ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.12 by jsr166, Tue Jul 21 18:11:44 2009 UTC vs.
Revision 1.70 by jsr166, Wed Jul 4 20:13:53 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 import java.util.*;
9 import java.util.concurrent.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.concurrent.locks.*;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
8  
9   /**
10 < * A thread managed by a {@link ForkJoinPool}.  This class is
11 < * subclassable solely for the sake of adding functionality -- there
12 < * are no overridable methods dealing with scheduling or
13 < * execution. However, you can override initialization and termination
14 < * methods surrounding the main task processing loop.  If you do
15 < * create such a subclass, you will also need to supply a custom
16 < * ForkJoinWorkerThreadFactory to use it in a ForkJoinPool.
10 > * A thread managed by a {@link ForkJoinPool}, which executes
11 > * {@link ForkJoinTask}s.
12 > * This class is subclassable solely for the sake of adding
13 > * functionality -- there are no overridable methods dealing with
14 > * scheduling or execution.  However, you can override initialization
15 > * and termination methods surrounding the main task processing loop.
16 > * If you do create such a subclass, you will also need to supply a
17 > * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it
18 > * in a {@code ForkJoinPool}.
19   *
20 + * @since 1.7
21 + * @author Doug Lea
22   */
23   public class ForkJoinWorkerThread extends Thread {
24      /*
25 <     * Algorithm overview:
26 <     *
27 <     * 1. Work-Stealing: Work-stealing queues are special forms of
30 <     * Deques that support only three of the four possible
31 <     * end-operations -- push, pop, and deq (aka steal), and only do
32 <     * so under the constraints that push and pop are called only from
33 <     * the owning thread, while deq may be called from other threads.
34 <     * (If you are unfamiliar with them, you probably want to read
35 <     * Herlihy and Shavit's book "The Art of Multiprocessor
36 <     * programming", chapter 16 describing these in more detail before
37 <     * proceeding.)  The main work-stealing queue design is roughly
38 <     * similar to "Dynamic Circular Work-Stealing Deque" by David
39 <     * Chase and Yossi Lev, SPAA 2005
40 <     * (http://research.sun.com/scalable/pubs/index.html).  The main
41 <     * difference ultimately stems from gc requirements that we null
42 <     * out taken slots as soon as we can, to maintain as small a
43 <     * footprint as possible even in programs generating huge numbers
44 <     * of tasks. To accomplish this, we shift the CAS arbitrating pop
45 <     * vs deq (steal) from being on the indices ("base" and "sp") to
46 <     * the slots themselves (mainly via method "casSlotNull()"). So,
47 <     * both a successful pop and deq mainly entail CAS'ing a non-null
48 <     * slot to null.  Because we rely on CASes of references, we do
49 <     * not need tag bits on base or sp.  They are simple ints as used
50 <     * in any circular array-based queue (see for example ArrayDeque).
51 <     * Updates to the indices must still be ordered in a way that
52 <     * guarantees that (sp - base) > 0 means the queue is empty, but
53 <     * otherwise may err on the side of possibly making the queue
54 <     * appear nonempty when a push, pop, or deq have not fully
55 <     * committed. Note that this means that the deq operation,
56 <     * considered individually, is not wait-free. One thief cannot
57 <     * successfully continue until another in-progress one (or, if
58 <     * previously empty, a push) completes.  However, in the
59 <     * aggregate, we ensure at least probabilistic non-blockingness. If
60 <     * an attempted steal fails, a thief always chooses a different
61 <     * random victim target to try next. So, in order for one thief to
62 <     * progress, it suffices for any in-progress deq or new push on
63 <     * any empty queue to complete. One reason this works well here is
64 <     * that apparently-nonempty often means soon-to-be-stealable,
65 <     * which gives threads a chance to activate if necessary before
66 <     * stealing (see below).
67 <     *
68 <     * Efficient implementation of this approach currently relies on
69 <     * an uncomfortable amount of "Unsafe" mechanics. To maintain
70 <     * correct orderings, reads and writes of variable base require
71 <     * volatile ordering.  Variable sp does not require volatile write
72 <     * but needs cheaper store-ordering on writes.  Because they are
73 <     * protected by volatile base reads, reads of the queue array and
74 <     * its slots do not need volatile load semantics, but writes (in
75 <     * push) require store order and CASes (in pop and deq) require
76 <     * (volatile) CAS semantics. Since these combinations aren't
77 <     * supported using ordinary volatiles, the only way to accomplish
78 <     * these efficiently is to use direct Unsafe calls. (Using external
79 <     * AtomicIntegers and AtomicReferenceArrays for the indices and
80 <     * array is significantly slower because of memory locality and
81 <     * indirection effects.) Further, performance on most platforms is
82 <     * very sensitive to placement and sizing of the (resizable) queue
83 <     * array.  Even though these queues don't usually become all that
84 <     * big, the initial size must be large enough to counteract cache
85 <     * contention effects across multiple queues (especially in the
86 <     * presence of GC cardmarking). Also, to improve thread-locality,
87 <     * queues are currently initialized immediately after the thread
88 <     * gets the initial signal to start processing tasks.  However,
89 <     * all queue-related methods except pushTask are written in a way
90 <     * that allows them to instead be lazily allocated and/or disposed
91 <     * of when empty. All together, these low-level implementation
92 <     * choices produce as much as a factor of 4 performance
93 <     * improvement compared to naive implementations, and enable the
94 <     * processing of billions of tasks per second, sometimes at the
95 <     * expense of ugliness.
96 <     *
97 <     * 2. Run control: The primary run control is based on a global
98 <     * counter (activeCount) held by the pool. It uses an algorithm
99 <     * similar to that in Herlihy and Shavit section 17.6 to cause
100 <     * threads to eventually block when all threads declare they are
101 <     * inactive. (See variable "scans".)  For this to work, threads
102 <     * must be declared active when executing tasks, and before
103 <     * stealing a task. They must be inactive before blocking on the
104 <     * Pool Barrier (awaiting a new submission or other Pool
105 <     * event). In between, there is some free play which we take
106 <     * advantage of to avoid contention and rapid flickering of the
107 <     * global activeCount: If inactive, we activate only if a victim
108 <     * queue appears to be nonempty (see above).  Similarly, a thread
109 <     * tries to inactivate only after a full scan of other threads.
110 <     * The net effect is that contention on activeCount is rarely a
111 <     * measurable performance issue. (There are also a few other cases
112 <     * where we scan for work rather than retry/block upon
113 <     * contention.)
114 <     *
115 <     * 3. Selection control. We maintain policy of always choosing to
116 <     * run local tasks rather than stealing, and always trying to
117 <     * steal tasks before trying to run a new submission. All steals
118 <     * are currently performed in randomly-chosen deq-order. It may be
119 <     * worthwhile to bias these with locality / anti-locality
120 <     * information, but doing this well probably requires more
121 <     * lower-level information from JVMs than currently provided.
122 <     */
123 <
124 <    /**
125 <     * Capacity of work-stealing queue array upon initialization.
126 <     * Must be a power of two. Initial size must be at least 2, but is
127 <     * padded to minimize cache effects.
128 <     */
129 <    private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
130 <
131 <    /**
132 <     * Maximum work-stealing queue array size.  Must be less than or
133 <     * equal to 1 << 28 to ensure lack of index wraparound. (This
134 <     * is less than usual bounds, because we need leftshift by 3
135 <     * to be in int range).
136 <     */
137 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
138 <
139 <    /**
140 <     * The pool this thread works in. Accessed directly by ForkJoinTask
141 <     */
142 <    final ForkJoinPool pool;
143 <
144 <    /**
145 <     * The work-stealing queue array. Size must be a power of two.
146 <     * Initialized when thread starts, to improve memory locality.
147 <     */
148 <    private ForkJoinTask<?>[] queue;
149 <
150 <    /**
151 <     * Index (mod queue.length) of next queue slot to push to or pop
152 <     * from. It is written only by owner thread, via ordered store.
153 <     * Both sp and base are allowed to wrap around on overflow, but
154 <     * (sp - base) still estimates size.
155 <     */
156 <    private volatile int sp;
157 <
158 <    /**
159 <     * Index (mod queue.length) of least valid queue slot, which is
160 <     * always the next position to steal from if nonempty.
25 >     * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
26 >     * ForkJoinTasks. For explanation, see the internal documentation
27 >     * of class ForkJoinPool.
28       */
162    private volatile int base;
29  
30 <    /**
31 <     * Activity status. When true, this worker is considered active.
166 <     * Must be false upon construction. It must be true when executing
167 <     * tasks, and BEFORE stealing a task. It must be false before
168 <     * calling pool.sync
169 <     */
170 <    private boolean active;
171 <
172 <    /**
173 <     * Run state of this worker. Supports simple versions of the usual
174 <     * shutdown/shutdownNow control.
175 <     */
176 <    private volatile int runState;
177 <
178 <    /**
179 <     * Seed for random number generator for choosing steal victims.
180 <     * Uses Marsaglia xorshift. Must be nonzero upon initialization.
181 <     */
182 <    private int seed;
183 <
184 <    /**
185 <     * Number of steals, transferred to pool when idle
186 <     */
187 <    private int stealCount;
188 <
189 <    /**
190 <     * Index of this worker in pool array. Set once by pool before
191 <     * running, and accessed directly by pool during cleanup etc
192 <     */
193 <    int poolIndex;
194 <
195 <    /**
196 <     * The last barrier event waited for. Accessed in pool callback
197 <     * methods, but only by current thread.
198 <     */
199 <    long lastEventCount;
200 <
201 <    /**
202 <     * True if use local fifo, not default lifo, for local polling
203 <     */
204 <    private boolean locallyFifo;
30 >    final ForkJoinPool.WorkQueue workQueue; // Work-stealing mechanics
31 >    final ForkJoinPool pool;                // the pool this thread works in
32  
33      /**
34       * Creates a ForkJoinWorkerThread operating in the given pool.
# Line 210 | Line 37 | public class ForkJoinWorkerThread extend
37       * @throws NullPointerException if pool is null
38       */
39      protected ForkJoinWorkerThread(ForkJoinPool pool) {
40 <        if (pool == null) throw new NullPointerException();
40 >        super(pool.nextWorkerName());
41 >        setDaemon(true);
42 >        Thread.UncaughtExceptionHandler ueh = pool.ueh;
43 >        if (ueh != null)
44 >            setUncaughtExceptionHandler(ueh);
45          this.pool = pool;
46 <        // Note: poolIndex is set by pool during construction
47 <        // Remaining initialization is deferred to onStart
46 >        pool.registerWorker(this.workQueue = new ForkJoinPool.WorkQueue
47 >                            (pool, this, pool.localMode));
48      }
49  
219    // Public access methods
220
50      /**
51       * Returns the pool hosting this thread.
52       *
# Line 237 | Line 66 | public class ForkJoinWorkerThread extend
66       * @return the index number
67       */
68      public int getPoolIndex() {
69 <        return poolIndex;
241 <    }
242 <
243 <    /**
244 <     * Establishes local first-in-first-out scheduling mode for forked
245 <     * tasks that are never joined.
246 <     *
247 <     * @param async if true, use locally FIFO scheduling
248 <     */
249 <    void setAsyncMode(boolean async) {
250 <        locallyFifo = async;
251 <    }
252 <
253 <    // Runstate management
254 <
255 <    // Runstate values. Order matters
256 <    private static final int RUNNING     = 0;
257 <    private static final int SHUTDOWN    = 1;
258 <    private static final int TERMINATING = 2;
259 <    private static final int TERMINATED  = 3;
260 <
261 <    final boolean isShutdown()    { return runState >= SHUTDOWN;  }
262 <    final boolean isTerminating() { return runState >= TERMINATING;  }
263 <    final boolean isTerminated()  { return runState == TERMINATED; }
264 <    final boolean shutdown()      { return transitionRunStateTo(SHUTDOWN); }
265 <    final boolean shutdownNow()   { return transitionRunStateTo(TERMINATING); }
266 <
267 <    /**
268 <     * Transitions to at least the given state.  Returns true if not
269 <     * already at least at given state.
270 <     */
271 <    private boolean transitionRunStateTo(int state) {
272 <        for (;;) {
273 <            int s = runState;
274 <            if (s >= state)
275 <                return false;
276 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, state))
277 <                return true;
278 <        }
279 <    }
280 <
281 <    /**
282 <     * Tries to set status to active; fails on contention.
283 <     */
284 <    private boolean tryActivate() {
285 <        if (!active) {
286 <            if (!pool.tryIncrementActiveCount())
287 <                return false;
288 <            active = true;
289 <        }
290 <        return true;
291 <    }
292 <
293 <    /**
294 <     * Tries to set status to active; fails on contention.
295 <     */
296 <    private boolean tryInactivate() {
297 <        if (active) {
298 <            if (!pool.tryDecrementActiveCount())
299 <                return false;
300 <            active = false;
301 <        }
302 <        return true;
303 <    }
304 <
305 <    /**
306 <     * Computes next value for random victim probe.  Scans don't
307 <     * require a very high quality generator, but also not a crummy
308 <     * one.  Marsaglia xor-shift is cheap and works well.
309 <     */
310 <    private static int xorShift(int r) {
311 <        r ^= r << 1;
312 <        r ^= r >>> 3;
313 <        r ^= r << 10;
314 <        return r;
315 <    }
316 <
317 <    // Lifecycle methods
318 <
319 <    /**
320 <     * This method is required to be public, but should never be
321 <     * called explicitly. It performs the main run loop to execute
322 <     * ForkJoinTasks.
323 <     */
324 <    public void run() {
325 <        Throwable exception = null;
326 <        try {
327 <            onStart();
328 <            pool.sync(this); // await first pool event
329 <            mainLoop();
330 <        } catch (Throwable ex) {
331 <            exception = ex;
332 <        } finally {
333 <            onTermination(exception);
334 <        }
335 <    }
336 <
337 <    /**
338 <     * Executes tasks until shut down.
339 <     */
340 <    private void mainLoop() {
341 <        while (!isShutdown()) {
342 <            ForkJoinTask<?> t = pollTask();
343 <            if (t != null || (t = pollSubmission()) != null)
344 <                t.quietlyExec();
345 <            else if (tryInactivate())
346 <                pool.sync(this);
347 <        }
69 >        return workQueue.poolIndex;
70      }
71  
72      /**
73       * Initializes internal state after construction but before
74       * processing any tasks. If you override this method, you must
75 <     * invoke super.onStart() at the beginning of the method.
75 >     * invoke {@code super.onStart()} at the beginning of the method.
76       * Initialization requires care: Most fields must have legal
77       * default values, to ensure that attempted accesses from other
78       * threads work correctly even before this thread starts
79       * processing tasks.
80       */
81      protected void onStart() {
360        // Allocate while starting to improve chances of thread-local
361        // isolation
362        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
363        // Initial value of seed need not be especially random but
364        // should differ across workers and must be nonzero
365        int p = poolIndex + 1;
366        seed = p + (p << 8) + (p << 16) + (p << 24); // spread bits
82      }
83  
84      /**
85       * Performs cleanup associated with termination of this worker
86       * thread.  If you override this method, you must invoke
87 <     * super.onTermination at the end of the overridden method.
87 >     * {@code super.onTermination} at the end of the overridden method.
88       *
89       * @param exception the exception causing this thread to abort due
90 <     * to an unrecoverable error, or null if completed normally
90 >     * to an unrecoverable error, or {@code null} if completed normally
91       */
92      protected void onTermination(Throwable exception) {
378        // Execute remaining local tasks unless aborting or terminating
379        while (exception == null &&  !pool.isTerminating() && base != sp) {
380            try {
381                ForkJoinTask<?> t = popTask();
382                if (t != null)
383                    t.quietlyExec();
384            } catch(Throwable ex) {
385                exception = ex;
386            }
387        }
388        // Cancel other tasks, transition status, notify pool, and
389        // propagate exception to uncaught exception handler
390        try {
391            do;while (!tryInactivate()); // ensure inactive
392            cancelTasks();
393            runState = TERMINATED;
394            pool.workerTerminated(this);
395        } catch (Throwable ex) {        // Shouldn't ever happen
396            if (exception == null)      // but if so, at least rethrown
397                exception = ex;
398        } finally {
399            if (exception != null)
400                ForkJoinTask.rethrowException(exception);
401        }
93      }
94  
404    // Intrinsics-based support for queue operations.
405
406    /**
407     * Adds in store-order the given task at given slot of q to null.
408     * Caller must ensure q is non-null and index is in range.
409     */
410    private static void setSlot(ForkJoinTask<?>[] q, int i,
411                                ForkJoinTask<?> t){
412        UNSAFE.putOrderedObject(q, (i << qShift) + qBase, t);
413    }
414
415    /**
416     * CAS given slot of q to null. Caller must ensure q is non-null
417     * and index is in range.
418     */
419    private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
420                                       ForkJoinTask<?> t) {
421        return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
422    }
423
424    /**
425     * Sets sp in store-order.
426     */
427    private void storeSp(int s) {
428        UNSAFE.putOrderedInt(this, spOffset, s);
429    }
430
431    // Main queue methods
432
95      /**
96 <     * Pushes a task. Called only by current thread.
97 <     *
98 <     * @param t the task. Caller must ensure non-null.
437 <     */
438 <    final void pushTask(ForkJoinTask<?> t) {
439 <        ForkJoinTask<?>[] q = queue;
440 <        int mask = q.length - 1;
441 <        int s = sp;
442 <        setSlot(q, s & mask, t);
443 <        storeSp(++s);
444 <        if ((s -= base) == 1)
445 <            pool.signalWork();
446 <        else if (s >= mask)
447 <            growQueue();
448 <    }
449 <
450 <    /**
451 <     * Tries to take a task from the base of the queue, failing if
452 <     * either empty or contended.
453 <     *
454 <     * @return a task, or null if none or contended
455 <     */
456 <    final ForkJoinTask<?> deqTask() {
457 <        ForkJoinTask<?> t;
458 <        ForkJoinTask<?>[] q;
459 <        int i;
460 <        int b;
461 <        if (sp != (b = base) &&
462 <            (q = queue) != null && // must read q after b
463 <            (t = q[i = (q.length - 1) & b]) != null &&
464 <            casSlotNull(q, i, t)) {
465 <            base = b + 1;
466 <            return t;
467 <        }
468 <        return null;
469 <    }
470 <
471 <    /**
472 <     * Returns a popped task, or null if empty. Ensures active status
473 <     * if non-null. Called only by current thread.
474 <     */
475 <    final ForkJoinTask<?> popTask() {
476 <        int s = sp;
477 <        while (s != base) {
478 <            if (tryActivate()) {
479 <                ForkJoinTask<?>[] q = queue;
480 <                int mask = q.length - 1;
481 <                int i = (s - 1) & mask;
482 <                ForkJoinTask<?> t = q[i];
483 <                if (t == null || !casSlotNull(q, i, t))
484 <                    break;
485 <                storeSp(s - 1);
486 <                return t;
487 <            }
488 <        }
489 <        return null;
490 <    }
491 <
492 <    /**
493 <     * Specialized version of popTask to pop only if
494 <     * topmost element is the given task. Called only
495 <     * by current thread while active.
496 <     *
497 <     * @param t the task. Caller must ensure non-null.
498 <     */
499 <    final boolean unpushTask(ForkJoinTask<?> t) {
500 <        ForkJoinTask<?>[] q = queue;
501 <        int mask = q.length - 1;
502 <        int s = sp - 1;
503 <        if (casSlotNull(q, s & mask, t)) {
504 <            storeSp(s);
505 <            return true;
506 <        }
507 <        return false;
508 <    }
509 <
510 <    /**
511 <     * Returns next task.
512 <     */
513 <    final ForkJoinTask<?> peekTask() {
514 <        ForkJoinTask<?>[] q = queue;
515 <        if (q == null)
516 <            return null;
517 <        int mask = q.length - 1;
518 <        int i = locallyFifo? base : (sp - 1);
519 <        return q[i & mask];
520 <    }
521 <
522 <    /**
523 <     * Doubles queue array size. Transfers elements by emulating
524 <     * steals (deqs) from old array and placing, oldest first, into
525 <     * new array.
526 <     */
527 <    private void growQueue() {
528 <        ForkJoinTask<?>[] oldQ = queue;
529 <        int oldSize = oldQ.length;
530 <        int newSize = oldSize << 1;
531 <        if (newSize > MAXIMUM_QUEUE_CAPACITY)
532 <            throw new RejectedExecutionException("Queue capacity exceeded");
533 <        ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
534 <
535 <        int b = base;
536 <        int bf = b + oldSize;
537 <        int oldMask = oldSize - 1;
538 <        int newMask = newSize - 1;
539 <        do {
540 <            int oldIndex = b & oldMask;
541 <            ForkJoinTask<?> t = oldQ[oldIndex];
542 <            if (t != null && !casSlotNull(oldQ, oldIndex, t))
543 <                t = null;
544 <            setSlot(newQ, b & newMask, t);
545 <        } while (++b != bf);
546 <        pool.signalWork();
547 <    }
548 <
549 <    /**
550 <     * Tries to steal a task from another worker. Starts at a random
551 <     * index of workers array, and probes workers until finding one
552 <     * with non-empty queue or finding that all are empty.  It
553 <     * randomly selects the first n probes. If these are empty, it
554 <     * resorts to a full circular traversal, which is necessary to
555 <     * accurately set active status by caller. Also restarts if pool
556 <     * events occurred since last scan, which forces refresh of
557 <     * workers array, in case barrier was associated with resize.
558 <     *
559 <     * This method must be both fast and quiet -- usually avoiding
560 <     * memory accesses that could disrupt cache sharing etc other than
561 <     * those needed to check for and take tasks. This accounts for,
562 <     * among other things, updating random seed in place without
563 <     * storing it until exit.
564 <     *
565 <     * @return a task, or null if none found
566 <     */
567 <    private ForkJoinTask<?> scan() {
568 <        ForkJoinTask<?> t = null;
569 <        int r = seed;                    // extract once to keep scan quiet
570 <        ForkJoinWorkerThread[] ws;       // refreshed on outer loop
571 <        int mask;                        // must be power 2 minus 1 and > 0
572 <        outer:do {
573 <            if ((ws = pool.workers) != null && (mask = ws.length - 1) > 0) {
574 <                int idx = r;
575 <                int probes = ~mask;      // use random index while negative
576 <                for (;;) {
577 <                    r = xorShift(r);     // update random seed
578 <                    ForkJoinWorkerThread v = ws[mask & idx];
579 <                    if (v == null || v.sp == v.base) {
580 <                        if (probes <= mask)
581 <                            idx = (probes++ < 0)? r : (idx + 1);
582 <                        else
583 <                            break;
584 <                    }
585 <                    else if (!tryActivate() || (t = v.deqTask()) == null)
586 <                        continue outer;  // restart on contention
587 <                    else
588 <                        break outer;
589 <                }
590 <            }
591 <        } while (pool.hasNewSyncEvent(this)); // retry on pool events
592 <        seed = r;
593 <        return t;
594 <    }
595 <
596 <    /**
597 <     * Gets and removes a local or stolen task.
598 <     *
599 <     * @return a task, if available
600 <     */
601 <    final ForkJoinTask<?> pollTask() {
602 <        ForkJoinTask<?> t = locallyFifo? deqTask() : popTask();
603 <        if (t == null && (t = scan()) != null)
604 <            ++stealCount;
605 <        return t;
606 <    }
607 <
608 <    /**
609 <     * Gets a local task.
610 <     *
611 <     * @return a task, if available
612 <     */
613 <    final ForkJoinTask<?> pollLocalTask() {
614 <        return locallyFifo? deqTask() : popTask();
615 <    }
616 <
617 <    /**
618 <     * Returns a pool submission, if one exists, activating first.
619 <     *
620 <     * @return a submission, if available
621 <     */
622 <    private ForkJoinTask<?> pollSubmission() {
623 <        ForkJoinPool p = pool;
624 <        while (p.hasQueuedSubmissions()) {
625 <            ForkJoinTask<?> t;
626 <            if (tryActivate() && (t = p.pollSubmission()) != null)
627 <                return t;
628 <        }
629 <        return null;
630 <    }
631 <
632 <    // Methods accessed only by Pool
633 <
634 <    /**
635 <     * Removes and cancels all tasks in queue.  Can be called from any
636 <     * thread.
637 <     */
638 <    final void cancelTasks() {
639 <        ForkJoinTask<?> t;
640 <        while (base != sp && (t = deqTask()) != null)
641 <            t.cancelIgnoringExceptions();
642 <    }
643 <
644 <    /**
645 <     * Drains tasks to given collection c.
646 <     *
647 <     * @return the number of tasks drained
648 <     */
649 <    final int drainTasksTo(Collection<ForkJoinTask<?>> c) {
650 <        int n = 0;
651 <        ForkJoinTask<?> t;
652 <        while (base != sp && (t = deqTask()) != null) {
653 <            c.add(t);
654 <            ++n;
655 <        }
656 <        return n;
657 <    }
658 <
659 <    /**
660 <     * Gets and clears steal count for accumulation by pool.  Called
661 <     * only when known to be idle (in pool.sync and termination).
662 <     */
663 <    final int getAndClearStealCount() {
664 <        int sc = stealCount;
665 <        stealCount = 0;
666 <        return sc;
667 <    }
668 <
669 <    /**
670 <     * Returns true if at least one worker in the given array appears
671 <     * to have at least one queued task.
672 <     * @param ws array of workers
673 <     */
674 <    static boolean hasQueuedTasks(ForkJoinWorkerThread[] ws) {
675 <        if (ws != null) {
676 <            int len = ws.length;
677 <            for (int j = 0; j < 2; ++j) { // need two passes for clean sweep
678 <                for (int i = 0; i < len; ++i) {
679 <                    ForkJoinWorkerThread w = ws[i];
680 <                    if (w != null && w.sp != w.base)
681 <                        return true;
682 <                }
683 <            }
684 <        }
685 <        return false;
686 <    }
687 <
688 <    // Support methods for ForkJoinTask
689 <
690 <    /**
691 <     * Returns an estimate of the number of tasks in the queue.
692 <     */
693 <    final int getQueueSize() {
694 <        int n = sp - base;
695 <        return n < 0? 0 : n; // suppress momentarily negative values
696 <    }
697 <
698 <    /**
699 <     * Returns an estimate of the number of tasks, offset by a
700 <     * function of number of idle workers.
701 <     */
702 <    final int getEstimatedSurplusTaskCount() {
703 <        // The halving approximates weighting idle vs non-idle workers
704 <        return (sp - base) - (pool.getIdleThreadCount() >>> 1);
705 <    }
706 <
707 <    /**
708 <     * Scans, returning early if joinMe done
709 <     */
710 <    final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
711 <        ForkJoinTask<?> t = pollTask();
712 <        if (t != null && joinMe.status < 0 && sp == base) {
713 <            pushTask(t); // unsteal if done and this task would be stealable
714 <            t = null;
715 <        }
716 <        return t;
717 <    }
718 <
719 <    /**
720 <     * Runs tasks until pool isQuiescent.
96 >     * This method is required to be public, but should never be
97 >     * called explicitly. It performs the main run loop to execute
98 >     * {@link ForkJoinTask}s.
99       */
100 <    final void helpQuiescePool() {
101 <        for (;;) {
724 <            ForkJoinTask<?> t = pollTask();
725 <            if (t != null)
726 <                t.quietlyExec();
727 <            else if (tryInactivate() && pool.isQuiescent())
728 <                break;
729 <        }
730 <        do;while (!tryActivate()); // re-activate on exit
731 <    }
732 <
733 <    // Temporary Unsafe mechanics for preliminary release
734 <    private static Unsafe getUnsafe() throws Throwable {
100 >    public void run() {
101 >        Throwable exception = null;
102          try {
103 <            return Unsafe.getUnsafe();
104 <        } catch (SecurityException se) {
103 >            onStart();
104 >            pool.runWorker(workQueue);
105 >        } catch (Throwable ex) {
106 >            exception = ex;
107 >        } finally {
108              try {
109 <                return java.security.AccessController.doPrivileged
110 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
111 <                        public Unsafe run() throws Exception {
112 <                            return getUnsafePrivileged();
113 <                        }});
114 <            } catch (java.security.PrivilegedActionException e) {
745 <                throw e.getCause();
109 >                onTermination(exception);
110 >            } catch (Throwable ex) {
111 >                if (exception == null)
112 >                    exception = ex;
113 >            } finally {
114 >                pool.deregisterWorker(this, exception);
115              }
116          }
117      }
749
750    private static Unsafe getUnsafePrivileged()
751            throws NoSuchFieldException, IllegalAccessException {
752        Field f = Unsafe.class.getDeclaredField("theUnsafe");
753        f.setAccessible(true);
754        return (Unsafe) f.get(null);
755    }
756
757    private static long fieldOffset(String fieldName)
758            throws NoSuchFieldException {
759        return UNSAFE.objectFieldOffset
760            (ForkJoinWorkerThread.class.getDeclaredField(fieldName));
761    }
762
763    static final Unsafe UNSAFE;
764    static final long baseOffset;
765    static final long spOffset;
766    static final long runStateOffset;
767    static final long qBase;
768    static final int qShift;
769    static {
770        try {
771            UNSAFE = getUnsafe();
772            baseOffset = fieldOffset("base");
773            spOffset = fieldOffset("sp");
774            runStateOffset = fieldOffset("runState");
775            qBase = UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
776            int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
777            if ((s & (s-1)) != 0)
778                throw new Error("data type scale not a power of two");
779            qShift = 31 - Integer.numberOfLeadingZeros(s);
780        } catch (Throwable e) {
781            throw new RuntimeException("Could not initialize intrinsics", e);
782        }
783    }
118   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines