ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.25 by jsr166, Sat Aug 1 21:17:11 2009 UTC vs.
Revision 1.54 by dl, Wed Nov 17 12:06:46 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.Random;
10   import java.util.Collection;
11 + import java.util.concurrent.locks.LockSupport;
12 + import java.util.concurrent.RejectedExecutionException;
13  
14   /**
15   * A thread managed by a {@link ForkJoinPool}.  This class is
# Line 17 | Line 18 | import java.util.Collection;
18   * However, you can override initialization and termination methods
19   * surrounding the main task processing loop.  If you do create such a
20   * subclass, you will also need to supply a custom {@link
21 < * ForkJoinWorkerThreadFactory} to use it in a {@code ForkJoinPool}.
21 > * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
22 > * ForkJoinPool}.
23   *
24   * @since 1.7
25   * @author Doug Lea
26   */
27   public class ForkJoinWorkerThread extends Thread {
28      /*
29 <     * Algorithm overview:
29 >     * Overview:
30       *
31 <     * 1. Work-Stealing: Work-stealing queues are special forms of
32 <     * Deques that support only three of the four possible
33 <     * end-operations -- push, pop, and deq (aka steal), and only do
34 <     * so under the constraints that push and pop are called only from
35 <     * the owning thread, while deq may be called from other threads.
36 <     * (If you are unfamiliar with them, you probably want to read
37 <     * Herlihy and Shavit's book "The Art of Multiprocessor
38 <     * programming", chapter 16 describing these in more detail before
39 <     * proceeding.)  The main work-stealing queue design is roughly
40 <     * similar to "Dynamic Circular Work-Stealing Deque" by David
41 <     * Chase and Yossi Lev, SPAA 2005
42 <     * (http://research.sun.com/scalable/pubs/index.html).  The main
43 <     * difference ultimately stems from gc requirements that we null
44 <     * out taken slots as soon as we can, to maintain as small a
45 <     * footprint as possible even in programs generating huge numbers
46 <     * of tasks. To accomplish this, we shift the CAS arbitrating pop
47 <     * vs deq (steal) from being on the indices ("base" and "sp") to
48 <     * the slots themselves (mainly via method "casSlotNull()"). So,
49 <     * both a successful pop and deq mainly entail CAS'ing a non-null
50 <     * slot to null.  Because we rely on CASes of references, we do
51 <     * not need tag bits on base or sp.  They are simple ints as used
52 <     * in any circular array-based queue (see for example ArrayDeque).
53 <     * Updates to the indices must still be ordered in a way that
54 <     * guarantees that (sp - base) > 0 means the queue is empty, but
55 <     * otherwise may err on the side of possibly making the queue
56 <     * appear nonempty when a push, pop, or deq have not fully
57 <     * committed. Note that this means that the deq operation,
58 <     * considered individually, is not wait-free. One thief cannot
59 <     * successfully continue until another in-progress one (or, if
60 <     * previously empty, a push) completes.  However, in the
61 <     * aggregate, we ensure at least probabilistic non-blockingness. If
62 <     * an attempted steal fails, a thief always chooses a different
31 >     * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
32 >     * ForkJoinTasks. This class includes bookkeeping in support of
33 >     * worker activation, suspension, and lifecycle control described
34 >     * in more detail in the internal documentation of class
35 >     * ForkJoinPool. And as described further below, this class also
36 >     * includes special-cased support for some ForkJoinTask
37 >     * methods. But the main mechanics involve work-stealing:
38 >     *
39 >     * Work-stealing queues are special forms of Deques that support
40 >     * only three of the four possible end-operations -- push, pop,
41 >     * and deq (aka steal), under the further constraints that push
42 >     * and pop are called only from the owning thread, while deq may
43 >     * be called from other threads.  (If you are unfamiliar with
44 >     * them, you probably want to read Herlihy and Shavit's book "The
45 >     * Art of Multiprocessor programming", chapter 16 describing these
46 >     * in more detail before proceeding.)  The main work-stealing
47 >     * queue design is roughly similar to those in the papers "Dynamic
48 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
49 >     * (http://research.sun.com/scalable/pubs/index.html) and
50 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
51 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
52 >     * The main differences ultimately stem from gc requirements that
53 >     * we null out taken slots as soon as we can, to maintain as small
54 >     * a footprint as possible even in programs generating huge
55 >     * numbers of tasks. To accomplish this, we shift the CAS
56 >     * arbitrating pop vs deq (steal) from being on the indices
57 >     * ("base" and "sp") to the slots themselves (mainly via method
58 >     * "casSlotNull()"). So, both a successful pop and deq mainly
59 >     * entail a CAS of a slot from non-null to null.  Because we rely
60 >     * on CASes of references, we do not need tag bits on base or sp.
61 >     * They are simple ints as used in any circular array-based queue
62 >     * (see for example ArrayDeque).  Updates to the indices must
63 >     * still be ordered in a way that guarantees that sp == base means
64 >     * the queue is empty, but otherwise may err on the side of
65 >     * possibly making the queue appear nonempty when a push, pop, or
66 >     * deq have not fully committed. Note that this means that the deq
67 >     * operation, considered individually, is not wait-free. One thief
68 >     * cannot successfully continue until another in-progress one (or,
69 >     * if previously empty, a push) completes.  However, in the
70 >     * aggregate, we ensure at least probabilistic non-blockingness.
71 >     * If an attempted steal fails, a thief always chooses a different
72       * random victim target to try next. So, in order for one thief to
73       * progress, it suffices for any in-progress deq or new push on
74       * any empty queue to complete. One reason this works well here is
75       * that apparently-nonempty often means soon-to-be-stealable,
76 <     * which gives threads a chance to activate if necessary before
77 <     * stealing (see below).
76 >     * which gives threads a chance to set activation status if
77 >     * necessary before stealing.
78       *
79       * This approach also enables support for "async mode" where local
80       * task processing is in FIFO, not LIFO order; simply by using a
# Line 71 | Line 82 | public class ForkJoinWorkerThread extend
82       * by the ForkJoinPool).  This allows use in message-passing
83       * frameworks in which tasks are never joined.
84       *
85 <     * Efficient implementation of this approach currently relies on
86 <     * an uncomfortable amount of "Unsafe" mechanics. To maintain
85 >     * When a worker would otherwise be blocked waiting to join a
86 >     * task, it first tries a form of linear helping: Each worker
87 >     * records (in field currentSteal) the most recent task it stole
88 >     * from some other worker. Plus, it records (in field currentJoin)
89 >     * the task it is currently actively joining. Method joinTask uses
90 >     * these markers to try to find a worker to help (i.e., steal back
91 >     * a task from and execute it) that could hasten completion of the
92 >     * actively joined task. In essence, the joiner executes a task
93 >     * that would be on its own local deque had the to-be-joined task
94 >     * not been stolen. This may be seen as a conservative variant of
95 >     * the approach in Wagner & Calder "Leapfrogging: a portable
96 >     * technique for implementing efficient futures" SIGPLAN Notices,
97 >     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
98 >     * in that: (1) We only maintain dependency links across workers
99 >     * upon steals, rather than use per-task bookkeeping.  This may
100 >     * require a linear scan of workers array to locate stealers, but
101 >     * usually doesn't because stealers leave hints (that may become
102 >     * stale/wrong) of where to locate them. This isolates cost to
103 >     * when it is needed, rather than adding to per-task overhead.
104 >     * (2) It is "shallow", ignoring nesting and potentially cyclic
105 >     * mutual steals.  (3) It is intentionally racy: field currentJoin
106 >     * is updated only while actively joining, which means that we
107 >     * miss links in the chain during long-lived tasks, GC stalls etc
108 >     * (which is OK since blocking in such cases is usually a good
109 >     * idea).  (4) We bound the number of attempts to find work (see
110 >     * MAX_HELP_DEPTH) and fall back to suspending the worker and if
111 >     * necessary replacing it with a spare (see
112 >     * ForkJoinPool.awaitJoin).
113 >     *
114 >     * Efficient implementation of these algorithms currently relies
115 >     * on an uncomfortable amount of "Unsafe" mechanics. To maintain
116       * correct orderings, reads and writes of variable base require
117 <     * volatile ordering.  Variable sp does not require volatile write
118 <     * but needs cheaper store-ordering on writes.  Because they are
119 <     * protected by volatile base reads, reads of the queue array and
120 <     * its slots do not need volatile load semantics, but writes (in
121 <     * push) require store order and CASes (in pop and deq) require
122 <     * (volatile) CAS semantics. Since these combinations aren't
123 <     * supported using ordinary volatiles, the only way to accomplish
124 <     * these efficiently is to use direct Unsafe calls. (Using external
125 <     * AtomicIntegers and AtomicReferenceArrays for the indices and
126 <     * array is significantly slower because of memory locality and
127 <     * indirection effects.) Further, performance on most platforms is
128 <     * very sensitive to placement and sizing of the (resizable) queue
129 <     * array.  Even though these queues don't usually become all that
130 <     * big, the initial size must be large enough to counteract cache
117 >     * volatile ordering.  Variable sp does not require volatile
118 >     * writes but still needs store-ordering, which we accomplish by
119 >     * pre-incrementing sp before filling the slot with an ordered
120 >     * store.  (Pre-incrementing also enables backouts used in
121 >     * joinTask.)  Because they are protected by volatile base reads,
122 >     * reads of the queue array and its slots by other threads do not
123 >     * need volatile load semantics, but writes (in push) require
124 >     * store order and CASes (in pop and deq) require (volatile) CAS
125 >     * semantics.  (Michael, Saraswat, and Vechev's algorithm has
126 >     * similar properties, but without support for nulling slots.)
127 >     * Since these combinations aren't supported using ordinary
128 >     * volatiles, the only way to accomplish these efficiently is to
129 >     * use direct Unsafe calls. (Using external AtomicIntegers and
130 >     * AtomicReferenceArrays for the indices and array is
131 >     * significantly slower because of memory locality and indirection
132 >     * effects.)
133 >     *
134 >     * Further, performance on most platforms is very sensitive to
135 >     * placement and sizing of the (resizable) queue array.  Even
136 >     * though these queues don't usually become all that big, the
137 >     * initial size must be large enough to counteract cache
138       * contention effects across multiple queues (especially in the
139       * presence of GC cardmarking). Also, to improve thread-locality,
140 <     * queues are currently initialized immediately after the thread
141 <     * gets the initial signal to start processing tasks.  However,
142 <     * all queue-related methods except pushTask are written in a way
143 <     * that allows them to instead be lazily allocated and/or disposed
144 <     * of when empty. All together, these low-level implementation
145 <     * choices produce as much as a factor of 4 performance
146 <     * improvement compared to naive implementations, and enable the
147 <     * processing of billions of tasks per second, sometimes at the
148 <     * expense of ugliness.
149 <     *
150 <     * 2. Run control: The primary run control is based on a global
151 <     * counter (activeCount) held by the pool. It uses an algorithm
152 <     * similar to that in Herlihy and Shavit section 17.6 to cause
106 <     * threads to eventually block when all threads declare they are
107 <     * inactive. (See variable "scans".)  For this to work, threads
108 <     * must be declared active when executing tasks, and before
109 <     * stealing a task. They must be inactive before blocking on the
110 <     * Pool Barrier (awaiting a new submission or other Pool
111 <     * event). In between, there is some free play which we take
112 <     * advantage of to avoid contention and rapid flickering of the
113 <     * global activeCount: If inactive, we activate only if a victim
114 <     * queue appears to be nonempty (see above).  Similarly, a thread
115 <     * tries to inactivate only after a full scan of other threads.
116 <     * The net effect is that contention on activeCount is rarely a
117 <     * measurable performance issue. (There are also a few other cases
118 <     * where we scan for work rather than retry/block upon
119 <     * contention.)
120 <     *
121 <     * 3. Selection control. We maintain policy of always choosing to
122 <     * run local tasks rather than stealing, and always trying to
123 <     * steal tasks before trying to run a new submission. All steals
124 <     * are currently performed in randomly-chosen deq-order. It may be
125 <     * worthwhile to bias these with locality / anti-locality
126 <     * information, but doing this well probably requires more
127 <     * lower-level information from JVMs than currently provided.
140 >     * queues are initialized after starting.  All together, these
141 >     * low-level implementation choices produce as much as a factor of
142 >     * 4 performance improvement compared to naive implementations,
143 >     * and enable the processing of billions of tasks per second,
144 >     * sometimes at the expense of ugliness.
145 >     */
146 >
147 >    /**
148 >     * Generator for initial random seeds for random victim
149 >     * selection. This is used only to create initial seeds. Random
150 >     * steals use a cheaper xorshift generator per steal attempt. We
151 >     * expect only rare contention on seedGenerator, so just use a
152 >     * plain Random.
153       */
154 +    private static final Random seedGenerator = new Random();
155 +
156 +    /**
157 +     * The maximum stolen->joining link depth allowed in helpJoinTask.
158 +     * Depths for legitimate chains are unbounded, but we use a fixed
159 +     * constant to avoid (otherwise unchecked) cycles and bound
160 +     * staleness of traversal parameters at the expense of sometimes
161 +     * blocking when we could be helping.
162 +     */
163 +    private static final int MAX_HELP_DEPTH = 8;
164  
165      /**
166       * Capacity of work-stealing queue array upon initialization.
167 <     * Must be a power of two. Initial size must be at least 2, but is
167 >     * Must be a power of two. Initial size must be at least 4, but is
168       * padded to minimize cache effects.
169       */
170      private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
171  
172      /**
173       * Maximum work-stealing queue array size.  Must be less than or
174 <     * equal to 1 << 28 to ensure lack of index wraparound. (This
175 <     * is less than usual bounds, because we need leftshift by 3
176 <     * to be in int range).
174 >     * equal to 1 << (31 - width of array entry) to ensure lack of
175 >     * index wraparound. The value is set in the static block
176 >     * at the end of this file after obtaining width.
177       */
178 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
178 >    private static final int MAXIMUM_QUEUE_CAPACITY;
179  
180      /**
181       * The pool this thread works in. Accessed directly by ForkJoinTask.
# Line 149 | Line 184 | public class ForkJoinWorkerThread extend
184  
185      /**
186       * The work-stealing queue array. Size must be a power of two.
187 <     * Initialized when thread starts, to improve memory locality.
187 >     * Initialized in onStart, to improve memory locality.
188       */
189      private ForkJoinTask<?>[] queue;
190  
191      /**
192 +     * Index (mod queue.length) of least valid queue slot, which is
193 +     * always the next position to steal from if nonempty.
194 +     */
195 +    private volatile int base;
196 +
197 +    /**
198       * Index (mod queue.length) of next queue slot to push to or pop
199 <     * from. It is written only by owner thread, via ordered store.
200 <     * Both sp and base are allowed to wrap around on overflow, but
201 <     * (sp - base) still estimates size.
199 >     * from. It is written only by owner thread, and accessed by other
200 >     * threads only after reading (volatile) base.  Both sp and base
201 >     * are allowed to wrap around on overflow, but (sp - base) still
202 >     * estimates size.
203       */
204 <    private volatile int sp;
204 >    private int sp;
205  
206      /**
207 <     * Index (mod queue.length) of least valid queue slot, which is
208 <     * always the next position to steal from if nonempty.
207 >     * The index of most recent stealer, used as a hint to avoid
208 >     * traversal in method helpJoinTask. This is only a hint because a
209 >     * worker might have had multiple steals and this only holds one
210 >     * of them (usually the most current). Declared non-volatile,
211 >     * relying on other prevailing sync to keep reasonably current.
212       */
213 <    private volatile int base;
213 >    private int stealHint;
214  
215      /**
216 <     * Activity status. When true, this worker is considered active.
217 <     * Must be false upon construction. It must be true when executing
218 <     * tasks, and BEFORE stealing a task. It must be false before
219 <     * calling pool.sync.
216 >     * Run state of this worker. In addition to the usual run levels,
217 >     * tracks if this worker is suspended as a spare, and if it was
218 >     * killed (trimmed) while suspended. However, "active" status is
219 >     * maintained separately and modified only in conjunction with
220 >     * CASes of the pool's runState (which are currently sadly
221 >     * manually inlined for performance.)  Accessed directly by pool
222 >     * to simplify checks for normal (zero) status.
223       */
224 <    private boolean active;
224 >    volatile int runState;
225 >
226 >    private static final int TERMINATING = 0x01;
227 >    private static final int TERMINATED  = 0x02;
228 >    private static final int SUSPENDED   = 0x04; // inactive spare
229 >    private static final int TRIMMED     = 0x08; // killed while suspended
230  
231      /**
232 <     * Run state of this worker. Supports simple versions of the usual
233 <     * shutdown/shutdownNow control.
232 >     * Number of steals. Directly accessed (and reset) by
233 >     * pool.tryAccumulateStealCount when idle.
234       */
235 <    private volatile int runState;
235 >    int stealCount;
236  
237      /**
238       * Seed for random number generator for choosing steal victims.
239 <     * Uses Marsaglia xorshift. Must be nonzero upon initialization.
239 >     * Uses Marsaglia xorshift. Must be initialized as nonzero.
240       */
241      private int seed;
242  
243      /**
244 <     * Number of steals, transferred to pool when idle
244 >     * Activity status. When true, this worker is considered active.
245 >     * Accessed directly by pool.  Must be false upon construction.
246 >     */
247 >    boolean active;
248 >
249 >    /**
250 >     * True if use local fifo, not default lifo, for local polling.
251 >     * Shadows value from ForkJoinPool.
252       */
253 <    private int stealCount;
253 >    private final boolean locallyFifo;
254  
255      /**
256       * Index of this worker in pool array. Set once by pool before
257 <     * running, and accessed directly by pool during cleanup etc.
257 >     * running, and accessed directly by pool to locate this worker in
258 >     * its workers array.
259       */
260      int poolIndex;
261  
262      /**
263 <     * The last barrier event waited for. Accessed in pool callback
264 <     * methods, but only by current thread.
263 >     * The last pool event waited for. Accessed only by pool in
264 >     * callback methods invoked within this thread.
265 >     */
266 >    int lastEventCount;
267 >
268 >    /**
269 >     * Encoded index and event count of next event waiter. Accessed
270 >     * only by ForkJoinPool for managing event waiters.
271 >     */
272 >    volatile long nextWaiter;
273 >
274 >    /**
275 >     * Number of times this thread suspended as spare. Accessed only
276 >     * by pool.
277       */
278 <    long lastEventCount;
278 >    int spareCount;
279  
280      /**
281 <     * True if use local fifo, not default lifo, for local polling
281 >     * Encoded index and count of next spare waiter. Accessed only
282 >     * by ForkJoinPool for managing spares.
283       */
284 <    private boolean locallyFifo;
284 >    volatile int nextSpare;
285 >
286 >    /**
287 >     * The task currently being joined, set only when actively trying
288 >     * to help other stealers in helpJoinTask. Written only by this
289 >     * thread, but read by others.
290 >     */
291 >    private volatile ForkJoinTask<?> currentJoin;
292 >
293 >    /**
294 >     * The task most recently stolen from another worker (or
295 >     * submission queue).  Written only by this thread, but read by
296 >     * others.
297 >     */
298 >    private volatile ForkJoinTask<?> currentSteal;
299  
300      /**
301       * Creates a ForkJoinWorkerThread operating in the given pool.
# Line 216 | Line 304 | public class ForkJoinWorkerThread extend
304       * @throws NullPointerException if pool is null
305       */
306      protected ForkJoinWorkerThread(ForkJoinPool pool) {
219        if (pool == null) throw new NullPointerException();
307          this.pool = pool;
308 <        // Note: poolIndex is set by pool during construction
309 <        // Remaining initialization is deferred to onStart
308 >        this.locallyFifo = pool.locallyFifo;
309 >        setDaemon(true);
310 >        // To avoid exposing construction details to subclasses,
311 >        // remaining initialization is in start() and onStart()
312 >    }
313 >
314 >    /**
315 >     * Performs additional initialization and starts this thread.
316 >     */
317 >    final void start(int poolIndex, UncaughtExceptionHandler ueh) {
318 >        this.poolIndex = poolIndex;
319 >        if (ueh != null)
320 >            setUncaughtExceptionHandler(ueh);
321 >        start();
322      }
323  
324 <    // Public access methods
324 >    // Public/protected methods
325  
326      /**
327       * Returns the pool hosting this thread.
# Line 247 | Line 346 | public class ForkJoinWorkerThread extend
346      }
347  
348      /**
349 <     * Establishes local first-in-first-out scheduling mode for forked
350 <     * tasks that are never joined.
351 <     *
352 <     * @param async if true, use locally FIFO scheduling
349 >     * Initializes internal state after construction but before
350 >     * processing any tasks. If you override this method, you must
351 >     * invoke @code{super.onStart()} at the beginning of the method.
352 >     * Initialization requires care: Most fields must have legal
353 >     * default values, to ensure that attempted accesses from other
354 >     * threads work correctly even before this thread starts
355 >     * processing tasks.
356       */
357 <    void setAsyncMode(boolean async) {
358 <        locallyFifo = async;
359 <    }
258 <
259 <    // Runstate management
260 <
261 <    // Runstate values. Order matters
262 <    private static final int RUNNING     = 0;
263 <    private static final int SHUTDOWN    = 1;
264 <    private static final int TERMINATING = 2;
265 <    private static final int TERMINATED  = 3;
266 <
267 <    final boolean isShutdown()    { return runState >= SHUTDOWN;  }
268 <    final boolean isTerminating() { return runState >= TERMINATING;  }
269 <    final boolean isTerminated()  { return runState == TERMINATED; }
270 <    final boolean shutdown()      { return transitionRunStateTo(SHUTDOWN); }
271 <    final boolean shutdownNow()   { return transitionRunStateTo(TERMINATING); }
357 >    protected void onStart() {
358 >        int rs = seedGenerator.nextInt();
359 >        seed = rs == 0? 1 : rs; // seed must be nonzero
360  
361 <    /**
362 <     * Transitions to at least the given state.
363 <     *
364 <     * @return {@code true} if not already at least at given state
277 <     */
278 <    private boolean transitionRunStateTo(int state) {
279 <        for (;;) {
280 <            int s = runState;
281 <            if (s >= state)
282 <                return false;
283 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, state))
284 <                return true;
285 <        }
286 <    }
361 >        // Allocate name string and arrays in this thread
362 >        String pid = Integer.toString(pool.getPoolNumber());
363 >        String wid = Integer.toString(poolIndex);
364 >        setName("ForkJoinPool-" + pid + "-worker-" + wid);
365  
366 <    /**
289 <     * Tries to set status to active; fails on contention.
290 <     */
291 <    private boolean tryActivate() {
292 <        if (!active) {
293 <            if (!pool.tryIncrementActiveCount())
294 <                return false;
295 <            active = true;
296 <        }
297 <        return true;
366 >        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
367      }
368  
369      /**
370 <     * Tries to set status to inactive; fails on contention.
370 >     * Performs cleanup associated with termination of this worker
371 >     * thread.  If you override this method, you must invoke
372 >     * {@code super.onTermination} at the end of the overridden method.
373 >     *
374 >     * @param exception the exception causing this thread to abort due
375 >     * to an unrecoverable error, or {@code null} if completed normally
376       */
377 <    private boolean tryInactivate() {
378 <        if (active) {
379 <            if (!pool.tryDecrementActiveCount())
380 <                return false;
381 <            active = false;
377 >    protected void onTermination(Throwable exception) {
378 >        try {
379 >            ForkJoinPool p = pool;
380 >            if (active) {
381 >                int a; // inline p.tryDecrementActiveCount
382 >                active = false;
383 >                do {} while (!UNSAFE.compareAndSwapInt
384 >                             (p, poolRunStateOffset, a = p.runState, a - 1));
385 >            }
386 >            cancelTasks();
387 >            setTerminated();
388 >            p.workerTerminated(this);
389 >        } catch (Throwable ex) {        // Shouldn't ever happen
390 >            if (exception == null)      // but if so, at least rethrown
391 >                exception = ex;
392 >        } finally {
393 >            if (exception != null)
394 >                UNSAFE.throwException(exception);
395          }
309        return true;
396      }
397  
398      /**
313     * Computes next value for random victim probe.  Scans don't
314     * require a very high quality generator, but also not a crummy
315     * one.  Marsaglia xor-shift is cheap and works well.
316     */
317    private static int xorShift(int r) {
318        r ^= (r << 13);
319        r ^= (r >>> 17);
320        return r ^ (r << 5);
321    }
322
323    // Lifecycle methods
324
325    /**
399       * This method is required to be public, but should never be
400       * called explicitly. It performs the main run loop to execute
401       * ForkJoinTasks.
# Line 331 | Line 404 | public class ForkJoinWorkerThread extend
404          Throwable exception = null;
405          try {
406              onStart();
334            pool.sync(this); // await first pool event
407              mainLoop();
408          } catch (Throwable ex) {
409              exception = ex;
# Line 340 | Line 412 | public class ForkJoinWorkerThread extend
412          }
413      }
414  
415 +    // helpers for run()
416 +
417      /**
418 <     * Executes tasks until shut down.
418 >     * Finds and executes tasks, and checks status while running.
419       */
420      private void mainLoop() {
421 <        while (!isShutdown()) {
422 <            ForkJoinTask<?> t = pollTask();
423 <            if (t != null || (t = pollSubmission()) != null)
424 <                t.quietlyExec();
425 <            else if (tryInactivate())
426 <                pool.sync(this);
421 >        boolean ran = false; // true if ran a task on last step
422 >        ForkJoinPool p = pool;
423 >        for (;;) {
424 >            p.preStep(this, ran);
425 >            if (runState != 0)
426 >                break;
427 >            ran = tryExecSteal() || tryExecSubmission();
428          }
429      }
430  
431      /**
432 <     * Initializes internal state after construction but before
433 <     * processing any tasks. If you override this method, you must
434 <     * invoke super.onStart() at the beginning of the method.
360 <     * Initialization requires care: Most fields must have legal
361 <     * default values, to ensure that attempted accesses from other
362 <     * threads work correctly even before this thread starts
363 <     * processing tasks.
432 >     * Tries to steal a task and execute it.
433 >     *
434 >     * @return true if ran a task
435       */
436 <    protected void onStart() {
437 <        // Allocate while starting to improve chances of thread-local
438 <        // isolation
439 <        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
440 <        // Initial value of seed need not be especially random but
441 <        // should differ across workers and must be nonzero
442 <        int p = poolIndex + 1;
443 <        seed = p + (p << 8) + (p << 16) + (p << 24); // spread bits
436 >    private boolean tryExecSteal() {
437 >        ForkJoinTask<?> t;
438 >        if ((t = scan()) != null) {
439 >            t.quietlyExec();
440 >            UNSAFE.putOrderedObject(this, currentStealOffset, null);
441 >            if (sp != base)
442 >                execLocalTasks();
443 >            return true;
444 >        }
445 >        return false;
446      }
447  
448      /**
449 <     * Performs cleanup associated with termination of this worker
377 <     * thread.  If you override this method, you must invoke
378 <     * {@code super.onTermination} at the end of the overridden method.
449 >     * If a submission exists, try to activate and run it.
450       *
451 <     * @param exception the exception causing this thread to abort due
381 <     * to an unrecoverable error, or {@code null} if completed normally
451 >     * @return true if ran a task
452       */
453 <    protected void onTermination(Throwable exception) {
454 <        // Execute remaining local tasks unless aborting or terminating
455 <        while (exception == null &&  !pool.isTerminating() && base != sp) {
456 <            try {
457 <                ForkJoinTask<?> t = popTask();
458 <                if (t != null)
453 >    private boolean tryExecSubmission() {
454 >        ForkJoinPool p = pool;
455 >        // This loop is needed in case attempt to activate fails, in
456 >        // which case we only retry if there still appears to be a
457 >        // submission.
458 >        while (p.hasQueuedSubmissions()) {
459 >            ForkJoinTask<?> t; int a;
460 >            if (active || // inline p.tryIncrementActiveCount
461 >                (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
462 >                                                   a = p.runState, a + 1))) {
463 >                if ((t = p.pollSubmission()) != null) {
464 >                    UNSAFE.putOrderedObject(this, currentStealOffset, t);
465                      t.quietlyExec();
466 <            } catch (Throwable ex) {
467 <                exception = ex;
466 >                    UNSAFE.putOrderedObject(this, currentStealOffset, null);
467 >                    if (sp != base)
468 >                        execLocalTasks();
469 >                    return true;
470 >                }
471              }
472          }
473 <        // Cancel other tasks, transition status, notify pool, and
395 <        // propagate exception to uncaught exception handler
396 <        try {
397 <            do {} while (!tryInactivate()); // ensure inactive
398 <            cancelTasks();
399 <            runState = TERMINATED;
400 <            pool.workerTerminated(this);
401 <        } catch (Throwable ex) {        // Shouldn't ever happen
402 <            if (exception == null)      // but if so, at least rethrown
403 <                exception = ex;
404 <        } finally {
405 <            if (exception != null)
406 <                ForkJoinTask.rethrowException(exception);
407 <        }
473 >        return false;
474      }
475  
410    // Intrinsics-based support for queue operations.
411
476      /**
477 <     * Adds in store-order the given task at given slot of q to null.
478 <     * Caller must ensure q is non-null and index is in range.
477 >     * Runs local tasks until queue is empty or shut down.  Call only
478 >     * while active.
479       */
480 <    private static void setSlot(ForkJoinTask<?>[] q, int i,
481 <                                ForkJoinTask<?> t) {
482 <        UNSAFE.putOrderedObject(q, (i << qShift) + qBase, t);
480 >    private void execLocalTasks() {
481 >        while (runState == 0) {
482 >            ForkJoinTask<?> t = locallyFifo ? locallyDeqTask() : popTask();
483 >            if (t != null)
484 >                t.quietlyExec();
485 >            else if (sp == base)
486 >                break;
487 >        }
488      }
489  
490 +    /*
491 +     * Intrinsics-based atomic writes for queue slots. These are
492 +     * basically the same as methods in AtomicReferenceArray, but
493 +     * specialized for (1) ForkJoinTask elements (2) requirement that
494 +     * nullness and bounds checks have already been performed by
495 +     * callers and (3) effective offsets are known not to overflow
496 +     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
497 +     * need corresponding version for reads: plain array reads are OK
498 +     * because they are protected by other volatile reads and are
499 +     * confirmed by CASes.
500 +     *
501 +     * Most uses don't actually call these methods, but instead contain
502 +     * inlined forms that enable more predictable optimization.  We
503 +     * don't define the version of write used in pushTask at all, but
504 +     * instead inline there a store-fenced array slot write.
505 +     */
506 +
507      /**
508 <     * CAS given slot of q to null. Caller must ensure q is non-null
509 <     * and index is in range.
508 >     * CASes slot i of array q from t to null. Caller must ensure q is
509 >     * non-null and index is in range.
510       */
511 <    private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
512 <                                       ForkJoinTask<?> t) {
511 >    private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
512 >                                             ForkJoinTask<?> t) {
513          return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
514      }
515  
516      /**
517 <     * Sets sp in store-order.
517 >     * Performs a volatile write of the given task at given slot of
518 >     * array q.  Caller must ensure q is non-null and index is in
519 >     * range. This method is used only during resets and backouts.
520       */
521 <    private void storeSp(int s) {
522 <        UNSAFE.putOrderedInt(this, spOffset, s);
521 >    private static final void writeSlot(ForkJoinTask<?>[] q, int i,
522 >                                        ForkJoinTask<?> t) {
523 >        UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
524      }
525  
526 <    // Main queue methods
526 >    // queue methods
527  
528      /**
529 <     * Pushes a task. Called only by current thread.
529 >     * Pushes a task. Call only from this thread.
530       *
531       * @param t the task. Caller must ensure non-null.
532       */
533      final void pushTask(ForkJoinTask<?> t) {
534          ForkJoinTask<?>[] q = queue;
535 <        int mask = q.length - 1;
536 <        int s = sp;
537 <        setSlot(q, s & mask, t);
538 <        storeSp(++s);
539 <        if ((s -= base) == 1)
540 <            pool.signalWork();
541 <        else if (s >= mask)
453 <            growQueue();
535 >        int mask = q.length - 1; // implicit assert q != null
536 >        int s = sp++;            // ok to increment sp before slot write
537 >        UNSAFE.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
538 >        if ((s -= base) == 0)
539 >            pool.signalWork();   // was empty
540 >        else if (s == mask)
541 >            growQueue();         // is full
542      }
543  
544      /**
545       * Tries to take a task from the base of the queue, failing if
546 <     * either empty or contended.
546 >     * empty or contended. Note: Specializations of this code appear
547 >     * in locallyDeqTask and elsewhere.
548       *
549       * @return a task, or null if none or contended
550       */
551      final ForkJoinTask<?> deqTask() {
552          ForkJoinTask<?> t;
553          ForkJoinTask<?>[] q;
554 <        int i;
466 <        int b;
554 >        int b, i;
555          if (sp != (b = base) &&
556              (q = queue) != null && // must read q after b
557 <            (t = q[i = (q.length - 1) & b]) != null &&
558 <            casSlotNull(q, i, t)) {
557 >            (t = q[i = (q.length - 1) & b]) != null && base == b &&
558 >            UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
559              base = b + 1;
560              return t;
561          }
# Line 475 | Line 563 | public class ForkJoinWorkerThread extend
563      }
564  
565      /**
566 <     * Tries to take a task from the base of own queue, activating if
567 <     * necessary, failing only if empty. Called only by current thread.
566 >     * Tries to take a task from the base of own queue. Assumes active
567 >     * status.  Called only by this thread.
568       *
569       * @return a task, or null if none
570       */
571      final ForkJoinTask<?> locallyDeqTask() {
572 <        int b;
573 <        while (sp != (b = base)) {
574 <            if (tryActivate()) {
575 <                ForkJoinTask<?>[] q = queue;
576 <                int i = (q.length - 1) & b;
577 <                ForkJoinTask<?> t = q[i];
578 <                if (t != null && casSlotNull(q, i, t)) {
572 >        ForkJoinTask<?>[] q = queue;
573 >        if (q != null) {
574 >            ForkJoinTask<?> t;
575 >            int b, i;
576 >            while (sp != (b = base)) {
577 >                if ((t = q[i = (q.length - 1) & b]) != null && base == b &&
578 >                    UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
579 >                                                t, null)) {
580                      base = b + 1;
581                      return t;
582                  }
# Line 497 | Line 586 | public class ForkJoinWorkerThread extend
586      }
587  
588      /**
589 <     * Returns a popped task, or null if empty. Ensures active status
590 <     * if non-null. Called only by current thread.
589 >     * Returns a popped task, or null if empty. Assumes active status.
590 >     * Called only by this thread.
591       */
592 <    final ForkJoinTask<?> popTask() {
593 <        int s = sp;
594 <        while (s != base) {
595 <            if (tryActivate()) {
596 <                ForkJoinTask<?>[] q = queue;
597 <                int mask = q.length - 1;
598 <                int i = (s - 1) & mask;
592 >    private ForkJoinTask<?> popTask() {
593 >        ForkJoinTask<?>[] q = queue;
594 >        if (q != null) {
595 >            int s;
596 >            while ((s = sp) != base) {
597 >                int i = (q.length - 1) & --s;
598 >                long u = (i << qShift) + qBase; // raw offset
599                  ForkJoinTask<?> t = q[i];
600 <                if (t == null || !casSlotNull(q, i, t))
600 >                if (t == null)   // lost to stealer
601                      break;
602 <                storeSp(s - 1);
603 <                return t;
602 >                if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
603 >                    sp = s; // putOrderedInt may encourage more timely write
604 >                    // UNSAFE.putOrderedInt(this, spOffset, s);
605 >                    return t;
606 >                }
607              }
608          }
609          return null;
610      }
611  
612      /**
613 <     * Specialized version of popTask to pop only if
614 <     * topmost element is the given task. Called only
523 <     * by current thread while active.
613 >     * Specialized version of popTask to pop only if topmost element
614 >     * is the given task. Called only by this thread while active.
615       *
616       * @param t the task. Caller must ensure non-null.
617       */
618      final boolean unpushTask(ForkJoinTask<?> t) {
619 +        int s;
620          ForkJoinTask<?>[] q = queue;
621 <        int mask = q.length - 1;
622 <        int s = sp - 1;
623 <        if (casSlotNull(q, s & mask, t)) {
624 <            storeSp(s);
621 >        if ((s = sp) != base && q != null &&
622 >            UNSAFE.compareAndSwapObject
623 >            (q, (((q.length - 1) & --s) << qShift) + qBase, t, null)) {
624 >            sp = s; // putOrderedInt may encourage more timely write
625 >            // UNSAFE.putOrderedInt(this, spOffset, s);
626              return true;
627          }
628          return false;
629      }
630  
631      /**
632 <     * Returns next task or null if empty or contended
632 >     * Returns next task, or null if empty or contended.
633       */
634      final ForkJoinTask<?> peekTask() {
635          ForkJoinTask<?>[] q = queue;
# Line 569 | Line 662 | public class ForkJoinWorkerThread extend
662              ForkJoinTask<?> t = oldQ[oldIndex];
663              if (t != null && !casSlotNull(oldQ, oldIndex, t))
664                  t = null;
665 <            setSlot(newQ, b & newMask, t);
665 >            writeSlot(newQ, b & newMask, t);
666          } while (++b != bf);
667          pool.signalWork();
668      }
669  
670      /**
671 +     * Computes next value for random victim probe in scan().  Scans
672 +     * don't require a very high quality generator, but also not a
673 +     * crummy one.  Marsaglia xor-shift is cheap and works well enough.
674 +     * Note: This is manually inlined in scan().
675 +     */
676 +    private static final int xorShift(int r) {
677 +        r ^= r << 13;
678 +        r ^= r >>> 17;
679 +        return r ^ (r << 5);
680 +    }
681 +
682 +    /**
683       * Tries to steal a task from another worker. Starts at a random
684       * index of workers array, and probes workers until finding one
685       * with non-empty queue or finding that all are empty.  It
686       * randomly selects the first n probes. If these are empty, it
687 <     * resorts to a full circular traversal, which is necessary to
688 <     * accurately set active status by caller. Also restarts if pool
689 <     * events occurred since last scan, which forces refresh of
690 <     * workers array, in case barrier was associated with resize.
687 >     * resorts to a circular sweep, which is necessary to accurately
688 >     * set active status. (The circular sweep uses steps of
689 >     * approximately half the array size plus 1, to avoid bias
690 >     * stemming from leftmost packing of the array in ForkJoinPool.)
691       *
692       * This method must be both fast and quiet -- usually avoiding
693       * memory accesses that could disrupt cache sharing etc other than
694 <     * those needed to check for and take tasks. This accounts for,
695 <     * among other things, updating random seed in place without
696 <     * storing it until exit.
694 >     * those needed to check for and take tasks (or to activate if not
695 >     * already active). This accounts for, among other things,
696 >     * updating random seed in place without storing it until exit.
697       *
698       * @return a task, or null if none found
699       */
700      private ForkJoinTask<?> scan() {
701 <        ForkJoinTask<?> t = null;
702 <        int r = seed;                    // extract once to keep scan quiet
703 <        ForkJoinWorkerThread[] ws;       // refreshed on outer loop
704 <        int mask;                        // must be power 2 minus 1 and > 0
705 <        outer:do {
706 <            if ((ws = pool.workers) != null && (mask = ws.length - 1) > 0) {
707 <                int idx = r;
708 <                int probes = ~mask;      // use random index while negative
709 <                for (;;) {
710 <                    r = xorShift(r);     // update random seed
711 <                    ForkJoinWorkerThread v = ws[mask & idx];
712 <                    if (v == null || v.sp == v.base) {
713 <                        if (probes <= mask)
714 <                            idx = (probes++ < 0) ? r : (idx + 1);
715 <                        else
716 <                            break;
701 >        ForkJoinPool p = pool;
702 >        ForkJoinWorkerThread[] ws;        // worker array
703 >        int n;                            // upper bound of #workers
704 >        if ((ws = p.workers) != null && (n = ws.length) > 1) {
705 >            boolean canSteal = active;    // shadow active status
706 >            int r = seed;                 // extract seed once
707 >            int mask = n - 1;
708 >            int j = -n;                   // loop counter
709 >            int k = r;                    // worker index, random if j < 0
710 >            for (;;) {
711 >                ForkJoinWorkerThread v = ws[k & mask];
712 >                r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // inline xorshift
713 >                ForkJoinTask<?>[] q; ForkJoinTask<?> t; int b, a;
714 >                if (v != null && (b = v.base) != v.sp &&
715 >                    (q = v.queue) != null) {
716 >                    int i = (q.length - 1) & b;
717 >                    long u = (i << qShift) + qBase; // raw offset
718 >                    int pid = poolIndex;
719 >                    if ((t = q[i]) != null) {
720 >                        if (!canSteal &&  // inline p.tryIncrementActiveCount
721 >                            UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
722 >                                                     a = p.runState, a + 1))
723 >                            canSteal = active = true;
724 >                        if (canSteal && v.base == b++ &&
725 >                            UNSAFE.compareAndSwapObject(q, u, t, null)) {
726 >                            v.base = b;
727 >                            v.stealHint = pid;
728 >                            UNSAFE.putOrderedObject(this,
729 >                                                    currentStealOffset, t);
730 >                            seed = r;
731 >                            ++stealCount;
732 >                            return t;
733 >                        }
734                      }
735 <                    else if (!tryActivate() || (t = v.deqTask()) == null)
736 <                        continue outer;  // restart on contention
615 <                    else
616 <                        break outer;
735 >                    j = -n;
736 >                    k = r;                // restart on contention
737                  }
738 +                else if (++j <= 0)
739 +                    k = r;
740 +                else if (j <= n)
741 +                    k += (n >>> 1) | 1;
742 +                else
743 +                    break;
744              }
745 <        } while (pool.hasNewSyncEvent(this)); // retry on pool events
746 <        seed = r;
747 <        return t;
745 >        }
746 >        return null;
747 >    }
748 >
749 >    // Run State management
750 >
751 >    // status check methods used mainly by ForkJoinPool
752 >    final boolean isRunning()    { return runState == 0; }
753 >    final boolean isTerminated() { return (runState & TERMINATED) != 0; }
754 >    final boolean isSuspended()  { return (runState & SUSPENDED) != 0; }
755 >    final boolean isTrimmed()    { return (runState & TRIMMED) != 0; }
756 >
757 >    final boolean isTerminating() {
758 >        if ((runState & TERMINATING) != 0)
759 >            return true;
760 >        if (pool.isAtLeastTerminating()) { // propagate pool state
761 >            shutdown();
762 >            return true;
763 >        }
764 >        return false;
765      }
766  
767      /**
768 <     * Gets and removes a local or stolen task.
769 <     *
627 <     * @return a task, if available
768 >     * Sets state to TERMINATING. Does NOT unpark or interrupt
769 >     * to wake up if currently blocked. Callers must do so if desired.
770       */
771 <    final ForkJoinTask<?> pollTask() {
772 <        ForkJoinTask<?> t = locallyFifo ? locallyDeqTask() : popTask();
773 <        if (t == null && (t = scan()) != null)
774 <            ++stealCount;
775 <        return t;
771 >    final void shutdown() {
772 >        for (;;) {
773 >            int s = runState;
774 >            if ((s & (TERMINATING|TERMINATED)) != 0)
775 >                break;
776 >            if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
777 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
778 >                                             (s & ~SUSPENDED) |
779 >                                             (TRIMMED|TERMINATING)))
780 >                    break;
781 >            }
782 >            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
783 >                                              s | TERMINATING))
784 >                break;
785 >        }
786      }
787  
788      /**
789 <     * Gets a local task.
638 <     *
639 <     * @return a task, if available
789 >     * Sets state to TERMINATED. Called only by onTermination().
790       */
791 <    final ForkJoinTask<?> pollLocalTask() {
792 <        return locallyFifo ? locallyDeqTask() : popTask();
791 >    private void setTerminated() {
792 >        int s;
793 >        do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
794 >                                               s = runState,
795 >                                               s | (TERMINATING|TERMINATED)));
796      }
797  
798      /**
799 <     * Returns a pool submission, if one exists, activating first.
799 >     * If suspended, tries to set status to unsuspended.
800 >     * Does NOT wake up if blocked.
801       *
802 <     * @return a submission, if available
802 >     * @return true if successful
803 >     */
804 >    final boolean tryUnsuspend() {
805 >        int s;
806 >        while (((s = runState) & SUSPENDED) != 0) {
807 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
808 >                                         s & ~SUSPENDED))
809 >                return true;
810 >        }
811 >        return false;
812 >    }
813 >
814 >    /**
815 >     * Sets suspended status and blocks as spare until resumed
816 >     * or shutdown.
817       */
818 <    private ForkJoinTask<?> pollSubmission() {
818 >    final void suspendAsSpare() {
819 >        for (;;) {                  // set suspended unless terminating
820 >            int s = runState;
821 >            if ((s & TERMINATING) != 0) { // must kill
822 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
823 >                                             s | (TRIMMED | TERMINATING)))
824 >                    return;
825 >            }
826 >            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
827 >                                              s | SUSPENDED))
828 >                break;
829 >        }
830          ForkJoinPool p = pool;
831 <        while (p.hasQueuedSubmissions()) {
832 <            ForkJoinTask<?> t;
833 <            if (tryActivate() && (t = p.pollSubmission()) != null)
834 <                return t;
831 >        p.pushSpare(this);
832 >        while ((runState & SUSPENDED) != 0) {
833 >            if (p.tryAccumulateStealCount(this)) {
834 >                interrupted();          // clear/ignore interrupts
835 >                if ((runState & SUSPENDED) == 0)
836 >                    break;
837 >                LockSupport.park(this);
838 >            }
839          }
657        return null;
840      }
841  
842 <    // Methods accessed only by Pool
842 >    // Misc support methods for ForkJoinPool
843 >
844 >    /**
845 >     * Returns an estimate of the number of tasks in the queue.  Also
846 >     * used by ForkJoinTask.
847 >     */
848 >    final int getQueueSize() {
849 >        int n; // external calls must read base first
850 >        return (n = -base + sp) <= 0 ? 0 : n;
851 >    }
852  
853      /**
854       * Removes and cancels all tasks in queue.  Can be called from any
855       * thread.
856       */
857      final void cancelTasks() {
858 <        ForkJoinTask<?> t;
859 <        while (base != sp && (t = deqTask()) != null)
860 <            t.cancelIgnoringExceptions();
858 >        ForkJoinTask<?> cj = currentJoin; // try to cancel ongoing tasks
859 >        if (cj != null) {
860 >            currentJoin = null;
861 >            cj.cancelIgnoringExceptions();
862 >            try {
863 >                this.interrupt(); // awaken wait
864 >            } catch (SecurityException ignore) {
865 >            }
866 >        }
867 >        ForkJoinTask<?> cs = currentSteal;
868 >        if (cs != null) {
869 >            currentSteal = null;
870 >            cs.cancelIgnoringExceptions();
871 >        }
872 >        while (base != sp) {
873 >            ForkJoinTask<?> t = deqTask();
874 >            if (t != null)
875 >                t.cancelIgnoringExceptions();
876 >        }
877      }
878  
879      /**
# Line 676 | Line 883 | public class ForkJoinWorkerThread extend
883       */
884      final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
885          int n = 0;
886 <        ForkJoinTask<?> t;
887 <        while (base != sp && (t = deqTask()) != null) {
888 <            c.add(t);
889 <            ++n;
886 >        while (base != sp) {
887 >            ForkJoinTask<?> t = deqTask();
888 >            if (t != null) {
889 >                c.add(t);
890 >                ++n;
891 >            }
892          }
893          return n;
894      }
895  
896 +    // Support methods for ForkJoinTask
897 +
898      /**
899 <     * Gets and clears steal count for accumulation by pool.  Called
900 <     * only when known to be idle (in pool.sync and termination).
899 >     * Gets and removes a local task.
900 >     *
901 >     * @return a task, if available
902       */
903 <    final int getAndClearStealCount() {
904 <        int sc = stealCount;
905 <        stealCount = 0;
906 <        return sc;
903 >    final ForkJoinTask<?> pollLocalTask() {
904 >        ForkJoinPool p = pool;
905 >        while (sp != base) {
906 >            int a; // inline p.tryIncrementActiveCount
907 >            if (active ||
908 >                (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
909 >                                                   a = p.runState, a + 1)))
910 >                return locallyFifo ? locallyDeqTask() : popTask();
911 >        }
912 >        return null;
913      }
914  
915      /**
916 <     * Returns {@code true} if at least one worker in the given array
699 <     * appears to have at least one queued task.
916 >     * Gets and removes a local or stolen task.
917       *
918 <     * @param ws array of workers
918 >     * @return a task, if available
919       */
920 <    static boolean hasQueuedTasks(ForkJoinWorkerThread[] ws) {
921 <        if (ws != null) {
922 <            int len = ws.length;
923 <            for (int j = 0; j < 2; ++j) { // need two passes for clean sweep
924 <                for (int i = 0; i < len; ++i) {
925 <                    ForkJoinWorkerThread w = ws[i];
709 <                    if (w != null && w.sp != w.base)
710 <                        return true;
711 <                }
712 <            }
920 >    final ForkJoinTask<?> pollTask() {
921 >        ForkJoinTask<?> t = pollLocalTask();
922 >        if (t == null) {
923 >            t = scan();
924 >            // cannot retain/track/help steal
925 >            UNSAFE.putOrderedObject(this, currentStealOffset, null);
926          }
927 <        return false;
927 >        return t;
928      }
929  
717    // Support methods for ForkJoinTask
718
930      /**
931 <     * Returns an estimate of the number of tasks in the queue.
931 >     * Possibly runs some tasks and/or blocks, until task is done.
932 >     *
933 >     * @param joinMe the task to join
934 >     * @param timed true if use timed wait
935 >     * @param nanos wait time if timed
936       */
937 <    final int getQueueSize() {
938 <        // suppress momentarily negative values
939 <        return Math.max(0, sp - base);
937 >    final void joinTask(ForkJoinTask<?> joinMe, boolean timed, long nanos) {
938 >        // currentJoin only written by this thread; only need ordered store
939 >        ForkJoinTask<?> prevJoin = currentJoin;
940 >        UNSAFE.putOrderedObject(this, currentJoinOffset, joinMe);
941 >        if (isTerminating())                // cancel if shutting down
942 >            joinMe.cancelIgnoringExceptions();
943 >        else
944 >            pool.awaitJoin(joinMe, this, timed, nanos);
945 >        UNSAFE.putOrderedObject(this, currentJoinOffset, prevJoin);
946      }
947  
948      /**
949 <     * Returns an estimate of the number of tasks, offset by a
950 <     * function of number of idle workers.
949 >     * Run tasks in local queue until given task is done.
950 >     * Not currently used because it complicates semantics.
951 >     *
952 >     * @param joinMe the task to join
953       */
954 <    final int getEstimatedSurplusTaskCount() {
955 <        // The halving approximates weighting idle vs non-idle workers
956 <        return (sp - base) - (pool.getIdleThreadCount() >>> 1);
954 >    private void localHelpJoinTask(ForkJoinTask<?> joinMe) {
955 >        int s;
956 >        ForkJoinTask<?>[] q;
957 >        while (joinMe.status >= 0 && (s = sp) != base && (q = queue) != null) {
958 >            int i = (q.length - 1) & --s;
959 >            long u = (i << qShift) + qBase; // raw offset
960 >            ForkJoinTask<?> t = q[i];
961 >            if (t == null)  // lost to a stealer
962 >                break;
963 >            if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
964 >                /*
965 >                 * This recheck (and similarly in helpJoinTask)
966 >                 * handles cases where joinMe is independently
967 >                 * cancelled or forced even though there is other work
968 >                 * available. Back out of the pop by putting t back
969 >                 * into slot before we commit by writing sp.
970 >                 */
971 >                if (joinMe.status < 0) {
972 >                    UNSAFE.putObjectVolatile(q, u, t);
973 >                    break;
974 >                }
975 >                sp = s;
976 >                // UNSAFE.putOrderedInt(this, spOffset, s);
977 >                t.quietlyExec();
978 >            }
979 >        }
980      }
981  
982      /**
983 <     * Scans, returning early if joinMe done.
984 <     */
985 <    final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
986 <        ForkJoinTask<?> t = pollTask();
987 <        if (t != null && joinMe.status < 0 && sp == base) {
988 <            pushTask(t); // unsteal if done and this task would be stealable
989 <            t = null;
983 >     * Tries to locate and help perform tasks for a stealer of the
984 >     * given task, or in turn one of its stealers.  Traces
985 >     * currentSteal->currentJoin links looking for a thread working on
986 >     * a descendant of the given task and with a non-empty queue to
987 >     * steal back and execute tasks from.
988 >     *
989 >     * The implementation is very branchy to cope with potential
990 >     * inconsistencies or loops encountering chains that are stale,
991 >     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
992 >     * of these cases are dealt with by just returning back to the
993 >     * caller, who is expected to retry if other join mechanisms also
994 >     * don't work out.
995 >     *
996 >     * @param joinMe the task to join
997 >     */
998 >    final void helpJoinTask(ForkJoinTask<?> joinMe) {
999 >        ForkJoinWorkerThread[] ws;
1000 >        int n;
1001 >        if (joinMe.status < 0)                // already done
1002 >            return;
1003 >        if ((ws = pool.workers) == null || (n = ws.length) <= 1)
1004 >            return;                           // need at least 2 workers
1005 >
1006 >        ForkJoinTask<?> task = joinMe;        // base of chain
1007 >        ForkJoinWorkerThread thread = this;   // thread with stolen task
1008 >        for (int d = 0; d < MAX_HELP_DEPTH; ++d) { // chain length
1009 >            // Try to find v, the stealer of task, by first using hint
1010 >            ForkJoinWorkerThread v = ws[thread.stealHint & (n - 1)];
1011 >            if (v == null || v.currentSteal != task) {
1012 >                for (int j = 0; ; ++j) {      // search array
1013 >                    if (j < n) {
1014 >                        ForkJoinTask<?> vs;
1015 >                        if ((v = ws[j]) != null &&
1016 >                            (vs = v.currentSteal) != null) {
1017 >                            if (joinMe.status < 0 || task.status < 0)
1018 >                                return;       // stale or done
1019 >                            if (vs == task) {
1020 >                                thread.stealHint = j;
1021 >                                break;        // save hint for next time
1022 >                            }
1023 >                        }
1024 >                    }
1025 >                    else
1026 >                        return;               // no stealer
1027 >                }
1028 >            }
1029 >            for (;;) { // Try to help v, using specialized form of deqTask
1030 >                if (joinMe.status < 0)
1031 >                    return;
1032 >                int b = v.base;
1033 >                ForkJoinTask<?>[] q = v.queue;
1034 >                if (b == v.sp || q == null)
1035 >                    break;
1036 >                int i = (q.length - 1) & b;
1037 >                long u = (i << qShift) + qBase;
1038 >                ForkJoinTask<?> t = q[i];
1039 >                int pid = poolIndex;
1040 >                ForkJoinTask<?> ps = currentSteal;
1041 >                if (task.status < 0)
1042 >                    return;                   // stale or done
1043 >                if (t != null && v.base == b++ &&
1044 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
1045 >                    if (joinMe.status < 0) {
1046 >                        UNSAFE.putObjectVolatile(q, u, t);
1047 >                        return;               // back out on cancel
1048 >                    }
1049 >                    v.base = b;
1050 >                    v.stealHint = pid;
1051 >                    UNSAFE.putOrderedObject(this, currentStealOffset, t);
1052 >                    t.quietlyExec();
1053 >                    UNSAFE.putOrderedObject(this, currentStealOffset, ps);
1054 >                }
1055 >            }
1056 >            // Try to descend to find v's stealer
1057 >            ForkJoinTask<?> next = v.currentJoin;
1058 >            if (task.status < 0 || next == null || next == task ||
1059 >                joinMe.status < 0)
1060 >                return;
1061 >            task = next;
1062 >            thread = v;
1063          }
1064 <        return t;
1064 >    }
1065 >
1066 >    /**
1067 >     * Implements ForkJoinTask.getSurplusQueuedTaskCount().
1068 >     * Returns an estimate of the number of tasks, offset by a
1069 >     * function of number of idle workers.
1070 >     *
1071 >     * This method provides a cheap heuristic guide for task
1072 >     * partitioning when programmers, frameworks, tools, or languages
1073 >     * have little or no idea about task granularity.  In essence by
1074 >     * offering this method, we ask users only about tradeoffs in
1075 >     * overhead vs expected throughput and its variance, rather than
1076 >     * how finely to partition tasks.
1077 >     *
1078 >     * In a steady state strict (tree-structured) computation, each
1079 >     * thread makes available for stealing enough tasks for other
1080 >     * threads to remain active. Inductively, if all threads play by
1081 >     * the same rules, each thread should make available only a
1082 >     * constant number of tasks.
1083 >     *
1084 >     * The minimum useful constant is just 1. But using a value of 1
1085 >     * would require immediate replenishment upon each steal to
1086 >     * maintain enough tasks, which is infeasible.  Further,
1087 >     * partitionings/granularities of offered tasks should minimize
1088 >     * steal rates, which in general means that threads nearer the top
1089 >     * of computation tree should generate more than those nearer the
1090 >     * bottom. In perfect steady state, each thread is at
1091 >     * approximately the same level of computation tree. However,
1092 >     * producing extra tasks amortizes the uncertainty of progress and
1093 >     * diffusion assumptions.
1094 >     *
1095 >     * So, users will want to use values larger, but not much larger
1096 >     * than 1 to both smooth over transient shortages and hedge
1097 >     * against uneven progress; as traded off against the cost of
1098 >     * extra task overhead. We leave the user to pick a threshold
1099 >     * value to compare with the results of this call to guide
1100 >     * decisions, but recommend values such as 3.
1101 >     *
1102 >     * When all threads are active, it is on average OK to estimate
1103 >     * surplus strictly locally. In steady-state, if one thread is
1104 >     * maintaining say 2 surplus tasks, then so are others. So we can
1105 >     * just use estimated queue length (although note that (sp - base)
1106 >     * can be an overestimate because of stealers lagging increments
1107 >     * of base).  However, this strategy alone leads to serious
1108 >     * mis-estimates in some non-steady-state conditions (ramp-up,
1109 >     * ramp-down, other stalls). We can detect many of these by
1110 >     * further considering the number of "idle" threads, that are
1111 >     * known to have zero queued tasks, so compensate by a factor of
1112 >     * (#idle/#active) threads.
1113 >     */
1114 >    final int getEstimatedSurplusTaskCount() {
1115 >        return sp - base - pool.idlePerActive();
1116      }
1117  
1118      /**
1119       * Runs tasks until {@code pool.isQuiescent()}.
1120       */
1121      final void helpQuiescePool() {
1122 +        ForkJoinTask<?> ps = currentSteal; // to restore below
1123          for (;;) {
1124 <            ForkJoinTask<?> t = pollTask();
1125 <            if (t != null)
1124 >            ForkJoinTask<?> t = pollLocalTask();
1125 >            if (t != null || (t = scan()) != null)
1126                  t.quietlyExec();
1127 <            else if (tryInactivate() && pool.isQuiescent())
1128 <                break;
1127 >            else {
1128 >                ForkJoinPool p = pool;
1129 >                int a; // to inline CASes
1130 >                if (active) {
1131 >                    if (!UNSAFE.compareAndSwapInt
1132 >                        (p, poolRunStateOffset, a = p.runState, a - 1))
1133 >                        continue;   // retry later
1134 >                    active = false; // inactivate
1135 >                    UNSAFE.putOrderedObject(this, currentStealOffset, ps);
1136 >                }
1137 >                if (p.isQuiescent()) {
1138 >                    active = true; // re-activate
1139 >                    do {} while (!UNSAFE.compareAndSwapInt
1140 >                                 (p, poolRunStateOffset, a = p.runState, a+1));
1141 >                    return;
1142 >                }
1143 >            }
1144          }
759        do {} while (!tryActivate()); // re-activate on exit
1145      }
1146  
1147      // Unsafe mechanics
# Line 766 | Line 1151 | public class ForkJoinWorkerThread extend
1151          objectFieldOffset("sp", ForkJoinWorkerThread.class);
1152      private static final long runStateOffset =
1153          objectFieldOffset("runState", ForkJoinWorkerThread.class);
1154 <    private static final long qBase;
1154 >    private static final long currentJoinOffset =
1155 >        objectFieldOffset("currentJoin", ForkJoinWorkerThread.class);
1156 >    private static final long currentStealOffset =
1157 >        objectFieldOffset("currentSteal", ForkJoinWorkerThread.class);
1158 >    private static final long qBase =
1159 >        UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
1160 >    private static final long poolRunStateOffset = // to inline CAS
1161 >        objectFieldOffset("runState", ForkJoinPool.class);
1162 >
1163      private static final int qShift;
1164  
1165      static {
773        qBase = UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
1166          int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
1167          if ((s & (s-1)) != 0)
1168              throw new Error("data type scale not a power of two");
1169          qShift = 31 - Integer.numberOfLeadingZeros(s);
1170 +        MAXIMUM_QUEUE_CAPACITY = 1 << (31 - qShift);
1171      }
1172  
1173      private static long objectFieldOffset(String field, Class<?> klazz) {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines