ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.53 by dl, Sun Oct 24 19:37:26 2010 UTC vs.
Revision 1.71 by dl, Wed Nov 14 17:20:38 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.Random;
10 import java.util.Collection;
11 import java.util.concurrent.locks.LockSupport;
12 import java.util.concurrent.RejectedExecutionException;
13
9   /**
10 < * A thread managed by a {@link ForkJoinPool}.  This class is
11 < * subclassable solely for the sake of adding functionality -- there
12 < * are no overridable methods dealing with scheduling or execution.
13 < * However, you can override initialization and termination methods
14 < * surrounding the main task processing loop.  If you do create such a
15 < * subclass, you will also need to supply a custom {@link
16 < * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
17 < * ForkJoinPool}.
10 > * A thread managed by a {@link ForkJoinPool}, which executes
11 > * {@link ForkJoinTask}s.
12 > * This class is subclassable solely for the sake of adding
13 > * functionality -- there are no overridable methods dealing with
14 > * scheduling or execution.  However, you can override initialization
15 > * and termination methods surrounding the main task processing loop.
16 > * If you do create such a subclass, you will also need to supply a
17 > * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it
18 > * in a {@code ForkJoinPool}.
19   *
20   * @since 1.7
21   * @author Doug Lea
22   */
23   public class ForkJoinWorkerThread extends Thread {
24      /*
29     * Overview:
30     *
25       * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
26 <     * ForkJoinTasks. This class includes bookkeeping in support of
27 <     * worker activation, suspension, and lifecycle control described
34 <     * in more detail in the internal documentation of class
35 <     * ForkJoinPool. And as described further below, this class also
36 <     * includes special-cased support for some ForkJoinTask
37 <     * methods. But the main mechanics involve work-stealing:
38 <     *
39 <     * Work-stealing queues are special forms of Deques that support
40 <     * only three of the four possible end-operations -- push, pop,
41 <     * and deq (aka steal), under the further constraints that push
42 <     * and pop are called only from the owning thread, while deq may
43 <     * be called from other threads.  (If you are unfamiliar with
44 <     * them, you probably want to read Herlihy and Shavit's book "The
45 <     * Art of Multiprocessor programming", chapter 16 describing these
46 <     * in more detail before proceeding.)  The main work-stealing
47 <     * queue design is roughly similar to those in the papers "Dynamic
48 <     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
49 <     * (http://research.sun.com/scalable/pubs/index.html) and
50 <     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
51 <     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
52 <     * The main differences ultimately stem from gc requirements that
53 <     * we null out taken slots as soon as we can, to maintain as small
54 <     * a footprint as possible even in programs generating huge
55 <     * numbers of tasks. To accomplish this, we shift the CAS
56 <     * arbitrating pop vs deq (steal) from being on the indices
57 <     * ("base" and "sp") to the slots themselves (mainly via method
58 <     * "casSlotNull()"). So, both a successful pop and deq mainly
59 <     * entail a CAS of a slot from non-null to null.  Because we rely
60 <     * on CASes of references, we do not need tag bits on base or sp.
61 <     * They are simple ints as used in any circular array-based queue
62 <     * (see for example ArrayDeque).  Updates to the indices must
63 <     * still be ordered in a way that guarantees that sp == base means
64 <     * the queue is empty, but otherwise may err on the side of
65 <     * possibly making the queue appear nonempty when a push, pop, or
66 <     * deq have not fully committed. Note that this means that the deq
67 <     * operation, considered individually, is not wait-free. One thief
68 <     * cannot successfully continue until another in-progress one (or,
69 <     * if previously empty, a push) completes.  However, in the
70 <     * aggregate, we ensure at least probabilistic non-blockingness.
71 <     * If an attempted steal fails, a thief always chooses a different
72 <     * random victim target to try next. So, in order for one thief to
73 <     * progress, it suffices for any in-progress deq or new push on
74 <     * any empty queue to complete. One reason this works well here is
75 <     * that apparently-nonempty often means soon-to-be-stealable,
76 <     * which gives threads a chance to set activation status if
77 <     * necessary before stealing.
78 <     *
79 <     * This approach also enables support for "async mode" where local
80 <     * task processing is in FIFO, not LIFO order; simply by using a
81 <     * version of deq rather than pop when locallyFifo is true (as set
82 <     * by the ForkJoinPool).  This allows use in message-passing
83 <     * frameworks in which tasks are never joined.
84 <     *
85 <     * When a worker would otherwise be blocked waiting to join a
86 <     * task, it first tries a form of linear helping: Each worker
87 <     * records (in field currentSteal) the most recent task it stole
88 <     * from some other worker. Plus, it records (in field currentJoin)
89 <     * the task it is currently actively joining. Method joinTask uses
90 <     * these markers to try to find a worker to help (i.e., steal back
91 <     * a task from and execute it) that could hasten completion of the
92 <     * actively joined task. In essence, the joiner executes a task
93 <     * that would be on its own local deque had the to-be-joined task
94 <     * not been stolen. This may be seen as a conservative variant of
95 <     * the approach in Wagner & Calder "Leapfrogging: a portable
96 <     * technique for implementing efficient futures" SIGPLAN Notices,
97 <     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
98 <     * in that: (1) We only maintain dependency links across workers
99 <     * upon steals, rather than use per-task bookkeeping.  This may
100 <     * require a linear scan of workers array to locate stealers, but
101 <     * usually doesn't because stealers leave hints (that may become
102 <     * stale/wrong) of where to locate them. This isolates cost to
103 <     * when it is needed, rather than adding to per-task overhead.
104 <     * (2) It is "shallow", ignoring nesting and potentially cyclic
105 <     * mutual steals.  (3) It is intentionally racy: field currentJoin
106 <     * is updated only while actively joining, which means that we
107 <     * miss links in the chain during long-lived tasks, GC stalls etc
108 <     * (which is OK since blocking in such cases is usually a good
109 <     * idea).  (4) We bound the number of attempts to find work (see
110 <     * MAX_HELP_DEPTH) and fall back to suspending the worker and if
111 <     * necessary replacing it with a spare (see
112 <     * ForkJoinPool.awaitJoin).
113 <     *
114 <     * Efficient implementation of these algorithms currently relies
115 <     * on an uncomfortable amount of "Unsafe" mechanics. To maintain
116 <     * correct orderings, reads and writes of variable base require
117 <     * volatile ordering.  Variable sp does not require volatile
118 <     * writes but still needs store-ordering, which we accomplish by
119 <     * pre-incrementing sp before filling the slot with an ordered
120 <     * store.  (Pre-incrementing also enables backouts used in
121 <     * joinTask.)  Because they are protected by volatile base reads,
122 <     * reads of the queue array and its slots by other threads do not
123 <     * need volatile load semantics, but writes (in push) require
124 <     * store order and CASes (in pop and deq) require (volatile) CAS
125 <     * semantics.  (Michael, Saraswat, and Vechev's algorithm has
126 <     * similar properties, but without support for nulling slots.)
127 <     * Since these combinations aren't supported using ordinary
128 <     * volatiles, the only way to accomplish these efficiently is to
129 <     * use direct Unsafe calls. (Using external AtomicIntegers and
130 <     * AtomicReferenceArrays for the indices and array is
131 <     * significantly slower because of memory locality and indirection
132 <     * effects.)
133 <     *
134 <     * Further, performance on most platforms is very sensitive to
135 <     * placement and sizing of the (resizable) queue array.  Even
136 <     * though these queues don't usually become all that big, the
137 <     * initial size must be large enough to counteract cache
138 <     * contention effects across multiple queues (especially in the
139 <     * presence of GC cardmarking). Also, to improve thread-locality,
140 <     * queues are initialized after starting.  All together, these
141 <     * low-level implementation choices produce as much as a factor of
142 <     * 4 performance improvement compared to naive implementations,
143 <     * and enable the processing of billions of tasks per second,
144 <     * sometimes at the expense of ugliness.
145 <     */
146 <
147 <    /**
148 <     * Generator for initial random seeds for random victim
149 <     * selection. This is used only to create initial seeds. Random
150 <     * steals use a cheaper xorshift generator per steal attempt. We
151 <     * expect only rare contention on seedGenerator, so just use a
152 <     * plain Random.
153 <     */
154 <    private static final Random seedGenerator = new Random();
155 <
156 <    /**
157 <     * The maximum stolen->joining link depth allowed in helpJoinTask.
158 <     * Depths for legitimate chains are unbounded, but we use a fixed
159 <     * constant to avoid (otherwise unchecked) cycles and bound
160 <     * staleness of traversal parameters at the expense of sometimes
161 <     * blocking when we could be helping.
162 <     */
163 <    private static final int MAX_HELP_DEPTH = 8;
164 <
165 <    /**
166 <     * Capacity of work-stealing queue array upon initialization.
167 <     * Must be a power of two. Initial size must be at least 4, but is
168 <     * padded to minimize cache effects.
169 <     */
170 <    private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
171 <
172 <    /**
173 <     * Maximum work-stealing queue array size.  Must be less than or
174 <     * equal to 1 << (31 - width of array entry) to ensure lack of
175 <     * index wraparound. The value is set in the static block
176 <     * at the end of this file after obtaining width.
177 <     */
178 <    private static final int MAXIMUM_QUEUE_CAPACITY;
179 <
180 <    /**
181 <     * The pool this thread works in. Accessed directly by ForkJoinTask.
182 <     */
183 <    final ForkJoinPool pool;
184 <
185 <    /**
186 <     * The work-stealing queue array. Size must be a power of two.
187 <     * Initialized in onStart, to improve memory locality.
188 <     */
189 <    private ForkJoinTask<?>[] queue;
190 <
191 <    /**
192 <     * Index (mod queue.length) of least valid queue slot, which is
193 <     * always the next position to steal from if nonempty.
194 <     */
195 <    private volatile int base;
196 <
197 <    /**
198 <     * Index (mod queue.length) of next queue slot to push to or pop
199 <     * from. It is written only by owner thread, and accessed by other
200 <     * threads only after reading (volatile) base.  Both sp and base
201 <     * are allowed to wrap around on overflow, but (sp - base) still
202 <     * estimates size.
203 <     */
204 <    private int sp;
205 <
206 <    /**
207 <     * The index of most recent stealer, used as a hint to avoid
208 <     * traversal in method helpJoinTask. This is only a hint because a
209 <     * worker might have had multiple steals and this only holds one
210 <     * of them (usually the most current). Declared non-volatile,
211 <     * relying on other prevailing sync to keep reasonably current.
212 <     */
213 <    private int stealHint;
214 <
215 <    /**
216 <     * Run state of this worker. In addition to the usual run levels,
217 <     * tracks if this worker is suspended as a spare, and if it was
218 <     * killed (trimmed) while suspended. However, "active" status is
219 <     * maintained separately and modified only in conjunction with
220 <     * CASes of the pool's runState (which are currently sadly
221 <     * manually inlined for performance.)  Accessed directly by pool
222 <     * to simplify checks for normal (zero) status.
223 <     */
224 <    volatile int runState;
225 <
226 <    private static final int TERMINATING = 0x01;
227 <    private static final int TERMINATED  = 0x02;
228 <    private static final int SUSPENDED   = 0x04; // inactive spare
229 <    private static final int TRIMMED     = 0x08; // killed while suspended
230 <
231 <    /**
232 <     * Number of steals. Directly accessed (and reset) by
233 <     * pool.tryAccumulateStealCount when idle.
234 <     */
235 <    int stealCount;
236 <
237 <    /**
238 <     * Seed for random number generator for choosing steal victims.
239 <     * Uses Marsaglia xorshift. Must be initialized as nonzero.
240 <     */
241 <    private int seed;
242 <
243 <    /**
244 <     * Activity status. When true, this worker is considered active.
245 <     * Accessed directly by pool.  Must be false upon construction.
246 <     */
247 <    boolean active;
248 <
249 <    /**
250 <     * True if use local fifo, not default lifo, for local polling.
251 <     * Shadows value from ForkJoinPool.
252 <     */
253 <    private final boolean locallyFifo;
254 <
255 <    /**
256 <     * Index of this worker in pool array. Set once by pool before
257 <     * running, and accessed directly by pool to locate this worker in
258 <     * its workers array.
259 <     */
260 <    int poolIndex;
261 <
262 <    /**
263 <     * The last pool event waited for. Accessed only by pool in
264 <     * callback methods invoked within this thread.
265 <     */
266 <    int lastEventCount;
267 <
268 <    /**
269 <     * Encoded index and event count of next event waiter. Accessed
270 <     * only by ForkJoinPool for managing event waiters.
271 <     */
272 <    volatile long nextWaiter;
273 <
274 <    /**
275 <     * Number of times this thread suspended as spare. Accessed only
276 <     * by pool.
277 <     */
278 <    int spareCount;
279 <
280 <    /**
281 <     * Encoded index and count of next spare waiter. Accessed only
282 <     * by ForkJoinPool for managing spares.
26 >     * ForkJoinTasks. For explanation, see the internal documentation
27 >     * of class ForkJoinPool.
28       */
284    volatile int nextSpare;
29  
30 <    /**
31 <     * The task currently being joined, set only when actively trying
288 <     * to help other stealers in helpJoinTask. Written only by this
289 <     * thread, but read by others.
290 <     */
291 <    private volatile ForkJoinTask<?> currentJoin;
30 >    final ForkJoinPool.WorkQueue workQueue; // Work-stealing mechanics
31 >    final ForkJoinPool pool;                // the pool this thread works in
32  
33      /**
34 <     * The task most recently stolen from another worker (or
35 <     * submission queue).  Written only by this thread, but read by
36 <     * others.
34 >     * An initial name for a newly constructed worker, used until
35 >     * onStart can establish a useful name. This removes need to
36 >     * establish a name from worker startup path.
37       */
38 <    private volatile ForkJoinTask<?> currentSteal;
38 >    static final String provisionalName = "aForkJoinWorkerThread";
39  
40      /**
41       * Creates a ForkJoinWorkerThread operating in the given pool.
# Line 304 | Line 44 | public class ForkJoinWorkerThread extend
44       * @throws NullPointerException if pool is null
45       */
46      protected ForkJoinWorkerThread(ForkJoinPool pool) {
47 <        this.pool = pool;
48 <        this.locallyFifo = pool.locallyFifo;
309 <        setDaemon(true);
310 <        // To avoid exposing construction details to subclasses,
311 <        // remaining initialization is in start() and onStart()
312 <    }
313 <
314 <    /**
315 <     * Performs additional initialization and starts this thread.
316 <     */
317 <    final void start(int poolIndex, UncaughtExceptionHandler ueh) {
318 <        this.poolIndex = poolIndex;
47 >        super(provisionalName); // bootstrap name
48 >        Thread.UncaughtExceptionHandler ueh = pool.ueh;
49          if (ueh != null)
50              setUncaughtExceptionHandler(ueh);
51 <        start();
51 >        setDaemon(true);
52 >        this.pool = pool;
53 >        pool.registerWorker(this.workQueue = new ForkJoinPool.WorkQueue
54 >                            (pool, this, pool.localMode));
55      }
56  
324    // Public/protected methods
325
57      /**
58       * Returns the pool hosting this thread.
59       *
# Line 342 | Line 73 | public class ForkJoinWorkerThread extend
73       * @return the index number
74       */
75      public int getPoolIndex() {
76 <        return poolIndex;
76 >        return workQueue.poolIndex;
77      }
78  
79      /**
80       * Initializes internal state after construction but before
81       * processing any tasks. If you override this method, you must
82 <     * invoke @code{super.onStart()} at the beginning of the method.
82 >     * invoke {@code super.onStart()} at the beginning of the method.
83       * Initialization requires care: Most fields must have legal
84       * default values, to ensure that attempted accesses from other
85       * threads work correctly even before this thread starts
86       * processing tasks.
87       */
88      protected void onStart() {
89 <        int rs = seedGenerator.nextInt();
90 <        seed = rs == 0? 1 : rs; // seed must be nonzero
91 <
92 <        // Allocate name string and arrays in this thread
362 <        String pid = Integer.toString(pool.getPoolNumber());
363 <        String wid = Integer.toString(poolIndex);
364 <        setName("ForkJoinPool-" + pid + "-worker-" + wid);
365 <
366 <        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
89 >        String pref; // replace bootstrap name
90 >        if (provisionalName.equals(getName()) &&
91 >            (pref = pool.workerNamePrefix) != null)
92 >            setName(pref.concat(Long.toString(getId())));
93      }
94  
95      /**
# Line 375 | Line 101 | public class ForkJoinWorkerThread extend
101       * to an unrecoverable error, or {@code null} if completed normally
102       */
103      protected void onTermination(Throwable exception) {
378        try {
379            ForkJoinPool p = pool;
380            if (active) {
381                int a; // inline p.tryDecrementActiveCount
382                active = false;
383                do {} while (!UNSAFE.compareAndSwapInt
384                             (p, poolRunStateOffset, a = p.runState, a - 1));
385            }
386            cancelTasks();
387            setTerminated();
388            p.workerTerminated(this);
389        } catch (Throwable ex) {        // Shouldn't ever happen
390            if (exception == null)      // but if so, at least rethrown
391                exception = ex;
392        } finally {
393            if (exception != null)
394                UNSAFE.throwException(exception);
395        }
104      }
105  
106      /**
107       * This method is required to be public, but should never be
108       * called explicitly. It performs the main run loop to execute
109 <     * ForkJoinTasks.
109 >     * {@link ForkJoinTask}s.
110       */
111      public void run() {
112          Throwable exception = null;
113          try {
114              onStart();
115 <            mainLoop();
115 >            pool.runWorker(workQueue);
116          } catch (Throwable ex) {
117              exception = ex;
118          } finally {
411            onTermination(exception);
412        }
413    }
414
415    // helpers for run()
416
417    /**
418     * Finds and executes tasks, and checks status while running.
419     */
420    private void mainLoop() {
421        boolean ran = false; // true if ran a task on last step
422        ForkJoinPool p = pool;
423        for (;;) {
424            p.preStep(this, ran);
425            if (runState != 0)
426                break;
427            ran = tryExecSteal() || tryExecSubmission();
428        }
429    }
430
431    /**
432     * Tries to steal a task and execute it.
433     *
434     * @return true if ran a task
435     */
436    private boolean tryExecSteal() {
437        ForkJoinTask<?> t;
438        if ((t = scan()) != null) {
439            t.quietlyExec();
440            UNSAFE.putOrderedObject(this, currentStealOffset, null);
441            if (sp != base)
442                execLocalTasks();
443            return true;
444        }
445        return false;
446    }
447
448    /**
449     * If a submission exists, try to activate and run it.
450     *
451     * @return true if ran a task
452     */
453    private boolean tryExecSubmission() {
454        ForkJoinPool p = pool;
455        // This loop is needed in case attempt to activate fails, in
456        // which case we only retry if there still appears to be a
457        // submission.
458        while (p.hasQueuedSubmissions()) {
459            ForkJoinTask<?> t; int a;
460            if (active || // inline p.tryIncrementActiveCount
461                (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
462                                                   a = p.runState, a + 1))) {
463                if ((t = p.pollSubmission()) != null) {
464                    UNSAFE.putOrderedObject(this, currentStealOffset, t);
465                    t.quietlyExec();
466                    UNSAFE.putOrderedObject(this, currentStealOffset, null);
467                    if (sp != base)
468                        execLocalTasks();
469                    return true;
470                }
471            }
472        }
473        return false;
474    }
475
476    /**
477     * Runs local tasks until queue is empty or shut down.  Call only
478     * while active.
479     */
480    private void execLocalTasks() {
481        while (runState == 0) {
482            ForkJoinTask<?> t = locallyFifo ? locallyDeqTask() : popTask();
483            if (t != null)
484                t.quietlyExec();
485            else if (sp == base)
486                break;
487        }
488    }
489
490    /*
491     * Intrinsics-based atomic writes for queue slots. These are
492     * basically the same as methods in AtomicReferenceArray, but
493     * specialized for (1) ForkJoinTask elements (2) requirement that
494     * nullness and bounds checks have already been performed by
495     * callers and (3) effective offsets are known not to overflow
496     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
497     * need corresponding version for reads: plain array reads are OK
498     * because they are protected by other volatile reads and are
499     * confirmed by CASes.
500     *
501     * Most uses don't actually call these methods, but instead contain
502     * inlined forms that enable more predictable optimization.  We
503     * don't define the version of write used in pushTask at all, but
504     * instead inline there a store-fenced array slot write.
505     */
506
507    /**
508     * CASes slot i of array q from t to null. Caller must ensure q is
509     * non-null and index is in range.
510     */
511    private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
512                                             ForkJoinTask<?> t) {
513        return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
514    }
515
516    /**
517     * Performs a volatile write of the given task at given slot of
518     * array q.  Caller must ensure q is non-null and index is in
519     * range. This method is used only during resets and backouts.
520     */
521    private static final void writeSlot(ForkJoinTask<?>[] q, int i,
522                                        ForkJoinTask<?> t) {
523        UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
524    }
525
526    // queue methods
527
528    /**
529     * Pushes a task. Call only from this thread.
530     *
531     * @param t the task. Caller must ensure non-null.
532     */
533    final void pushTask(ForkJoinTask<?> t) {
534        ForkJoinTask<?>[] q = queue;
535        int mask = q.length - 1; // implicit assert q != null
536        int s = sp++;            // ok to increment sp before slot write
537        UNSAFE.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
538        if ((s -= base) == 0)
539            pool.signalWork();   // was empty
540        else if (s == mask)
541            growQueue();         // is full
542    }
543
544    /**
545     * Tries to take a task from the base of the queue, failing if
546     * empty or contended. Note: Specializations of this code appear
547     * in locallyDeqTask and elsewhere.
548     *
549     * @return a task, or null if none or contended
550     */
551    final ForkJoinTask<?> deqTask() {
552        ForkJoinTask<?> t;
553        ForkJoinTask<?>[] q;
554        int b, i;
555        if (sp != (b = base) &&
556            (q = queue) != null && // must read q after b
557            (t = q[i = (q.length - 1) & b]) != null && base == b &&
558            UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
559            base = b + 1;
560            return t;
561        }
562        return null;
563    }
564
565    /**
566     * Tries to take a task from the base of own queue. Assumes active
567     * status.  Called only by this thread.
568     *
569     * @return a task, or null if none
570     */
571    final ForkJoinTask<?> locallyDeqTask() {
572        ForkJoinTask<?>[] q = queue;
573        if (q != null) {
574            ForkJoinTask<?> t;
575            int b, i;
576            while (sp != (b = base)) {
577                if ((t = q[i = (q.length - 1) & b]) != null && base == b &&
578                    UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
579                                                t, null)) {
580                    base = b + 1;
581                    return t;
582                }
583            }
584        }
585        return null;
586    }
587
588    /**
589     * Returns a popped task, or null if empty. Assumes active status.
590     * Called only by this thread.
591     */
592    private ForkJoinTask<?> popTask() {
593        ForkJoinTask<?>[] q = queue;
594        if (q != null) {
595            int s;
596            while ((s = sp) != base) {
597                int i = (q.length - 1) & --s;
598                long u = (i << qShift) + qBase; // raw offset
599                ForkJoinTask<?> t = q[i];
600                if (t == null)   // lost to stealer
601                    break;
602                if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
603                    sp = s; // putOrderedInt may encourage more timely write
604                    // UNSAFE.putOrderedInt(this, spOffset, s);
605                    return t;
606                }
607            }
608        }
609        return null;
610    }
611
612    /**
613     * Specialized version of popTask to pop only if topmost element
614     * is the given task. Called only by this thread while active.
615     *
616     * @param t the task. Caller must ensure non-null.
617     */
618    final boolean unpushTask(ForkJoinTask<?> t) {
619        int s;
620        ForkJoinTask<?>[] q = queue;
621        if ((s = sp) != base && q != null &&
622            UNSAFE.compareAndSwapObject
623            (q, (((q.length - 1) & --s) << qShift) + qBase, t, null)) {
624            sp = s; // putOrderedInt may encourage more timely write
625            // UNSAFE.putOrderedInt(this, spOffset, s);
626            return true;
627        }
628        return false;
629    }
630
631    /**
632     * Returns next task, or null if empty or contended.
633     */
634    final ForkJoinTask<?> peekTask() {
635        ForkJoinTask<?>[] q = queue;
636        if (q == null)
637            return null;
638        int mask = q.length - 1;
639        int i = locallyFifo ? base : (sp - 1);
640        return q[i & mask];
641    }
642
643    /**
644     * Doubles queue array size. Transfers elements by emulating
645     * steals (deqs) from old array and placing, oldest first, into
646     * new array.
647     */
648    private void growQueue() {
649        ForkJoinTask<?>[] oldQ = queue;
650        int oldSize = oldQ.length;
651        int newSize = oldSize << 1;
652        if (newSize > MAXIMUM_QUEUE_CAPACITY)
653            throw new RejectedExecutionException("Queue capacity exceeded");
654        ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
655
656        int b = base;
657        int bf = b + oldSize;
658        int oldMask = oldSize - 1;
659        int newMask = newSize - 1;
660        do {
661            int oldIndex = b & oldMask;
662            ForkJoinTask<?> t = oldQ[oldIndex];
663            if (t != null && !casSlotNull(oldQ, oldIndex, t))
664                t = null;
665            writeSlot(newQ, b & newMask, t);
666        } while (++b != bf);
667        pool.signalWork();
668    }
669
670    /**
671     * Computes next value for random victim probe in scan().  Scans
672     * don't require a very high quality generator, but also not a
673     * crummy one.  Marsaglia xor-shift is cheap and works well enough.
674     * Note: This is manually inlined in scan().
675     */
676    private static final int xorShift(int r) {
677        r ^= r << 13;
678        r ^= r >>> 17;
679        return r ^ (r << 5);
680    }
681
682    /**
683     * Tries to steal a task from another worker. Starts at a random
684     * index of workers array, and probes workers until finding one
685     * with non-empty queue or finding that all are empty.  It
686     * randomly selects the first n probes. If these are empty, it
687     * resorts to a circular sweep, which is necessary to accurately
688     * set active status. (The circular sweep uses steps of
689     * approximately half the array size plus 1, to avoid bias
690     * stemming from leftmost packing of the array in ForkJoinPool.)
691     *
692     * This method must be both fast and quiet -- usually avoiding
693     * memory accesses that could disrupt cache sharing etc other than
694     * those needed to check for and take tasks (or to activate if not
695     * already active). This accounts for, among other things,
696     * updating random seed in place without storing it until exit.
697     *
698     * @return a task, or null if none found
699     */
700    private ForkJoinTask<?> scan() {
701        ForkJoinPool p = pool;
702        ForkJoinWorkerThread[] ws;        // worker array
703        int n;                            // upper bound of #workers
704        if ((ws = p.workers) != null && (n = ws.length) > 1) {
705            boolean canSteal = active;    // shadow active status
706            int r = seed;                 // extract seed once
707            int mask = n - 1;
708            int j = -n;                   // loop counter
709            int k = r;                    // worker index, random if j < 0
710            for (;;) {
711                ForkJoinWorkerThread v = ws[k & mask];
712                r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // inline xorshift
713                ForkJoinTask<?>[] q; ForkJoinTask<?> t; int b, a;
714                if (v != null && (b = v.base) != v.sp &&
715                    (q = v.queue) != null) {
716                    int i = (q.length - 1) & b;
717                    long u = (i << qShift) + qBase; // raw offset
718                    int pid = poolIndex;
719                    if ((t = q[i]) != null) {
720                        if (!canSteal &&  // inline p.tryIncrementActiveCount
721                            UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
722                                                     a = p.runState, a + 1))
723                            canSteal = active = true;
724                        if (canSteal && v.base == b++ &&
725                            UNSAFE.compareAndSwapObject(q, u, t, null)) {
726                            v.base = b;
727                            v.stealHint = pid;
728                            UNSAFE.putOrderedObject(this,
729                                                    currentStealOffset, t);
730                            seed = r;
731                            ++stealCount;
732                            return t;
733                        }
734                    }
735                    j = -n;
736                    k = r;                // restart on contention
737                }
738                else if (++j <= 0)
739                    k = r;
740                else if (j <= n)
741                    k += (n >>> 1) | 1;
742                else
743                    break;
744            }
745        }
746        return null;
747    }
748
749    // Run State management
750
751    // status check methods used mainly by ForkJoinPool
752    final boolean isRunning()    { return runState == 0; }
753    final boolean isTerminated() { return (runState & TERMINATED) != 0; }
754    final boolean isSuspended()  { return (runState & SUSPENDED) != 0; }
755    final boolean isTrimmed()    { return (runState & TRIMMED) != 0; }
756
757    final boolean isTerminating() {
758        if ((runState & TERMINATING) != 0)
759            return true;
760        if (pool.isAtLeastTerminating()) { // propagate pool state
761            shutdown();
762            return true;
763        }
764        return false;
765    }
766
767    /**
768     * Sets state to TERMINATING. Does NOT unpark or interrupt
769     * to wake up if currently blocked. Callers must do so if desired.
770     */
771    final void shutdown() {
772        for (;;) {
773            int s = runState;
774            if ((s & (TERMINATING|TERMINATED)) != 0)
775                break;
776            if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
777                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
778                                             (s & ~SUSPENDED) |
779                                             (TRIMMED|TERMINATING)))
780                    break;
781            }
782            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
783                                              s | TERMINATING))
784                break;
785        }
786    }
787
788    /**
789     * Sets state to TERMINATED. Called only by onTermination().
790     */
791    private void setTerminated() {
792        int s;
793        do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
794                                               s = runState,
795                                               s | (TERMINATING|TERMINATED)));
796    }
797
798    /**
799     * If suspended, tries to set status to unsuspended.
800     * Does NOT wake up if blocked.
801     *
802     * @return true if successful
803     */
804    final boolean tryUnsuspend() {
805        int s;
806        while (((s = runState) & SUSPENDED) != 0) {
807            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
808                                         s & ~SUSPENDED))
809                return true;
810        }
811        return false;
812    }
813
814    /**
815     * Sets suspended status and blocks as spare until resumed
816     * or shutdown.
817     */
818    final void suspendAsSpare() {
819        for (;;) {                  // set suspended unless terminating
820            int s = runState;
821            if ((s & TERMINATING) != 0) { // must kill
822                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
823                                             s | (TRIMMED | TERMINATING)))
824                    return;
825            }
826            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
827                                              s | SUSPENDED))
828                break;
829        }
830        ForkJoinPool p = pool;
831        p.pushSpare(this);
832        while ((runState & SUSPENDED) != 0) {
833            if (p.tryAccumulateStealCount(this)) {
834                interrupted();          // clear/ignore interrupts
835                if ((runState & SUSPENDED) == 0)
836                    break;
837                LockSupport.park(this);
838            }
839        }
840    }
841
842    // Misc support methods for ForkJoinPool
843
844    /**
845     * Returns an estimate of the number of tasks in the queue.  Also
846     * used by ForkJoinTask.
847     */
848    final int getQueueSize() {
849        int n; // external calls must read base first
850        return (n = -base + sp) <= 0 ? 0 : n;
851    }
852
853    /**
854     * Removes and cancels all tasks in queue.  Can be called from any
855     * thread.
856     */
857    final void cancelTasks() {
858        ForkJoinTask<?> cj = currentJoin; // try to cancel ongoing tasks
859        if (cj != null) {
860            currentJoin = null;
861            cj.cancelIgnoringExceptions();
862            try {
863                this.interrupt(); // awaken wait
864            } catch (SecurityException ignore) {
865            }
866        }
867        ForkJoinTask<?> cs = currentSteal;
868        if (cs != null) {
869            currentSteal = null;
870            cs.cancelIgnoringExceptions();
871        }
872        while (base != sp) {
873            ForkJoinTask<?> t = deqTask();
874            if (t != null)
875                t.cancelIgnoringExceptions();
876        }
877    }
878
879    /**
880     * Drains tasks to given collection c.
881     *
882     * @return the number of tasks drained
883     */
884    final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
885        int n = 0;
886        while (base != sp) {
887            ForkJoinTask<?> t = deqTask();
888            if (t != null) {
889                c.add(t);
890                ++n;
891            }
892        }
893        return n;
894    }
895
896    // Support methods for ForkJoinTask
897
898    /**
899     * Gets and removes a local task.
900     *
901     * @return a task, if available
902     */
903    final ForkJoinTask<?> pollLocalTask() {
904        ForkJoinPool p = pool;
905        while (sp != base) {
906            int a; // inline p.tryIncrementActiveCount
907            if (active ||
908                (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
909                                                   a = p.runState, a + 1)))
910                return locallyFifo ? locallyDeqTask() : popTask();
911        }
912        return null;
913    }
914
915    /**
916     * Gets and removes a local or stolen task.
917     *
918     * @return a task, if available
919     */
920    final ForkJoinTask<?> pollTask() {
921        ForkJoinTask<?> t = pollLocalTask();
922        if (t == null) {
923            t = scan();
924            // cannot retain/track/help steal
925            UNSAFE.putOrderedObject(this, currentStealOffset, null);
926        }
927        return t;
928    }
929
930    /**
931     * Possibly runs some tasks and/or blocks, until task is done.
932     *
933     * @param joinMe the task to join
934     * @param timed true if use timed wait
935     * @param nanos wait time if timed
936     */
937    final void joinTask(ForkJoinTask<?> joinMe, boolean timed, long nanos) {
938        // currentJoin only written by this thread; only need ordered store
939        ForkJoinTask<?> prevJoin = currentJoin;
940        UNSAFE.putOrderedObject(this, currentJoinOffset, joinMe);
941        if (isTerminating())                // cancel if shutting down
942            joinMe.cancelIgnoringExceptions();
943        else {
944            if (sp != base)
945                localHelpJoinTask(joinMe);
946            if (joinMe.status >= 0)
947                pool.awaitJoin(joinMe, this, timed, nanos);
948        }
949        UNSAFE.putOrderedObject(this, currentJoinOffset, prevJoin);
950    }
951
952    /**
953     * Run tasks in local queue until given task is done.
954     *
955     * @param joinMe the task to join
956     */
957    private void localHelpJoinTask(ForkJoinTask<?> joinMe) {
958        int s;
959        ForkJoinTask<?>[] q;
960        while (joinMe.status >= 0 && (s = sp) != base && (q = queue) != null) {
961            int i = (q.length - 1) & --s;
962            long u = (i << qShift) + qBase; // raw offset
963            ForkJoinTask<?> t = q[i];
964            if (t == null)  // lost to a stealer
965                break;
966            if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
967                /*
968                 * This recheck (and similarly in helpJoinTask)
969                 * handles cases where joinMe is independently
970                 * cancelled or forced even though there is other work
971                 * available. Back out of the pop by putting t back
972                 * into slot before we commit by writing sp.
973                 */
974                if (joinMe.status < 0) {
975                    UNSAFE.putObjectVolatile(q, u, t);
976                    break;
977                }
978                sp = s;
979                // UNSAFE.putOrderedInt(this, spOffset, s);
980                t.quietlyExec();
981            }
982        }
983    }
984
985    /**
986     * Tries to locate and help perform tasks for a stealer of the
987     * given task, or in turn one of its stealers.  Traces
988     * currentSteal->currentJoin links looking for a thread working on
989     * a descendant of the given task and with a non-empty queue to
990     * steal back and execute tasks from.
991     *
992     * The implementation is very branchy to cope with potential
993     * inconsistencies or loops encountering chains that are stale,
994     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
995     * of these cases are dealt with by just returning back to the
996     * caller, who is expected to retry if other join mechanisms also
997     * don't work out.
998     *
999     * @param joinMe the task to join
1000     */
1001    final void helpJoinTask(ForkJoinTask<?> joinMe) {
1002        ForkJoinWorkerThread[] ws;
1003        int n;
1004        if (joinMe.status < 0)                // already done
1005            return;
1006        if ((ws = pool.workers) == null || (n = ws.length) <= 1)
1007            return;                           // need at least 2 workers
1008
1009        ForkJoinTask<?> task = joinMe;        // base of chain
1010        ForkJoinWorkerThread thread = this;   // thread with stolen task
1011        for (int d = 0; d < MAX_HELP_DEPTH; ++d) { // chain length
1012            // Try to find v, the stealer of task, by first using hint
1013            ForkJoinWorkerThread v = ws[thread.stealHint & (n - 1)];
1014            if (v == null || v.currentSteal != task) {
1015                for (int j = 0; ; ++j) {      // search array
1016                    if (j < n) {
1017                        ForkJoinTask<?> vs;
1018                        if ((v = ws[j]) != null &&
1019                            (vs = v.currentSteal) != null) {
1020                            if (joinMe.status < 0 || task.status < 0)
1021                                return;       // stale or done
1022                            if (vs == task) {
1023                                thread.stealHint = j;
1024                                break;        // save hint for next time
1025                            }
1026                        }
1027                    }
1028                    else
1029                        return;               // no stealer
1030                }
1031            }
1032            for (;;) { // Try to help v, using specialized form of deqTask
1033                if (joinMe.status < 0)
1034                    return;
1035                int b = v.base;
1036                ForkJoinTask<?>[] q = v.queue;
1037                if (b == v.sp || q == null)
1038                    break;
1039                int i = (q.length - 1) & b;
1040                long u = (i << qShift) + qBase;
1041                ForkJoinTask<?> t = q[i];
1042                int pid = poolIndex;
1043                ForkJoinTask<?> ps = currentSteal;
1044                if (task.status < 0)
1045                    return;                   // stale or done
1046                if (t != null && v.base == b++ &&
1047                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
1048                    if (joinMe.status < 0) {
1049                        UNSAFE.putObjectVolatile(q, u, t);
1050                        return;               // back out on cancel
1051                    }
1052                    v.base = b;
1053                    v.stealHint = pid;
1054                    UNSAFE.putOrderedObject(this, currentStealOffset, t);
1055                    t.quietlyExec();
1056                    UNSAFE.putOrderedObject(this, currentStealOffset, ps);
1057                }
1058            }
1059            // Try to descend to find v's stealer
1060            ForkJoinTask<?> next = v.currentJoin;
1061            if (task.status < 0 || next == null || next == task ||
1062                joinMe.status < 0)
1063                return;
1064            task = next;
1065            thread = v;
1066        }
1067    }
1068
1069    /**
1070     * Implements ForkJoinTask.getSurplusQueuedTaskCount().
1071     * Returns an estimate of the number of tasks, offset by a
1072     * function of number of idle workers.
1073     *
1074     * This method provides a cheap heuristic guide for task
1075     * partitioning when programmers, frameworks, tools, or languages
1076     * have little or no idea about task granularity.  In essence by
1077     * offering this method, we ask users only about tradeoffs in
1078     * overhead vs expected throughput and its variance, rather than
1079     * how finely to partition tasks.
1080     *
1081     * In a steady state strict (tree-structured) computation, each
1082     * thread makes available for stealing enough tasks for other
1083     * threads to remain active. Inductively, if all threads play by
1084     * the same rules, each thread should make available only a
1085     * constant number of tasks.
1086     *
1087     * The minimum useful constant is just 1. But using a value of 1
1088     * would require immediate replenishment upon each steal to
1089     * maintain enough tasks, which is infeasible.  Further,
1090     * partitionings/granularities of offered tasks should minimize
1091     * steal rates, which in general means that threads nearer the top
1092     * of computation tree should generate more than those nearer the
1093     * bottom. In perfect steady state, each thread is at
1094     * approximately the same level of computation tree. However,
1095     * producing extra tasks amortizes the uncertainty of progress and
1096     * diffusion assumptions.
1097     *
1098     * So, users will want to use values larger, but not much larger
1099     * than 1 to both smooth over transient shortages and hedge
1100     * against uneven progress; as traded off against the cost of
1101     * extra task overhead. We leave the user to pick a threshold
1102     * value to compare with the results of this call to guide
1103     * decisions, but recommend values such as 3.
1104     *
1105     * When all threads are active, it is on average OK to estimate
1106     * surplus strictly locally. In steady-state, if one thread is
1107     * maintaining say 2 surplus tasks, then so are others. So we can
1108     * just use estimated queue length (although note that (sp - base)
1109     * can be an overestimate because of stealers lagging increments
1110     * of base).  However, this strategy alone leads to serious
1111     * mis-estimates in some non-steady-state conditions (ramp-up,
1112     * ramp-down, other stalls). We can detect many of these by
1113     * further considering the number of "idle" threads, that are
1114     * known to have zero queued tasks, so compensate by a factor of
1115     * (#idle/#active) threads.
1116     */
1117    final int getEstimatedSurplusTaskCount() {
1118        return sp - base - pool.idlePerActive();
1119    }
1120
1121    /**
1122     * Runs tasks until {@code pool.isQuiescent()}.
1123     */
1124    final void helpQuiescePool() {
1125        ForkJoinTask<?> ps = currentSteal; // to restore below
1126        for (;;) {
1127            ForkJoinTask<?> t = pollLocalTask();
1128            if (t != null || (t = scan()) != null)
1129                t.quietlyExec();
1130            else {
1131                ForkJoinPool p = pool;
1132                int a; // to inline CASes
1133                if (active) {
1134                    if (!UNSAFE.compareAndSwapInt
1135                        (p, poolRunStateOffset, a = p.runState, a - 1))
1136                        continue;   // retry later
1137                    active = false; // inactivate
1138                    UNSAFE.putOrderedObject(this, currentStealOffset, ps);
1139                }
1140                if (p.isQuiescent()) {
1141                    active = true; // re-activate
1142                    do {} while (!UNSAFE.compareAndSwapInt
1143                                 (p, poolRunStateOffset, a = p.runState, a+1));
1144                    return;
1145                }
1146            }
1147        }
1148    }
1149
1150    // Unsafe mechanics
1151
1152    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1153    private static final long spOffset =
1154        objectFieldOffset("sp", ForkJoinWorkerThread.class);
1155    private static final long runStateOffset =
1156        objectFieldOffset("runState", ForkJoinWorkerThread.class);
1157    private static final long currentJoinOffset =
1158        objectFieldOffset("currentJoin", ForkJoinWorkerThread.class);
1159    private static final long currentStealOffset =
1160        objectFieldOffset("currentSteal", ForkJoinWorkerThread.class);
1161    private static final long qBase =
1162        UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
1163    private static final long poolRunStateOffset = // to inline CAS
1164        objectFieldOffset("runState", ForkJoinPool.class);
1165
1166    private static final int qShift;
1167
1168    static {
1169        int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
1170        if ((s & (s-1)) != 0)
1171            throw new Error("data type scale not a power of two");
1172        qShift = 31 - Integer.numberOfLeadingZeros(s);
1173        MAXIMUM_QUEUE_CAPACITY = 1 << (31 - qShift);
1174    }
1175
1176    private static long objectFieldOffset(String field, Class<?> klazz) {
1177        try {
1178            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1179        } catch (NoSuchFieldException e) {
1180            // Convert Exception to corresponding Error
1181            NoSuchFieldError error = new NoSuchFieldError(field);
1182            error.initCause(e);
1183            throw error;
1184        }
1185    }
1186
1187    /**
1188     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1189     * Replace with a simple call to Unsafe.getUnsafe when integrating
1190     * into a jdk.
1191     *
1192     * @return a sun.misc.Unsafe
1193     */
1194    private static sun.misc.Unsafe getUnsafe() {
1195        try {
1196            return sun.misc.Unsafe.getUnsafe();
1197        } catch (SecurityException se) {
119              try {
120 <                return java.security.AccessController.doPrivileged
121 <                    (new java.security
122 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
123 <                        public sun.misc.Unsafe run() throws Exception {
124 <                            java.lang.reflect.Field f = sun.misc
125 <                                .Unsafe.class.getDeclaredField("theUnsafe");
1205 <                            f.setAccessible(true);
1206 <                            return (sun.misc.Unsafe) f.get(null);
1207 <                        }});
1208 <            } catch (java.security.PrivilegedActionException e) {
1209 <                throw new RuntimeException("Could not initialize intrinsics",
1210 <                                           e.getCause());
120 >                onTermination(exception);
121 >            } catch (Throwable ex) {
122 >                if (exception == null)
123 >                    exception = ex;
124 >            } finally {
125 >                pool.deregisterWorker(this, exception);
126              }
127          }
128      }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines