ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.1 by dl, Tue Jan 6 14:30:31 2009 UTC vs.
Revision 1.54 by dl, Wed Nov 17 12:06:46 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
11 < import java.util.concurrent.locks.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 >
9 > import java.util.Random;
10 > import java.util.Collection;
11 > import java.util.concurrent.locks.LockSupport;
12 > import java.util.concurrent.RejectedExecutionException;
13  
14   /**
15 < * A thread that is internally managed by a ForkJoinPool to execute
16 < * ForkJoinTasks. This class additionally provides public
17 < * <tt>static</tt> methods accessing some basic scheduling and
18 < * execution mechanics for the <em>current</em>
19 < * ForkJoinWorkerThread. These methods may be invoked only from within
20 < * other ForkJoinTask computations. Attempts to invoke in other
21 < * contexts result in exceptions or errors including
22 < * ClassCastException.  These methods enable construction of
24 < * special-purpose task classes, as well as specialized idioms
25 < * occasionally useful in ForkJoinTask processing.
26 < *
27 < * <p>The form of supported static methods reflects the fact that
28 < * worker threads may access and process tasks obtained in any of
29 < * three ways. In preference order: <em>Local</em> tasks are processed
30 < * in LIFO (newest first) order. <em>Stolen</em> tasks are obtained
31 < * from other threads in FIFO (oldest first) order, only if there are
32 < * no local tasks to run.  <em>Submissions</em> form a FIFO queue
33 < * common to the entire pool, and are started only if no other
34 < * work is available.
15 > * A thread managed by a {@link ForkJoinPool}.  This class is
16 > * subclassable solely for the sake of adding functionality -- there
17 > * are no overridable methods dealing with scheduling or execution.
18 > * However, you can override initialization and termination methods
19 > * surrounding the main task processing loop.  If you do create such a
20 > * subclass, you will also need to supply a custom {@link
21 > * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
22 > * ForkJoinPool}.
23   *
24 < * <p> This class is subclassable solely for the sake of adding
25 < * functionality -- there are no overridable methods dealing with
38 < * scheduling or execution. However, you can override initialization
39 < * and termination cleanup methods surrounding the main task
40 < * processing loop.  If you do create such a subclass, you will also
41 < * need to supply a custom ForkJoinWorkerThreadFactory to use it in a
42 < * ForkJoinPool.
24 > * @since 1.7
25 > * @author Doug Lea
26   */
27   public class ForkJoinWorkerThread extends Thread {
28      /*
29 <     * Algorithm overview:
29 >     * Overview:
30 >     *
31 >     * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
32 >     * ForkJoinTasks. This class includes bookkeeping in support of
33 >     * worker activation, suspension, and lifecycle control described
34 >     * in more detail in the internal documentation of class
35 >     * ForkJoinPool. And as described further below, this class also
36 >     * includes special-cased support for some ForkJoinTask
37 >     * methods. But the main mechanics involve work-stealing:
38       *
39 <     * 1. Work-Stealing: Work-stealing queues are special forms of
40 <     * Deques that support only three of the four possible
41 <     * end-operations -- push, pop, and deq (aka steal), and only do
42 <     * so under the constraints that push and pop are called only from
43 <     * the owning thread, while deq may be called from other threads.
44 <     * (If you are unfamiliar with them, you probably want to read
45 <     * Herlihy and Shavit's book "The Art of Multiprocessor
46 <     * programming", chapter 16 describing these in more detail before
47 <     * proceeding.)  The main work-stealing queue design is roughly
48 <     * similar to "Dynamic Circular Work-Stealing Deque" by David
49 <     * Chase and Yossi Lev, SPAA 2005
50 <     * (http://research.sun.com/scalable/pubs/index.html).  The main
51 <     * difference ultimately stems from gc requirements that we null
52 <     * out taken slots as soon as we can, to maintain as small a
53 <     * footprint as possible even in programs generating huge numbers
54 <     * of tasks. To accomplish this, we shift the CAS arbitrating pop
55 <     * vs deq (steal) from being on the indices ("base" and "sp") to
56 <     * the slots themselves (mainly via method "casSlotNull()"). So,
57 <     * both a successful pop and deq mainly entail CAS'ing a nonnull
58 <     * slot to null.  Because we rely on CASes of references, we do
59 <     * not need tag bits on base or sp.  They are simple ints as used
60 <     * in any circular array-based queue (see for example ArrayDeque).
61 <     * Updates to the indices must still be ordered in a way that
62 <     * guarantees that (sp - base) > 0 means the queue is empty, but
63 <     * otherwise may err on the side of possibly making the queue
64 <     * appear nonempty when a push, pop, or deq have not fully
65 <     * committed. Note that this means that the deq operation,
66 <     * considered individually, is not wait-free. One thief cannot
67 <     * successfully continue until another in-progress one (or, if
68 <     * previously empty, a push) completes.  However, in the
69 <     * aggregate, we ensure at least probablistic non-blockingness. If
70 <     * an attempted steal fails, a thief always chooses a different
39 >     * Work-stealing queues are special forms of Deques that support
40 >     * only three of the four possible end-operations -- push, pop,
41 >     * and deq (aka steal), under the further constraints that push
42 >     * and pop are called only from the owning thread, while deq may
43 >     * be called from other threads.  (If you are unfamiliar with
44 >     * them, you probably want to read Herlihy and Shavit's book "The
45 >     * Art of Multiprocessor programming", chapter 16 describing these
46 >     * in more detail before proceeding.)  The main work-stealing
47 >     * queue design is roughly similar to those in the papers "Dynamic
48 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
49 >     * (http://research.sun.com/scalable/pubs/index.html) and
50 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
51 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
52 >     * The main differences ultimately stem from gc requirements that
53 >     * we null out taken slots as soon as we can, to maintain as small
54 >     * a footprint as possible even in programs generating huge
55 >     * numbers of tasks. To accomplish this, we shift the CAS
56 >     * arbitrating pop vs deq (steal) from being on the indices
57 >     * ("base" and "sp") to the slots themselves (mainly via method
58 >     * "casSlotNull()"). So, both a successful pop and deq mainly
59 >     * entail a CAS of a slot from non-null to null.  Because we rely
60 >     * on CASes of references, we do not need tag bits on base or sp.
61 >     * They are simple ints as used in any circular array-based queue
62 >     * (see for example ArrayDeque).  Updates to the indices must
63 >     * still be ordered in a way that guarantees that sp == base means
64 >     * the queue is empty, but otherwise may err on the side of
65 >     * possibly making the queue appear nonempty when a push, pop, or
66 >     * deq have not fully committed. Note that this means that the deq
67 >     * operation, considered individually, is not wait-free. One thief
68 >     * cannot successfully continue until another in-progress one (or,
69 >     * if previously empty, a push) completes.  However, in the
70 >     * aggregate, we ensure at least probabilistic non-blockingness.
71 >     * If an attempted steal fails, a thief always chooses a different
72       * random victim target to try next. So, in order for one thief to
73       * progress, it suffices for any in-progress deq or new push on
74       * any empty queue to complete. One reason this works well here is
75       * that apparently-nonempty often means soon-to-be-stealable,
76 <     * which gives threads a chance to activate if necessary before
77 <     * stealing (see below).
76 >     * which gives threads a chance to set activation status if
77 >     * necessary before stealing.
78       *
79 <     * Efficient implementation of this approach currently relies on
80 <     * an uncomfortable amount of "Unsafe" mechanics. To maintain
79 >     * This approach also enables support for "async mode" where local
80 >     * task processing is in FIFO, not LIFO order; simply by using a
81 >     * version of deq rather than pop when locallyFifo is true (as set
82 >     * by the ForkJoinPool).  This allows use in message-passing
83 >     * frameworks in which tasks are never joined.
84 >     *
85 >     * When a worker would otherwise be blocked waiting to join a
86 >     * task, it first tries a form of linear helping: Each worker
87 >     * records (in field currentSteal) the most recent task it stole
88 >     * from some other worker. Plus, it records (in field currentJoin)
89 >     * the task it is currently actively joining. Method joinTask uses
90 >     * these markers to try to find a worker to help (i.e., steal back
91 >     * a task from and execute it) that could hasten completion of the
92 >     * actively joined task. In essence, the joiner executes a task
93 >     * that would be on its own local deque had the to-be-joined task
94 >     * not been stolen. This may be seen as a conservative variant of
95 >     * the approach in Wagner & Calder "Leapfrogging: a portable
96 >     * technique for implementing efficient futures" SIGPLAN Notices,
97 >     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
98 >     * in that: (1) We only maintain dependency links across workers
99 >     * upon steals, rather than use per-task bookkeeping.  This may
100 >     * require a linear scan of workers array to locate stealers, but
101 >     * usually doesn't because stealers leave hints (that may become
102 >     * stale/wrong) of where to locate them. This isolates cost to
103 >     * when it is needed, rather than adding to per-task overhead.
104 >     * (2) It is "shallow", ignoring nesting and potentially cyclic
105 >     * mutual steals.  (3) It is intentionally racy: field currentJoin
106 >     * is updated only while actively joining, which means that we
107 >     * miss links in the chain during long-lived tasks, GC stalls etc
108 >     * (which is OK since blocking in such cases is usually a good
109 >     * idea).  (4) We bound the number of attempts to find work (see
110 >     * MAX_HELP_DEPTH) and fall back to suspending the worker and if
111 >     * necessary replacing it with a spare (see
112 >     * ForkJoinPool.awaitJoin).
113 >     *
114 >     * Efficient implementation of these algorithms currently relies
115 >     * on an uncomfortable amount of "Unsafe" mechanics. To maintain
116       * correct orderings, reads and writes of variable base require
117 <     * volatile ordering.  Variable sp does not require volatile write
118 <     * but needs cheaper store-ordering on writes.  Because they are
119 <     * protected by volatile base reads, reads of the queue array and
120 <     * its slots do not need volatile load semantics, but writes (in
121 <     * push) require store order and CASes (in pop and deq) require
122 <     * (volatile) CAS semantics. Since these combinations aren't
123 <     * supported using ordinary volatiles, the only way to accomplish
124 <     * these effciently is to use direct Unsafe calls. (Using external
125 <     * AtomicIntegers and AtomicReferenceArrays for the indices and
126 <     * array is significantly slower because of memory locality and
127 <     * indirection effects.) Further, performance on most platforms is
128 <     * very sensitive to placement and sizing of the (resizable) queue
129 <     * array.  Even though these queues don't usually become all that
130 <     * big, the initial size must be large enough to counteract cache
117 >     * volatile ordering.  Variable sp does not require volatile
118 >     * writes but still needs store-ordering, which we accomplish by
119 >     * pre-incrementing sp before filling the slot with an ordered
120 >     * store.  (Pre-incrementing also enables backouts used in
121 >     * joinTask.)  Because they are protected by volatile base reads,
122 >     * reads of the queue array and its slots by other threads do not
123 >     * need volatile load semantics, but writes (in push) require
124 >     * store order and CASes (in pop and deq) require (volatile) CAS
125 >     * semantics.  (Michael, Saraswat, and Vechev's algorithm has
126 >     * similar properties, but without support for nulling slots.)
127 >     * Since these combinations aren't supported using ordinary
128 >     * volatiles, the only way to accomplish these efficiently is to
129 >     * use direct Unsafe calls. (Using external AtomicIntegers and
130 >     * AtomicReferenceArrays for the indices and array is
131 >     * significantly slower because of memory locality and indirection
132 >     * effects.)
133 >     *
134 >     * Further, performance on most platforms is very sensitive to
135 >     * placement and sizing of the (resizable) queue array.  Even
136 >     * though these queues don't usually become all that big, the
137 >     * initial size must be large enough to counteract cache
138       * contention effects across multiple queues (especially in the
139       * presence of GC cardmarking). Also, to improve thread-locality,
140 <     * queues are currently initialized immediately after the thread
141 <     * gets the initial signal to start processing tasks.  However,
142 <     * all queue-related methods except pushTask are written in a way
143 <     * that allows them to instead be lazily allocated and/or disposed
144 <     * of when empty. All together, these low-level implementation
145 <     * choices produce as much as a factor of 4 performance
146 <     * improvement compared to naive implementations, and enable the
147 <     * processing of billions of tasks per second, sometimes at the
148 <     * expense of ugliness.
149 <     *
150 <     * 2. Run control: The primary run control is based on a global
151 <     * counter (activeCount) held by the pool. It uses an algorithm
152 <     * similar to that in Herlihy and Shavit section 17.6 to cause
153 <     * threads to eventually block when all threads declare they are
154 <     * inactive. (See variable "scans".)  For this to work, threads
155 <     * must be declared active when executing tasks, and before
156 <     * stealing a task. They must be inactive before blocking on the
157 <     * Pool Barrier (awaiting a new submission or other Pool
158 <     * event). In between, there is some free play which we take
159 <     * advantage of to avoid contention and rapid flickering of the
160 <     * global activeCount: If inactive, we activate only if a victim
161 <     * queue appears to be nonempty (see above).  Similarly, a thread
128 <     * tries to inactivate only after a full scan of other threads.
129 <     * The net effect is that contention on activeCount is rarely a
130 <     * measurable performance issue. (There are also a few other cases
131 <     * where we scan for work rather than retry/block upon
132 <     * contention.)
133 <     *
134 <     * 3. Selection control. We maintain policy of always choosing to
135 <     * run local tasks rather than stealing, and always trying to
136 <     * steal tasks before trying to run a new submission. All steals
137 <     * are currently performed in randomly-chosen deq-order. It may be
138 <     * worthwhile to bias these with locality / anti-locality
139 <     * information, but doing this well probably requires more
140 <     * lower-level information from JVMs than currently provided.
140 >     * queues are initialized after starting.  All together, these
141 >     * low-level implementation choices produce as much as a factor of
142 >     * 4 performance improvement compared to naive implementations,
143 >     * and enable the processing of billions of tasks per second,
144 >     * sometimes at the expense of ugliness.
145 >     */
146 >
147 >    /**
148 >     * Generator for initial random seeds for random victim
149 >     * selection. This is used only to create initial seeds. Random
150 >     * steals use a cheaper xorshift generator per steal attempt. We
151 >     * expect only rare contention on seedGenerator, so just use a
152 >     * plain Random.
153 >     */
154 >    private static final Random seedGenerator = new Random();
155 >
156 >    /**
157 >     * The maximum stolen->joining link depth allowed in helpJoinTask.
158 >     * Depths for legitimate chains are unbounded, but we use a fixed
159 >     * constant to avoid (otherwise unchecked) cycles and bound
160 >     * staleness of traversal parameters at the expense of sometimes
161 >     * blocking when we could be helping.
162       */
163 +    private static final int MAX_HELP_DEPTH = 8;
164  
165      /**
166       * Capacity of work-stealing queue array upon initialization.
167 <     * Must be a power of two. Initial size must be at least 2, but is
167 >     * Must be a power of two. Initial size must be at least 4, but is
168       * padded to minimize cache effects.
169       */
170      private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
171  
172      /**
173       * Maximum work-stealing queue array size.  Must be less than or
174 <     * equal to 1 << 30 to ensure lack of index wraparound.
174 >     * equal to 1 << (31 - width of array entry) to ensure lack of
175 >     * index wraparound. The value is set in the static block
176 >     * at the end of this file after obtaining width.
177       */
178 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 30;
178 >    private static final int MAXIMUM_QUEUE_CAPACITY;
179  
180      /**
181 <     * Generator of seeds for per-thread random numbers.
181 >     * The pool this thread works in. Accessed directly by ForkJoinTask.
182       */
183 <    private static final Random randomSeedGenerator = new Random();
183 >    final ForkJoinPool pool;
184  
185      /**
186       * The work-stealing queue array. Size must be a power of two.
187 +     * Initialized in onStart, to improve memory locality.
188       */
189      private ForkJoinTask<?>[] queue;
190  
191      /**
192 +     * Index (mod queue.length) of least valid queue slot, which is
193 +     * always the next position to steal from if nonempty.
194 +     */
195 +    private volatile int base;
196 +
197 +    /**
198       * Index (mod queue.length) of next queue slot to push to or pop
199 <     * from. It is written only by owner thread, via ordered store.
200 <     * Both sp and base are allowed to wrap around on overflow, but
201 <     * (sp - base) still estimates size.
199 >     * from. It is written only by owner thread, and accessed by other
200 >     * threads only after reading (volatile) base.  Both sp and base
201 >     * are allowed to wrap around on overflow, but (sp - base) still
202 >     * estimates size.
203       */
204 <    private volatile int sp;
204 >    private int sp;
205  
206      /**
207 <     * Index (mod queue.length) of least valid queue slot, which is
208 <     * always the next position to steal from if nonempty.
207 >     * The index of most recent stealer, used as a hint to avoid
208 >     * traversal in method helpJoinTask. This is only a hint because a
209 >     * worker might have had multiple steals and this only holds one
210 >     * of them (usually the most current). Declared non-volatile,
211 >     * relying on other prevailing sync to keep reasonably current.
212       */
213 <    private volatile int base;
213 >    private int stealHint;
214  
215      /**
216 <     * The pool this thread works in.
216 >     * Run state of this worker. In addition to the usual run levels,
217 >     * tracks if this worker is suspended as a spare, and if it was
218 >     * killed (trimmed) while suspended. However, "active" status is
219 >     * maintained separately and modified only in conjunction with
220 >     * CASes of the pool's runState (which are currently sadly
221 >     * manually inlined for performance.)  Accessed directly by pool
222 >     * to simplify checks for normal (zero) status.
223       */
224 <    final ForkJoinPool pool;
224 >    volatile int runState;
225 >
226 >    private static final int TERMINATING = 0x01;
227 >    private static final int TERMINATED  = 0x02;
228 >    private static final int SUSPENDED   = 0x04; // inactive spare
229 >    private static final int TRIMMED     = 0x08; // killed while suspended
230 >
231 >    /**
232 >     * Number of steals. Directly accessed (and reset) by
233 >     * pool.tryAccumulateStealCount when idle.
234 >     */
235 >    int stealCount;
236 >
237 >    /**
238 >     * Seed for random number generator for choosing steal victims.
239 >     * Uses Marsaglia xorshift. Must be initialized as nonzero.
240 >     */
241 >    private int seed;
242 >
243 >    /**
244 >     * Activity status. When true, this worker is considered active.
245 >     * Accessed directly by pool.  Must be false upon construction.
246 >     */
247 >    boolean active;
248 >
249 >    /**
250 >     * True if use local fifo, not default lifo, for local polling.
251 >     * Shadows value from ForkJoinPool.
252 >     */
253 >    private final boolean locallyFifo;
254  
255      /**
256       * Index of this worker in pool array. Set once by pool before
257 <     * running, and accessed directly by pool during cleanup etc
257 >     * running, and accessed directly by pool to locate this worker in
258 >     * its workers array.
259       */
260      int poolIndex;
261  
262      /**
263 <     * Run state of this worker. Supports simple versions of the usual
264 <     * shutdown/shutdownNow control.
263 >     * The last pool event waited for. Accessed only by pool in
264 >     * callback methods invoked within this thread.
265       */
266 <    private volatile int runState;
196 <
197 <    // Runstate values. Order matters
198 <    private static final int RUNNING     = 0;
199 <    private static final int SHUTDOWN    = 1;
200 <    private static final int TERMINATING = 2;
201 <    private static final int TERMINATED  = 3;
266 >    int lastEventCount;
267  
268      /**
269 <     * Activity status. When true, this worker is considered active.
270 <     * Must be false upon construction. It must be true when executing
206 <     * tasks, and BEFORE stealing a task. It must be false before
207 <     * blocking on the Pool Barrier.
269 >     * Encoded index and event count of next event waiter. Accessed
270 >     * only by ForkJoinPool for managing event waiters.
271       */
272 <    private boolean active;
272 >    volatile long nextWaiter;
273  
274      /**
275 <     * Number of steals, transferred to pool when idle
275 >     * Number of times this thread suspended as spare. Accessed only
276 >     * by pool.
277       */
278 <    private int stealCount;
278 >    int spareCount;
279  
280      /**
281 <     * Seed for random number generator for choosing steal victims
281 >     * Encoded index and count of next spare waiter. Accessed only
282 >     * by ForkJoinPool for managing spares.
283       */
284 <    private int randomVictimSeed;
284 >    volatile int nextSpare;
285  
286      /**
287 <     * Seed for embedded Jurandom
287 >     * The task currently being joined, set only when actively trying
288 >     * to help other stealers in helpJoinTask. Written only by this
289 >     * thread, but read by others.
290       */
291 <    private long juRandomSeed;
291 >    private volatile ForkJoinTask<?> currentJoin;
292  
293      /**
294 <     * The last barrier event waited for
294 >     * The task most recently stolen from another worker (or
295 >     * submission queue).  Written only by this thread, but read by
296 >     * others.
297       */
298 <    private long eventCount;
298 >    private volatile ForkJoinTask<?> currentSteal;
299  
300      /**
301       * Creates a ForkJoinWorkerThread operating in the given pool.
302 +     *
303       * @param pool the pool this thread works in
304       * @throws NullPointerException if pool is null
305       */
306      protected ForkJoinWorkerThread(ForkJoinPool pool) {
237        if (pool == null) throw new NullPointerException();
307          this.pool = pool;
308 <        // remaining initialization deferred to onStart
309 <    }
310 <
311 <    //  Access methods used by Pool
243 <
244 <    /**
245 <     * Get and clear steal count for accumulation by pool.  Called
246 <     * only when known to be idle (in pool.sync and termination).
247 <     */
248 <    final int getAndClearStealCount() {
249 <        int sc = stealCount;
250 <        stealCount = 0;
251 <        return sc;
308 >        this.locallyFifo = pool.locallyFifo;
309 >        setDaemon(true);
310 >        // To avoid exposing construction details to subclasses,
311 >        // remaining initialization is in start() and onStart()
312      }
313  
314      /**
315 <     * Returns estimate of the number of tasks in the queue, without
256 <     * correcting for transient negative values
315 >     * Performs additional initialization and starts this thread.
316       */
317 <    final int getRawQueueSize() {
318 <        return sp - base;
317 >    final void start(int poolIndex, UncaughtExceptionHandler ueh) {
318 >        this.poolIndex = poolIndex;
319 >        if (ueh != null)
320 >            setUncaughtExceptionHandler(ueh);
321 >        start();
322      }
323  
324 <    // Intrinsics-based support for queue operations.
263 <    // Currently these three (setSp, setSlot, casSlotNull) are
264 <    // usually manually inlined to improve performance
324 >    // Public/protected methods
325  
326      /**
327 <     * Sets sp in store-order.
327 >     * Returns the pool hosting this thread.
328 >     *
329 >     * @return the pool
330       */
331 <    private void setSp(int s) {
332 <        _unsafe.putOrderedInt(this, spOffset, s);
331 >    public ForkJoinPool getPool() {
332 >        return pool;
333      }
334  
335      /**
336 <     * Add in store-order the given task at given slot of q to
337 <     * null. Caller must ensure q is nonnull and index is in range.
336 >     * Returns the index number of this thread in its pool.  The
337 >     * returned value ranges from zero to the maximum number of
338 >     * threads (minus one) that have ever been created in the pool.
339 >     * This method may be useful for applications that track status or
340 >     * collect results per-worker rather than per-task.
341 >     *
342 >     * @return the index number
343       */
344 <    private static void setSlot(ForkJoinTask<?>[] q, int i,
345 <                                ForkJoinTask<?> t){
279 <        _unsafe.putOrderedObject(q, (i << qShift) + qBase, t);
344 >    public int getPoolIndex() {
345 >        return poolIndex;
346      }
347  
348      /**
349 <     * CAS given slot of q to null. Caller must ensure q is nonnull
350 <     * and index is in range.
349 >     * Initializes internal state after construction but before
350 >     * processing any tasks. If you override this method, you must
351 >     * invoke @code{super.onStart()} at the beginning of the method.
352 >     * Initialization requires care: Most fields must have legal
353 >     * default values, to ensure that attempted accesses from other
354 >     * threads work correctly even before this thread starts
355 >     * processing tasks.
356       */
357 <    private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
358 <                                       ForkJoinTask<?> t) {
359 <        return _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
360 <    }
357 >    protected void onStart() {
358 >        int rs = seedGenerator.nextInt();
359 >        seed = rs == 0? 1 : rs; // seed must be nonzero
360 >
361 >        // Allocate name string and arrays in this thread
362 >        String pid = Integer.toString(pool.getPoolNumber());
363 >        String wid = Integer.toString(poolIndex);
364 >        setName("ForkJoinPool-" + pid + "-worker-" + wid);
365  
366 <    // Main queue methods
366 >        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
367 >    }
368  
369      /**
370 <     * Pushes a task. Called only by current thread.
371 <     * @param t the task. Caller must ensure nonnull
370 >     * Performs cleanup associated with termination of this worker
371 >     * thread.  If you override this method, you must invoke
372 >     * {@code super.onTermination} at the end of the overridden method.
373 >     *
374 >     * @param exception the exception causing this thread to abort due
375 >     * to an unrecoverable error, or {@code null} if completed normally
376       */
377 <    final void pushTask(ForkJoinTask<?> t) {
378 <        ForkJoinTask<?>[] q = queue;
379 <        int mask = q.length - 1;
380 <        int s = sp;
381 <        _unsafe.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
382 <        _unsafe.putOrderedInt(this, spOffset, ++s);
383 <        if ((s -= base) == 1)
384 <            pool.signalNonEmptyWorkerQueue();
385 <        else if (s >= mask)
386 <            growQueue();
377 >    protected void onTermination(Throwable exception) {
378 >        try {
379 >            ForkJoinPool p = pool;
380 >            if (active) {
381 >                int a; // inline p.tryDecrementActiveCount
382 >                active = false;
383 >                do {} while (!UNSAFE.compareAndSwapInt
384 >                             (p, poolRunStateOffset, a = p.runState, a - 1));
385 >            }
386 >            cancelTasks();
387 >            setTerminated();
388 >            p.workerTerminated(this);
389 >        } catch (Throwable ex) {        // Shouldn't ever happen
390 >            if (exception == null)      // but if so, at least rethrown
391 >                exception = ex;
392 >        } finally {
393 >            if (exception != null)
394 >                UNSAFE.throwException(exception);
395 >        }
396      }
397  
398      /**
399 <     * Tries to take a task from the base of the queue, failing if
400 <     * either empty or contended.
401 <     * @return a task, or null if none or contended.
399 >     * This method is required to be public, but should never be
400 >     * called explicitly. It performs the main run loop to execute
401 >     * ForkJoinTasks.
402       */
403 <    private ForkJoinTask<?> deqTask() {
404 <        ForkJoinTask<?>[] q;
405 <        ForkJoinTask<?> t;
406 <        int i;
407 <        int b;
408 <        if (sp != (b = base) &&
409 <            (q = queue) != null && // must read q after b
410 <            (t = q[i = (q.length - 1) & b]) != null &&
411 <            _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
323 <            base = b + 1;
324 <            return t;
403 >    public void run() {
404 >        Throwable exception = null;
405 >        try {
406 >            onStart();
407 >            mainLoop();
408 >        } catch (Throwable ex) {
409 >            exception = ex;
410 >        } finally {
411 >            onTermination(exception);
412          }
326        return null;
413      }
414  
415 +    // helpers for run()
416 +
417      /**
418 <     * Returns a popped task, or null if empty.  Called only by
331 <     * current thread.
418 >     * Finds and executes tasks, and checks status while running.
419       */
420 <    final ForkJoinTask<?> popTask() {
421 <        ForkJoinTask<?> t;
422 <        int i;
423 <        ForkJoinTask<?>[] q = queue;
424 <        int mask = q.length - 1;
425 <        int s = sp;
426 <        if (s != base &&
427 <            (t = q[i = (s - 1) & mask]) != null &&
341 <            _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
342 <            _unsafe.putOrderedInt(this, spOffset, s - 1);
343 <            return t;
420 >    private void mainLoop() {
421 >        boolean ran = false; // true if ran a task on last step
422 >        ForkJoinPool p = pool;
423 >        for (;;) {
424 >            p.preStep(this, ran);
425 >            if (runState != 0)
426 >                break;
427 >            ran = tryExecSteal() || tryExecSubmission();
428          }
345        return null;
429      }
430  
431      /**
432 <     * Specialized version of popTask to pop only if
433 <     * topmost element is the given task. Called only
434 <     * by current thread.
352 <     * @param t the task. Caller must ensure nonnull
432 >     * Tries to steal a task and execute it.
433 >     *
434 >     * @return true if ran a task
435       */
436 <    final boolean unpushTask(ForkJoinTask<?> t) {
437 <        ForkJoinTask<?>[] q = queue;
438 <        int mask = q.length - 1;
439 <        int s = sp - 1;
440 <        if (_unsafe.compareAndSwapObject(q, ((s & mask) << qShift) + qBase,
441 <                                         t, null)) {
442 <            _unsafe.putOrderedInt(this, spOffset, s);
436 >    private boolean tryExecSteal() {
437 >        ForkJoinTask<?> t;
438 >        if ((t = scan()) != null) {
439 >            t.quietlyExec();
440 >            UNSAFE.putOrderedObject(this, currentStealOffset, null);
441 >            if (sp != base)
442 >                execLocalTasks();
443              return true;
444          }
445          return false;
446      }
447  
448      /**
449 <     * Returns next task to pop.
449 >     * If a submission exists, try to activate and run it.
450 >     *
451 >     * @return true if ran a task
452       */
453 <    private ForkJoinTask<?> peekTask() {
454 <        ForkJoinTask<?>[] q = queue;
455 <        return q == null? null : q[(sp - 1) & (q.length - 1)];
453 >    private boolean tryExecSubmission() {
454 >        ForkJoinPool p = pool;
455 >        // This loop is needed in case attempt to activate fails, in
456 >        // which case we only retry if there still appears to be a
457 >        // submission.
458 >        while (p.hasQueuedSubmissions()) {
459 >            ForkJoinTask<?> t; int a;
460 >            if (active || // inline p.tryIncrementActiveCount
461 >                (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
462 >                                                   a = p.runState, a + 1))) {
463 >                if ((t = p.pollSubmission()) != null) {
464 >                    UNSAFE.putOrderedObject(this, currentStealOffset, t);
465 >                    t.quietlyExec();
466 >                    UNSAFE.putOrderedObject(this, currentStealOffset, null);
467 >                    if (sp != base)
468 >                        execLocalTasks();
469 >                    return true;
470 >                }
471 >            }
472 >        }
473 >        return false;
474      }
475  
476      /**
477 <     * Doubles queue array size. Transfers elements by emulating
478 <     * steals (deqs) from old array and placing, oldest first, into
377 <     * new array.
477 >     * Runs local tasks until queue is empty or shut down.  Call only
478 >     * while active.
479       */
480 <    private void growQueue() {
481 <        ForkJoinTask<?>[] oldQ = queue;
482 <        int oldSize = oldQ.length;
483 <        int newSize = oldSize << 1;
484 <        if (newSize > MAXIMUM_QUEUE_CAPACITY)
485 <            throw new RejectedExecutionException("Queue capacity exceeded");
486 <        ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
487 <
387 <        int b = base;
388 <        int bf = b + oldSize;
389 <        int oldMask = oldSize - 1;
390 <        int newMask = newSize - 1;
391 <        do {
392 <            int oldIndex = b & oldMask;
393 <            ForkJoinTask<?> t = oldQ[oldIndex];
394 <            if (t != null && !casSlotNull(oldQ, oldIndex, t))
395 <                t = null;
396 <            setSlot(newQ, b & newMask, t);
397 <        } while (++b != bf);
398 <        pool.signalIdleWorkers(false);
480 >    private void execLocalTasks() {
481 >        while (runState == 0) {
482 >            ForkJoinTask<?> t = locallyFifo ? locallyDeqTask() : popTask();
483 >            if (t != null)
484 >                t.quietlyExec();
485 >            else if (sp == base)
486 >                break;
487 >        }
488      }
489  
490 <    // Runstate management
491 <
492 <    final boolean isShutdown()    { return runState >= SHUTDOWN;  }
493 <    final boolean isTerminating() { return runState >= TERMINATING;  }
494 <    final boolean isTerminated()  { return runState == TERMINATED; }
495 <    final boolean shutdown()      { return transitionRunStateTo(SHUTDOWN); }
496 <    final boolean shutdownNow()   { return transitionRunStateTo(TERMINATING); }
497 <
498 <    /**
499 <     * Transition to at least the given state. Return true if not
500 <     * already at least given state.
490 >    /*
491 >     * Intrinsics-based atomic writes for queue slots. These are
492 >     * basically the same as methods in AtomicReferenceArray, but
493 >     * specialized for (1) ForkJoinTask elements (2) requirement that
494 >     * nullness and bounds checks have already been performed by
495 >     * callers and (3) effective offsets are known not to overflow
496 >     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
497 >     * need corresponding version for reads: plain array reads are OK
498 >     * because they are protected by other volatile reads and are
499 >     * confirmed by CASes.
500 >     *
501 >     * Most uses don't actually call these methods, but instead contain
502 >     * inlined forms that enable more predictable optimization.  We
503 >     * don't define the version of write used in pushTask at all, but
504 >     * instead inline there a store-fenced array slot write.
505       */
413    private boolean transitionRunStateTo(int state) {
414        for (;;) {
415            int s = runState;
416            if (s >= state)
417                return false;
418            if (_unsafe.compareAndSwapInt(this, runStateOffset, s, state))
419                return true;
420        }
421    }
506  
507      /**
508 <     * Ensure status is active and if necessary adjust pool active count
508 >     * CASes slot i of array q from t to null. Caller must ensure q is
509 >     * non-null and index is in range.
510       */
511 <    final void activate() {
512 <        if (!active) {
513 <            active = true;
429 <            pool.incrementActiveCount();
430 <        }
511 >    private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
512 >                                             ForkJoinTask<?> t) {
513 >        return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
514      }
515  
516      /**
517 <     * Ensure status is inactive and if necessary adjust pool active count
517 >     * Performs a volatile write of the given task at given slot of
518 >     * array q.  Caller must ensure q is non-null and index is in
519 >     * range. This method is used only during resets and backouts.
520       */
521 <    final void inactivate() {
522 <        if (active) {
523 <            active = false;
439 <            pool.decrementActiveCount();
440 <        }
521 >    private static final void writeSlot(ForkJoinTask<?>[] q, int i,
522 >                                        ForkJoinTask<?> t) {
523 >        UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
524      }
525  
526 <    // Lifecycle methods
526 >    // queue methods
527  
528      /**
529 <     * Initializes internal state after construction but before
530 <     * processing any tasks. If you override this method, you must
531 <     * invoke super.onStart() at the beginning of the method.
449 <     * Initialization requires care: Most fields must have legal
450 <     * default values, to ensure that attempted accesses from other
451 <     * threads work correctly even before this thread starts
452 <     * processing tasks.
529 >     * Pushes a task. Call only from this thread.
530 >     *
531 >     * @param t the task. Caller must ensure non-null.
532       */
533 <    protected void onStart() {
534 <        juRandomSeed = randomSeedGenerator.nextLong();
535 <        do;while((randomVictimSeed = nextRandomInt()) == 0); // must be nonzero
536 <        if (queue == null)
537 <            queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
538 <
539 <        // Heuristically allow one initial thread to warm up; others wait
540 <        if (poolIndex < pool.getParallelism() - 1) {
541 <            eventCount = pool.sync(this, 0);
463 <            activate();
464 <        }
533 >    final void pushTask(ForkJoinTask<?> t) {
534 >        ForkJoinTask<?>[] q = queue;
535 >        int mask = q.length - 1; // implicit assert q != null
536 >        int s = sp++;            // ok to increment sp before slot write
537 >        UNSAFE.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
538 >        if ((s -= base) == 0)
539 >            pool.signalWork();   // was empty
540 >        else if (s == mask)
541 >            growQueue();         // is full
542      }
543  
544      /**
545 <     * Perform cleanup associated with termination of this worker
546 <     * thread.  If you override this method, you must invoke
547 <     * super.onTermination at the end of the overridden method.
545 >     * Tries to take a task from the base of the queue, failing if
546 >     * empty or contended. Note: Specializations of this code appear
547 >     * in locallyDeqTask and elsewhere.
548       *
549 <     * @param exception the exception causing this thread to abort due
473 <     * to an unrecoverable error, or null if completed normally.
549 >     * @return a task, or null if none or contended
550       */
551 <    protected void onTermination(Throwable exception) {
552 <        try {
553 <            clearLocalTasks();
554 <            inactivate();
555 <            cancelTasks();
556 <        } finally {
557 <            terminate(exception);
551 >    final ForkJoinTask<?> deqTask() {
552 >        ForkJoinTask<?> t;
553 >        ForkJoinTask<?>[] q;
554 >        int b, i;
555 >        if (sp != (b = base) &&
556 >            (q = queue) != null && // must read q after b
557 >            (t = q[i = (q.length - 1) & b]) != null && base == b &&
558 >            UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
559 >            base = b + 1;
560 >            return t;
561          }
562 +        return null;
563      }
564  
565      /**
566 <     * Notify pool of termination and, if exception is nonnull,
567 <     * rethrow it to trigger this thread's uncaughtExceptionHandler
566 >     * Tries to take a task from the base of own queue. Assumes active
567 >     * status.  Called only by this thread.
568 >     *
569 >     * @return a task, or null if none
570       */
571 <    private void terminate(Throwable exception) {
572 <        transitionRunStateTo(TERMINATED);
573 <        try {
574 <            pool.workerTerminated(this);
575 <        } finally {
576 <            if (exception != null)
577 <                ForkJoinTask.rethrowException(exception);
571 >    final ForkJoinTask<?> locallyDeqTask() {
572 >        ForkJoinTask<?>[] q = queue;
573 >        if (q != null) {
574 >            ForkJoinTask<?> t;
575 >            int b, i;
576 >            while (sp != (b = base)) {
577 >                if ((t = q[i = (q.length - 1) & b]) != null && base == b &&
578 >                    UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
579 >                                                t, null)) {
580 >                    base = b + 1;
581 >                    return t;
582 >                }
583 >            }
584          }
585 +        return null;
586      }
587  
588      /**
589 <     * Run local tasks on exit from main.
589 >     * Returns a popped task, or null if empty. Assumes active status.
590 >     * Called only by this thread.
591       */
592 <    private void clearLocalTasks() {
593 <        while (base != sp && !pool.isTerminating()) {
594 <            ForkJoinTask<?> t = popTask();
595 <            if (t != null) {
596 <                activate(); // ensure active status
597 <                t.quietlyExec();
592 >    private ForkJoinTask<?> popTask() {
593 >        ForkJoinTask<?>[] q = queue;
594 >        if (q != null) {
595 >            int s;
596 >            while ((s = sp) != base) {
597 >                int i = (q.length - 1) & --s;
598 >                long u = (i << qShift) + qBase; // raw offset
599 >                ForkJoinTask<?> t = q[i];
600 >                if (t == null)   // lost to stealer
601 >                    break;
602 >                if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
603 >                    sp = s; // putOrderedInt may encourage more timely write
604 >                    // UNSAFE.putOrderedInt(this, spOffset, s);
605 >                    return t;
606 >                }
607              }
608          }
609 +        return null;
610      }
611  
612      /**
613 <     * Removes and cancels all tasks in queue.  Can be called from any
614 <     * thread.
613 >     * Specialized version of popTask to pop only if topmost element
614 >     * is the given task. Called only by this thread while active.
615 >     *
616 >     * @param t the task. Caller must ensure non-null.
617       */
618 <    final void cancelTasks() {
619 <        while (base != sp) {
620 <            ForkJoinTask<?> t = deqTask();
621 <            if (t != null)
622 <                t.cancelIgnoreExceptions();
618 >    final boolean unpushTask(ForkJoinTask<?> t) {
619 >        int s;
620 >        ForkJoinTask<?>[] q = queue;
621 >        if ((s = sp) != base && q != null &&
622 >            UNSAFE.compareAndSwapObject
623 >            (q, (((q.length - 1) & --s) << qShift) + qBase, t, null)) {
624 >            sp = s; // putOrderedInt may encourage more timely write
625 >            // UNSAFE.putOrderedInt(this, spOffset, s);
626 >            return true;
627          }
628 +        return false;
629      }
630  
631      /**
632 <     * This method is required to be public, but should never be
526 <     * called explicitly. It performs the main run loop to execute
527 <     * ForkJoinTasks.
632 >     * Returns next task, or null if empty or contended.
633       */
634 <    public void run() {
635 <        Throwable exception = null;
636 <        try {
637 <            onStart();
638 <            while (!isShutdown())
639 <                step();
640 <        } catch (Throwable ex) {
536 <            exception = ex;
537 <        } finally {
538 <            onTermination(exception);
539 <        }
634 >    final ForkJoinTask<?> peekTask() {
635 >        ForkJoinTask<?>[] q = queue;
636 >        if (q == null)
637 >            return null;
638 >        int mask = q.length - 1;
639 >        int i = locallyFifo ? base : (sp - 1);
640 >        return q[i & mask];
641      }
642  
643      /**
644 <     * Main top-level action.
644 >     * Doubles queue array size. Transfers elements by emulating
645 >     * steals (deqs) from old array and placing, oldest first, into
646 >     * new array.
647       */
648 <    private void step() {
649 <        ForkJoinTask<?> t = sp != base? popTask() : null;
650 <        if (t != null || (t = scan(null, true)) != null) {
651 <            activate();
652 <            t.quietlyExec();
653 <        }
654 <        else {
552 <            inactivate();
553 <            eventCount = pool.sync(this, eventCount);
554 <        }
555 <    }
648 >    private void growQueue() {
649 >        ForkJoinTask<?>[] oldQ = queue;
650 >        int oldSize = oldQ.length;
651 >        int newSize = oldSize << 1;
652 >        if (newSize > MAXIMUM_QUEUE_CAPACITY)
653 >            throw new RejectedExecutionException("Queue capacity exceeded");
654 >        ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
655  
656 <    // scanning for and stealing tasks
656 >        int b = base;
657 >        int bf = b + oldSize;
658 >        int oldMask = oldSize - 1;
659 >        int newMask = newSize - 1;
660 >        do {
661 >            int oldIndex = b & oldMask;
662 >            ForkJoinTask<?> t = oldQ[oldIndex];
663 >            if (t != null && !casSlotNull(oldQ, oldIndex, t))
664 >                t = null;
665 >            writeSlot(newQ, b & newMask, t);
666 >        } while (++b != bf);
667 >        pool.signalWork();
668 >    }
669  
670      /**
671 <     * Computes next value for random victim probe. Scans don't
672 <     * require a very high quality generator, but also not a crummy
673 <     * one. Marsaglia xor-shift is cheap and works well.
674 <     *
564 <     * This is currently unused, and manually inlined
671 >     * Computes next value for random victim probe in scan().  Scans
672 >     * don't require a very high quality generator, but also not a
673 >     * crummy one.  Marsaglia xor-shift is cheap and works well enough.
674 >     * Note: This is manually inlined in scan().
675       */
676 <    private static int xorShift(int r) {
677 <        r ^= r << 1;
678 <        r ^= r >>> 3;
679 <        r ^= r << 10;
570 <        return r;
676 >    private static final int xorShift(int r) {
677 >        r ^= r << 13;
678 >        r ^= r >>> 17;
679 >        return r ^ (r << 5);
680      }
681  
682      /**
683 <     * Tries to steal a task from another worker and/or, if enabled,
684 <     * submission queue. Starts at a random index of workers array,
685 <     * and probes workers until finding one with non-empty queue or
686 <     * finding that all are empty.  It randomly selects the first n-1
687 <     * probes. If these are empty, it resorts to full circular
688 <     * traversal, which is necessary to accurately set active status
689 <     * by caller. Also restarts if pool barrier has tripped since last
690 <     * scan, which forces refresh of workers array, in case barrier
582 <     * was associated with resize.
683 >     * Tries to steal a task from another worker. Starts at a random
684 >     * index of workers array, and probes workers until finding one
685 >     * with non-empty queue or finding that all are empty.  It
686 >     * randomly selects the first n probes. If these are empty, it
687 >     * resorts to a circular sweep, which is necessary to accurately
688 >     * set active status. (The circular sweep uses steps of
689 >     * approximately half the array size plus 1, to avoid bias
690 >     * stemming from leftmost packing of the array in ForkJoinPool.)
691       *
692       * This method must be both fast and quiet -- usually avoiding
693       * memory accesses that could disrupt cache sharing etc other than
694 <     * those needed to check for and take tasks. This accounts for,
695 <     * among other things, updating random seed in place without
696 <     * storing it until exit. (Note that we only need to store it if
589 <     * we found a task; otherwise it doesn't matter if we start at the
590 <     * same place next time.)
694 >     * those needed to check for and take tasks (or to activate if not
695 >     * already active). This accounts for, among other things,
696 >     * updating random seed in place without storing it until exit.
697       *
592     * @param joinMe if non null; exit early if done
593     * @param checkSubmissions true if OK to take submissions
698       * @return a task, or null if none found
699       */
700 <    private ForkJoinTask<?> scan(ForkJoinTask<?> joinMe,
597 <                                 boolean checkSubmissions) {
700 >    private ForkJoinTask<?> scan() {
701          ForkJoinPool p = pool;
702 <        if (p == null)                    // Never null, but avoids
703 <            return null;                  //   implicit nullchecks below
704 <        int r = randomVictimSeed;         // extract once to keep scan quiet
705 <        restart:                          // outer loop refreshes ws array
706 <        while (joinMe == null || joinMe.status >= 0) {
707 <            int mask;
708 <            ForkJoinWorkerThread[] ws = p.workers;
709 <            if (ws != null && (mask = ws.length - 1) > 0) {
710 <                int probes = -mask;       // use random index while negative
711 <                int idx = r;
712 <                for (;;) {
713 <                    ForkJoinWorkerThread v;
714 <                    // inlined xorshift to update seed
715 <                    r ^= r << 1;  r ^= r >>> 3; r ^= r << 10;
716 <                    if ((v = ws[mask & idx]) != null && v.sp != v.base) {
717 <                        ForkJoinTask<?> t;
718 <                        activate();
719 <                        if ((joinMe == null || joinMe.status >= 0) &&
720 <                            (t = v.deqTask()) != null) {
721 <                            randomVictimSeed = r;
702 >        ForkJoinWorkerThread[] ws;        // worker array
703 >        int n;                            // upper bound of #workers
704 >        if ((ws = p.workers) != null && (n = ws.length) > 1) {
705 >            boolean canSteal = active;    // shadow active status
706 >            int r = seed;                 // extract seed once
707 >            int mask = n - 1;
708 >            int j = -n;                   // loop counter
709 >            int k = r;                    // worker index, random if j < 0
710 >            for (;;) {
711 >                ForkJoinWorkerThread v = ws[k & mask];
712 >                r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // inline xorshift
713 >                ForkJoinTask<?>[] q; ForkJoinTask<?> t; int b, a;
714 >                if (v != null && (b = v.base) != v.sp &&
715 >                    (q = v.queue) != null) {
716 >                    int i = (q.length - 1) & b;
717 >                    long u = (i << qShift) + qBase; // raw offset
718 >                    int pid = poolIndex;
719 >                    if ((t = q[i]) != null) {
720 >                        if (!canSteal &&  // inline p.tryIncrementActiveCount
721 >                            UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
722 >                                                     a = p.runState, a + 1))
723 >                            canSteal = active = true;
724 >                        if (canSteal && v.base == b++ &&
725 >                            UNSAFE.compareAndSwapObject(q, u, t, null)) {
726 >                            v.base = b;
727 >                            v.stealHint = pid;
728 >                            UNSAFE.putOrderedObject(this,
729 >                                                    currentStealOffset, t);
730 >                            seed = r;
731                              ++stealCount;
732                              return t;
733                          }
622                        continue restart; // restart on contention
734                      }
735 <                    if ((probes >> 1) <= mask) // n-1 random then circular
736 <                        idx = (probes++ < 0)? r : (idx + 1);
626 <                    else
627 <                        break;
735 >                    j = -n;
736 >                    k = r;                // restart on contention
737                  }
738 <            }
739 <            if (checkSubmissions && p.hasQueuedSubmissions()) {
740 <                activate();
741 <                ForkJoinTask<?> t = p.pollSubmission();
742 <                if (t != null)
634 <                    return t;
635 <            }
636 <            else {
637 <                long ec = eventCount;     // restart on pool event
638 <                if ((eventCount = p.getEventCount()) == ec)
738 >                else if (++j <= 0)
739 >                    k = r;
740 >                else if (j <= n)
741 >                    k += (n >>> 1) | 1;
742 >                else
743                      break;
744              }
745          }
746          return null;
747      }
748  
749 <    /**
750 <     * Callback from pool.sync to rescan before blocking.  If a
751 <     * task is found, it is pushed so it can be executed upon return.
752 <     * @return true if found and pushed a task
753 <     */
754 <    final boolean prescan() {
755 <        ForkJoinTask<?> t = scan(null, true);
756 <        if (t != null) {
757 <            pushTask(t);
749 >    // Run State management
750 >
751 >    // status check methods used mainly by ForkJoinPool
752 >    final boolean isRunning()    { return runState == 0; }
753 >    final boolean isTerminated() { return (runState & TERMINATED) != 0; }
754 >    final boolean isSuspended()  { return (runState & SUSPENDED) != 0; }
755 >    final boolean isTrimmed()    { return (runState & TRIMMED) != 0; }
756 >
757 >    final boolean isTerminating() {
758 >        if ((runState & TERMINATING) != 0)
759 >            return true;
760 >        if (pool.isAtLeastTerminating()) { // propagate pool state
761 >            shutdown();
762              return true;
763          }
764 <        else {
657 <            inactivate();
658 <            return false;
659 <        }
764 >        return false;
765      }
766  
767      /**
768 <     * Implements ForkJoinTask.helpJoin
768 >     * Sets state to TERMINATING. Does NOT unpark or interrupt
769 >     * to wake up if currently blocked. Callers must do so if desired.
770       */
771 <    final int helpJoinTask(ForkJoinTask<?> joinMe) {
772 <        ForkJoinTask<?> t = null;
773 <        int s;
774 <        while ((s = joinMe.status) >= 0) {
775 <            if (t == null) {
776 <                if ((t = scan(joinMe, false)) == null)  // block if no work
777 <                    return joinMe.awaitDone(this, false);
778 <                // else recheck status before exec
779 <            }
780 <            else {
675 <                t.quietlyExec();
676 <                t = null;
771 >    final void shutdown() {
772 >        for (;;) {
773 >            int s = runState;
774 >            if ((s & (TERMINATING|TERMINATED)) != 0)
775 >                break;
776 >            if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
777 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
778 >                                             (s & ~SUSPENDED) |
779 >                                             (TRIMMED|TERMINATING)))
780 >                    break;
781              }
782 +            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
783 +                                              s | TERMINATING))
784 +                break;
785          }
679        if (t != null) // unsteal
680            pushTask(t);
681        return s;
682    }
683
684    // Support for public static and/or ForkJoinTask methods
685
686    /**
687     * Returns an estimate of the number of tasks in the queue.
688     */
689    final int getQueueSize() {
690        int b = base;
691        int n = sp - b;
692        return n <= 0? 0 : n; // suppress momentarily negative values
693    }
694
695    /**
696     * Runs one popped task, if available
697     * @return true if ran a task
698     */
699    private boolean runLocalTask() {
700        ForkJoinTask<?> t = popTask();
701        if (t == null)
702            return false;
703        t.quietlyExec();
704        return true;
786      }
787  
788      /**
789 <     * Pops or steals a task
709 <     * @return task, or null if none available
789 >     * Sets state to TERMINATED. Called only by onTermination().
790       */
791 <    private ForkJoinTask<?> getLocalOrStolenTask() {
792 <        ForkJoinTask<?> t = popTask();
793 <        return t != null? t : scan(null, false);
791 >    private void setTerminated() {
792 >        int s;
793 >        do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
794 >                                               s = runState,
795 >                                               s | (TERMINATING|TERMINATED)));
796      }
797  
798      /**
799 <     * Runs a popped or stolen task, if available
800 <     * @return true if ran a task
799 >     * If suspended, tries to set status to unsuspended.
800 >     * Does NOT wake up if blocked.
801 >     *
802 >     * @return true if successful
803       */
804 <    private boolean runLocalOrStolenTask() {
805 <        ForkJoinTask<?> t = getLocalOrStolenTask();
806 <        if (t == null)
807 <            return false;
808 <        t.quietlyExec();
809 <        return true;
804 >    final boolean tryUnsuspend() {
805 >        int s;
806 >        while (((s = runState) & SUSPENDED) != 0) {
807 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
808 >                                         s & ~SUSPENDED))
809 >                return true;
810 >        }
811 >        return false;
812      }
813  
814      /**
815 <     * Runs tasks until pool isQuiescent
815 >     * Sets suspended status and blocks as spare until resumed
816 >     * or shutdown.
817       */
818 <    final void helpQuiescePool() {
819 <        activate();
820 <        for (;;) {
821 <            if (!runLocalOrStolenTask()) {
822 <                inactivate();
823 <                if (pool.isQuiescent()) {
824 <                    activate(); // re-activate on exit
818 >    final void suspendAsSpare() {
819 >        for (;;) {                  // set suspended unless terminating
820 >            int s = runState;
821 >            if ((s & TERMINATING) != 0) { // must kill
822 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
823 >                                             s | (TRIMMED | TERMINATING)))
824 >                    return;
825 >            }
826 >            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
827 >                                              s | SUSPENDED))
828 >                break;
829 >        }
830 >        ForkJoinPool p = pool;
831 >        p.pushSpare(this);
832 >        while ((runState & SUSPENDED) != 0) {
833 >            if (p.tryAccumulateStealCount(this)) {
834 >                interrupted();          // clear/ignore interrupts
835 >                if ((runState & SUSPENDED) == 0)
836                      break;
837 <                }
837 >                LockSupport.park(this);
838              }
839          }
840      }
841  
842 +    // Misc support methods for ForkJoinPool
843 +
844      /**
845 <     * Returns an estimate of the number of tasks, offset by a
846 <     * function of number of idle workers.
845 >     * Returns an estimate of the number of tasks in the queue.  Also
846 >     * used by ForkJoinTask.
847       */
848 <    final int getEstimatedSurplusTaskCount() {
849 <        return (sp - base) - (pool.getIdleThreadCount() >>> 1);
848 >    final int getQueueSize() {
849 >        int n; // external calls must read base first
850 >        return (n = -base + sp) <= 0 ? 0 : n;
851      }
852  
752    // Public methods on current thread
753
853      /**
854 <     * Returns the pool hosting the current task execution.
855 <     * @return the pool
854 >     * Removes and cancels all tasks in queue.  Can be called from any
855 >     * thread.
856       */
857 <    public static ForkJoinPool getPool() {
858 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).pool;
857 >    final void cancelTasks() {
858 >        ForkJoinTask<?> cj = currentJoin; // try to cancel ongoing tasks
859 >        if (cj != null) {
860 >            currentJoin = null;
861 >            cj.cancelIgnoringExceptions();
862 >            try {
863 >                this.interrupt(); // awaken wait
864 >            } catch (SecurityException ignore) {
865 >            }
866 >        }
867 >        ForkJoinTask<?> cs = currentSteal;
868 >        if (cs != null) {
869 >            currentSteal = null;
870 >            cs.cancelIgnoringExceptions();
871 >        }
872 >        while (base != sp) {
873 >            ForkJoinTask<?> t = deqTask();
874 >            if (t != null)
875 >                t.cancelIgnoringExceptions();
876 >        }
877      }
878  
879      /**
880 <     * Returns the index number of the current worker thread in its
881 <     * pool.  The returned value ranges from zero to the maximum
882 <     * number of threads (minus one) that have ever been created in
766 <     * the pool.  This method may be useful for applications that
767 <     * track status or collect results per-worker rather than
768 <     * per-task.
769 <     * @return the index number.
880 >     * Drains tasks to given collection c.
881 >     *
882 >     * @return the number of tasks drained
883       */
884 <    public static int getPoolIndex() {
885 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).poolIndex;
884 >    final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
885 >        int n = 0;
886 >        while (base != sp) {
887 >            ForkJoinTask<?> t = deqTask();
888 >            if (t != null) {
889 >                c.add(t);
890 >                ++n;
891 >            }
892 >        }
893 >        return n;
894      }
895  
896 +    // Support methods for ForkJoinTask
897 +
898      /**
899 <     * Returns an estimate of the number of tasks waiting to be run by
900 <     * the current worker thread. This value may be useful for
901 <     * heuristic decisions about whether to fork other tasks.
779 <     * @return the number of tasks
899 >     * Gets and removes a local task.
900 >     *
901 >     * @return a task, if available
902       */
903 <    public static int getLocalQueueSize() {
904 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
905 <            getQueueSize();
903 >    final ForkJoinTask<?> pollLocalTask() {
904 >        ForkJoinPool p = pool;
905 >        while (sp != base) {
906 >            int a; // inline p.tryIncrementActiveCount
907 >            if (active ||
908 >                (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
909 >                                                   a = p.runState, a + 1)))
910 >                return locallyFifo ? locallyDeqTask() : popTask();
911 >        }
912 >        return null;
913      }
914  
915      /**
916 <     * Returns, but does not remove or execute, the next task locally
917 <     * queued for execution by the current worker thread. There is no
918 <     * guarantee that this task will be the next one actually returned
790 <     * or executed from other polling or execution methods.
791 <     * @return the next task or null if none
916 >     * Gets and removes a local or stolen task.
917 >     *
918 >     * @return a task, if available
919       */
920 <    public static ForkJoinTask<?> peekLocalTask() {
921 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).peekTask();
920 >    final ForkJoinTask<?> pollTask() {
921 >        ForkJoinTask<?> t = pollLocalTask();
922 >        if (t == null) {
923 >            t = scan();
924 >            // cannot retain/track/help steal
925 >            UNSAFE.putOrderedObject(this, currentStealOffset, null);
926 >        }
927 >        return t;
928      }
929  
930      /**
931 <     * Removes and returns, without executing, the next task queued
932 <     * for execution in the current worker thread's local queue.
933 <     * @return the next task to execute, or null if none
934 <     */
935 <    public static ForkJoinTask<?> pollLocalTask() {
936 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).popTask();
931 >     * Possibly runs some tasks and/or blocks, until task is done.
932 >     *
933 >     * @param joinMe the task to join
934 >     * @param timed true if use timed wait
935 >     * @param nanos wait time if timed
936 >     */
937 >    final void joinTask(ForkJoinTask<?> joinMe, boolean timed, long nanos) {
938 >        // currentJoin only written by this thread; only need ordered store
939 >        ForkJoinTask<?> prevJoin = currentJoin;
940 >        UNSAFE.putOrderedObject(this, currentJoinOffset, joinMe);
941 >        if (isTerminating())                // cancel if shutting down
942 >            joinMe.cancelIgnoringExceptions();
943 >        else
944 >            pool.awaitJoin(joinMe, this, timed, nanos);
945 >        UNSAFE.putOrderedObject(this, currentJoinOffset, prevJoin);
946      }
947  
948      /**
949 <     * Execute the next task locally queued by the current worker, if
950 <     * one is available.
951 <     * @return true if a task was run; a false return indicates
952 <     * that no task was available.
949 >     * Run tasks in local queue until given task is done.
950 >     * Not currently used because it complicates semantics.
951 >     *
952 >     * @param joinMe the task to join
953       */
954 <    public static boolean executeLocalTask() {
955 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
956 <            runLocalTask();
954 >    private void localHelpJoinTask(ForkJoinTask<?> joinMe) {
955 >        int s;
956 >        ForkJoinTask<?>[] q;
957 >        while (joinMe.status >= 0 && (s = sp) != base && (q = queue) != null) {
958 >            int i = (q.length - 1) & --s;
959 >            long u = (i << qShift) + qBase; // raw offset
960 >            ForkJoinTask<?> t = q[i];
961 >            if (t == null)  // lost to a stealer
962 >                break;
963 >            if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
964 >                /*
965 >                 * This recheck (and similarly in helpJoinTask)
966 >                 * handles cases where joinMe is independently
967 >                 * cancelled or forced even though there is other work
968 >                 * available. Back out of the pop by putting t back
969 >                 * into slot before we commit by writing sp.
970 >                 */
971 >                if (joinMe.status < 0) {
972 >                    UNSAFE.putObjectVolatile(q, u, t);
973 >                    break;
974 >                }
975 >                sp = s;
976 >                // UNSAFE.putOrderedInt(this, spOffset, s);
977 >                t.quietlyExec();
978 >            }
979 >        }
980      }
981  
982      /**
983 <     * Removes and returns, without executing, the next task queued
984 <     * for execution in the current worker thread's local queue or if
985 <     * none, a task stolen from another worker, if one is available.
986 <     * A null return does not necessarily imply that all tasks are
987 <     * completed, only that there are currently none available.
988 <     * @return the next task to execute, or null if none
983 >     * Tries to locate and help perform tasks for a stealer of the
984 >     * given task, or in turn one of its stealers.  Traces
985 >     * currentSteal->currentJoin links looking for a thread working on
986 >     * a descendant of the given task and with a non-empty queue to
987 >     * steal back and execute tasks from.
988 >     *
989 >     * The implementation is very branchy to cope with potential
990 >     * inconsistencies or loops encountering chains that are stale,
991 >     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
992 >     * of these cases are dealt with by just returning back to the
993 >     * caller, who is expected to retry if other join mechanisms also
994 >     * don't work out.
995 >     *
996 >     * @param joinMe the task to join
997       */
998 <    public static ForkJoinTask<?> pollTask() {
999 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
1000 <            getLocalOrStolenTask();
998 >    final void helpJoinTask(ForkJoinTask<?> joinMe) {
999 >        ForkJoinWorkerThread[] ws;
1000 >        int n;
1001 >        if (joinMe.status < 0)                // already done
1002 >            return;
1003 >        if ((ws = pool.workers) == null || (n = ws.length) <= 1)
1004 >            return;                           // need at least 2 workers
1005 >
1006 >        ForkJoinTask<?> task = joinMe;        // base of chain
1007 >        ForkJoinWorkerThread thread = this;   // thread with stolen task
1008 >        for (int d = 0; d < MAX_HELP_DEPTH; ++d) { // chain length
1009 >            // Try to find v, the stealer of task, by first using hint
1010 >            ForkJoinWorkerThread v = ws[thread.stealHint & (n - 1)];
1011 >            if (v == null || v.currentSteal != task) {
1012 >                for (int j = 0; ; ++j) {      // search array
1013 >                    if (j < n) {
1014 >                        ForkJoinTask<?> vs;
1015 >                        if ((v = ws[j]) != null &&
1016 >                            (vs = v.currentSteal) != null) {
1017 >                            if (joinMe.status < 0 || task.status < 0)
1018 >                                return;       // stale or done
1019 >                            if (vs == task) {
1020 >                                thread.stealHint = j;
1021 >                                break;        // save hint for next time
1022 >                            }
1023 >                        }
1024 >                    }
1025 >                    else
1026 >                        return;               // no stealer
1027 >                }
1028 >            }
1029 >            for (;;) { // Try to help v, using specialized form of deqTask
1030 >                if (joinMe.status < 0)
1031 >                    return;
1032 >                int b = v.base;
1033 >                ForkJoinTask<?>[] q = v.queue;
1034 >                if (b == v.sp || q == null)
1035 >                    break;
1036 >                int i = (q.length - 1) & b;
1037 >                long u = (i << qShift) + qBase;
1038 >                ForkJoinTask<?> t = q[i];
1039 >                int pid = poolIndex;
1040 >                ForkJoinTask<?> ps = currentSteal;
1041 >                if (task.status < 0)
1042 >                    return;                   // stale or done
1043 >                if (t != null && v.base == b++ &&
1044 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
1045 >                    if (joinMe.status < 0) {
1046 >                        UNSAFE.putObjectVolatile(q, u, t);
1047 >                        return;               // back out on cancel
1048 >                    }
1049 >                    v.base = b;
1050 >                    v.stealHint = pid;
1051 >                    UNSAFE.putOrderedObject(this, currentStealOffset, t);
1052 >                    t.quietlyExec();
1053 >                    UNSAFE.putOrderedObject(this, currentStealOffset, ps);
1054 >                }
1055 >            }
1056 >            // Try to descend to find v's stealer
1057 >            ForkJoinTask<?> next = v.currentJoin;
1058 >            if (task.status < 0 || next == null || next == task ||
1059 >                joinMe.status < 0)
1060 >                return;
1061 >            task = next;
1062 >            thread = v;
1063 >        }
1064      }
1065  
1066      /**
1067 <     * Helps this program complete by processing a local or stolen
1068 <     * task, if one is available.  This method may be useful when
1069 <     * several tasks are forked, and only one of them must be joined,
834 <     * as in:
1067 >     * Implements ForkJoinTask.getSurplusQueuedTaskCount().
1068 >     * Returns an estimate of the number of tasks, offset by a
1069 >     * function of number of idle workers.
1070       *
1071 <     * <pre>
1072 <     *   while (!t1.isDone() &amp;&amp; !t2.isDone())
1073 <     *     ForkJoinWorkerThread.executeTask();
1074 <     * </pre>
1071 >     * This method provides a cheap heuristic guide for task
1072 >     * partitioning when programmers, frameworks, tools, or languages
1073 >     * have little or no idea about task granularity.  In essence by
1074 >     * offering this method, we ask users only about tradeoffs in
1075 >     * overhead vs expected throughput and its variance, rather than
1076 >     * how finely to partition tasks.
1077       *
1078 <     * @return true if a task was run; a false return indicates
1079 <     * that no task was available.
1078 >     * In a steady state strict (tree-structured) computation, each
1079 >     * thread makes available for stealing enough tasks for other
1080 >     * threads to remain active. Inductively, if all threads play by
1081 >     * the same rules, each thread should make available only a
1082 >     * constant number of tasks.
1083 >     *
1084 >     * The minimum useful constant is just 1. But using a value of 1
1085 >     * would require immediate replenishment upon each steal to
1086 >     * maintain enough tasks, which is infeasible.  Further,
1087 >     * partitionings/granularities of offered tasks should minimize
1088 >     * steal rates, which in general means that threads nearer the top
1089 >     * of computation tree should generate more than those nearer the
1090 >     * bottom. In perfect steady state, each thread is at
1091 >     * approximately the same level of computation tree. However,
1092 >     * producing extra tasks amortizes the uncertainty of progress and
1093 >     * diffusion assumptions.
1094 >     *
1095 >     * So, users will want to use values larger, but not much larger
1096 >     * than 1 to both smooth over transient shortages and hedge
1097 >     * against uneven progress; as traded off against the cost of
1098 >     * extra task overhead. We leave the user to pick a threshold
1099 >     * value to compare with the results of this call to guide
1100 >     * decisions, but recommend values such as 3.
1101 >     *
1102 >     * When all threads are active, it is on average OK to estimate
1103 >     * surplus strictly locally. In steady-state, if one thread is
1104 >     * maintaining say 2 surplus tasks, then so are others. So we can
1105 >     * just use estimated queue length (although note that (sp - base)
1106 >     * can be an overestimate because of stealers lagging increments
1107 >     * of base).  However, this strategy alone leads to serious
1108 >     * mis-estimates in some non-steady-state conditions (ramp-up,
1109 >     * ramp-down, other stalls). We can detect many of these by
1110 >     * further considering the number of "idle" threads, that are
1111 >     * known to have zero queued tasks, so compensate by a factor of
1112 >     * (#idle/#active) threads.
1113       */
1114 <    public static boolean executeTask() {
1115 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
846 <            runLocalOrStolenTask();
847 <    }
848 <
849 <    // Per-worker exported random numbers
850 <
851 <    // Same constants as java.util.Random
852 <    final static long JURandomMultiplier = 0x5DEECE66DL;
853 <    final static long JURandomAddend = 0xBL;
854 <    final static long JURandomMask = (1L << 48) - 1;
855 <
856 <    private final int nextJURandom(int bits) {
857 <        long next = (juRandomSeed * JURandomMultiplier + JURandomAddend) &
858 <            JURandomMask;
859 <        juRandomSeed = next;
860 <        return (int)(next >>> (48 - bits));
1114 >    final int getEstimatedSurplusTaskCount() {
1115 >        return sp - base - pool.idlePerActive();
1116      }
1117  
1118 <    private final int nextJURandomInt(int n) {
1119 <        if (n <= 0)
1120 <            throw new IllegalArgumentException("n must be positive");
1121 <        int bits = nextJURandom(31);
1122 <        if ((n & -n) == n)
868 <            return (int)((n * (long)bits) >> 31);
869 <
1118 >    /**
1119 >     * Runs tasks until {@code pool.isQuiescent()}.
1120 >     */
1121 >    final void helpQuiescePool() {
1122 >        ForkJoinTask<?> ps = currentSteal; // to restore below
1123          for (;;) {
1124 <            int val = bits % n;
1125 <            if (bits - val + (n-1) >= 0)
1126 <                return val;
1127 <            bits = nextJURandom(31);
1128 <        }
1129 <    }
1130 <
1131 <    private final long nextJURandomLong() {
1132 <        return ((long)(nextJURandom(32)) << 32) + nextJURandom(32);
1133 <    }
1134 <
1135 <    private final long nextJURandomLong(long n) {
1136 <        if (n <= 0)
1137 <            throw new IllegalArgumentException("n must be positive");
1138 <        long offset = 0;
1139 <        while (n >= Integer.MAX_VALUE) { // randomly pick half range
1140 <            int bits = nextJURandom(2); // 2nd bit for odd vs even split
1141 <            long half = n >>> 1;
1142 <            long nextn = ((bits & 2) == 0)? half : n - half;
1143 <            if ((bits & 1) == 0)
891 <                offset += n - nextn;
892 <            n = nextn;
1124 >            ForkJoinTask<?> t = pollLocalTask();
1125 >            if (t != null || (t = scan()) != null)
1126 >                t.quietlyExec();
1127 >            else {
1128 >                ForkJoinPool p = pool;
1129 >                int a; // to inline CASes
1130 >                if (active) {
1131 >                    if (!UNSAFE.compareAndSwapInt
1132 >                        (p, poolRunStateOffset, a = p.runState, a - 1))
1133 >                        continue;   // retry later
1134 >                    active = false; // inactivate
1135 >                    UNSAFE.putOrderedObject(this, currentStealOffset, ps);
1136 >                }
1137 >                if (p.isQuiescent()) {
1138 >                    active = true; // re-activate
1139 >                    do {} while (!UNSAFE.compareAndSwapInt
1140 >                                 (p, poolRunStateOffset, a = p.runState, a+1));
1141 >                    return;
1142 >                }
1143 >            }
1144          }
894        return offset + nextJURandomInt((int)n);
1145      }
1146  
1147 <    private final double nextJURandomDouble() {
898 <        return (((long)(nextJURandom(26)) << 27) + nextJURandom(27))
899 <            / (double)(1L << 53);
900 <    }
1147 >    // Unsafe mechanics
1148  
1149 <    /**
1150 <     * Returns a random integer using a per-worker random
1151 <     * number generator with the same properties as
1152 <     * {@link java.util.Random#nextInt}
1153 <     * @return the next pseudorandom, uniformly distributed {@code int}
1154 <     *         value from this worker's random number generator's sequence
1155 <     */
1156 <    public static int nextRandomInt() {
1157 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
1158 <            nextJURandom(32);
1159 <    }
1149 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1150 >    private static final long spOffset =
1151 >        objectFieldOffset("sp", ForkJoinWorkerThread.class);
1152 >    private static final long runStateOffset =
1153 >        objectFieldOffset("runState", ForkJoinWorkerThread.class);
1154 >    private static final long currentJoinOffset =
1155 >        objectFieldOffset("currentJoin", ForkJoinWorkerThread.class);
1156 >    private static final long currentStealOffset =
1157 >        objectFieldOffset("currentSteal", ForkJoinWorkerThread.class);
1158 >    private static final long qBase =
1159 >        UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
1160 >    private static final long poolRunStateOffset = // to inline CAS
1161 >        objectFieldOffset("runState", ForkJoinPool.class);
1162  
1163 <    /**
915 <     * Returns a random integer using a per-worker random
916 <     * number generator with the same properties as
917 <     * {@link java.util.Random#nextInt(int)}
918 <     * @param n the bound on the random number to be returned.  Must be
919 <     *        positive.
920 <     * @return the next pseudorandom, uniformly distributed {@code int}
921 <     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
922 <     *         from this worker's random number generator's sequence
923 <     * @throws IllegalArgumentException if n is not positive
924 <     */
925 <    public static int nextRandomInt(int n) {
926 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
927 <            nextJURandomInt(n);
928 <    }
1163 >    private static final int qShift;
1164  
1165 <    /**
1166 <     * Returns a random long using a per-worker random
1167 <     * number generator with the same properties as
1168 <     * {@link java.util.Random#nextLong}
1169 <     * @return the next pseudorandom, uniformly distributed {@code long}
1170 <     *         value from this worker's random number generator's sequence
936 <     */
937 <    public static long nextRandomLong() {
938 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
939 <            nextJURandomLong();
1165 >    static {
1166 >        int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
1167 >        if ((s & (s-1)) != 0)
1168 >            throw new Error("data type scale not a power of two");
1169 >        qShift = 31 - Integer.numberOfLeadingZeros(s);
1170 >        MAXIMUM_QUEUE_CAPACITY = 1 << (31 - qShift);
1171      }
1172  
1173 <    /**
1174 <     * Returns a random integer using a per-worker random
1175 <     * number generator with the same properties as
1176 <     * {@link java.util.Random#nextInt(int)}
1177 <     * @param n the bound on the random number to be returned.  Must be
1178 <     *        positive.
1179 <     * @return the next pseudorandom, uniformly distributed {@code int}
1180 <     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
1181 <     *         from this worker's random number generator's sequence
951 <     * @throws IllegalArgumentException if n is not positive
952 <     */
953 <    public static long nextRandomLong(long n) {
954 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
955 <            nextJURandomLong(n);
1173 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1174 >        try {
1175 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1176 >        } catch (NoSuchFieldException e) {
1177 >            // Convert Exception to corresponding Error
1178 >            NoSuchFieldError error = new NoSuchFieldError(field);
1179 >            error.initCause(e);
1180 >            throw error;
1181 >        }
1182      }
1183  
1184      /**
1185 <     * Returns a random double using a per-worker random
1186 <     * number generator with the same properties as
1187 <     * {@link java.util.Random#nextDouble}
1188 <     * @return the next pseudorandom, uniformly distributed {@code double}
1189 <     *         value between {@code 0.0} and {@code 1.0} from this
964 <     *         worker's random number generator's sequence
1185 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1186 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1187 >     * into a jdk.
1188 >     *
1189 >     * @return a sun.misc.Unsafe
1190       */
1191 <    public static double nextRandomDouble() {
967 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
968 <            nextJURandomDouble();
969 <    }
970 <
971 <    // Temporary Unsafe mechanics for preliminary release
972 <
973 <    static final Unsafe _unsafe;
974 <    static final long baseOffset;
975 <    static final long spOffset;
976 <    static final long qBase;
977 <    static final int qShift;
978 <    static final long runStateOffset;
979 <    static {
1191 >    private static sun.misc.Unsafe getUnsafe() {
1192          try {
1193 <            if (ForkJoinWorkerThread.class.getClassLoader() != null) {
1194 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1195 <                f.setAccessible(true);
1196 <                _unsafe = (Unsafe)f.get(null);
1197 <            }
1198 <            else
1199 <                _unsafe = Unsafe.getUnsafe();
1200 <            baseOffset = _unsafe.objectFieldOffset
1201 <                (ForkJoinWorkerThread.class.getDeclaredField("base"));
1202 <            spOffset = _unsafe.objectFieldOffset
1203 <                (ForkJoinWorkerThread.class.getDeclaredField("sp"));
1204 <            runStateOffset = _unsafe.objectFieldOffset
1205 <                (ForkJoinWorkerThread.class.getDeclaredField("runState"));
1206 <            qBase = _unsafe.arrayBaseOffset(ForkJoinTask[].class);
1207 <            int s = _unsafe.arrayIndexScale(ForkJoinTask[].class);
1208 <            if ((s & (s-1)) != 0)
997 <                throw new Error("data type scale not a power of two");
998 <            qShift = 31 - Integer.numberOfLeadingZeros(s);
999 <        } catch (Exception e) {
1000 <            throw new RuntimeException("Could not initialize intrinsics", e);
1193 >            return sun.misc.Unsafe.getUnsafe();
1194 >        } catch (SecurityException se) {
1195 >            try {
1196 >                return java.security.AccessController.doPrivileged
1197 >                    (new java.security
1198 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1199 >                        public sun.misc.Unsafe run() throws Exception {
1200 >                            java.lang.reflect.Field f = sun.misc
1201 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1202 >                            f.setAccessible(true);
1203 >                            return (sun.misc.Unsafe) f.get(null);
1204 >                        }});
1205 >            } catch (java.security.PrivilegedActionException e) {
1206 >                throw new RuntimeException("Could not initialize intrinsics",
1207 >                                           e.getCause());
1208 >            }
1209          }
1210      }
1211   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines