ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.28 by dl, Mon Aug 3 13:40:07 2009 UTC vs.
Revision 1.66 by jsr166, Wed Jun 1 21:04:30 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.Collection;
10 + import java.util.concurrent.RejectedExecutionException;
11  
12   /**
13 < * A thread managed by a {@link ForkJoinPool}.  This class is
14 < * subclassable solely for the sake of adding functionality -- there
15 < * are no overridable methods dealing with scheduling or execution.
16 < * However, you can override initialization and termination methods
17 < * surrounding the main task processing loop.  If you do create such a
18 < * subclass, you will also need to supply a custom {@link
19 < * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
20 < * ForkJoinPool}.
13 > * A thread managed by a {@link ForkJoinPool}, which executes
14 > * {@link ForkJoinTask}s.
15 > * This class is subclassable solely for the sake of adding
16 > * functionality -- there are no overridable methods dealing with
17 > * scheduling or execution.  However, you can override initialization
18 > * and termination methods surrounding the main task processing loop.
19 > * If you do create such a subclass, you will also need to supply a
20 > * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it
21 > * in a {@code ForkJoinPool}.
22   *
23   * @since 1.7
24   * @author Doug Lea
25   */
26   public class ForkJoinWorkerThread extends Thread {
27      /*
28 <     * Algorithm overview:
28 >     * Overview:
29       *
30 <     * 1. Work-Stealing: Work-stealing queues are special forms of
31 <     * Deques that support only three of the four possible
32 <     * end-operations -- push, pop, and deq (aka steal), and only do
33 <     * so under the constraints that push and pop are called only from
34 <     * the owning thread, while deq may be called from other threads.
35 <     * (If you are unfamiliar with them, you probably want to read
36 <     * Herlihy and Shavit's book "The Art of Multiprocessor
37 <     * programming", chapter 16 describing these in more detail before
38 <     * proceeding.)  The main work-stealing queue design is roughly
39 <     * similar to "Dynamic Circular Work-Stealing Deque" by David
40 <     * Chase and Yossi Lev, SPAA 2005
41 <     * (http://research.sun.com/scalable/pubs/index.html).  The main
42 <     * difference ultimately stems from gc requirements that we null
43 <     * out taken slots as soon as we can, to maintain as small a
44 <     * footprint as possible even in programs generating huge numbers
45 <     * of tasks. To accomplish this, we shift the CAS arbitrating pop
46 <     * vs deq (steal) from being on the indices ("base" and "sp") to
47 <     * the slots themselves (mainly via method "casSlotNull()"). So,
48 <     * both a successful pop and deq mainly entail CAS'ing a non-null
49 <     * slot to null.  Because we rely on CASes of references, we do
50 <     * not need tag bits on base or sp.  They are simple ints as used
51 <     * in any circular array-based queue (see for example ArrayDeque).
30 >     * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
31 >     * ForkJoinTasks. This class includes bookkeeping in support of
32 >     * worker activation, suspension, and lifecycle control described
33 >     * in more detail in the internal documentation of class
34 >     * ForkJoinPool. And as described further below, this class also
35 >     * includes special-cased support for some ForkJoinTask
36 >     * methods. But the main mechanics involve work-stealing:
37 >     *
38 >     * Work-stealing queues are special forms of Deques that support
39 >     * only three of the four possible end-operations -- push, pop,
40 >     * and deq (aka steal), under the further constraints that push
41 >     * and pop are called only from the owning thread, while deq may
42 >     * be called from other threads.  (If you are unfamiliar with
43 >     * them, you probably want to read Herlihy and Shavit's book "The
44 >     * Art of Multiprocessor programming", chapter 16 describing these
45 >     * in more detail before proceeding.)  The main work-stealing
46 >     * queue design is roughly similar to those in the papers "Dynamic
47 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
48 >     * (http://research.sun.com/scalable/pubs/index.html) and
49 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
50 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
51 >     * The main differences ultimately stem from gc requirements that
52 >     * we null out taken slots as soon as we can, to maintain as small
53 >     * a footprint as possible even in programs generating huge
54 >     * numbers of tasks. To accomplish this, we shift the CAS
55 >     * arbitrating pop vs deq (steal) from being on the indices
56 >     * ("queueBase" and "queueTop") to the slots themselves (mainly
57 >     * via method "casSlotNull()"). So, both a successful pop and deq
58 >     * mainly entail a CAS of a slot from non-null to null.  Because
59 >     * we rely on CASes of references, we do not need tag bits on
60 >     * queueBase or queueTop.  They are simple ints as used in any
61 >     * circular array-based queue (see for example ArrayDeque).
62       * Updates to the indices must still be ordered in a way that
63 <     * guarantees that (sp - base) > 0 means the queue is empty, but
64 <     * otherwise may err on the side of possibly making the queue
63 >     * guarantees that queueTop == queueBase means the queue is empty,
64 >     * but otherwise may err on the side of possibly making the queue
65       * appear nonempty when a push, pop, or deq have not fully
66       * committed. Note that this means that the deq operation,
67       * considered individually, is not wait-free. One thief cannot
68       * successfully continue until another in-progress one (or, if
69       * previously empty, a push) completes.  However, in the
70 <     * aggregate, we ensure at least probabilistic
71 <     * non-blockingness. If an attempted steal fails, a thief always
72 <     * chooses a different random victim target to try next. So, in
73 <     * order for one thief to progress, it suffices for any
74 <     * in-progress deq or new push on any empty queue to complete. One
65 <     * reason this works well here is that apparently-nonempty often
66 <     * means soon-to-be-stealable, which gives threads a chance to
67 <     * activate if necessary before stealing (see below).
70 >     * aggregate, we ensure at least probabilistic non-blockingness.
71 >     * If an attempted steal fails, a thief always chooses a different
72 >     * random victim target to try next. So, in order for one thief to
73 >     * progress, it suffices for any in-progress deq or new push on
74 >     * any empty queue to complete.
75       *
76       * This approach also enables support for "async mode" where local
77       * task processing is in FIFO, not LIFO order; simply by using a
78       * version of deq rather than pop when locallyFifo is true (as set
79       * by the ForkJoinPool).  This allows use in message-passing
80 <     * frameworks in which tasks are never joined.
81 <     *
82 <     * Efficient implementation of this approach currently relies on
83 <     * an uncomfortable amount of "Unsafe" mechanics. To maintain
84 <     * correct orderings, reads and writes of variable base require
85 <     * volatile ordering.  Variable sp does not require volatile write
86 <     * but needs cheaper store-ordering on writes.  Because they are
87 <     * protected by volatile base reads, reads of the queue array and
88 <     * its slots do not need volatile load semantics, but writes (in
89 <     * push) require store order and CASes (in pop and deq) require
90 <     * (volatile) CAS semantics.  (See "Idempotent work stealing" by
91 <     * Michael, Saraswat, and Vechev, PPoPP 2009
92 <     * http://portal.acm.org/citation.cfm?id=1504186 for an algorithm
93 <     * with similar properties, but without support for nulling
94 <     * slots.)  Since these combinations aren't supported using
95 <     * ordinary volatiles, the only way to accomplish these
80 >     * frameworks in which tasks are never joined.  However neither
81 >     * mode considers affinities, loads, cache localities, etc, so
82 >     * rarely provide the best possible performance on a given
83 >     * machine, but portably provide good throughput by averaging over
84 >     * these factors.  (Further, even if we did try to use such
85 >     * information, we do not usually have a basis for exploiting
86 >     * it. For example, some sets of tasks profit from cache
87 >     * affinities, but others are harmed by cache pollution effects.)
88 >     *
89 >     * When a worker would otherwise be blocked waiting to join a
90 >     * task, it first tries a form of linear helping: Each worker
91 >     * records (in field currentSteal) the most recent task it stole
92 >     * from some other worker. Plus, it records (in field currentJoin)
93 >     * the task it is currently actively joining. Method joinTask uses
94 >     * these markers to try to find a worker to help (i.e., steal back
95 >     * a task from and execute it) that could hasten completion of the
96 >     * actively joined task. In essence, the joiner executes a task
97 >     * that would be on its own local deque had the to-be-joined task
98 >     * not been stolen. This may be seen as a conservative variant of
99 >     * the approach in Wagner & Calder "Leapfrogging: a portable
100 >     * technique for implementing efficient futures" SIGPLAN Notices,
101 >     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
102 >     * in that: (1) We only maintain dependency links across workers
103 >     * upon steals, rather than use per-task bookkeeping.  This may
104 >     * require a linear scan of workers array to locate stealers, but
105 >     * usually doesn't because stealers leave hints (that may become
106 >     * stale/wrong) of where to locate them. This isolates cost to
107 >     * when it is needed, rather than adding to per-task overhead.
108 >     * (2) It is "shallow", ignoring nesting and potentially cyclic
109 >     * mutual steals.  (3) It is intentionally racy: field currentJoin
110 >     * is updated only while actively joining, which means that we
111 >     * miss links in the chain during long-lived tasks, GC stalls etc
112 >     * (which is OK since blocking in such cases is usually a good
113 >     * idea).  (4) We bound the number of attempts to find work (see
114 >     * MAX_HELP) and fall back to suspending the worker and if
115 >     * necessary replacing it with another.
116 >     *
117 >     * Efficient implementation of these algorithms currently relies
118 >     * on an uncomfortable amount of "Unsafe" mechanics. To maintain
119 >     * correct orderings, reads and writes of variable queueBase
120 >     * require volatile ordering.  Variable queueTop need not be
121 >     * volatile because non-local reads always follow those of
122 >     * queueBase.  Similarly, because they are protected by volatile
123 >     * queueBase reads, reads of the queue array and its slots by
124 >     * other threads do not need volatile load semantics, but writes
125 >     * (in push) require store order and CASes (in pop and deq)
126 >     * require (volatile) CAS semantics.  (Michael, Saraswat, and
127 >     * Vechev's algorithm has similar properties, but without support
128 >     * for nulling slots.)  Since these combinations aren't supported
129 >     * using ordinary volatiles, the only way to accomplish these
130       * efficiently is to use direct Unsafe calls. (Using external
131       * AtomicIntegers and AtomicReferenceArrays for the indices and
132       * array is significantly slower because of memory locality and
133       * indirection effects.)
134 <     *
134 >     *
135       * Further, performance on most platforms is very sensitive to
136       * placement and sizing of the (resizable) queue array.  Even
137       * though these queues don't usually become all that big, the
138       * initial size must be large enough to counteract cache
139       * contention effects across multiple queues (especially in the
140       * presence of GC cardmarking). Also, to improve thread-locality,
141 <     * queues are currently initialized immediately after the thread
101 <     * gets the initial signal to start processing tasks.  However,
102 <     * all queue-related methods except pushTask are written in a way
103 <     * that allows them to instead be lazily allocated and/or disposed
104 <     * of when empty. All together, these low-level implementation
105 <     * choices produce as much as a factor of 4 performance
106 <     * improvement compared to naive implementations, and enable the
107 <     * processing of billions of tasks per second, sometimes at the
108 <     * expense of ugliness.
109 <     *
110 <     * 2. Run control: The primary run control is based on a global
111 <     * counter (activeCount) held by the pool. It uses an algorithm
112 <     * similar to that in Herlihy and Shavit section 17.6 to cause
113 <     * threads to eventually block when all threads declare they are
114 <     * inactive. For this to work, threads must be declared active
115 <     * when executing tasks, and before stealing a task. They must be
116 <     * inactive before blocking on the Pool Barrier (awaiting a new
117 <     * submission or other Pool event). In between, there is some free
118 <     * play which we take advantage of to avoid contention and rapid
119 <     * flickering of the global activeCount: If inactive, we activate
120 <     * only if a victim queue appears to be nonempty (see above).
121 <     * Similarly, a thread tries to inactivate only after a full scan
122 <     * of other threads.  The net effect is that contention on
123 <     * activeCount is rarely a measurable performance issue. (There
124 <     * are also a few other cases where we scan for work rather than
125 <     * retry/block upon contention.)
126 <     *
127 <     * 3. Selection control. We maintain policy of always choosing to
128 <     * run local tasks rather than stealing, and always trying to
129 <     * steal tasks before trying to run a new submission. All steals
130 <     * are currently performed in randomly-chosen deq-order. It may be
131 <     * worthwhile to bias these with locality / anti-locality
132 <     * information, but doing this well probably requires more
133 <     * lower-level information from JVMs than currently provided.
141 >     * queues are initialized after starting.
142       */
143  
144      /**
145 +     * Mask for pool indices encoded as shorts
146 +     */
147 +    private static final int  SMASK  = 0xffff;
148 +
149 +    /**
150       * Capacity of work-stealing queue array upon initialization.
151 <     * Must be a power of two. Initial size must be at least 2, but is
151 >     * Must be a power of two. Initial size must be at least 4, but is
152       * padded to minimize cache effects.
153       */
154      private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
155  
156      /**
157 <     * Maximum work-stealing queue array size.  Must be less than or
158 <     * equal to 1 << 28 to ensure lack of index wraparound. (This
159 <     * is less than usual bounds, because we need leftshift by 3
160 <     * to be in int range).
157 >     * Maximum size for queue array. Must be a power of two
158 >     * less than or equal to 1 << (31 - width of array entry) to
159 >     * ensure lack of index wraparound, but is capped at a lower
160 >     * value to help users trap runaway computations.
161       */
162 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
162 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
163  
164      /**
165 <     * The pool this thread works in. Accessed directly by ForkJoinTask.
165 >     * The work-stealing queue array. Size must be a power of two.
166 >     * Initialized when started (as oposed to when constructed), to
167 >     * improve memory locality.
168       */
169 <    final ForkJoinPool pool;
169 >    ForkJoinTask<?>[] queue;
170  
171      /**
172 <     * The work-stealing queue array. Size must be a power of two.
158 <     * Initialized when thread starts, to improve memory locality.
172 >     * The pool this thread works in. Accessed directly by ForkJoinTask.
173       */
174 <    private ForkJoinTask<?>[] queue;
174 >    final ForkJoinPool pool;
175  
176      /**
177       * Index (mod queue.length) of next queue slot to push to or pop
178 <     * from. It is written only by owner thread, via ordered store.
179 <     * Both sp and base are allowed to wrap around on overflow, but
180 <     * (sp - base) still estimates size.
178 >     * from. It is written only by owner thread, and accessed by other
179 >     * threads only after reading (volatile) queueBase.  Both queueTop
180 >     * and queueBase are allowed to wrap around on overflow, but
181 >     * (queueTop - queueBase) still estimates size.
182       */
183 <    private volatile int sp;
183 >    int queueTop;
184  
185      /**
186       * Index (mod queue.length) of least valid queue slot, which is
187       * always the next position to steal from if nonempty.
188       */
189 <    private volatile int base;
189 >    volatile int queueBase;
190 >
191 >    /**
192 >     * The index of most recent stealer, used as a hint to avoid
193 >     * traversal in method helpJoinTask. This is only a hint because a
194 >     * worker might have had multiple steals and this only holds one
195 >     * of them (usually the most current). Declared non-volatile,
196 >     * relying on other prevailing sync to keep reasonably current.
197 >     */
198 >    int stealHint;
199  
200      /**
201 <     * Activity status. When true, this worker is considered active.
202 <     * Must be false upon construction. It must be true when executing
203 <     * tasks, and BEFORE stealing a task. It must be false before
180 <     * calling pool.sync.
201 >     * Index of this worker in pool array. Set once by pool before
202 >     * running, and accessed directly by pool to locate this worker in
203 >     * its workers array.
204       */
205 <    private boolean active;
205 >    final int poolIndex;
206  
207      /**
208 <     * Run state of this worker. Supports simple versions of the usual
209 <     * shutdown/shutdownNow control.
208 >     * Encoded record for pool task waits. Usages are always
209 >     * surrounded by volatile reads/writes
210       */
211 <    private volatile int runState;
211 >    int nextWait;
212 >
213 >    /**
214 >     * Complement of poolIndex, offset by count of entries of task
215 >     * waits. Accessed by ForkJoinPool to manage event waiters.
216 >     */
217 >    volatile int eventCount;
218  
219      /**
220       * Seed for random number generator for choosing steal victims.
221 <     * Uses Marsaglia xorshift. Must be nonzero upon initialization.
221 >     * Uses Marsaglia xorshift. Must be initialized as nonzero.
222       */
223 <    private int seed;
223 >    int seed;
224  
225      /**
226 <     * Number of steals, transferred to pool when idle
226 >     * Number of steals. Directly accessed (and reset) by pool when
227 >     * idle.
228       */
229 <    private int stealCount;
229 >    int stealCount;
230  
231      /**
232 <     * Index of this worker in pool array. Set once by pool before
233 <     * running, and accessed directly by pool during cleanup etc.
232 >     * True if this worker should or did terminate
233 >     */
234 >    volatile boolean terminate;
235 >
236 >    /**
237 >     * Set to true before LockSupport.park; false on return
238       */
239 <    int poolIndex;
239 >    volatile boolean parked;
240  
241      /**
242 <     * The last barrier event waited for. Accessed in pool callback
243 <     * methods, but only by current thread.
242 >     * True if use local fifo, not default lifo, for local polling.
243 >     * Shadows value from ForkJoinPool.
244       */
245 <    long lastEventCount;
245 >    final boolean locallyFifo;
246  
247      /**
248 <     * True if use local fifo, not default lifo, for local polling
248 >     * The task most recently stolen from another worker (or
249 >     * submission queue).  All uses are surrounded by enough volatile
250 >     * reads/writes to maintain as non-volatile.
251       */
252 <    private boolean locallyFifo;
252 >    ForkJoinTask<?> currentSteal;
253 >
254 >    /**
255 >     * The task currently being joined, set only when actively trying
256 >     * to help other stealers in helpJoinTask. All uses are surrounded
257 >     * by enough volatile reads/writes to maintain as non-volatile.
258 >     */
259 >    ForkJoinTask<?> currentJoin;
260  
261      /**
262       * Creates a ForkJoinWorkerThread operating in the given pool.
# Line 222 | Line 265 | public class ForkJoinWorkerThread extend
265       * @throws NullPointerException if pool is null
266       */
267      protected ForkJoinWorkerThread(ForkJoinPool pool) {
268 <        if (pool == null) throw new NullPointerException();
268 >        super(pool.nextWorkerName());
269          this.pool = pool;
270 <        // Note: poolIndex is set by pool during construction
271 <        // Remaining initialization is deferred to onStart
270 >        int k = pool.registerWorker(this);
271 >        poolIndex = k;
272 >        eventCount = ~k & SMASK; // clear wait count
273 >        locallyFifo = pool.locallyFifo;
274 >        Thread.UncaughtExceptionHandler ueh = pool.ueh;
275 >        if (ueh != null)
276 >            setUncaughtExceptionHandler(ueh);
277 >        setDaemon(true);
278      }
279  
280 <    // Public access methods
280 >    // Public methods
281  
282      /**
283       * Returns the pool hosting this thread.
# Line 252 | Line 301 | public class ForkJoinWorkerThread extend
301          return poolIndex;
302      }
303  
304 <    /**
256 <     * Establishes local first-in-first-out scheduling mode for forked
257 <     * tasks that are never joined.
258 <     *
259 <     * @param async if true, use locally FIFO scheduling
260 <     */
261 <    void setAsyncMode(boolean async) {
262 <        locallyFifo = async;
263 <    }
264 <
265 <    // Runstate management
266 <
267 <    // Runstate values. Order matters
268 <    private static final int RUNNING     = 0;
269 <    private static final int SHUTDOWN    = 1;
270 <    private static final int TERMINATING = 2;
271 <    private static final int TERMINATED  = 3;
272 <
273 <    final boolean isShutdown()    { return runState >= SHUTDOWN;  }
274 <    final boolean isTerminating() { return runState >= TERMINATING;  }
275 <    final boolean isTerminated()  { return runState == TERMINATED; }
276 <    final boolean shutdown()      { return transitionRunStateTo(SHUTDOWN); }
277 <    final boolean shutdownNow()   { return transitionRunStateTo(TERMINATING); }
278 <
279 <    /**
280 <     * Transitions to at least the given state.
281 <     *
282 <     * @return {@code true} if not already at least at given state
283 <     */
284 <    private boolean transitionRunStateTo(int state) {
285 <        for (;;) {
286 <            int s = runState;
287 <            if (s >= state)
288 <                return false;
289 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, state))
290 <                return true;
291 <        }
292 <    }
293 <
294 <    /**
295 <     * Tries to set status to active; fails on contention.
296 <     */
297 <    private boolean tryActivate() {
298 <        if (!active) {
299 <            if (!pool.tryIncrementActiveCount())
300 <                return false;
301 <            active = true;
302 <        }
303 <        return true;
304 <    }
305 <
306 <    /**
307 <     * Tries to set status to inactive; fails on contention.
308 <     */
309 <    private boolean tryInactivate() {
310 <        if (active) {
311 <            if (!pool.tryDecrementActiveCount())
312 <                return false;
313 <            active = false;
314 <        }
315 <        return true;
316 <    }
317 <
318 <    /**
319 <     * Computes next value for random victim probe.  Scans don't
320 <     * require a very high quality generator, but also not a crummy
321 <     * one.  Marsaglia xor-shift is cheap and works well.
322 <     */
323 <    private static int xorShift(int r) {
324 <        r ^= (r << 13);
325 <        r ^= (r >>> 17);
326 <        return r ^ (r << 5);
327 <    }
328 <
329 <    // Lifecycle methods
304 >    // Randomization
305  
306      /**
307 <     * This method is required to be public, but should never be
308 <     * called explicitly. It performs the main run loop to execute
309 <     * ForkJoinTasks.
307 >     * Computes next value for random victim probes and backoffs.
308 >     * Scans don't require a very high quality generator, but also not
309 >     * a crummy one.  Marsaglia xor-shift is cheap and works well
310 >     * enough.  Note: This is manually inlined in FJP.scan() to avoid
311 >     * writes inside busy loops.
312       */
313 <    public void run() {
314 <        Throwable exception = null;
315 <        try {
316 <            onStart();
317 <            pool.sync(this); // await first pool event
318 <            mainLoop();
342 <        } catch (Throwable ex) {
343 <            exception = ex;
344 <        } finally {
345 <            onTermination(exception);
346 <        }
313 >    private int nextSeed() {
314 >        int r = seed;
315 >        r ^= r << 13;
316 >        r ^= r >>> 17;
317 >        r ^= r << 5;
318 >        return seed = r;
319      }
320  
321 <    /**
350 <     * Executes tasks until shut down.
351 <     */
352 <    private void mainLoop() {
353 <        while (!isShutdown()) {
354 <            ForkJoinTask<?> t = pollTask();
355 <            if (t != null || (t = pollSubmission()) != null)
356 <                t.quietlyExec();
357 <            else if (tryInactivate())
358 <                pool.sync(this);
359 <        }
360 <    }
321 >    // Run State management
322  
323      /**
324       * Initializes internal state after construction but before
325       * processing any tasks. If you override this method, you must
326 <     * invoke super.onStart() at the beginning of the method.
326 >     * invoke {@code super.onStart()} at the beginning of the method.
327       * Initialization requires care: Most fields must have legal
328       * default values, to ensure that attempted accesses from other
329       * threads work correctly even before this thread starts
330       * processing tasks.
331       */
332      protected void onStart() {
372        // Allocate while starting to improve chances of thread-local
373        // isolation
333          queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
334 <        // Initial value of seed need not be especially random but
335 <        // should differ across workers and must be nonzero
377 <        int p = poolIndex + 1;
378 <        seed = p + (p << 8) + (p << 16) + (p << 24); // spread bits
334 >        int r = ForkJoinPool.workerSeedGenerator.nextInt();
335 >        seed = (r == 0) ? 1 : r; //  must be nonzero
336      }
337  
338      /**
# Line 387 | Line 344 | public class ForkJoinWorkerThread extend
344       * to an unrecoverable error, or {@code null} if completed normally
345       */
346      protected void onTermination(Throwable exception) {
390        // Execute remaining local tasks unless aborting or terminating
391        while (exception == null && pool.isProcessingTasks() && base != sp) {
392            try {
393                ForkJoinTask<?> t = popTask();
394                if (t != null)
395                    t.quietlyExec();
396            } catch (Throwable ex) {
397                exception = ex;
398            }
399        }
400        // Cancel other tasks, transition status, notify pool, and
401        // propagate exception to uncaught exception handler
347          try {
348 <            do {} while (!tryInactivate()); // ensure inactive
348 >            terminate = true;
349              cancelTasks();
350 <            runState = TERMINATED;
406 <            pool.workerTerminated(this);
350 >            pool.deregisterWorker(this, exception);
351          } catch (Throwable ex) {        // Shouldn't ever happen
352              if (exception == null)      // but if so, at least rethrown
353                  exception = ex;
354          } finally {
355              if (exception != null)
356 <                ForkJoinTask.rethrowException(exception);
356 >                UNSAFE.throwException(exception);
357          }
358      }
359  
416    // Intrinsics-based support for queue operations.
417
360      /**
361 <     * Adds in store-order the given task at given slot of q to null.
362 <     * Caller must ensure q is non-null and index is in range.
361 >     * This method is required to be public, but should never be
362 >     * called explicitly. It performs the main run loop to execute
363 >     * {@link ForkJoinTask}s.
364       */
365 <    private static void setSlot(ForkJoinTask<?>[] q, int i,
366 <                                ForkJoinTask<?> t) {
367 <        UNSAFE.putOrderedObject(q, (i << qShift) + qBase, t);
365 >    public void run() {
366 >        Throwable exception = null;
367 >        try {
368 >            onStart();
369 >            pool.work(this);
370 >        } catch (Throwable ex) {
371 >            exception = ex;
372 >        } finally {
373 >            onTermination(exception);
374 >        }
375      }
376  
377 +    /*
378 +     * Intrinsics-based atomic writes for queue slots. These are
379 +     * basically the same as methods in AtomicReferenceArray, but
380 +     * specialized for (1) ForkJoinTask elements (2) requirement that
381 +     * nullness and bounds checks have already been performed by
382 +     * callers and (3) effective offsets are known not to overflow
383 +     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
384 +     * need corresponding version for reads: plain array reads are OK
385 +     * because they are protected by other volatile reads and are
386 +     * confirmed by CASes.
387 +     *
388 +     * Most uses don't actually call these methods, but instead
389 +     * contain inlined forms that enable more predictable
390 +     * optimization.  We don't define the version of write used in
391 +     * pushTask at all, but instead inline there a store-fenced array
392 +     * slot write.
393 +     *
394 +     * Also in most methods, as a performance (not correctness) issue,
395 +     * we'd like to encourage compilers not to arbitrarily postpone
396 +     * setting queueTop after writing slot.  Currently there is no
397 +     * intrinsic for arranging this, but using Unsafe putOrderedInt
398 +     * may be a preferable strategy on some compilers even though its
399 +     * main effect is a pre-, not post- fence. To simplify possible
400 +     * changes, the option is left in comments next to the associated
401 +     * assignments.
402 +     */
403 +
404      /**
405 <     * CAS given slot of q to null. Caller must ensure q is non-null
406 <     * and index is in range.
405 >     * CASes slot i of array q from t to null. Caller must ensure q is
406 >     * non-null and index is in range.
407       */
408 <    private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
409 <                                       ForkJoinTask<?> t) {
410 <        return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
408 >    private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
409 >                                             ForkJoinTask<?> t) {
410 >        return UNSAFE.compareAndSwapObject(q, (i << ASHIFT) + ABASE, t, null);
411      }
412  
413      /**
414 <     * Sets sp in store-order.
414 >     * Performs a volatile write of the given task at given slot of
415 >     * array q.  Caller must ensure q is non-null and index is in
416 >     * range. This method is used only during resets and backouts.
417       */
418 <    private void storeSp(int s) {
419 <        UNSAFE.putOrderedInt(this, spOffset, s);
418 >    private static final void writeSlot(ForkJoinTask<?>[] q, int i,
419 >                                        ForkJoinTask<?> t) {
420 >        UNSAFE.putObjectVolatile(q, (i << ASHIFT) + ABASE, t);
421      }
422  
423 <    // Main queue methods
423 >    // queue methods
424  
425      /**
426 <     * Pushes a task. Called only by current thread.
426 >     * Pushes a task. Call only from this thread.
427       *
428       * @param t the task. Caller must ensure non-null.
429       */
430      final void pushTask(ForkJoinTask<?> t) {
431 <        ForkJoinTask<?>[] q = queue;
432 <        int mask = q.length - 1;
433 <        int s = sp;
434 <        setSlot(q, s & mask, t);
435 <        storeSp(++s);
436 <        if ((s -= base) == 1)
437 <            pool.signalWork();
438 <        else if (s >= mask)
439 <            growQueue();
431 >        ForkJoinTask<?>[] q; int s, m;
432 >        if ((q = queue) != null) {    // ignore if queue removed
433 >            long u = (((s = queueTop) & (m = q.length - 1)) << ASHIFT) + ABASE;
434 >            UNSAFE.putOrderedObject(q, u, t);
435 >            queueTop = s + 1;         // or use putOrderedInt
436 >            if ((s -= queueBase) <= 2)
437 >                pool.signalWork();
438 >            else if (s == m)
439 >                growQueue();
440 >        }
441 >    }
442 >
443 >    /**
444 >     * Creates or doubles queue array.  Transfers elements by
445 >     * emulating steals (deqs) from old array and placing, oldest
446 >     * first, into new array.
447 >     */
448 >    private void growQueue() {
449 >        ForkJoinTask<?>[] oldQ = queue;
450 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
451 >        if (size > MAXIMUM_QUEUE_CAPACITY)
452 >            throw new RejectedExecutionException("Queue capacity exceeded");
453 >        if (size < INITIAL_QUEUE_CAPACITY)
454 >            size = INITIAL_QUEUE_CAPACITY;
455 >        ForkJoinTask<?>[] q = queue = new ForkJoinTask<?>[size];
456 >        int mask = size - 1;
457 >        int top = queueTop;
458 >        int oldMask;
459 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
460 >            for (int b = queueBase; b != top; ++b) {
461 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
462 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
463 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
464 >                    UNSAFE.putObjectVolatile
465 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
466 >            }
467 >        }
468      }
469  
470      /**
471       * Tries to take a task from the base of the queue, failing if
472 <     * either empty or contended.
472 >     * empty or contended. Note: Specializations of this code appear
473 >     * in locallyDeqTask and elsewhere.
474       *
475       * @return a task, or null if none or contended
476       */
477      final ForkJoinTask<?> deqTask() {
478 <        ForkJoinTask<?> t;
479 <        ForkJoinTask<?>[] q;
471 <        int i;
472 <        int b;
473 <        if (sp != (b = base) &&
478 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
479 >        if (queueTop != (b = queueBase) &&
480              (q = queue) != null && // must read q after b
481 <            (t = q[i = (q.length - 1) & b]) != null &&
482 <            casSlotNull(q, i, t)) {
483 <            base = b + 1;
481 >            (i = (q.length - 1) & b) >= 0 &&
482 >            (t = q[i]) != null && queueBase == b &&
483 >            UNSAFE.compareAndSwapObject(q, (i << ASHIFT) + ABASE, t, null)) {
484 >            queueBase = b + 1;
485              return t;
486          }
487          return null;
488      }
489  
490      /**
491 <     * Tries to take a task from the base of own queue, activating if
492 <     * necessary, failing only if empty. Called only by current thread.
491 >     * Tries to take a task from the base of own queue.  Called only
492 >     * by this thread.
493       *
494       * @return a task, or null if none
495       */
496      final ForkJoinTask<?> locallyDeqTask() {
497 <        int b;
498 <        while (sp != (b = base)) {
499 <            if (tryActivate()) {
500 <                ForkJoinTask<?>[] q = queue;
501 <                int i = (q.length - 1) & b;
502 <                ForkJoinTask<?> t = q[i];
503 <                if (t != null && casSlotNull(q, i, t)) {
504 <                    base = b + 1;
497 >        ForkJoinTask<?> t; int m, b, i;
498 >        ForkJoinTask<?>[] q = queue;
499 >        if (q != null && (m = q.length - 1) >= 0) {
500 >            while (queueTop != (b = queueBase)) {
501 >                if ((t = q[i = m & b]) != null &&
502 >                    queueBase == b &&
503 >                    UNSAFE.compareAndSwapObject(q, (i << ASHIFT) + ABASE,
504 >                                                t, null)) {
505 >                    queueBase = b + 1;
506                      return t;
507                  }
508              }
# Line 503 | Line 511 | public class ForkJoinWorkerThread extend
511      }
512  
513      /**
514 <     * Returns a popped task, or null if empty. Ensures active status
515 <     * if non-null. Called only by current thread.
514 >     * Returns a popped task, or null if empty.
515 >     * Called only by this thread.
516       */
517 <    final ForkJoinTask<?> popTask() {
518 <        int s = sp;
519 <        while (s != base) {
520 <            if (tryActivate()) {
521 <                ForkJoinTask<?>[] q = queue;
522 <                int mask = q.length - 1;
523 <                int i = (s - 1) & mask;
517 >    private ForkJoinTask<?> popTask() {
518 >        int m;
519 >        ForkJoinTask<?>[] q = queue;
520 >        if (q != null && (m = q.length - 1) >= 0) {
521 >            for (int s; (s = queueTop) != queueBase;) {
522 >                int i = m & --s;
523 >                long u = (i << ASHIFT) + ABASE; // raw offset
524                  ForkJoinTask<?> t = q[i];
525 <                if (t == null || !casSlotNull(q, i, t))
525 >                if (t == null)   // lost to stealer
526                      break;
527 <                storeSp(s - 1);
528 <                return t;
527 >                if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
528 >                    queueTop = s; // or putOrderedInt
529 >                    return t;
530 >                }
531              }
532          }
533          return null;
534      }
535  
536      /**
537 <     * Specialized version of popTask to pop only if
538 <     * topmost element is the given task. Called only
529 <     * by current thread while active.
537 >     * Specialized version of popTask to pop only if topmost element
538 >     * is the given task. Called only by this thread.
539       *
540       * @param t the task. Caller must ensure non-null.
541       */
542      final boolean unpushTask(ForkJoinTask<?> t) {
543 <        ForkJoinTask<?>[] q = queue;
544 <        int mask = q.length - 1;
545 <        int s = sp - 1;
546 <        if (casSlotNull(q, s & mask, t)) {
547 <            storeSp(s);
543 >        ForkJoinTask<?>[] q;
544 >        int s;
545 >        if ((q = queue) != null && (s = queueTop) != queueBase &&
546 >            UNSAFE.compareAndSwapObject
547 >            (q, (((q.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
548 >            queueTop = s; // or putOrderedInt
549              return true;
550          }
551          return false;
552      }
553  
554      /**
555 <     * Returns next task or null if empty or contended
555 >     * Returns next task, or null if empty or contended.
556       */
557      final ForkJoinTask<?> peekTask() {
558 +        int m;
559          ForkJoinTask<?>[] q = queue;
560 <        if (q == null)
560 >        if (q == null || (m = q.length - 1) < 0)
561              return null;
562 <        int mask = q.length - 1;
563 <        int i = locallyFifo ? base : (sp - 1);
553 <        return q[i & mask];
562 >        int i = locallyFifo ? queueBase : (queueTop - 1);
563 >        return q[i & m];
564      }
565  
566 +    // Support methods for ForkJoinPool
567 +
568      /**
569 <     * Doubles queue array size. Transfers elements by emulating
558 <     * steals (deqs) from old array and placing, oldest first, into
559 <     * new array.
569 >     * Runs the given task, plus any local tasks until queue is empty
570       */
571 <    private void growQueue() {
572 <        ForkJoinTask<?>[] oldQ = queue;
573 <        int oldSize = oldQ.length;
574 <        int newSize = oldSize << 1;
575 <        if (newSize > MAXIMUM_QUEUE_CAPACITY)
576 <            throw new RejectedExecutionException("Queue capacity exceeded");
577 <        ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
571 >    final void execTask(ForkJoinTask<?> t) {
572 >        currentSteal = t;
573 >        for (;;) {
574 >            if (t != null)
575 >                t.doExec();
576 >            if (queueTop == queueBase)
577 >                break;
578 >            t = locallyFifo ? locallyDeqTask() : popTask();
579 >        }
580 >        ++stealCount;
581 >        currentSteal = null;
582 >    }
583  
584 <        int b = base;
585 <        int bf = b + oldSize;
586 <        int oldMask = oldSize - 1;
587 <        int newMask = newSize - 1;
588 <        do {
589 <            int oldIndex = b & oldMask;
590 <            ForkJoinTask<?> t = oldQ[oldIndex];
591 <            if (t != null && !casSlotNull(oldQ, oldIndex, t))
592 <                t = null;
593 <            setSlot(newQ, b & newMask, t);
594 <        } while (++b != bf);
595 <        pool.signalWork();
584 >    /**
585 >     * Removes and cancels all tasks in queue.  Can be called from any
586 >     * thread.
587 >     */
588 >    final void cancelTasks() {
589 >        ForkJoinTask<?> cj = currentJoin; // try to cancel ongoing tasks
590 >        if (cj != null && cj.status >= 0)
591 >            cj.cancelIgnoringExceptions();
592 >        ForkJoinTask<?> cs = currentSteal;
593 >        if (cs != null && cs.status >= 0)
594 >            cs.cancelIgnoringExceptions();
595 >        while (queueBase != queueTop) {
596 >            ForkJoinTask<?> t = deqTask();
597 >            if (t != null)
598 >                t.cancelIgnoringExceptions();
599 >        }
600      }
601  
602      /**
603 <     * Tries to steal a task from another worker. Starts at a random
604 <     * index of workers array, and probes workers until finding one
605 <     * with non-empty queue or finding that all are empty.  It
606 <     * randomly selects the first n probes. If these are empty, it
607 <     * resorts to a full circular traversal, which is necessary to
608 <     * accurately set active status by caller. Also restarts if pool
609 <     * events occurred since last scan, which forces refresh of
610 <     * workers array, in case barrier was associated with resize.
611 <     *
612 <     * This method must be both fast and quiet -- usually avoiding
613 <     * memory accesses that could disrupt cache sharing etc other than
595 <     * those needed to check for and take tasks. This accounts for,
596 <     * among other things, updating random seed in place without
597 <     * storing it until exit.
598 <     *
599 <     * @return a task, or null if none found
600 <     */
601 <    private ForkJoinTask<?> scan() {
602 <        ForkJoinTask<?> t = null;
603 <        int r = seed;                    // extract once to keep scan quiet
604 <        ForkJoinWorkerThread[] ws;       // refreshed on outer loop
605 <        int mask;                        // must be power 2 minus 1 and > 0
606 <        outer:do {
607 <            if ((ws = pool.workers) != null && (mask = ws.length - 1) > 0) {
608 <                int idx = r;
609 <                int probes = ~mask;      // use random index while negative
610 <                for (;;) {
611 <                    r = xorShift(r);     // update random seed
612 <                    ForkJoinWorkerThread v = ws[mask & idx];
613 <                    if (v == null || v.sp == v.base) {
614 <                        if (probes <= mask)
615 <                            idx = (probes++ < 0) ? r : (idx + 1);
616 <                        else
617 <                            break;
618 <                    }
619 <                    else if (!tryActivate() || (t = v.deqTask()) == null)
620 <                        continue outer;  // restart on contention
621 <                    else
622 <                        break outer;
623 <                }
603 >     * Drains tasks to given collection c.
604 >     *
605 >     * @return the number of tasks drained
606 >     */
607 >    final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
608 >        int n = 0;
609 >        while (queueBase != queueTop) {
610 >            ForkJoinTask<?> t = deqTask();
611 >            if (t != null) {
612 >                c.add(t);
613 >                ++n;
614              }
615 <        } while (pool.hasNewSyncEvent(this)); // retry on pool events
616 <        seed = r;
627 <        return t;
615 >        }
616 >        return n;
617      }
618  
619 +    // Support methods for ForkJoinTask
620 +
621      /**
622 <     * Gets and removes a local or stolen task.
632 <     *
633 <     * @return a task, if available
622 >     * Returns an estimate of the number of tasks in the queue.
623       */
624 <    final ForkJoinTask<?> pollTask() {
625 <        ForkJoinTask<?> t = locallyFifo ? locallyDeqTask() : popTask();
637 <        if (t == null && (t = scan()) != null)
638 <            ++stealCount;
639 <        return t;
624 >    final int getQueueSize() {
625 >        return queueTop - queueBase;
626      }
627  
628      /**
629 <     * Gets a local task.
629 >     * Gets and removes a local task.
630       *
631       * @return a task, if available
632       */
# Line 649 | Line 635 | public class ForkJoinWorkerThread extend
635      }
636  
637      /**
638 <     * Returns a pool submission, if one exists, activating first.
638 >     * Gets and removes a local or stolen task.
639       *
640 <     * @return a submission, if available
640 >     * @return a task, if available
641       */
642 <    private ForkJoinTask<?> pollSubmission() {
643 <        ForkJoinPool p = pool;
644 <        while (p.hasQueuedSubmissions()) {
645 <            ForkJoinTask<?> t;
646 <            if (tryActivate() && (t = p.pollSubmission()) != null)
647 <                return t;
642 >    final ForkJoinTask<?> pollTask() {
643 >        ForkJoinWorkerThread[] ws;
644 >        ForkJoinTask<?> t = pollLocalTask();
645 >        if (t != null || (ws = pool.workers) == null)
646 >            return t;
647 >        int n = ws.length; // cheap version of FJP.scan
648 >        int steps = n << 1;
649 >        int r = nextSeed();
650 >        int i = 0;
651 >        while (i < steps) {
652 >            ForkJoinWorkerThread w = ws[(i++ + r) & (n - 1)];
653 >            if (w != null && w.queueBase != w.queueTop && w.queue != null) {
654 >                if ((t = w.deqTask()) != null)
655 >                    return t;
656 >                i = 0;
657 >            }
658          }
659          return null;
660      }
661  
666    // Methods accessed only by Pool
667
662      /**
663 <     * Removes and cancels all tasks in queue.  Can be called from any
664 <     * thread.
665 <     */
666 <    final void cancelTasks() {
667 <        ForkJoinTask<?> t;
668 <        while (base != sp && (t = deqTask()) != null)
669 <            t.cancelIgnoringExceptions();
663 >     * The maximum stolen->joining link depth allowed in helpJoinTask,
664 >     * as well as the maximum number of retries (allowing on average
665 >     * one staleness retry per level) per attempt to instead try
666 >     * compensation.  Depths for legitimate chains are unbounded, but
667 >     * we use a fixed constant to avoid (otherwise unchecked) cycles
668 >     * and bound staleness of traversal parameters at the expense of
669 >     * sometimes blocking when we could be helping.
670 >     */
671 >    private static final int MAX_HELP = 16;
672 >
673 >    /**
674 >     * Possibly runs some tasks and/or blocks, until joinMe is done.
675 >     *
676 >     * @param joinMe the task to join
677 >     * @return completion status on exit
678 >     */
679 >    final int joinTask(ForkJoinTask<?> joinMe) {
680 >        ForkJoinTask<?> prevJoin = currentJoin;
681 >        currentJoin = joinMe;
682 >        for (int s, retries = MAX_HELP;;) {
683 >            if ((s = joinMe.status) < 0) {
684 >                currentJoin = prevJoin;
685 >                return s;
686 >            }
687 >            if (retries > 0) {
688 >                if (queueTop != queueBase) {
689 >                    if (!localHelpJoinTask(joinMe))
690 >                        retries = 0;           // cannot help
691 >                }
692 >                else if (retries == MAX_HELP >>> 1) {
693 >                    --retries;                 // check uncommon case
694 >                    if (tryDeqAndExec(joinMe) >= 0)
695 >                        Thread.yield();        // for politeness
696 >                }
697 >                else
698 >                    retries = helpJoinTask(joinMe) ? MAX_HELP : retries - 1;
699 >            }
700 >            else {
701 >                retries = MAX_HELP;           // restart if not done
702 >                pool.tryAwaitJoin(joinMe);
703 >            }
704 >        }
705      }
706  
707      /**
708 <     * Drains tasks to given collection c.
708 >     * If present, pops and executes the given task, or any other
709 >     * cancelled task
710       *
711 <     * @return the number of tasks drained
711 >     * @return false if any other non-cancelled task exists in local queue
712       */
713 <    final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
714 <        int n = 0;
715 <        ForkJoinTask<?> t;
716 <        while (base != sp && (t = deqTask()) != null) {
717 <            c.add(t);
718 <            ++n;
713 >    private boolean localHelpJoinTask(ForkJoinTask<?> joinMe) {
714 >        int s, i; ForkJoinTask<?>[] q; ForkJoinTask<?> t;
715 >        if ((s = queueTop) != queueBase && (q = queue) != null &&
716 >            (i = (q.length - 1) & --s) >= 0 &&
717 >            (t = q[i]) != null) {
718 >            if (t != joinMe && t.status >= 0)
719 >                return false;
720 >            if (UNSAFE.compareAndSwapObject
721 >                (q, (i << ASHIFT) + ABASE, t, null)) {
722 >                queueTop = s;           // or putOrderedInt
723 >                t.doExec();
724 >            }
725          }
726 <        return n;
726 >        return true;
727      }
728  
729      /**
730 <     * Gets and clears steal count for accumulation by pool.  Called
731 <     * only when known to be idle (in pool.sync and termination).
732 <     */
733 <    final int getAndClearStealCount() {
734 <        int sc = stealCount;
735 <        stealCount = 0;
736 <        return sc;
730 >     * Tries to locate and execute tasks for a stealer of the given
731 >     * task, or in turn one of its stealers, Traces
732 >     * currentSteal->currentJoin links looking for a thread working on
733 >     * a descendant of the given task and with a non-empty queue to
734 >     * steal back and execute tasks from.  The implementation is very
735 >     * branchy to cope with potential inconsistencies or loops
736 >     * encountering chains that are stale, unknown, or of length
737 >     * greater than MAX_HELP links.  All of these cases are dealt with
738 >     * by just retrying by caller.
739 >     *
740 >     * @param joinMe the task to join
741 >     * @param canSteal true if local queue is empty
742 >     * @return true if ran a task
743 >     */
744 >    private boolean helpJoinTask(ForkJoinTask<?> joinMe) {
745 >        boolean helped = false;
746 >        int m = pool.scanGuard & SMASK;
747 >        ForkJoinWorkerThread[] ws = pool.workers;
748 >        if (ws != null && ws.length > m && joinMe.status >= 0) {
749 >            int levels = MAX_HELP;              // remaining chain length
750 >            ForkJoinTask<?> task = joinMe;      // base of chain
751 >            outer:for (ForkJoinWorkerThread thread = this;;) {
752 >                // Try to find v, the stealer of task, by first using hint
753 >                ForkJoinWorkerThread v = ws[thread.stealHint & m];
754 >                if (v == null || v.currentSteal != task) {
755 >                    for (int j = 0; ;) {        // search array
756 >                        if ((v = ws[j]) != null && v.currentSteal == task) {
757 >                            thread.stealHint = j;
758 >                            break;              // save hint for next time
759 >                        }
760 >                        if (++j > m)
761 >                            break outer;        // can't find stealer
762 >                    }
763 >                }
764 >                // Try to help v, using specialized form of deqTask
765 >                for (;;) {
766 >                    ForkJoinTask<?>[] q; int b, i;
767 >                    if (joinMe.status < 0)
768 >                        break outer;
769 >                    if ((b = v.queueBase) == v.queueTop ||
770 >                        (q = v.queue) == null ||
771 >                        (i = (q.length-1) & b) < 0)
772 >                        break;                  // empty
773 >                    long u = (i << ASHIFT) + ABASE;
774 >                    ForkJoinTask<?> t = q[i];
775 >                    if (task.status < 0)
776 >                        break outer;            // stale
777 >                    if (t != null && v.queueBase == b &&
778 >                        UNSAFE.compareAndSwapObject(q, u, t, null)) {
779 >                        v.queueBase = b + 1;
780 >                        v.stealHint = poolIndex;
781 >                        ForkJoinTask<?> ps = currentSteal;
782 >                        currentSteal = t;
783 >                        t.doExec();
784 >                        currentSteal = ps;
785 >                        helped = true;
786 >                    }
787 >                }
788 >                // Try to descend to find v's stealer
789 >                ForkJoinTask<?> next = v.currentJoin;
790 >                if (--levels > 0 && task.status >= 0 &&
791 >                    next != null && next != task) {
792 >                    task = next;
793 >                    thread = v;
794 >                }
795 >                else
796 >                    break;  // max levels, stale, dead-end, or cyclic
797 >            }
798 >        }
799 >        return helped;
800      }
801  
802      /**
803 <     * Returns {@code true} if at least one worker in the given array
804 <     * appears to have at least one queued task.
803 >     * Performs an uncommon case for joinTask: If task t is at base of
804 >     * some workers queue, steals and executes it.
805       *
806 <     * @param ws array of workers
807 <     */
808 <    static boolean hasQueuedTasks(ForkJoinWorkerThread[] ws) {
809 <        if (ws != null) {
810 <            int len = ws.length;
811 <            for (int j = 0; j < 2; ++j) { // need two passes for clean sweep
812 <                for (int i = 0; i < len; ++i) {
813 <                    ForkJoinWorkerThread w = ws[i];
814 <                    if (w != null && w.sp != w.base)
815 <                        return true;
806 >     * @param t the task
807 >     * @return t's status
808 >     */
809 >    private int tryDeqAndExec(ForkJoinTask<?> t) {
810 >        int m = pool.scanGuard & SMASK;
811 >        ForkJoinWorkerThread[] ws = pool.workers;
812 >        if (ws != null && ws.length > m && t.status >= 0) {
813 >            for (int j = 0; j <= m; ++j) {
814 >                ForkJoinTask<?>[] q; int b, i;
815 >                ForkJoinWorkerThread v = ws[j];
816 >                if (v != null &&
817 >                    (b = v.queueBase) != v.queueTop &&
818 >                    (q = v.queue) != null &&
819 >                    (i = (q.length - 1) & b) >= 0 &&
820 >                    q[i] ==  t) {
821 >                    long u = (i << ASHIFT) + ABASE;
822 >                    if (v.queueBase == b &&
823 >                        UNSAFE.compareAndSwapObject(q, u, t, null)) {
824 >                        v.queueBase = b + 1;
825 >                        v.stealHint = poolIndex;
826 >                        ForkJoinTask<?> ps = currentSteal;
827 >                        currentSteal = t;
828 >                        t.doExec();
829 >                        currentSteal = ps;
830 >                    }
831 >                    break;
832                  }
833              }
834          }
835 <        return false;
835 >        return t.status;
836      }
837  
723    // Support methods for ForkJoinTask
724
838      /**
839 <     * Returns an estimate of the number of tasks in the queue.
840 <     */
841 <    final int getQueueSize() {
842 <        // suppress momentarily negative values
843 <        return Math.max(0, sp - base);
844 <    }
845 <
846 <    /**
847 <     * Returns an estimate of the number of tasks, offset by a
848 <     * function of number of idle workers.
839 >     * Implements ForkJoinTask.getSurplusQueuedTaskCount().  Returns
840 >     * an estimate of the number of tasks, offset by a function of
841 >     * number of idle workers.
842 >     *
843 >     * This method provides a cheap heuristic guide for task
844 >     * partitioning when programmers, frameworks, tools, or languages
845 >     * have little or no idea about task granularity.  In essence by
846 >     * offering this method, we ask users only about tradeoffs in
847 >     * overhead vs expected throughput and its variance, rather than
848 >     * how finely to partition tasks.
849 >     *
850 >     * In a steady state strict (tree-structured) computation, each
851 >     * thread makes available for stealing enough tasks for other
852 >     * threads to remain active. Inductively, if all threads play by
853 >     * the same rules, each thread should make available only a
854 >     * constant number of tasks.
855 >     *
856 >     * The minimum useful constant is just 1. But using a value of 1
857 >     * would require immediate replenishment upon each steal to
858 >     * maintain enough tasks, which is infeasible.  Further,
859 >     * partitionings/granularities of offered tasks should minimize
860 >     * steal rates, which in general means that threads nearer the top
861 >     * of computation tree should generate more than those nearer the
862 >     * bottom. In perfect steady state, each thread is at
863 >     * approximately the same level of computation tree. However,
864 >     * producing extra tasks amortizes the uncertainty of progress and
865 >     * diffusion assumptions.
866 >     *
867 >     * So, users will want to use values larger, but not much larger
868 >     * than 1 to both smooth over transient shortages and hedge
869 >     * against uneven progress; as traded off against the cost of
870 >     * extra task overhead. We leave the user to pick a threshold
871 >     * value to compare with the results of this call to guide
872 >     * decisions, but recommend values such as 3.
873 >     *
874 >     * When all threads are active, it is on average OK to estimate
875 >     * surplus strictly locally. In steady-state, if one thread is
876 >     * maintaining say 2 surplus tasks, then so are others. So we can
877 >     * just use estimated queue length (although note that (queueTop -
878 >     * queueBase) can be an overestimate because of stealers lagging
879 >     * increments of queueBase).  However, this strategy alone leads
880 >     * to serious mis-estimates in some non-steady-state conditions
881 >     * (ramp-up, ramp-down, other stalls). We can detect many of these
882 >     * by further considering the number of "idle" threads, that are
883 >     * known to have zero queued tasks, so compensate by a factor of
884 >     * (#idle/#active) threads.
885       */
886      final int getEstimatedSurplusTaskCount() {
887 <        // The halving approximates weighting idle vs non-idle workers
739 <        return (sp - base) - (pool.getIdleThreadCount() >>> 1);
740 <    }
741 <
742 <    /**
743 <     * Scans, returning early if joinMe done.
744 <     */
745 <    final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
746 <        ForkJoinTask<?> t = pollTask();
747 <        if (t != null && joinMe.status < 0 && sp == base) {
748 <            pushTask(t); // unsteal if done and this task would be stealable
749 <            t = null;
750 <        }
751 <        return t;
887 >        return queueTop - queueBase - pool.idlePerActive();
888      }
889  
890      /**
891 <     * Runs tasks until {@code pool.isQuiescent()}.
891 >     * Runs tasks until {@code pool.isQuiescent()}. We piggyback on
892 >     * pool's active count ctl maintenance, but rather than blocking
893 >     * when tasks cannot be found, we rescan until all others cannot
894 >     * find tasks either. The bracketing by pool quiescerCounts
895 >     * updates suppresses pool auto-shutdown mechanics that could
896 >     * otherwise prematurely terminate the pool because all threads
897 >     * appear to be inactive.
898       */
899      final void helpQuiescePool() {
900 +        boolean active = true;
901 +        ForkJoinTask<?> ps = currentSteal; // to restore below
902 +        ForkJoinPool p = pool;
903 +        p.addQuiescerCount(1);
904          for (;;) {
905 <            ForkJoinTask<?> t = pollTask();
906 <            if (t != null)
907 <                t.quietlyExec();
908 <            else if (tryInactivate() && pool.isQuiescent())
909 <                break;
905 >            ForkJoinWorkerThread[] ws = p.workers;
906 >            ForkJoinWorkerThread v = null;
907 >            int n;
908 >            if (queueTop != queueBase)
909 >                v = this;
910 >            else if (ws != null && (n = ws.length) > 1) {
911 >                ForkJoinWorkerThread w;
912 >                int r = nextSeed(); // cheap version of FJP.scan
913 >                int steps = n << 1;
914 >                for (int i = 0; i < steps; ++i) {
915 >                    if ((w = ws[(i + r) & (n - 1)]) != null &&
916 >                        w.queueBase != w.queueTop) {
917 >                        v = w;
918 >                        break;
919 >                    }
920 >                }
921 >            }
922 >            if (v != null) {
923 >                ForkJoinTask<?> t;
924 >                if (!active) {
925 >                    active = true;
926 >                    p.addActiveCount(1);
927 >                }
928 >                if ((t = (v != this) ? v.deqTask() :
929 >                     locallyFifo ? locallyDeqTask() : popTask()) != null) {
930 >                    currentSteal = t;
931 >                    t.doExec();
932 >                    currentSteal = ps;
933 >                }
934 >            }
935 >            else {
936 >                if (active) {
937 >                    active = false;
938 >                    p.addActiveCount(-1);
939 >                }
940 >                if (p.isQuiescent()) {
941 >                    p.addActiveCount(1);
942 >                    p.addQuiescerCount(-1);
943 >                    break;
944 >                }
945 >            }
946          }
765        do {} while (!tryActivate()); // re-activate on exit
947      }
948  
949      // Unsafe mechanics
950 <
951 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
952 <    private static final long spOffset =
772 <        objectFieldOffset("sp", ForkJoinWorkerThread.class);
773 <    private static final long runStateOffset =
774 <        objectFieldOffset("runState", ForkJoinWorkerThread.class);
775 <    private static final long qBase;
776 <    private static final int qShift;
950 >    private static final sun.misc.Unsafe UNSAFE;
951 >    private static final long ABASE;
952 >    private static final int ASHIFT;
953  
954      static {
955 <        qBase = UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
780 <        int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
781 <        if ((s & (s-1)) != 0)
782 <            throw new Error("data type scale not a power of two");
783 <        qShift = 31 - Integer.numberOfLeadingZeros(s);
784 <    }
785 <
786 <    private static long objectFieldOffset(String field, Class<?> klazz) {
955 >        int s;
956          try {
957 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
958 <        } catch (NoSuchFieldException e) {
959 <            // Convert Exception to corresponding Error
960 <            NoSuchFieldError error = new NoSuchFieldError(field);
961 <            error.initCause(e);
962 <            throw error;
957 >            UNSAFE = getUnsafe();
958 >            Class<?> a = ForkJoinTask[].class;
959 >            ABASE = UNSAFE.arrayBaseOffset(a);
960 >            s = UNSAFE.arrayIndexScale(a);
961 >        } catch (Exception e) {
962 >            throw new Error(e);
963          }
964 +        if ((s & (s-1)) != 0)
965 +            throw new Error("data type scale not a power of two");
966 +        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
967      }
968  
969      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines