ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.34 by dl, Fri Jun 4 14:37:54 2010 UTC vs.
Revision 1.69 by dl, Mon Feb 20 18:20:06 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
11 import java.util.Random;
12 import java.util.Collection;
13 import java.util.concurrent.locks.LockSupport;
14
9   /**
10 < * A thread managed by a {@link ForkJoinPool}.  This class is
11 < * subclassable solely for the sake of adding functionality -- there
12 < * are no overridable methods dealing with scheduling or execution.
13 < * However, you can override initialization and termination methods
14 < * surrounding the main task processing loop.  If you do create such a
15 < * subclass, you will also need to supply a custom {@link
16 < * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
17 < * ForkJoinPool}.
10 > * A thread managed by a {@link ForkJoinPool}, which executes
11 > * {@link ForkJoinTask}s.
12 > * This class is subclassable solely for the sake of adding
13 > * functionality -- there are no overridable methods dealing with
14 > * scheduling or execution.  However, you can override initialization
15 > * and termination methods surrounding the main task processing loop.
16 > * If you do create such a subclass, you will also need to supply a
17 > * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it
18 > * in a {@code ForkJoinPool}.
19   *
20   * @since 1.7
21   * @author Doug Lea
22   */
23   public class ForkJoinWorkerThread extends Thread {
24      /*
30     * Overview:
31     *
25       * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
26 <     * ForkJoinTasks. This class includes bookkeeping in support of
27 <     * worker activation, suspension, and lifecycle control described
35 <     * in more detail in the internal documentation of class
36 <     * ForkJoinPool. And as described further below, this class also
37 <     * includes special-cased support for some ForkJoinTask
38 <     * methods. But the main mechanics involve work-stealing:
39 <     *
40 <     * Work-stealing queues are special forms of Deques that support
41 <     * only three of the four possible end-operations -- push, pop,
42 <     * and deq (aka steal), under the further constraints that push
43 <     * and pop are called only from the owning thread, while deq may
44 <     * be called from other threads.  (If you are unfamiliar with
45 <     * them, you probably want to read Herlihy and Shavit's book "The
46 <     * Art of Multiprocessor programming", chapter 16 describing these
47 <     * in more detail before proceeding.)  The main work-stealing
48 <     * queue design is roughly similar to those in the papers "Dynamic
49 <     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
50 <     * (http://research.sun.com/scalable/pubs/index.html) and
51 <     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
52 <     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
53 <     * The main differences ultimately stem from gc requirements that
54 <     * we null out taken slots as soon as we can, to maintain as small
55 <     * a footprint as possible even in programs generating huge
56 <     * numbers of tasks. To accomplish this, we shift the CAS
57 <     * arbitrating pop vs deq (steal) from being on the indices
58 <     * ("base" and "sp") to the slots themselves (mainly via method
59 <     * "casSlotNull()"). So, both a successful pop and deq mainly
60 <     * entail a CAS of a slot from non-null to null.  Because we rely
61 <     * on CASes of references, we do not need tag bits on base or sp.
62 <     * They are simple ints as used in any circular array-based queue
63 <     * (see for example ArrayDeque).  Updates to the indices must
64 <     * still be ordered in a way that guarantees that sp == base means
65 <     * the queue is empty, but otherwise may err on the side of
66 <     * possibly making the queue appear nonempty when a push, pop, or
67 <     * deq have not fully committed. Note that this means that the deq
68 <     * operation, considered individually, is not wait-free. One thief
69 <     * cannot successfully continue until another in-progress one (or,
70 <     * if previously empty, a push) completes.  However, in the
71 <     * aggregate, we ensure at least probabilistic non-blockingness.
72 <     * If an attempted steal fails, a thief always chooses a different
73 <     * random victim target to try next. So, in order for one thief to
74 <     * progress, it suffices for any in-progress deq or new push on
75 <     * any empty queue to complete. One reason this works well here is
76 <     * that apparently-nonempty often means soon-to-be-stealable,
77 <     * which gives threads a chance to set activation status if
78 <     * necessary before stealing.
79 <     *
80 <     * This approach also enables support for "async mode" where local
81 <     * task processing is in FIFO, not LIFO order; simply by using a
82 <     * version of deq rather than pop when locallyFifo is true (as set
83 <     * by the ForkJoinPool).  This allows use in message-passing
84 <     * frameworks in which tasks are never joined.
85 <     *
86 <     * Efficient implementation of this approach currently relies on
87 <     * an uncomfortable amount of "Unsafe" mechanics. To maintain
88 <     * correct orderings, reads and writes of variable base require
89 <     * volatile ordering.  Variable sp does not require volatile
90 <     * writes but still needs store-ordering, which we accomplish by
91 <     * pre-incrementing sp before filling the slot with an ordered
92 <     * store.  (Pre-incrementing also enables backouts used in
93 <     * scanWhileJoining.)  Because they are protected by volatile base
94 <     * reads, reads of the queue array and its slots by other threads
95 <     * do not need volatile load semantics, but writes (in push)
96 <     * require store order and CASes (in pop and deq) require
97 <     * (volatile) CAS semantics.  (Michael, Saraswat, and Vechev's
98 <     * algorithm has similar properties, but without support for
99 <     * nulling slots.)  Since these combinations aren't supported
100 <     * using ordinary volatiles, the only way to accomplish these
101 <     * efficiently is to use direct Unsafe calls. (Using external
102 <     * AtomicIntegers and AtomicReferenceArrays for the indices and
103 <     * array is significantly slower because of memory locality and
104 <     * indirection effects.)
105 <     *
106 <     * Further, performance on most platforms is very sensitive to
107 <     * placement and sizing of the (resizable) queue array.  Even
108 <     * though these queues don't usually become all that big, the
109 <     * initial size must be large enough to counteract cache
110 <     * contention effects across multiple queues (especially in the
111 <     * presence of GC cardmarking). Also, to improve thread-locality,
112 <     * queues are initialized after starting.  All together, these
113 <     * low-level implementation choices produce as much as a factor of
114 <     * 4 performance improvement compared to naive implementations,
115 <     * and enable the processing of billions of tasks per second,
116 <     * sometimes at the expense of ugliness.
117 <     */
118 <
119 <    /**
120 <     * Generator for initial random seeds for random victim
121 <     * selection. This is used only to create initial seeds. Random
122 <     * steals use a cheaper xorshift generator per steal attempt. We
123 <     * expect only rare contention on seedGenerator, so just use a
124 <     * plain Random.
26 >     * ForkJoinTasks. For explanation, see the internal documentation
27 >     * of class ForkJoinPool.
28       */
126    private static final Random seedGenerator = new Random();
29  
30 <    /**
31 <     * The timeout value for suspending spares. Spare workers that
130 <     * remain unsignalled for more than this time may be trimmed
131 <     * (killed and removed from pool).  Since our goal is to avoid
132 <     * long-term thread buildup, the exact value of timeout does not
133 <     * matter too much so long as it avoids most false-alarm timeouts
134 <     * under GC stalls or momentarily high system load.
135 <     */
136 <    private static final long SPARE_KEEPALIVE_NANOS =
137 <        5L * 1000L * 1000L * 1000L; // 5 secs
138 <
139 <    /**
140 <     * Capacity of work-stealing queue array upon initialization.
141 <     * Must be a power of two. Initial size must be at least 4, but is
142 <     * padded to minimize cache effects.
143 <     */
144 <    private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
145 <
146 <    /**
147 <     * Maximum work-stealing queue array size.  Must be less than or
148 <     * equal to 1 << 28 to ensure lack of index wraparound. (This
149 <     * is less than usual bounds, because we need leftshift by 3
150 <     * to be in int range).
151 <     */
152 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
153 <
154 <    /**
155 <     * The pool this thread works in. Accessed directly by ForkJoinTask.
156 <     */
157 <    final ForkJoinPool pool;
158 <
159 <    /**
160 <     * The work-stealing queue array. Size must be a power of two.
161 <     * Initialized in onStart, to improve memory locality.
162 <     */
163 <    private ForkJoinTask<?>[] queue;
164 <
165 <    /**
166 <     * Index (mod queue.length) of least valid queue slot, which is
167 <     * always the next position to steal from if nonempty.
168 <     */
169 <    private volatile int base;
170 <
171 <    /**
172 <     * Index (mod queue.length) of next queue slot to push to or pop
173 <     * from. It is written only by owner thread, and accessed by other
174 <     * threads only after reading (volatile) base.  Both sp and base
175 <     * are allowed to wrap around on overflow, but (sp - base) still
176 <     * estimates size.
177 <     */
178 <    private int sp;
179 <
180 <    /**
181 <     * Run state of this worker. In addition to the usual run levels,
182 <     * tracks if this worker is suspended as a spare, and if it was
183 <     * killed (trimmed) while suspended. However, "active" status is
184 <     * maintained separately.
185 <     */
186 <    private volatile int runState;
187 <
188 <    private static final int TERMINATING = 0x01;
189 <    private static final int TERMINATED  = 0x02;
190 <    private static final int SUSPENDED   = 0x04; // inactive spare
191 <    private static final int TRIMMED     = 0x08; // killed while suspended
192 <
193 <    /**
194 <     * Number of LockSupport.park calls to block this thread for
195 <     * suspension or event waits. Used for internal instrumention;
196 <     * currently not exported but included because volatile write upon
197 <     * park also provides a workaround for a JVM bug.
198 <     */
199 <    private volatile int parkCount;
200 <
201 <    /**
202 <     * Number of steals, transferred and reset in pool callbacks pool
203 <     * when idle Accessed directly by pool.
204 <     */
205 <    int stealCount;
206 <
207 <    /**
208 <     * Seed for random number generator for choosing steal victims.
209 <     * Uses Marsaglia xorshift. Must be initialized as nonzero.
210 <     */
211 <    private int seed;
212 <
213 <    /**
214 <     * Activity status. When true, this worker is considered active.
215 <     * Accessed directly by pool.  Must be false upon construction.
216 <     */
217 <    boolean active;
218 <
219 <    /**
220 <     * True if use local fifo, not default lifo, for local polling.
221 <     * Shadows value from ForkJoinPool, which resets it if changed
222 <     * pool-wide.
223 <     */
224 <    private boolean locallyFifo;
225 <
226 <    /**
227 <     * Index of this worker in pool array. Set once by pool before
228 <     * running, and accessed directly by pool to locate this worker in
229 <     * its workers array.
230 <     */
231 <    int poolIndex;
232 <
233 <    /**
234 <     * The last pool event waited for. Accessed only by pool in
235 <     * callback methods invoked within this thread.
236 <     */
237 <    int lastEventCount;
238 <
239 <    /**
240 <     * Encoded index and event count of next event waiter. Used only
241 <     * by ForkJoinPool for managing event waiters.
242 <     */
243 <    volatile long nextWaiter;
30 >    final ForkJoinPool.WorkQueue workQueue; // Work-stealing mechanics
31 >    final ForkJoinPool pool;                // the pool this thread works in
32  
33      /**
34       * Creates a ForkJoinWorkerThread operating in the given pool.
# Line 249 | Line 37 | public class ForkJoinWorkerThread extend
37       * @throws NullPointerException if pool is null
38       */
39      protected ForkJoinWorkerThread(ForkJoinPool pool) {
40 <        if (pool == null) throw new NullPointerException();
41 <        this.pool = pool;
42 <        // To avoid exposing construction details to subclasses,
255 <        // remaining initialization is in start() and onStart()
256 <    }
257 <
258 <    /**
259 <     * Performs additional initialization and starts this thread
260 <     */
261 <    final void start(int poolIndex, boolean locallyFifo,
262 <                     UncaughtExceptionHandler ueh) {
263 <        this.poolIndex = poolIndex;
264 <        this.locallyFifo = locallyFifo;
40 >        super(pool.nextWorkerName());
41 >        setDaemon(true);
42 >        Thread.UncaughtExceptionHandler ueh = pool.ueh;
43          if (ueh != null)
44              setUncaughtExceptionHandler(ueh);
45 <        setDaemon(true);
46 <        start();
45 >        this.pool = pool;
46 >        pool.registerWorker(this.workQueue = new ForkJoinPool.WorkQueue
47 >                            (pool, this, pool.localMode));
48      }
49  
271    // Public/protected methods
272
50      /**
51       * Returns the pool hosting this thread.
52       *
# Line 289 | Line 66 | public class ForkJoinWorkerThread extend
66       * @return the index number
67       */
68      public int getPoolIndex() {
69 <        return poolIndex;
69 >        return workQueue.poolIndex;
70      }
71  
72      /**
73       * Initializes internal state after construction but before
74       * processing any tasks. If you override this method, you must
75 <     * invoke super.onStart() at the beginning of the method.
75 >     * invoke {@code super.onStart()} at the beginning of the method.
76       * Initialization requires care: Most fields must have legal
77       * default values, to ensure that attempted accesses from other
78       * threads work correctly even before this thread starts
79       * processing tasks.
80       */
81      protected void onStart() {
305        int rs = seedGenerator.nextInt();
306        seed = rs == 0? 1 : rs; // seed must be nonzero
307
308        // Allocate name string and queue array in this thread
309        String pid = Integer.toString(pool.getPoolNumber());
310        String wid = Integer.toString(poolIndex);
311        setName("ForkJoinPool-" + pid + "-worker-" + wid);
312
313        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
82      }
83  
84      /**
# Line 322 | Line 90 | public class ForkJoinWorkerThread extend
90       * to an unrecoverable error, or {@code null} if completed normally
91       */
92      protected void onTermination(Throwable exception) {
325        try {
326            cancelTasks();
327            setTerminated();
328            pool.workerTerminated(this);
329        } catch (Throwable ex) {        // Shouldn't ever happen
330            if (exception == null)      // but if so, at least rethrown
331                exception = ex;
332        } finally {
333            if (exception != null)
334                UNSAFE.throwException(exception);
335        }
93      }
94  
95      /**
96       * This method is required to be public, but should never be
97       * called explicitly. It performs the main run loop to execute
98 <     * ForkJoinTasks.
98 >     * {@link ForkJoinTask}s.
99       */
100      public void run() {
101          Throwable exception = null;
102          try {
103              onStart();
104 <            mainLoop();
104 >            pool.runWorker(workQueue);
105          } catch (Throwable ex) {
106              exception = ex;
107          } finally {
351            onTermination(exception);
352        }
353    }
354
355    // helpers for run()
356
357    /**
358     * Find and execute tasks and check status while running
359     */
360    private void mainLoop() {
361        boolean ran = false;      // true if ran task in last loop iter
362        boolean prevRan = false;  // true if ran on last or previous step
363        ForkJoinPool p = pool;
364        for (;;) {
365            p.preStep(this, prevRan);
366            if (runState != 0)
367                return;
368            ForkJoinTask<?> t; // try to get and run stolen or submitted task
369            if ((t = scan()) != null || (t = pollSubmission()) != null) {
370                t.tryExec();
371                if (base != sp)
372                    runLocalTasks();
373                prevRan = ran = true;
374            }
375            else {
376                prevRan = ran;
377                ran = false;
378            }
379        }
380    }
381
382    /**
383     * Runs local tasks until queue is empty or shut down.  Call only
384     * while active.
385     */
386    private void runLocalTasks() {
387        while (runState == 0) {
388            ForkJoinTask<?> t = locallyFifo? locallyDeqTask() : popTask();
389            if (t != null)
390                t.tryExec();
391            else if (base == sp)
392                break;
393        }
394    }
395
396    /**
397     * If a submission exists, try to activate and take it
398     *
399     * @return a task, if available
400     */
401    private ForkJoinTask<?> pollSubmission() {
402        ForkJoinPool p = pool;
403        while (p.hasQueuedSubmissions()) {
404            if (active || (active = p.tryIncrementActiveCount())) {
405                ForkJoinTask<?> t = p.pollSubmission();
406                return t != null ? t : scan(); // if missed, rescan
407            }
408        }
409        return null;
410    }
411
412    /*
413     * Intrinsics-based atomic writes for queue slots. These are
414     * basically the same as methods in AtomicObjectArray, but
415     * specialized for (1) ForkJoinTask elements (2) requirement that
416     * nullness and bounds checks have already been performed by
417     * callers and (3) effective offsets are known not to overflow
418     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
419     * need corresponding version for reads: plain array reads are OK
420     * because they protected by other volatile reads and are
421     * confirmed by CASes.
422     *
423     * Most uses don't actually call these methods, but instead contain
424     * inlined forms that enable more predictable optimization.  We
425     * don't define the version of write used in pushTask at all, but
426     * instead inline there a store-fenced array slot write.
427     */
428
429    /**
430     * CASes slot i of array q from t to null. Caller must ensure q is
431     * non-null and index is in range.
432     */
433    private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
434                                             ForkJoinTask<?> t) {
435        return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
436    }
437
438    /**
439     * Performs a volatile write of the given task at given slot of
440     * array q.  Caller must ensure q is non-null and index is in
441     * range. This method is used only during resets and backouts.
442     */
443    private static final void writeSlot(ForkJoinTask<?>[] q, int i,
444                                              ForkJoinTask<?> t) {
445        UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
446    }
447
448    // queue methods
449
450    /**
451     * Pushes a task. Call only from this thread.
452     *
453     * @param t the task. Caller must ensure non-null.
454     */
455    final void pushTask(ForkJoinTask<?> t) {
456        ForkJoinTask<?>[] q = queue;
457        int mask = q.length - 1; // implicit assert q != null
458        int s = sp++;            // ok to increment sp before slot write
459        UNSAFE.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
460        if ((s -= base) == 0)
461            pool.signalWork();   // was empty
462        else if (s == mask)
463            growQueue();         // is full
464    }
465
466    /**
467     * Tries to take a task from the base of the queue, failing if
468     * empty or contended. Note: Specializations of this code appear
469     * in scan and scanWhileJoining.
470     *
471     * @return a task, or null if none or contended
472     */
473    final ForkJoinTask<?> deqTask() {
474        ForkJoinTask<?> t;
475        ForkJoinTask<?>[] q;
476        int b, i;
477        if ((b = base) != sp &&
478            (q = queue) != null && // must read q after b
479            (t = q[i = (q.length - 1) & b]) != null &&
480            UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
481            base = b + 1;
482            return t;
483        }
484        return null;
485    }
486
487    /**
488     * Tries to take a task from the base of own queue. Assumes active
489     * status.  Called only by current thread.
490     *
491     * @return a task, or null if none
492     */
493    final ForkJoinTask<?> locallyDeqTask() {
494        ForkJoinTask<?>[] q = queue;
495        if (q != null) {
496            ForkJoinTask<?> t;
497            int b, i;
498            while (sp != (b = base)) {
499                if ((t = q[i = (q.length - 1) & b]) != null &&
500                    UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
501                                                t, null)) {
502                    base = b + 1;
503                    return t;
504                }
505            }
506        }
507        return null;
508    }
509
510    /**
511     * Returns a popped task, or null if empty. Assumes active status.
512     * Called only by current thread. (Note: a specialization of this
513     * code appears in popWhileJoining.)
514     */
515    final ForkJoinTask<?> popTask() {
516        int s;
517        ForkJoinTask<?>[] q;
518        if (base != (s = sp) && (q = queue) != null) {
519            int i = (q.length - 1) & --s;
520            ForkJoinTask<?> t = q[i];
521            if (t != null && UNSAFE.compareAndSwapObject
522                (q, (i << qShift) + qBase, t, null)) {
523                sp = s;
524                return t;
525            }
526        }
527        return null;
528    }
529
530    /**
531     * Specialized version of popTask to pop only if topmost element
532     * is the given task. Called only by current thread while
533     * active.
534     *
535     * @param t the task. Caller must ensure non-null.
536     */
537    final boolean unpushTask(ForkJoinTask<?> t) {
538        int s;
539        ForkJoinTask<?>[] q;
540        if (base != (s = sp) && (q = queue) != null &&
541            UNSAFE.compareAndSwapObject
542            (q, (((q.length - 1) & --s) << qShift) + qBase, t, null)) {
543            sp = s;
544            return true;
545        }
546        return false;
547    }
548
549    /**
550     * Returns next task or null if empty or contended
551     */
552    final ForkJoinTask<?> peekTask() {
553        ForkJoinTask<?>[] q = queue;
554        if (q == null)
555            return null;
556        int mask = q.length - 1;
557        int i = locallyFifo ? base : (sp - 1);
558        return q[i & mask];
559    }
560
561    /**
562     * Doubles queue array size. Transfers elements by emulating
563     * steals (deqs) from old array and placing, oldest first, into
564     * new array.
565     */
566    private void growQueue() {
567        ForkJoinTask<?>[] oldQ = queue;
568        int oldSize = oldQ.length;
569        int newSize = oldSize << 1;
570        if (newSize > MAXIMUM_QUEUE_CAPACITY)
571            throw new RejectedExecutionException("Queue capacity exceeded");
572        ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
573
574        int b = base;
575        int bf = b + oldSize;
576        int oldMask = oldSize - 1;
577        int newMask = newSize - 1;
578        do {
579            int oldIndex = b & oldMask;
580            ForkJoinTask<?> t = oldQ[oldIndex];
581            if (t != null && !casSlotNull(oldQ, oldIndex, t))
582                t = null;
583            writeSlot(newQ, b & newMask, t);
584        } while (++b != bf);
585        pool.signalWork();
586    }
587
588    /**
589     * Computes next value for random victim probe in scan().  Scans
590     * don't require a very high quality generator, but also not a
591     * crummy one.  Marsaglia xor-shift is cheap and works well enough.
592     * Note: This is manually inlined in scan()
593     */
594    private static final int xorShift(int r) {
595        r ^= r << 13;
596        r ^= r >>> 17;
597        return r ^ (r << 5);
598    }
599
600    /**
601     * Tries to steal a task from another worker. Starts at a random
602     * index of workers array, and probes workers until finding one
603     * with non-empty queue or finding that all are empty.  It
604     * randomly selects the first n probes. If these are empty, it
605     * resorts to a circular sweep, which is necessary to accurately
606     * set active status. (The circular sweep uses steps of
607     * approximately half the array size plus 1, to avoid bias
608     * stemming from leftmost packing of the array in ForkJoinPool.)
609     *
610     * This method must be both fast and quiet -- usually avoiding
611     * memory accesses that could disrupt cache sharing etc other than
612     * those needed to check for and take tasks (or to activate if not
613     * already active). This accounts for, among other things,
614     * updating random seed in place without storing it until exit.
615     *
616     * @return a task, or null if none found
617     */
618    private ForkJoinTask<?> scan() {
619        ForkJoinPool p = pool;
620        ForkJoinWorkerThread[] ws;        // worker array
621        int n;                            // upper bound of #workers
622        if ((ws = p.workers) != null && (n = ws.length) > 1) {
623            boolean canSteal = active;    // shadow active status
624            int r = seed;                 // extract seed once
625            int mask = n - 1;
626            int j = -n;                   // loop counter
627            int k = r;                    // worker index, random if j < 0
628            for (;;) {
629                ForkJoinWorkerThread v = ws[k & mask];
630                r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // inline xorshift
631                if (v != null && v.base != v.sp) {
632                    int b, i;             // inline specialized deqTask
633                    ForkJoinTask<?>[] q;
634                    ForkJoinTask<?> t;
635                    if ((canSteal ||      // ensure active status
636                         (canSteal = active = p.tryIncrementActiveCount())) &&
637                        (q = v.queue) != null &&
638                        (t = q[i = (q.length - 1) & (b = v.base)]) != null &&
639                        UNSAFE.compareAndSwapObject
640                        (q, (i << qShift) + qBase, t, null)) {
641                        v.base = b + 1;
642                        seed = r;
643                        ++stealCount;
644                        return t;
645                    }
646                    j = -n;
647                    k = r;                // restart on contention
648                }
649                else if (++j <= 0)
650                    k = r;
651                else if (j <= n)
652                    k += (n >>> 1) | 1;
653                else
654                    break;
655            }
656        }
657        return null;
658    }
659
660    // Run State management
661
662    // status check methods used mainly by ForkJoinPool
663    final boolean isTerminating() { return (runState & TERMINATING) != 0; }
664    final boolean isTerminated()  { return (runState & TERMINATED) != 0; }
665    final boolean isSuspended()   { return (runState & SUSPENDED) != 0; }
666    final boolean isTrimmed()     { return (runState & TRIMMED) != 0; }
667
668    /**
669     * Sets state to TERMINATING, also resuming if suspended.
670     */
671    final void shutdown() {
672        for (;;) {
673            int s = runState;
674            if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
675                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
676                                             (s & ~SUSPENDED) |
677                                             (TRIMMED|TERMINATING))) {
678                    LockSupport.unpark(this);
679                    break;
680                }
681            }
682            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
683                                              s | TERMINATING))
684                break;
685        }
686    }
687
688    /**
689     * Sets state to TERMINATED. Called only by this thread.
690     */
691    private void setTerminated() {
692        int s;
693        do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
694                                               s = runState,
695                                               s | (TERMINATING|TERMINATED)));
696    }
697
698    /**
699     * Instrumented version of park. Also used by ForkJoinPool.awaitEvent
700     */
701    final void doPark() {
702        ++parkCount;
703        LockSupport.park(this);
704    }
705
706    /**
707     * If suspended, tries to set status to unsuspended.
708     * Caller must unpark to actually resume
709     *
710     * @return true if successful
711     */
712    final boolean tryUnsuspend() {
713        int s;
714        return (((s = runState) & SUSPENDED) != 0 &&
715                UNSAFE.compareAndSwapInt(this, runStateOffset, s,
716                                         s & ~SUSPENDED));
717    }
718
719    /**
720     * Sets suspended status and blocks as spare until resumed,
721     * shutdown, or timed out.
722     *
723     * @return false if trimmed
724     */
725    final boolean suspendAsSpare() {
726        for (;;) {               // set suspended unless terminating
727            int s = runState;
728            if ((s & TERMINATING) != 0) { // must kill
729                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
730                                             s | (TRIMMED | TERMINATING)))
731                    return false;
732            }
733            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
734                                              s | SUSPENDED))
735                break;
736        }
737        lastEventCount = 0;      // reset upon resume
738        ForkJoinPool p = pool;
739        p.releaseWaiters();      // help others progress
740        p.accumulateStealCount(this);
741        interrupted();           // clear/ignore interrupts
742        if (poolIndex < p.getParallelism()) { // untimed wait
743            while ((runState & SUSPENDED) != 0)
744                doPark();
745            return true;
746        }
747        return timedSuspend();   // timed wait if apparently non-core
748    }
749
750    /**
751     * Blocks as spare until resumed or timed out
752     * @return false if trimmed
753     */
754    private boolean timedSuspend() {
755        long nanos = SPARE_KEEPALIVE_NANOS;
756        long startTime = System.nanoTime();
757        while ((runState & SUSPENDED) != 0) {
758            ++parkCount;
759            if ((nanos -= (System.nanoTime() - startTime)) > 0)
760                LockSupport.parkNanos(this, nanos);
761            else { // try to trim on timeout
762                int s = runState;
763                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
764                                             (s & ~SUSPENDED) |
765                                             (TRIMMED|TERMINATING)))
766                    return false;
767            }
768        }
769        return true;
770    }
771
772    // Misc support methods for ForkJoinPool
773
774    /**
775     * Returns an estimate of the number of tasks in the queue.  Also
776     * used by ForkJoinTask.
777     */
778    final int getQueueSize() {
779        return -base + sp;
780    }
781
782    /**
783     * Set locallyFifo mode. Called only by ForkJoinPool
784     */
785    final void setAsyncMode(boolean async) {
786        locallyFifo = async;
787    }
788
789    /**
790     * Removes and cancels all tasks in queue.  Can be called from any
791     * thread.
792     */
793    final void cancelTasks() {
794        while (base != sp) {
795            ForkJoinTask<?> t = deqTask();
796            if (t != null)
797                t.cancelIgnoringExceptions();
798        }
799    }
800
801    /**
802     * Drains tasks to given collection c.
803     *
804     * @return the number of tasks drained
805     */
806    final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
807        int n = 0;
808        while (base != sp) {
809            ForkJoinTask<?> t = deqTask();
810            if (t != null) {
811                c.add(t);
812                ++n;
813            }
814        }
815        return n;
816    }
817
818    // Support methods for ForkJoinTask
819
820    /**
821     * Returns an estimate of the number of tasks, offset by a
822     * function of number of idle workers.
823     *
824     * This method provides a cheap heuristic guide for task
825     * partitioning when programmers, frameworks, tools, or languages
826     * have little or no idea about task granularity.  In essence by
827     * offering this method, we ask users only about tradeoffs in
828     * overhead vs expected throughput and its variance, rather than
829     * how finely to partition tasks.
830     *
831     * In a steady state strict (tree-structured) computation, each
832     * thread makes available for stealing enough tasks for other
833     * threads to remain active. Inductively, if all threads play by
834     * the same rules, each thread should make available only a
835     * constant number of tasks.
836     *
837     * The minimum useful constant is just 1. But using a value of 1
838     * would require immediate replenishment upon each steal to
839     * maintain enough tasks, which is infeasible.  Further,
840     * partitionings/granularities of offered tasks should minimize
841     * steal rates, which in general means that threads nearer the top
842     * of computation tree should generate more than those nearer the
843     * bottom. In perfect steady state, each thread is at
844     * approximately the same level of computation tree. However,
845     * producing extra tasks amortizes the uncertainty of progress and
846     * diffusion assumptions.
847     *
848     * So, users will want to use values larger, but not much larger
849     * than 1 to both smooth over transient shortages and hedge
850     * against uneven progress; as traded off against the cost of
851     * extra task overhead. We leave the user to pick a threshold
852     * value to compare with the results of this call to guide
853     * decisions, but recommend values such as 3.
854     *
855     * When all threads are active, it is on average OK to estimate
856     * surplus strictly locally. In steady-state, if one thread is
857     * maintaining say 2 surplus tasks, then so are others. So we can
858     * just use estimated queue length (although note that (sp - base)
859     * can be an overestimate because of stealers lagging increments
860     * of base).  However, this strategy alone leads to serious
861     * mis-estimates in some non-steady-state conditions (ramp-up,
862     * ramp-down, other stalls). We can detect many of these by
863     * further considering the number of "idle" threads, that are
864     * known to have zero queued tasks, so compensate by a factor of
865     * (#idle/#active) threads.
866     */
867    final int getEstimatedSurplusTaskCount() {
868        return sp - base - pool.idlePerActive();
869    }
870
871    /**
872     * Gets and removes a local task.
873     *
874     * @return a task, if available
875     */
876    final ForkJoinTask<?> pollLocalTask() {
877        while (base != sp) {
878            if (active || (active = pool.tryIncrementActiveCount()))
879                return locallyFifo? locallyDeqTask() : popTask();
880        }
881        return null;
882    }
883
884    /**
885     * Gets and removes a local or stolen task.
886     *
887     * @return a task, if available
888     */
889    final ForkJoinTask<?> pollTask() {
890        ForkJoinTask<?> t;
891        return (t = pollLocalTask()) != null ? t : scan();
892    }
893
894    /**
895     * Executes or processes other tasks awaiting the given task
896     * @return task completion status
897     */
898    final int execWhileJoining(ForkJoinTask<?> joinMe) {
899        int s;
900        while ((s = joinMe.status) >= 0) {
901            ForkJoinTask<?> t = base != sp?
902                popWhileJoining(joinMe) :
903                scanWhileJoining(joinMe);
904            if (t != null)
905                t.tryExec();
906        }
907        return s;
908    }
909
910    /**
911     * Returns or stolen task, if available, unless joinMe is done
912     *
913     * This method is intrinsically nonmodular. To maintain the
914     * property that tasks are never stolen if the awaited task is
915     * ready, we must interleave mechanics of scan with status
916     * checks. We rely here on the commit points of deq that allow us
917     * to cancel a steal even after CASing slot to null, but before
918     * adjusting base index: If, after the CAS, we see that joinMe is
919     * ready, we can back out by placing the task back into the slot,
920     * without adjusting index. The loop is otherwise a variant of the
921     * one in scan().
922     *
923     */
924    private ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
925        int r = seed;
926        ForkJoinPool p = pool;
927        ForkJoinWorkerThread[] ws;
928        int n;
929        outer:while ((ws = p.workers) != null && (n = ws.length) > 1) {
930            int mask = n - 1;
931            int k = r;
932            boolean contended = false; // to retry loop if deq contends
933            for (int j = -n; j <= n; ++j) {
934                if (joinMe.status < 0)
935                    break outer;
936                int b;
937                ForkJoinTask<?>[] q;
938                ForkJoinWorkerThread v = ws[k & mask];
939                r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
940                if (v != null && (b=v.base) != v.sp && (q=v.queue) != null) {
941                    int i = (q.length - 1) & b;
942                    ForkJoinTask<?> t = q[i];
943                    if (t != null && UNSAFE.compareAndSwapObject
944                        (q, (i << qShift) + qBase, t, null)) {
945                        if (joinMe.status >= 0) {
946                            v.base = b + 1;
947                            seed = r;
948                            ++stealCount;
949                            return t;
950                        }
951                        UNSAFE.putObjectVolatile(q, (i<<qShift)+qBase, t);
952                        break outer; // back out
953                    }
954                    contended = true;
955                }
956                k = j < 0 ? r : (k + ((n >>> 1) | 1));
957            }
958            if (!contended && p.tryAwaitBusyJoin(joinMe))
959                break;
960        }
961        return null;
962    }
963
964    /**
965     * Version of popTask with join checks surrounding extraction.
966     * Uses the same backout strategy as helpJoinTask. Note that
967     * we ignore locallyFifo flag for local tasks here since helping
968     * joins only make sense in LIFO mode.
969     *
970     * @return a popped task, if available, unless joinMe is done
971     */
972    private ForkJoinTask<?> popWhileJoining(ForkJoinTask<?> joinMe) {
973        int s;
974        ForkJoinTask<?>[] q;
975        while ((s = sp) != base && (q = queue) != null && joinMe.status >= 0) {
976            int i = (q.length - 1) & --s;
977            ForkJoinTask<?> t = q[i];
978            if (t != null && UNSAFE.compareAndSwapObject
979                (q, (i << qShift) + qBase, t, null)) {
980                if (joinMe.status >= 0) {
981                    sp = s;
982                    return t;
983                }
984                UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
985                break;  // back out
986            }
987        }
988        return null;
989    }
990
991    /**
992     * Runs tasks until {@code pool.isQuiescent()}.
993     */
994    final void helpQuiescePool() {
995        for (;;) {
996            ForkJoinTask<?> t = pollLocalTask();
997            if (t != null || (t = scan()) != null)
998                t.tryExec();
999            else {
1000                ForkJoinPool p = pool;
1001                if (active) {
1002                    active = false; // inactivate
1003                    do {} while (!p.tryDecrementActiveCount());
1004                }
1005                if (p.isQuiescent()) {
1006                    active = true; // re-activate
1007                    do {} while (!p.tryIncrementActiveCount());
1008                    return;
1009                }
1010            }
1011        }
1012    }
1013
1014    // Unsafe mechanics
1015
1016    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1017    private static final long runStateOffset =
1018        objectFieldOffset("runState", ForkJoinWorkerThread.class);
1019    private static final long qBase =
1020        UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
1021    private static final int qShift;
1022
1023    static {
1024        int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
1025        if ((s & (s-1)) != 0)
1026            throw new Error("data type scale not a power of two");
1027        qShift = 31 - Integer.numberOfLeadingZeros(s);
1028    }
1029
1030    private static long objectFieldOffset(String field, Class<?> klazz) {
1031        try {
1032            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1033        } catch (NoSuchFieldException e) {
1034            // Convert Exception to corresponding Error
1035            NoSuchFieldError error = new NoSuchFieldError(field);
1036            error.initCause(e);
1037            throw error;
1038        }
1039    }
1040
1041    /**
1042     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1043     * Replace with a simple call to Unsafe.getUnsafe when integrating
1044     * into a jdk.
1045     *
1046     * @return a sun.misc.Unsafe
1047     */
1048    private static sun.misc.Unsafe getUnsafe() {
1049        try {
1050            return sun.misc.Unsafe.getUnsafe();
1051        } catch (SecurityException se) {
108              try {
109 <                return java.security.AccessController.doPrivileged
110 <                    (new java.security
111 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
112 <                        public sun.misc.Unsafe run() throws Exception {
113 <                            java.lang.reflect.Field f = sun.misc
114 <                                .Unsafe.class.getDeclaredField("theUnsafe");
1059 <                            f.setAccessible(true);
1060 <                            return (sun.misc.Unsafe) f.get(null);
1061 <                        }});
1062 <            } catch (java.security.PrivilegedActionException e) {
1063 <                throw new RuntimeException("Could not initialize intrinsics",
1064 <                                           e.getCause());
109 >                onTermination(exception);
110 >            } catch (Throwable ex) {
111 >                if (exception == null)
112 >                    exception = ex;
113 >            } finally {
114 >                pool.deregisterWorker(this, exception);
115              }
116          }
117      }
118   }
119 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines