
1150 >    private static final long runStateOffset =
1151 >        objectFieldOffset("runState", ForkJoinWorkerThread.class);
1152 >    private static final long currentJoinOffset =
1153 >        objectFieldOffset("currentJoin", ForkJoinWorkerThread.class);
1154 >    private static final long currentStealOffset =
1155 >        objectFieldOffset("currentSteal", ForkJoinWorkerThread.class);
1156 >    private static final long qBase =
1157 >        UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
1158 >    private static final long poolRunStateOffset = // to inline CAS
1159 >        objectFieldOffset("runState", ForkJoinPool.class);
1160  
1161 <    /**
795 <     * Returns a random integer using a per-worker random
796 <     * number generator with the same properties as
797 <     * {@link java.util.Random#nextInt(int)}
798 <     * @param n the bound on the random number to be returned.  Must be
799 <     *        positive.
800 <     * @return the next pseudorandom, uniformly distributed {@code int}
801 <     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
802 <     *         from this worker's random number generator's sequence
803 <     * @throws IllegalArgumentException if n is not positive
804 <     */
805 <    public static int nextRandomInt(int n) {
806 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
807 <            nextJURandomInt(n);
808 <    }
1161 >    private static final int qShift;
1162  
1163 <    /**
1164 <     * Returns a random long using a per-worker random
1165 <     * number generator with the same properties as
1166 <     * {@link java.util.Random#nextLong}
1167 <     * @return the next pseudorandom, uniformly distributed {@code long}
815 <     *         value from this worker's random number generator's sequence
816 <     */
817 <    public static long nextRandomLong() {
818 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
819 <            nextJURandomLong();
1163 >    static {
1164 >        int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
1165 >        if ((s & (s-1)) != 0)
1166 >            throw new Error("data type scale not a power of two");
1167 >        qShift = 31 - Integer.numberOfLeadingZeros(s);
1168      }
1169  
1170 <    /**
1171 <     * Returns a random integer using a per-worker random
1172 <     * number generator with the same properties as
1173 <     * {@link java.util.Random#nextInt(int)}
1174 <     * @param n the bound on the random number to be returned.  Must be
1175 <     *        positive.
1176 <     * @return the next pseudorandom, uniformly distributed {@code int}
1177 <     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
1178 <     *         from this worker's random number generator's sequence
831 <     * @throws IllegalArgumentException if n is not positive
832 <     */
833 <    public static long nextRandomLong(long n) {
834 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
835 <            nextJURandomLong(n);
1170 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1171 >        try {
1172 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1173 >        } catch (NoSuchFieldException e) {
1174 >            // Convert Exception to corresponding Error
1175 >            NoSuchFieldError error = new NoSuchFieldError(field);
1176 >            error.initCause(e);
1177 >            throw error;
1178 >        }
1179      }
1180  
1181      /**
1182 <     * Returns a random double using a per-worker random
1183 <     * number generator with the same properties as
1184 <     * {@link java.util.Random#nextDouble}
1185 <     * @return the next pseudorandom, uniformly distributed {@code double}
1186 <     *         value between {@code 0.0} and {@code 1.0} from this
844 <     *         worker's random number generator's sequence
1182 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1183 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1184 >     * into a jdk.
1185 >     *
1186 >     * @return a sun.misc.Unsafe
1187       */
1188 <    public static double nextRandomDouble() {
847 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
848 <            nextJURandomDouble();
849 <    }
850 <
851 <    // Temporary Unsafe mechanics for preliminary release
852 <
853 <    static final Unsafe _unsafe;
854 <    static final long baseOffset;
855 <    static final long spOffset;
856 <    static final long qBase;
857 <    static final int qShift;
858 <    static final long runStateOffset;
859 <    static {
1188 >    private static sun.misc.Unsafe getUnsafe() {
1189          try {
1190 <            if (ForkJoinWorkerThread.class.getClassLoader() != null) {
1191 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1192 <                f.setAccessible(true);
1193 <                _unsafe = (Unsafe)f.get(null);
1194 <            }
1195 <            else
1196 <                _unsafe = Unsafe.getUnsafe();
1197 <            baseOffset = _unsafe.objectFieldOffset
1198 <                (ForkJoinWorkerThread.class.getDeclaredField("base"));
1199 <            spOffset = _unsafe.objectFieldOffset
1200 <                (ForkJoinWorkerThread.class.getDeclaredField("sp"));
1201 <            runStateOffset = _unsafe.objectFieldOffset
1202 <                (ForkJoinWorkerThread.class.getDeclaredField("runState"));
1203 <            qBase = _unsafe.arrayBaseOffset(ForkJoinTask[].class);
1204 <            int s = _unsafe.arrayIndexScale(ForkJoinTask[].class);
1205 <            if ((s & (s-1)) != 0)
877 <                throw new Error("data type scale not a power of two");
878 <            qShift = 31 - Integer.numberOfLeadingZeros(s);
879 <        } catch (Exception e) {
880 <            throw new RuntimeException("Could not initialize intrinsics", e);
1190 >            return sun.misc.Unsafe.getUnsafe();
1191 >        } catch (SecurityException se) {
1192 >            try {
1193 >                return java.security.AccessController.doPrivileged
1194 >                    (new java.security
1195 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1196 >                        public sun.misc.Unsafe run() throws Exception {
1197 >                            java.lang.reflect.Field f = sun.misc
1198 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1199 >                            f.setAccessible(true);
1200 >                            return (sun.misc.Unsafe) f.get(null);
1201 >                        }});
1202 >            } catch (java.security.PrivilegedActionException e) {
1203 >                throw new RuntimeException("Could not initialize intrinsics",
1204 >                                           e.getCause());
1205 >            }
1206          }
1207      }
1208   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines