ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.4 by dl, Wed Jan 7 20:51:36 2009 UTC vs.
Revision 1.69 by dl, Mon Feb 20 18:20:06 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 import java.util.*;
9 import java.util.concurrent.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.concurrent.locks.*;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
8  
9   /**
10 < * A thread managed by a {@link ForkJoinPool}.  This class is
11 < * subclassable solely for the sake of adding functionality -- there
12 < * are no overridable methods dealing with scheduling or
13 < * execution. However, you can override initialization and termination
14 < * cleanup methods surrounding the main task processing loop.  If you
15 < * do create such a subclass, you will also need to supply a custom
16 < * ForkJoinWorkerThreadFactory to use it in a ForkJoinPool.
17 < *
18 < * <p>This class also provides methods for generating per-thread
19 < * random numbers, with the same properties as {@link
20 < * java.util.Random} but with each generator isolated from those of
21 < * other threads.
10 > * A thread managed by a {@link ForkJoinPool}, which executes
11 > * {@link ForkJoinTask}s.
12 > * This class is subclassable solely for the sake of adding
13 > * functionality -- there are no overridable methods dealing with
14 > * scheduling or execution.  However, you can override initialization
15 > * and termination methods surrounding the main task processing loop.
16 > * If you do create such a subclass, you will also need to supply a
17 > * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it
18 > * in a {@code ForkJoinPool}.
19 > *
20 > * @since 1.7
21 > * @author Doug Lea
22   */
23   public class ForkJoinWorkerThread extends Thread {
24      /*
25 <     * Algorithm overview:
26 <     *
27 <     * 1. Work-Stealing: Work-stealing queues are special forms of
34 <     * Deques that support only three of the four possible
35 <     * end-operations -- push, pop, and deq (aka steal), and only do
36 <     * so under the constraints that push and pop are called only from
37 <     * the owning thread, while deq may be called from other threads.
38 <     * (If you are unfamiliar with them, you probably want to read
39 <     * Herlihy and Shavit's book "The Art of Multiprocessor
40 <     * programming", chapter 16 describing these in more detail before
41 <     * proceeding.)  The main work-stealing queue design is roughly
42 <     * similar to "Dynamic Circular Work-Stealing Deque" by David
43 <     * Chase and Yossi Lev, SPAA 2005
44 <     * (http://research.sun.com/scalable/pubs/index.html).  The main
45 <     * difference ultimately stems from gc requirements that we null
46 <     * out taken slots as soon as we can, to maintain as small a
47 <     * footprint as possible even in programs generating huge numbers
48 <     * of tasks. To accomplish this, we shift the CAS arbitrating pop
49 <     * vs deq (steal) from being on the indices ("base" and "sp") to
50 <     * the slots themselves (mainly via method "casSlotNull()"). So,
51 <     * both a successful pop and deq mainly entail CAS'ing a nonnull
52 <     * slot to null.  Because we rely on CASes of references, we do
53 <     * not need tag bits on base or sp.  They are simple ints as used
54 <     * in any circular array-based queue (see for example ArrayDeque).
55 <     * Updates to the indices must still be ordered in a way that
56 <     * guarantees that (sp - base) > 0 means the queue is empty, but
57 <     * otherwise may err on the side of possibly making the queue
58 <     * appear nonempty when a push, pop, or deq have not fully
59 <     * committed. Note that this means that the deq operation,
60 <     * considered individually, is not wait-free. One thief cannot
61 <     * successfully continue until another in-progress one (or, if
62 <     * previously empty, a push) completes.  However, in the
63 <     * aggregate, we ensure at least probablistic non-blockingness. If
64 <     * an attempted steal fails, a thief always chooses a different
65 <     * random victim target to try next. So, in order for one thief to
66 <     * progress, it suffices for any in-progress deq or new push on
67 <     * any empty queue to complete. One reason this works well here is
68 <     * that apparently-nonempty often means soon-to-be-stealable,
69 <     * which gives threads a chance to activate if necessary before
70 <     * stealing (see below).
71 <     *
72 <     * Efficient implementation of this approach currently relies on
73 <     * an uncomfortable amount of "Unsafe" mechanics. To maintain
74 <     * correct orderings, reads and writes of variable base require
75 <     * volatile ordering.  Variable sp does not require volatile write
76 <     * but needs cheaper store-ordering on writes.  Because they are
77 <     * protected by volatile base reads, reads of the queue array and
78 <     * its slots do not need volatile load semantics, but writes (in
79 <     * push) require store order and CASes (in pop and deq) require
80 <     * (volatile) CAS semantics. Since these combinations aren't
81 <     * supported using ordinary volatiles, the only way to accomplish
82 <     * these effciently is to use direct Unsafe calls. (Using external
83 <     * AtomicIntegers and AtomicReferenceArrays for the indices and
84 <     * array is significantly slower because of memory locality and
85 <     * indirection effects.) Further, performance on most platforms is
86 <     * very sensitive to placement and sizing of the (resizable) queue
87 <     * array.  Even though these queues don't usually become all that
88 <     * big, the initial size must be large enough to counteract cache
89 <     * contention effects across multiple queues (especially in the
90 <     * presence of GC cardmarking). Also, to improve thread-locality,
91 <     * queues are currently initialized immediately after the thread
92 <     * gets the initial signal to start processing tasks.  However,
93 <     * all queue-related methods except pushTask are written in a way
94 <     * that allows them to instead be lazily allocated and/or disposed
95 <     * of when empty. All together, these low-level implementation
96 <     * choices produce as much as a factor of 4 performance
97 <     * improvement compared to naive implementations, and enable the
98 <     * processing of billions of tasks per second, sometimes at the
99 <     * expense of ugliness.
100 <     *
101 <     * 2. Run control: The primary run control is based on a global
102 <     * counter (activeCount) held by the pool. It uses an algorithm
103 <     * similar to that in Herlihy and Shavit section 17.6 to cause
104 <     * threads to eventually block when all threads declare they are
105 <     * inactive. (See variable "scans".)  For this to work, threads
106 <     * must be declared active when executing tasks, and before
107 <     * stealing a task. They must be inactive before blocking on the
108 <     * Pool Barrier (awaiting a new submission or other Pool
109 <     * event). In between, there is some free play which we take
110 <     * advantage of to avoid contention and rapid flickering of the
111 <     * global activeCount: If inactive, we activate only if a victim
112 <     * queue appears to be nonempty (see above).  Similarly, a thread
113 <     * tries to inactivate only after a full scan of other threads.
114 <     * The net effect is that contention on activeCount is rarely a
115 <     * measurable performance issue. (There are also a few other cases
116 <     * where we scan for work rather than retry/block upon
117 <     * contention.)
118 <     *
119 <     * 3. Selection control. We maintain policy of always choosing to
120 <     * run local tasks rather than stealing, and always trying to
121 <     * steal tasks before trying to run a new submission. All steals
122 <     * are currently performed in randomly-chosen deq-order. It may be
123 <     * worthwhile to bias these with locality / anti-locality
124 <     * information, but doing this well probably requires more
125 <     * lower-level information from JVMs than currently provided.
126 <     */
127 <
128 <    /**
129 <     * Capacity of work-stealing queue array upon initialization.
130 <     * Must be a power of two. Initial size must be at least 2, but is
131 <     * padded to minimize cache effects.
132 <     */
133 <    private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
134 <
135 <    /**
136 <     * Maximum work-stealing queue array size.  Must be less than or
137 <     * equal to 1 << 30 to ensure lack of index wraparound.
138 <     */
139 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 30;
140 <
141 <    /**
142 <     * Generator of seeds for per-thread random numbers.
143 <     */
144 <    private static final Random randomSeedGenerator = new Random();
145 <
146 <    /**
147 <     * The work-stealing queue array. Size must be a power of two.
148 <     */
149 <    private ForkJoinTask<?>[] queue;
150 <
151 <    /**
152 <     * Index (mod queue.length) of next queue slot to push to or pop
153 <     * from. It is written only by owner thread, via ordered store.
154 <     * Both sp and base are allowed to wrap around on overflow, but
155 <     * (sp - base) still estimates size.
25 >     * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
26 >     * ForkJoinTasks. For explanation, see the internal documentation
27 >     * of class ForkJoinPool.
28       */
157    private volatile int sp;
29  
30 <    /**
31 <     * Index (mod queue.length) of least valid queue slot, which is
161 <     * always the next position to steal from if nonempty.
162 <     */
163 <    private volatile int base;
164 <
165 <    /**
166 <     * The pool this thread works in.
167 <     */
168 <    final ForkJoinPool pool;
169 <
170 <    /**
171 <     * Index of this worker in pool array. Set once by pool before
172 <     * running, and accessed directly by pool during cleanup etc
173 <     */
174 <    int poolIndex;
175 <
176 <    /**
177 <     * Run state of this worker. Supports simple versions of the usual
178 <     * shutdown/shutdownNow control.
179 <     */
180 <    private volatile int runState;
181 <
182 <    // Runstate values. Order matters
183 <    private static final int RUNNING     = 0;
184 <    private static final int SHUTDOWN    = 1;
185 <    private static final int TERMINATING = 2;
186 <    private static final int TERMINATED  = 3;
187 <
188 <    /**
189 <     * Activity status. When true, this worker is considered active.
190 <     * Must be false upon construction. It must be true when executing
191 <     * tasks, and BEFORE stealing a task. It must be false before
192 <     * blocking on the Pool Barrier.
193 <     */
194 <    private boolean active;
195 <
196 <    /**
197 <     * Number of steals, transferred to pool when idle
198 <     */
199 <    private int stealCount;
200 <
201 <    /**
202 <     * Seed for random number generator for choosing steal victims
203 <     */
204 <    private int randomVictimSeed;
205 <
206 <    /**
207 <     * Seed for embedded Jurandom
208 <     */
209 <    private long juRandomSeed;
210 <
211 <    /**
212 <     * The last barrier event waited for
213 <     */
214 <    private long eventCount;
30 >    final ForkJoinPool.WorkQueue workQueue; // Work-stealing mechanics
31 >    final ForkJoinPool pool;                // the pool this thread works in
32  
33      /**
34       * Creates a ForkJoinWorkerThread operating in the given pool.
35 +     *
36       * @param pool the pool this thread works in
37       * @throws NullPointerException if pool is null
38       */
39      protected ForkJoinWorkerThread(ForkJoinPool pool) {
40 <        if (pool == null) throw new NullPointerException();
40 >        super(pool.nextWorkerName());
41 >        setDaemon(true);
42 >        Thread.UncaughtExceptionHandler ueh = pool.ueh;
43 >        if (ueh != null)
44 >            setUncaughtExceptionHandler(ueh);
45          this.pool = pool;
46 <        // remaining initialization deferred to onStart
46 >        pool.registerWorker(this.workQueue = new ForkJoinPool.WorkQueue
47 >                            (pool, this, pool.localMode));
48      }
49  
227    // public access methods
228
50      /**
51 <     * Returns the pool hosting this thread
51 >     * Returns the pool hosting this thread.
52 >     *
53       * @return the pool
54       */
55      public ForkJoinPool getPool() {
# Line 239 | Line 61 | public class ForkJoinWorkerThread extend
61       * returned value ranges from zero to the maximum number of
62       * threads (minus one) that have ever been created in the pool.
63       * This method may be useful for applications that track status or
64 <     * collect results on a per-worker basis.
65 <     * @return the index number.
64 >     * collect results per-worker rather than per-task.
65 >     *
66 >     * @return the index number
67       */
68      public int getPoolIndex() {
69 <        return poolIndex;
247 <    }
248 <
249 <    //  Access methods used by Pool
250 <
251 <    /**
252 <     * Get and clear steal count for accumulation by pool.  Called
253 <     * only when known to be idle (in pool.sync and termination).
254 <     */
255 <    final int getAndClearStealCount() {
256 <        int sc = stealCount;
257 <        stealCount = 0;
258 <        return sc;
259 <    }
260 <
261 <    /**
262 <     * Returns estimate of the number of tasks in the queue, without
263 <     * correcting for transient negative values
264 <     */
265 <    final int getRawQueueSize() {
266 <        return sp - base;
267 <    }
268 <
269 <    // Intrinsics-based support for queue operations.
270 <    // Currently these three (setSp, setSlot, casSlotNull) are
271 <    // usually manually inlined to improve performance
272 <
273 <    /**
274 <     * Sets sp in store-order.
275 <     */
276 <    private void setSp(int s) {
277 <        _unsafe.putOrderedInt(this, spOffset, s);
278 <    }
279 <
280 <    /**
281 <     * Add in store-order the given task at given slot of q to
282 <     * null. Caller must ensure q is nonnull and index is in range.
283 <     */
284 <    private static void setSlot(ForkJoinTask<?>[] q, int i,
285 <                                ForkJoinTask<?> t){
286 <        _unsafe.putOrderedObject(q, (i << qShift) + qBase, t);
287 <    }
288 <
289 <    /**
290 <     * CAS given slot of q to null. Caller must ensure q is nonnull
291 <     * and index is in range.
292 <     */
293 <    private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
294 <                                       ForkJoinTask<?> t) {
295 <        return _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
296 <    }
297 <
298 <    // Main queue methods
299 <
300 <    /**
301 <     * Pushes a task. Called only by current thread.
302 <     * @param t the task. Caller must ensure nonnull
303 <     */
304 <    final void pushTask(ForkJoinTask<?> t) {
305 <        ForkJoinTask<?>[] q = queue;
306 <        int mask = q.length - 1;
307 <        int s = sp;
308 <        _unsafe.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
309 <        _unsafe.putOrderedInt(this, spOffset, ++s);
310 <        if ((s -= base) == 1)
311 <            pool.signalNonEmptyWorkerQueue();
312 <        else if (s >= mask)
313 <            growQueue();
314 <    }
315 <
316 <    /**
317 <     * Tries to take a task from the base of the queue, failing if
318 <     * either empty or contended.
319 <     * @return a task, or null if none or contended.
320 <     */
321 <    private ForkJoinTask<?> deqTask() {
322 <        ForkJoinTask<?>[] q;
323 <        ForkJoinTask<?> t;
324 <        int i;
325 <        int b;
326 <        if (sp != (b = base) &&
327 <            (q = queue) != null && // must read q after b
328 <            (t = q[i = (q.length - 1) & b]) != null &&
329 <            _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
330 <            base = b + 1;
331 <            return t;
332 <        }
333 <        return null;
69 >        return workQueue.poolIndex;
70      }
71  
72      /**
337     * Returns a popped task, or null if empty.  Called only by
338     * current thread.
339     */
340    final ForkJoinTask<?> popTask() {
341        ForkJoinTask<?> t;
342        int i;
343        ForkJoinTask<?>[] q = queue;
344        int mask = q.length - 1;
345        int s = sp;
346        if (s != base &&
347            (t = q[i = (s - 1) & mask]) != null &&
348            _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
349            _unsafe.putOrderedInt(this, spOffset, s - 1);
350            return t;
351        }
352        return null;
353    }
354
355    /**
356     * Specialized version of popTask to pop only if
357     * topmost element is the given task. Called only
358     * by current thread.
359     * @param t the task. Caller must ensure nonnull
360     */
361    final boolean unpushTask(ForkJoinTask<?> t) {
362        ForkJoinTask<?>[] q = queue;
363        int mask = q.length - 1;
364        int s = sp - 1;
365        if (_unsafe.compareAndSwapObject(q, ((s & mask) << qShift) + qBase,
366                                         t, null)) {
367            _unsafe.putOrderedInt(this, spOffset, s);
368            return true;
369        }
370        return false;
371    }
372
373    /**
374     * Returns next task to pop.
375     */
376    final ForkJoinTask<?> peekTask() {
377        ForkJoinTask<?>[] q = queue;
378        return q == null? null : q[(sp - 1) & (q.length - 1)];
379    }
380
381    /**
382     * Doubles queue array size. Transfers elements by emulating
383     * steals (deqs) from old array and placing, oldest first, into
384     * new array.
385     */
386    private void growQueue() {
387        ForkJoinTask<?>[] oldQ = queue;
388        int oldSize = oldQ.length;
389        int newSize = oldSize << 1;
390        if (newSize > MAXIMUM_QUEUE_CAPACITY)
391            throw new RejectedExecutionException("Queue capacity exceeded");
392        ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
393
394        int b = base;
395        int bf = b + oldSize;
396        int oldMask = oldSize - 1;
397        int newMask = newSize - 1;
398        do {
399            int oldIndex = b & oldMask;
400            ForkJoinTask<?> t = oldQ[oldIndex];
401            if (t != null && !casSlotNull(oldQ, oldIndex, t))
402                t = null;
403            setSlot(newQ, b & newMask, t);
404        } while (++b != bf);
405        pool.signalIdleWorkers(false);
406    }
407
408    // Runstate management
409
410    final boolean isShutdown()    { return runState >= SHUTDOWN;  }
411    final boolean isTerminating() { return runState >= TERMINATING;  }
412    final boolean isTerminated()  { return runState == TERMINATED; }
413    final boolean shutdown()      { return transitionRunStateTo(SHUTDOWN); }
414    final boolean shutdownNow()   { return transitionRunStateTo(TERMINATING); }
415
416    /**
417     * Transition to at least the given state. Return true if not
418     * already at least given state.
419     */
420    private boolean transitionRunStateTo(int state) {
421        for (;;) {
422            int s = runState;
423            if (s >= state)
424                return false;
425            if (_unsafe.compareAndSwapInt(this, runStateOffset, s, state))
426                return true;
427        }
428    }
429
430    /**
431     * Ensure status is active and if necessary adjust pool active count
432     */
433    final void activate() {
434        if (!active) {
435            active = true;
436            pool.incrementActiveCount();
437        }
438    }
439
440    /**
441     * Ensure status is inactive and if necessary adjust pool active count
442     */
443    final void inactivate() {
444        if (active) {
445            active = false;
446            pool.decrementActiveCount();
447        }
448    }
449
450    // Lifecycle methods
451
452    /**
73       * Initializes internal state after construction but before
74       * processing any tasks. If you override this method, you must
75 <     * invoke super.onStart() at the beginning of the method.
75 >     * invoke {@code super.onStart()} at the beginning of the method.
76       * Initialization requires care: Most fields must have legal
77       * default values, to ensure that attempted accesses from other
78       * threads work correctly even before this thread starts
79       * processing tasks.
80       */
81      protected void onStart() {
462        juRandomSeed = randomSeedGenerator.nextLong();
463        do;while((randomVictimSeed = nextRandomInt()) == 0); // must be nonzero
464        if (queue == null)
465            queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
466
467        // Heuristically allow one initial thread to warm up; others wait
468        if (poolIndex < pool.getParallelism() - 1) {
469            eventCount = pool.sync(this, 0);
470            activate();
471        }
82      }
83  
84      /**
85 <     * Perform cleanup associated with termination of this worker
85 >     * Performs cleanup associated with termination of this worker
86       * thread.  If you override this method, you must invoke
87 <     * super.onTermination at the end of the overridden method.
87 >     * {@code super.onTermination} at the end of the overridden method.
88       *
89       * @param exception the exception causing this thread to abort due
90 <     * to an unrecoverable error, or null if completed normally.
90 >     * to an unrecoverable error, or {@code null} if completed normally
91       */
92      protected void onTermination(Throwable exception) {
483        try {
484            clearLocalTasks();
485            inactivate();
486            cancelTasks();
487        } finally {
488            terminate(exception);
489        }
490    }
491
492    /**
493     * Notify pool of termination and, if exception is nonnull,
494     * rethrow it to trigger this thread's uncaughtExceptionHandler
495     */
496    private void terminate(Throwable exception) {
497        transitionRunStateTo(TERMINATED);
498        try {
499            pool.workerTerminated(this);
500        } finally {
501            if (exception != null)
502                ForkJoinTask.rethrowException(exception);
503        }
504    }
505
506    /**
507     * Run local tasks on exit from main.
508     */
509    private void clearLocalTasks() {
510        while (base != sp && !pool.isTerminating()) {
511            ForkJoinTask<?> t = popTask();
512            if (t != null) {
513                activate(); // ensure active status
514                t.quietlyExec();
515            }
516        }
517    }
518
519    /**
520     * Removes and cancels all tasks in queue.  Can be called from any
521     * thread.
522     */
523    final void cancelTasks() {
524        while (base != sp) {
525            ForkJoinTask<?> t = deqTask();
526            if (t != null)
527                t.cancelIgnoringExceptions();
528        }
93      }
94  
95      /**
96       * This method is required to be public, but should never be
97       * called explicitly. It performs the main run loop to execute
98 <     * ForkJoinTasks.
98 >     * {@link ForkJoinTask}s.
99       */
100      public void run() {
101          Throwable exception = null;
102          try {
103              onStart();
104 <            while (!isShutdown())
541 <                step();
104 >            pool.runWorker(workQueue);
105          } catch (Throwable ex) {
106              exception = ex;
107          } finally {
108 <            onTermination(exception);
109 <        }
110 <    }
111 <
112 <    /**
113 <     * Main top-level action.
114 <     */
552 <    private void step() {
553 <        ForkJoinTask<?> t = sp != base? popTask() : null;
554 <        if (t != null || (t = scan(null, true)) != null) {
555 <            activate();
556 <            t.quietlyExec();
557 <        }
558 <        else {
559 <            inactivate();
560 <            eventCount = pool.sync(this, eventCount);
561 <        }
562 <    }
563 <
564 <    // scanning for and stealing tasks
565 <
566 <    /**
567 <     * Computes next value for random victim probe. Scans don't
568 <     * require a very high quality generator, but also not a crummy
569 <     * one. Marsaglia xor-shift is cheap and works well.
570 <     *
571 <     * This is currently unused, and manually inlined
572 <     */
573 <    private static int xorShift(int r) {
574 <        r ^= r << 1;
575 <        r ^= r >>> 3;
576 <        r ^= r << 10;
577 <        return r;
578 <    }
579 <
580 <    /**
581 <     * Tries to steal a task from another worker and/or, if enabled,
582 <     * submission queue. Starts at a random index of workers array,
583 <     * and probes workers until finding one with non-empty queue or
584 <     * finding that all are empty.  It randomly selects the first n-1
585 <     * probes. If these are empty, it resorts to full circular
586 <     * traversal, which is necessary to accurately set active status
587 <     * by caller. Also restarts if pool barrier has tripped since last
588 <     * scan, which forces refresh of workers array, in case barrier
589 <     * was associated with resize.
590 <     *
591 <     * This method must be both fast and quiet -- usually avoiding
592 <     * memory accesses that could disrupt cache sharing etc other than
593 <     * those needed to check for and take tasks. This accounts for,
594 <     * among other things, updating random seed in place without
595 <     * storing it until exit. (Note that we only need to store it if
596 <     * we found a task; otherwise it doesn't matter if we start at the
597 <     * same place next time.)
598 <     *
599 <     * @param joinMe if non null; exit early if done
600 <     * @param checkSubmissions true if OK to take submissions
601 <     * @return a task, or null if none found
602 <     */
603 <    private ForkJoinTask<?> scan(ForkJoinTask<?> joinMe,
604 <                                 boolean checkSubmissions) {
605 <        ForkJoinPool p = pool;
606 <        if (p == null)                    // Never null, but avoids
607 <            return null;                  //   implicit nullchecks below
608 <        int r = randomVictimSeed;         // extract once to keep scan quiet
609 <        restart:                          // outer loop refreshes ws array
610 <        while (joinMe == null || joinMe.status >= 0) {
611 <            int mask;
612 <            ForkJoinWorkerThread[] ws = p.workers;
613 <            if (ws != null && (mask = ws.length - 1) > 0) {
614 <                int probes = -mask;       // use random index while negative
615 <                int idx = r;
616 <                for (;;) {
617 <                    ForkJoinWorkerThread v;
618 <                    // inlined xorshift to update seed
619 <                    r ^= r << 1;  r ^= r >>> 3; r ^= r << 10;
620 <                    if ((v = ws[mask & idx]) != null && v.sp != v.base) {
621 <                        ForkJoinTask<?> t;
622 <                        activate();
623 <                        if ((joinMe == null || joinMe.status >= 0) &&
624 <                            (t = v.deqTask()) != null) {
625 <                            randomVictimSeed = r;
626 <                            ++stealCount;
627 <                            return t;
628 <                        }
629 <                        continue restart; // restart on contention
630 <                    }
631 <                    if ((probes >> 1) <= mask) // n-1 random then circular
632 <                        idx = (probes++ < 0)? r : (idx + 1);
633 <                    else
634 <                        break;
635 <                }
636 <            }
637 <            if (checkSubmissions && p.hasQueuedSubmissions()) {
638 <                activate();
639 <                ForkJoinTask<?> t = p.pollSubmission();
640 <                if (t != null)
641 <                    return t;
642 <            }
643 <            else {
644 <                long ec = eventCount;     // restart on pool event
645 <                if ((eventCount = p.getEventCount()) == ec)
646 <                    break;
108 >            try {
109 >                onTermination(exception);
110 >            } catch (Throwable ex) {
111 >                if (exception == null)
112 >                    exception = ex;
113 >            } finally {
114 >                pool.deregisterWorker(this, exception);
115              }
116          }
649        return null;
650    }
651
652    /**
653     * Callback from pool.sync to rescan before blocking.  If a
654     * task is found, it is pushed so it can be executed upon return.
655     * @return true if found and pushed a task
656     */
657    final boolean prescan() {
658        ForkJoinTask<?> t = scan(null, true);
659        if (t != null) {
660            pushTask(t);
661            return true;
662        }
663        else {
664            inactivate();
665            return false;
666        }
667    }
668
669    // Support for ForkJoinTask methods
670
671    /**
672     * Scan, returning early if joinMe done
673     */
674    final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
675        ForkJoinTask<?> t = scan(joinMe, false);
676        if (t != null && joinMe.status < 0 && sp == base) {
677            pushTask(t); // unsteal if done and this task would be stealable
678            t = null;
679        }
680        return t;
681    }
682    
683    /**
684     * Pops or steals a task
685     * @return task, or null if none available
686     */
687    final ForkJoinTask<?> pollLocalOrStolenTask() {
688        ForkJoinTask<?> t;
689        return (t = popTask()) == null? scan(null, false) : t;
690    }
691
692    /**
693     * Runs tasks until pool isQuiescent
694     */
695    final void helpQuiescePool() {
696        for (;;) {
697            ForkJoinTask<?> t = pollLocalOrStolenTask();
698            if (t != null) {
699                activate();
700                t.quietlyExec();
701            }
702            else {
703                inactivate();
704                if (pool.isQuiescent()) {
705                    activate(); // re-activate on exit
706                    break;
707                }
708            }
709        }
710    }
711
712    /**
713     * Returns an estimate of the number of tasks in the queue.
714     */
715    final int getQueueSize() {
716        int n = sp - base;
717        return n <= 0? 0 : n; // suppress momentarily negative values
718    }
719
720    /**
721     * Returns an estimate of the number of tasks, offset by a
722     * function of number of idle workers.
723     */
724    final int getEstimatedSurplusTaskCount() {
725        // The halving approximates weighting idle vs non-idle workers
726        return (sp - base) - (pool.getIdleThreadCount() >>> 1);
727    }
728
729    // Per-worker exported random numbers
730
731    // Same constants as java.util.Random
732    final static long JURandomMultiplier = 0x5DEECE66DL;
733    final static long JURandomAddend = 0xBL;
734    final static long JURandomMask = (1L << 48) - 1;
735
736    private final int nextJURandom(int bits) {
737        long next = (juRandomSeed * JURandomMultiplier + JURandomAddend) &
738            JURandomMask;
739        juRandomSeed = next;
740        return (int)(next >>> (48 - bits));
741    }
742
743    private final int nextJURandomInt(int n) {
744        if (n <= 0)
745            throw new IllegalArgumentException("n must be positive");
746        int bits = nextJURandom(31);
747        if ((n & -n) == n)
748            return (int)((n * (long)bits) >> 31);
749
750        for (;;) {
751            int val = bits % n;
752            if (bits - val + (n-1) >= 0)
753                return val;
754            bits = nextJURandom(31);
755        }
756    }
757
758    private final long nextJURandomLong() {
759        return ((long)(nextJURandom(32)) << 32) + nextJURandom(32);
760    }
761
762    private final long nextJURandomLong(long n) {
763        if (n <= 0)
764            throw new IllegalArgumentException("n must be positive");
765        long offset = 0;
766        while (n >= Integer.MAX_VALUE) { // randomly pick half range
767            int bits = nextJURandom(2); // 2nd bit for odd vs even split
768            long half = n >>> 1;
769            long nextn = ((bits & 2) == 0)? half : n - half;
770            if ((bits & 1) == 0)
771                offset += n - nextn;
772            n = nextn;
773        }
774        return offset + nextJURandomInt((int)n);
775    }
776
777    private final double nextJURandomDouble() {
778        return (((long)(nextJURandom(26)) << 27) + nextJURandom(27))
779            / (double)(1L << 53);
780    }
781
782    /**
783     * Returns a random integer using a per-worker random
784     * number generator with the same properties as
785     * {@link java.util.Random#nextInt}
786     * @return the next pseudorandom, uniformly distributed {@code int}
787     *         value from this worker's random number generator's sequence
788     */
789    public static int nextRandomInt() {
790        return ((ForkJoinWorkerThread)(Thread.currentThread())).
791            nextJURandom(32);
792    }
793
794    /**
795     * Returns a random integer using a per-worker random
796     * number generator with the same properties as
797     * {@link java.util.Random#nextInt(int)}
798     * @param n the bound on the random number to be returned.  Must be
799     *        positive.
800     * @return the next pseudorandom, uniformly distributed {@code int}
801     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
802     *         from this worker's random number generator's sequence
803     * @throws IllegalArgumentException if n is not positive
804     */
805    public static int nextRandomInt(int n) {
806        return ((ForkJoinWorkerThread)(Thread.currentThread())).
807            nextJURandomInt(n);
808    }
809
810    /**
811     * Returns a random long using a per-worker random
812     * number generator with the same properties as
813     * {@link java.util.Random#nextLong}
814     * @return the next pseudorandom, uniformly distributed {@code long}
815     *         value from this worker's random number generator's sequence
816     */
817    public static long nextRandomLong() {
818        return ((ForkJoinWorkerThread)(Thread.currentThread())).
819            nextJURandomLong();
820    }
821
822    /**
823     * Returns a random integer using a per-worker random
824     * number generator with the same properties as
825     * {@link java.util.Random#nextInt(int)}
826     * @param n the bound on the random number to be returned.  Must be
827     *        positive.
828     * @return the next pseudorandom, uniformly distributed {@code int}
829     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
830     *         from this worker's random number generator's sequence
831     * @throws IllegalArgumentException if n is not positive
832     */
833    public static long nextRandomLong(long n) {
834        return ((ForkJoinWorkerThread)(Thread.currentThread())).
835            nextJURandomLong(n);
836    }
837
838    /**
839     * Returns a random double using a per-worker random
840     * number generator with the same properties as
841     * {@link java.util.Random#nextDouble}
842     * @return the next pseudorandom, uniformly distributed {@code double}
843     *         value between {@code 0.0} and {@code 1.0} from this
844     *         worker's random number generator's sequence
845     */
846    public static double nextRandomDouble() {
847        return ((ForkJoinWorkerThread)(Thread.currentThread())).
848            nextJURandomDouble();
849    }
850
851    // Temporary Unsafe mechanics for preliminary release
852
853    static final Unsafe _unsafe;
854    static final long baseOffset;
855    static final long spOffset;
856    static final long qBase;
857    static final int qShift;
858    static final long runStateOffset;
859    static {
860        try {
861            if (ForkJoinWorkerThread.class.getClassLoader() != null) {
862                Field f = Unsafe.class.getDeclaredField("theUnsafe");
863                f.setAccessible(true);
864                _unsafe = (Unsafe)f.get(null);
865            }
866            else
867                _unsafe = Unsafe.getUnsafe();
868            baseOffset = _unsafe.objectFieldOffset
869                (ForkJoinWorkerThread.class.getDeclaredField("base"));
870            spOffset = _unsafe.objectFieldOffset
871                (ForkJoinWorkerThread.class.getDeclaredField("sp"));
872            runStateOffset = _unsafe.objectFieldOffset
873                (ForkJoinWorkerThread.class.getDeclaredField("runState"));
874            qBase = _unsafe.arrayBaseOffset(ForkJoinTask[].class);
875            int s = _unsafe.arrayIndexScale(ForkJoinTask[].class);
876            if ((s & (s-1)) != 0)
877                throw new Error("data type scale not a power of two");
878            qShift = 31 - Integer.numberOfLeadingZeros(s);
879        } catch (Exception e) {
880            throw new RuntimeException("Could not initialize intrinsics", e);
881        }
117      }
118   }
119 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines