ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.3 by dl, Wed Jan 7 19:12:36 2009 UTC vs.
Revision 1.72 by dl, Mon Nov 19 18:12:42 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
11 < import java.util.concurrent.locks.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 >
9 > import java.util.concurrent.atomic.AtomicInteger;
10  
11   /**
12 < * A thread managed by a {@link ForkJoinPool}.  This class is
13 < * subclassable solely for the sake of adding functionality -- there
14 < * are no overridable methods dealing with scheduling or
15 < * execution. However, you can override initialization and termination
16 < * cleanup methods surrounding the main task processing loop.  If you
17 < * do create such a subclass, you will also need to supply a custom
18 < * ForkJoinWorkerThreadFactory to use it in a ForkJoinPool.
19 < *
20 < * <p>This class also provides methods for generating per-thread
21 < * random numbers, with the same properties as {@link
22 < * java.util.Random} but with each generator isolated from those of
23 < * other threads.
12 > * A thread managed by a {@link ForkJoinPool}, which executes
13 > * {@link ForkJoinTask}s.
14 > * This class is subclassable solely for the sake of adding
15 > * functionality -- there are no overridable methods dealing with
16 > * scheduling or execution.  However, you can override initialization
17 > * and termination methods surrounding the main task processing loop.
18 > * If you do create such a subclass, you will also need to supply a
19 > * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it
20 > * in a {@code ForkJoinPool}.
21 > *
22 > * @since 1.7
23 > * @author Doug Lea
24   */
25   public class ForkJoinWorkerThread extends Thread {
26      /*
27 <     * Algorithm overview:
28 <     *
29 <     * 1. Work-Stealing: Work-stealing queues are special forms of
34 <     * Deques that support only three of the four possible
35 <     * end-operations -- push, pop, and deq (aka steal), and only do
36 <     * so under the constraints that push and pop are called only from
37 <     * the owning thread, while deq may be called from other threads.
38 <     * (If you are unfamiliar with them, you probably want to read
39 <     * Herlihy and Shavit's book "The Art of Multiprocessor
40 <     * programming", chapter 16 describing these in more detail before
41 <     * proceeding.)  The main work-stealing queue design is roughly
42 <     * similar to "Dynamic Circular Work-Stealing Deque" by David
43 <     * Chase and Yossi Lev, SPAA 2005
44 <     * (http://research.sun.com/scalable/pubs/index.html).  The main
45 <     * difference ultimately stems from gc requirements that we null
46 <     * out taken slots as soon as we can, to maintain as small a
47 <     * footprint as possible even in programs generating huge numbers
48 <     * of tasks. To accomplish this, we shift the CAS arbitrating pop
49 <     * vs deq (steal) from being on the indices ("base" and "sp") to
50 <     * the slots themselves (mainly via method "casSlotNull()"). So,
51 <     * both a successful pop and deq mainly entail CAS'ing a nonnull
52 <     * slot to null.  Because we rely on CASes of references, we do
53 <     * not need tag bits on base or sp.  They are simple ints as used
54 <     * in any circular array-based queue (see for example ArrayDeque).
55 <     * Updates to the indices must still be ordered in a way that
56 <     * guarantees that (sp - base) > 0 means the queue is empty, but
57 <     * otherwise may err on the side of possibly making the queue
58 <     * appear nonempty when a push, pop, or deq have not fully
59 <     * committed. Note that this means that the deq operation,
60 <     * considered individually, is not wait-free. One thief cannot
61 <     * successfully continue until another in-progress one (or, if
62 <     * previously empty, a push) completes.  However, in the
63 <     * aggregate, we ensure at least probablistic non-blockingness. If
64 <     * an attempted steal fails, a thief always chooses a different
65 <     * random victim target to try next. So, in order for one thief to
66 <     * progress, it suffices for any in-progress deq or new push on
67 <     * any empty queue to complete. One reason this works well here is
68 <     * that apparently-nonempty often means soon-to-be-stealable,
69 <     * which gives threads a chance to activate if necessary before
70 <     * stealing (see below).
71 <     *
72 <     * Efficient implementation of this approach currently relies on
73 <     * an uncomfortable amount of "Unsafe" mechanics. To maintain
74 <     * correct orderings, reads and writes of variable base require
75 <     * volatile ordering.  Variable sp does not require volatile write
76 <     * but needs cheaper store-ordering on writes.  Because they are
77 <     * protected by volatile base reads, reads of the queue array and
78 <     * its slots do not need volatile load semantics, but writes (in
79 <     * push) require store order and CASes (in pop and deq) require
80 <     * (volatile) CAS semantics. Since these combinations aren't
81 <     * supported using ordinary volatiles, the only way to accomplish
82 <     * these effciently is to use direct Unsafe calls. (Using external
83 <     * AtomicIntegers and AtomicReferenceArrays for the indices and
84 <     * array is significantly slower because of memory locality and
85 <     * indirection effects.) Further, performance on most platforms is
86 <     * very sensitive to placement and sizing of the (resizable) queue
87 <     * array.  Even though these queues don't usually become all that
88 <     * big, the initial size must be large enough to counteract cache
89 <     * contention effects across multiple queues (especially in the
90 <     * presence of GC cardmarking). Also, to improve thread-locality,
91 <     * queues are currently initialized immediately after the thread
92 <     * gets the initial signal to start processing tasks.  However,
93 <     * all queue-related methods except pushTask are written in a way
94 <     * that allows them to instead be lazily allocated and/or disposed
95 <     * of when empty. All together, these low-level implementation
96 <     * choices produce as much as a factor of 4 performance
97 <     * improvement compared to naive implementations, and enable the
98 <     * processing of billions of tasks per second, sometimes at the
99 <     * expense of ugliness.
100 <     *
101 <     * 2. Run control: The primary run control is based on a global
102 <     * counter (activeCount) held by the pool. It uses an algorithm
103 <     * similar to that in Herlihy and Shavit section 17.6 to cause
104 <     * threads to eventually block when all threads declare they are
105 <     * inactive. (See variable "scans".)  For this to work, threads
106 <     * must be declared active when executing tasks, and before
107 <     * stealing a task. They must be inactive before blocking on the
108 <     * Pool Barrier (awaiting a new submission or other Pool
109 <     * event). In between, there is some free play which we take
110 <     * advantage of to avoid contention and rapid flickering of the
111 <     * global activeCount: If inactive, we activate only if a victim
112 <     * queue appears to be nonempty (see above).  Similarly, a thread
113 <     * tries to inactivate only after a full scan of other threads.
114 <     * The net effect is that contention on activeCount is rarely a
115 <     * measurable performance issue. (There are also a few other cases
116 <     * where we scan for work rather than retry/block upon
117 <     * contention.)
27 >     * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
28 >     * ForkJoinTasks. For explanation, see the internal documentation
29 >     * of class ForkJoinPool.
30       *
31 <     * 3. Selection control. We maintain policy of always choosing to
32 <     * run local tasks rather than stealing, and always trying to
33 <     * steal tasks before trying to run a new submission. All steals
34 <     * are currently performed in randomly-chosen deq-order. It may be
35 <     * worthwhile to bias these with locality / anti-locality
36 <     * information, but doing this well probably requires more
37 <     * lower-level information from JVMs than currently provided.
31 >     * This class just maintains links to its pool and WorkQueue.  The
32 >     * pool field is set upon construction, but the workQueue field is
33 >     * not set until the thread has started (unless forced early by a
34 >     * subclass constructor call to poolIndex()).  This provides
35 >     * better memory placement (because this thread allocates queue
36 >     * and bookkeeping fields) but because the field is non-final, we
37 >     * require that it never be accessed except by the owning thread.
38       */
39  
40 <    /**
41 <     * Capacity of work-stealing queue array upon initialization.
130 <     * Must be a power of two. Initial size must be at least 2, but is
131 <     * padded to minimize cache effects.
132 <     */
133 <    private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
134 <
135 <    /**
136 <     * Maximum work-stealing queue array size.  Must be less than or
137 <     * equal to 1 << 30 to ensure lack of index wraparound.
138 <     */
139 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 30;
140 <
141 <    /**
142 <     * Generator of seeds for per-thread random numbers.
143 <     */
144 <    private static final Random randomSeedGenerator = new Random();
145 <
146 <    /**
147 <     * The work-stealing queue array. Size must be a power of two.
148 <     */
149 <    private ForkJoinTask<?>[] queue;
40 >    final ForkJoinPool pool;                // the pool this thread works in
41 >    ForkJoinPool.WorkQueue workQueue;       // Work-stealing mechanics
42  
43      /**
44 <     * Index (mod queue.length) of next queue slot to push to or pop
153 <     * from. It is written only by owner thread, via ordered store.
154 <     * Both sp and base are allowed to wrap around on overflow, but
155 <     * (sp - base) still estimates size.
44 >     * Sequence number for creating worker Names
45       */
46 <    private volatile int sp;
158 <
159 <    /**
160 <     * Index (mod queue.length) of least valid queue slot, which is
161 <     * always the next position to steal from if nonempty.
162 <     */
163 <    private volatile int base;
164 <
165 <    /**
166 <     * The pool this thread works in.
167 <     */
168 <    final ForkJoinPool pool;
169 <
170 <    /**
171 <     * Index of this worker in pool array. Set once by pool before
172 <     * running, and accessed directly by pool during cleanup etc
173 <     */
174 <    int poolIndex;
175 <
176 <    /**
177 <     * Run state of this worker. Supports simple versions of the usual
178 <     * shutdown/shutdownNow control.
179 <     */
180 <    private volatile int runState;
181 <
182 <    // Runstate values. Order matters
183 <    private static final int RUNNING     = 0;
184 <    private static final int SHUTDOWN    = 1;
185 <    private static final int TERMINATING = 2;
186 <    private static final int TERMINATED  = 3;
187 <
188 <    /**
189 <     * Activity status. When true, this worker is considered active.
190 <     * Must be false upon construction. It must be true when executing
191 <     * tasks, and BEFORE stealing a task. It must be false before
192 <     * blocking on the Pool Barrier.
193 <     */
194 <    private boolean active;
195 <
196 <    /**
197 <     * Number of steals, transferred to pool when idle
198 <     */
199 <    private int stealCount;
200 <
201 <    /**
202 <     * Seed for random number generator for choosing steal victims
203 <     */
204 <    private int randomVictimSeed;
205 <
206 <    /**
207 <     * Seed for embedded Jurandom
208 <     */
209 <    private long juRandomSeed;
210 <
211 <    /**
212 <     * The last barrier event waited for
213 <     */
214 <    private long eventCount;
46 >    private static final AtomicInteger threadNumber = new AtomicInteger();
47  
48      /**
49       * Creates a ForkJoinWorkerThread operating in the given pool.
50 +     *
51       * @param pool the pool this thread works in
52       * @throws NullPointerException if pool is null
53       */
54      protected ForkJoinWorkerThread(ForkJoinPool pool) {
55 <        if (pool == null) throw new NullPointerException();
55 >        super(pool.workerNamePrefix.concat(Integer.toString(threadNumber.incrementAndGet())));
56 >        setDaemon(true);
57          this.pool = pool;
58 <        // remaining initialization deferred to onStart
58 >        Thread.UncaughtExceptionHandler ueh = pool.ueh;
59 >        if (ueh != null)
60 >            setUncaughtExceptionHandler(ueh);
61      }
62  
227    // public access methods
228
63      /**
64 <     * Returns the pool hosting the current task execution.
64 >     * Returns the pool hosting this thread.
65 >     *
66       * @return the pool
67       */
68 <    public static ForkJoinPool getPool() {
69 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).pool;
235 <    }
236 <
237 <    /**
238 <     * Returns the index number of the current worker thread in its
239 <     * pool.  The returned value ranges from zero to the maximum
240 <     * number of threads (minus one) that have ever been created in
241 <     * the pool.  This method may be useful for applications that
242 <     * track status or collect results on a per-worker basis.
243 <     * @return the index number.
244 <     */
245 <    public static int getPoolIndex() {
246 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).poolIndex;
68 >    public ForkJoinPool getPool() {
69 >        return pool;
70      }
71  
249    //  Access methods used by Pool
250
72      /**
73 <     * Get and clear steal count for accumulation by pool.  Called
74 <     * only when known to be idle (in pool.sync and termination).
75 <     */
76 <    final int getAndClearStealCount() {
77 <        int sc = stealCount;
78 <        stealCount = 0;
79 <        return sc;
259 <    }
260 <
261 <    /**
262 <     * Returns estimate of the number of tasks in the queue, without
263 <     * correcting for transient negative values
264 <     */
265 <    final int getRawQueueSize() {
266 <        return sp - base;
267 <    }
268 <
269 <    // Intrinsics-based support for queue operations.
270 <    // Currently these three (setSp, setSlot, casSlotNull) are
271 <    // usually manually inlined to improve performance
272 <
273 <    /**
274 <     * Sets sp in store-order.
275 <     */
276 <    private void setSp(int s) {
277 <        _unsafe.putOrderedInt(this, spOffset, s);
278 <    }
279 <
280 <    /**
281 <     * Add in store-order the given task at given slot of q to
282 <     * null. Caller must ensure q is nonnull and index is in range.
283 <     */
284 <    private static void setSlot(ForkJoinTask<?>[] q, int i,
285 <                                ForkJoinTask<?> t){
286 <        _unsafe.putOrderedObject(q, (i << qShift) + qBase, t);
287 <    }
288 <
289 <    /**
290 <     * CAS given slot of q to null. Caller must ensure q is nonnull
291 <     * and index is in range.
292 <     */
293 <    private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
294 <                                       ForkJoinTask<?> t) {
295 <        return _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
296 <    }
297 <
298 <    // Main queue methods
299 <
300 <    /**
301 <     * Pushes a task. Called only by current thread.
302 <     * @param t the task. Caller must ensure nonnull
303 <     */
304 <    final void pushTask(ForkJoinTask<?> t) {
305 <        ForkJoinTask<?>[] q = queue;
306 <        int mask = q.length - 1;
307 <        int s = sp;
308 <        _unsafe.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
309 <        _unsafe.putOrderedInt(this, spOffset, ++s);
310 <        if ((s -= base) == 1)
311 <            pool.signalNonEmptyWorkerQueue();
312 <        else if (s >= mask)
313 <            growQueue();
314 <    }
315 <
316 <    /**
317 <     * Tries to take a task from the base of the queue, failing if
318 <     * either empty or contended.
319 <     * @return a task, or null if none or contended.
320 <     */
321 <    private ForkJoinTask<?> deqTask() {
322 <        ForkJoinTask<?>[] q;
323 <        ForkJoinTask<?> t;
324 <        int i;
325 <        int b;
326 <        if (sp != (b = base) &&
327 <            (q = queue) != null && // must read q after b
328 <            (t = q[i = (q.length - 1) & b]) != null &&
329 <            _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
330 <            base = b + 1;
331 <            return t;
332 <        }
333 <        return null;
334 <    }
335 <
336 <    /**
337 <     * Returns a popped task, or null if empty.  Called only by
338 <     * current thread.
339 <     */
340 <    final ForkJoinTask<?> popTask() {
341 <        ForkJoinTask<?> t;
342 <        int i;
343 <        ForkJoinTask<?>[] q = queue;
344 <        int mask = q.length - 1;
345 <        int s = sp;
346 <        if (s != base &&
347 <            (t = q[i = (s - 1) & mask]) != null &&
348 <            _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
349 <            _unsafe.putOrderedInt(this, spOffset, s - 1);
350 <            return t;
351 <        }
352 <        return null;
353 <    }
354 <
355 <    /**
356 <     * Specialized version of popTask to pop only if
357 <     * topmost element is the given task. Called only
358 <     * by current thread.
359 <     * @param t the task. Caller must ensure nonnull
360 <     */
361 <    final boolean unpushTask(ForkJoinTask<?> t) {
362 <        ForkJoinTask<?>[] q = queue;
363 <        int mask = q.length - 1;
364 <        int s = sp - 1;
365 <        if (_unsafe.compareAndSwapObject(q, ((s & mask) << qShift) + qBase,
366 <                                         t, null)) {
367 <            _unsafe.putOrderedInt(this, spOffset, s);
368 <            return true;
369 <        }
370 <        return false;
371 <    }
372 <
373 <    /**
374 <     * Returns next task to pop.
375 <     */
376 <    final ForkJoinTask<?> peekTask() {
377 <        ForkJoinTask<?>[] q = queue;
378 <        return q == null? null : q[(sp - 1) & (q.length - 1)];
379 <    }
380 <
381 <    /**
382 <     * Doubles queue array size. Transfers elements by emulating
383 <     * steals (deqs) from old array and placing, oldest first, into
384 <     * new array.
385 <     */
386 <    private void growQueue() {
387 <        ForkJoinTask<?>[] oldQ = queue;
388 <        int oldSize = oldQ.length;
389 <        int newSize = oldSize << 1;
390 <        if (newSize > MAXIMUM_QUEUE_CAPACITY)
391 <            throw new RejectedExecutionException("Queue capacity exceeded");
392 <        ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
393 <
394 <        int b = base;
395 <        int bf = b + oldSize;
396 <        int oldMask = oldSize - 1;
397 <        int newMask = newSize - 1;
398 <        do {
399 <            int oldIndex = b & oldMask;
400 <            ForkJoinTask<?> t = oldQ[oldIndex];
401 <            if (t != null && !casSlotNull(oldQ, oldIndex, t))
402 <                t = null;
403 <            setSlot(newQ, b & newMask, t);
404 <        } while (++b != bf);
405 <        pool.signalIdleWorkers(false);
406 <    }
407 <
408 <    // Runstate management
409 <
410 <    final boolean isShutdown()    { return runState >= SHUTDOWN;  }
411 <    final boolean isTerminating() { return runState >= TERMINATING;  }
412 <    final boolean isTerminated()  { return runState == TERMINATED; }
413 <    final boolean shutdown()      { return transitionRunStateTo(SHUTDOWN); }
414 <    final boolean shutdownNow()   { return transitionRunStateTo(TERMINATING); }
415 <
416 <    /**
417 <     * Transition to at least the given state. Return true if not
418 <     * already at least given state.
419 <     */
420 <    private boolean transitionRunStateTo(int state) {
421 <        for (;;) {
422 <            int s = runState;
423 <            if (s >= state)
424 <                return false;
425 <            if (_unsafe.compareAndSwapInt(this, runStateOffset, s, state))
426 <                return true;
427 <        }
428 <    }
429 <
430 <    /**
431 <     * Ensure status is active and if necessary adjust pool active count
432 <     */
433 <    final void activate() {
434 <        if (!active) {
435 <            active = true;
436 <            pool.incrementActiveCount();
437 <        }
438 <    }
439 <
440 <    /**
441 <     * Ensure status is inactive and if necessary adjust pool active count
73 >     * Returns the index number of this thread in its pool.  The
74 >     * returned value ranges from zero to the maximum number of
75 >     * threads (minus one) that have ever been created in the pool.
76 >     * This method may be useful for applications that track status or
77 >     * collect results per-worker rather than per-task.
78 >     *
79 >     * @return the index number
80       */
81 <    final void inactivate() {
82 <        if (active) {
83 <            active = false;
84 <            pool.decrementActiveCount();
81 >    public int getPoolIndex() {
82 >        // force early registration if called before started
83 >        ForkJoinPool.WorkQueue q;
84 >        if ((q = workQueue) == null) {
85 >            pool.registerWorker(this);
86 >            q = workQueue;
87          }
88 +        return q.poolIndex;
89      }
90  
450    // Lifecycle methods
451
91      /**
92       * Initializes internal state after construction but before
93       * processing any tasks. If you override this method, you must
94 <     * invoke super.onStart() at the beginning of the method.
94 >     * invoke {@code super.onStart()} at the beginning of the method.
95       * Initialization requires care: Most fields must have legal
96       * default values, to ensure that attempted accesses from other
97       * threads work correctly even before this thread starts
98       * processing tasks.
99       */
100      protected void onStart() {
462        juRandomSeed = randomSeedGenerator.nextLong();
463        do;while((randomVictimSeed = nextRandomInt()) == 0); // must be nonzero
464        if (queue == null)
465            queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
466
467        // Heuristically allow one initial thread to warm up; others wait
468        if (poolIndex < pool.getParallelism() - 1) {
469            eventCount = pool.sync(this, 0);
470            activate();
471        }
101      }
102  
103      /**
104 <     * Perform cleanup associated with termination of this worker
104 >     * Performs cleanup associated with termination of this worker
105       * thread.  If you override this method, you must invoke
106 <     * super.onTermination at the end of the overridden method.
106 >     * {@code super.onTermination} at the end of the overridden method.
107       *
108       * @param exception the exception causing this thread to abort due
109 <     * to an unrecoverable error, or null if completed normally.
109 >     * to an unrecoverable error, or {@code null} if completed normally
110       */
111      protected void onTermination(Throwable exception) {
483        try {
484            clearLocalTasks();
485            inactivate();
486            cancelTasks();
487        } finally {
488            terminate(exception);
489        }
490    }
491
492    /**
493     * Notify pool of termination and, if exception is nonnull,
494     * rethrow it to trigger this thread's uncaughtExceptionHandler
495     */
496    private void terminate(Throwable exception) {
497        transitionRunStateTo(TERMINATED);
498        try {
499            pool.workerTerminated(this);
500        } finally {
501            if (exception != null)
502                ForkJoinTask.rethrowException(exception);
503        }
504    }
505
506    /**
507     * Run local tasks on exit from main.
508     */
509    private void clearLocalTasks() {
510        while (base != sp && !pool.isTerminating()) {
511            ForkJoinTask<?> t = popTask();
512            if (t != null) {
513                activate(); // ensure active status
514                t.quietlyExec();
515            }
516        }
517    }
518
519    /**
520     * Removes and cancels all tasks in queue.  Can be called from any
521     * thread.
522     */
523    final void cancelTasks() {
524        while (base != sp) {
525            ForkJoinTask<?> t = deqTask();
526            if (t != null)
527                t.cancelIgnoringExceptions();
528        }
112      }
113  
114      /**
115       * This method is required to be public, but should never be
116       * called explicitly. It performs the main run loop to execute
117 <     * ForkJoinTasks.
117 >     * {@link ForkJoinTask}s.
118       */
119      public void run() {
120          Throwable exception = null;
121          try {
122 +            pool.registerWorker(this);
123              onStart();
124 <            while (!isShutdown())
541 <                step();
124 >            pool.runWorker(workQueue);
125          } catch (Throwable ex) {
126              exception = ex;
127          } finally {
128 <            onTermination(exception);
129 <        }
130 <    }
131 <
132 <    /**
133 <     * Main top-level action.
134 <     */
552 <    private void step() {
553 <        ForkJoinTask<?> t = sp != base? popTask() : null;
554 <        if (t != null || (t = scan(null, true)) != null) {
555 <            activate();
556 <            t.quietlyExec();
557 <        }
558 <        else {
559 <            inactivate();
560 <            eventCount = pool.sync(this, eventCount);
561 <        }
562 <    }
563 <
564 <    // scanning for and stealing tasks
565 <
566 <    /**
567 <     * Computes next value for random victim probe. Scans don't
568 <     * require a very high quality generator, but also not a crummy
569 <     * one. Marsaglia xor-shift is cheap and works well.
570 <     *
571 <     * This is currently unused, and manually inlined
572 <     */
573 <    private static int xorShift(int r) {
574 <        r ^= r << 1;
575 <        r ^= r >>> 3;
576 <        r ^= r << 10;
577 <        return r;
578 <    }
579 <
580 <    /**
581 <     * Tries to steal a task from another worker and/or, if enabled,
582 <     * submission queue. Starts at a random index of workers array,
583 <     * and probes workers until finding one with non-empty queue or
584 <     * finding that all are empty.  It randomly selects the first n-1
585 <     * probes. If these are empty, it resorts to full circular
586 <     * traversal, which is necessary to accurately set active status
587 <     * by caller. Also restarts if pool barrier has tripped since last
588 <     * scan, which forces refresh of workers array, in case barrier
589 <     * was associated with resize.
590 <     *
591 <     * This method must be both fast and quiet -- usually avoiding
592 <     * memory accesses that could disrupt cache sharing etc other than
593 <     * those needed to check for and take tasks. This accounts for,
594 <     * among other things, updating random seed in place without
595 <     * storing it until exit. (Note that we only need to store it if
596 <     * we found a task; otherwise it doesn't matter if we start at the
597 <     * same place next time.)
598 <     *
599 <     * @param joinMe if non null; exit early if done
600 <     * @param checkSubmissions true if OK to take submissions
601 <     * @return a task, or null if none found
602 <     */
603 <    private ForkJoinTask<?> scan(ForkJoinTask<?> joinMe,
604 <                                 boolean checkSubmissions) {
605 <        ForkJoinPool p = pool;
606 <        if (p == null)                    // Never null, but avoids
607 <            return null;                  //   implicit nullchecks below
608 <        int r = randomVictimSeed;         // extract once to keep scan quiet
609 <        restart:                          // outer loop refreshes ws array
610 <        while (joinMe == null || joinMe.status >= 0) {
611 <            int mask;
612 <            ForkJoinWorkerThread[] ws = p.workers;
613 <            if (ws != null && (mask = ws.length - 1) > 0) {
614 <                int probes = -mask;       // use random index while negative
615 <                int idx = r;
616 <                for (;;) {
617 <                    ForkJoinWorkerThread v;
618 <                    // inlined xorshift to update seed
619 <                    r ^= r << 1;  r ^= r >>> 3; r ^= r << 10;
620 <                    if ((v = ws[mask & idx]) != null && v.sp != v.base) {
621 <                        ForkJoinTask<?> t;
622 <                        activate();
623 <                        if ((joinMe == null || joinMe.status >= 0) &&
624 <                            (t = v.deqTask()) != null) {
625 <                            randomVictimSeed = r;
626 <                            ++stealCount;
627 <                            return t;
628 <                        }
629 <                        continue restart; // restart on contention
630 <                    }
631 <                    if ((probes >> 1) <= mask) // n-1 random then circular
632 <                        idx = (probes++ < 0)? r : (idx + 1);
633 <                    else
634 <                        break;
635 <                }
636 <            }
637 <            if (checkSubmissions && p.hasQueuedSubmissions()) {
638 <                activate();
639 <                ForkJoinTask<?> t = p.pollSubmission();
640 <                if (t != null)
641 <                    return t;
642 <            }
643 <            else {
644 <                long ec = eventCount;     // restart on pool event
645 <                if ((eventCount = p.getEventCount()) == ec)
646 <                    break;
647 <            }
648 <        }
649 <        return null;
650 <    }
651 <
652 <    /**
653 <     * Callback from pool.sync to rescan before blocking.  If a
654 <     * task is found, it is pushed so it can be executed upon return.
655 <     * @return true if found and pushed a task
656 <     */
657 <    final boolean prescan() {
658 <        ForkJoinTask<?> t = scan(null, true);
659 <        if (t != null) {
660 <            pushTask(t);
661 <            return true;
662 <        }
663 <        else {
664 <            inactivate();
665 <            return false;
666 <        }
667 <    }
668 <
669 <    // Support for ForkJoinTask methods
670 <
671 <    /**
672 <     * Scan, returning early if joinMe done
673 <     */
674 <    final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
675 <        ForkJoinTask<?> t = scan(joinMe, false);
676 <        if (t != null && joinMe.status < 0 && sp == base) {
677 <            pushTask(t); // unsteal if done and this task would be stealable
678 <            t = null;
679 <        }
680 <        return t;
681 <    }
682 <    
683 <    /**
684 <     * Pops or steals a task
685 <     * @return task, or null if none available
686 <     */
687 <    final ForkJoinTask<?> pollLocalOrStolenTask() {
688 <        ForkJoinTask<?> t;
689 <        return (t = popTask()) == null? scan(null, false) : t;
690 <    }
691 <
692 <    /**
693 <     * Runs tasks until pool isQuiescent
694 <     */
695 <    final void helpQuiescePool() {
696 <        for (;;) {
697 <            ForkJoinTask<?> t = pollLocalOrStolenTask();
698 <            if (t != null) {
699 <                activate();
700 <                t.quietlyExec();
701 <            }
702 <            else {
703 <                inactivate();
704 <                if (pool.isQuiescent()) {
705 <                    activate(); // re-activate on exit
706 <                    break;
707 <                }
708 <            }
709 <        }
710 <    }
711 <
712 <    /**
713 <     * Returns an estimate of the number of tasks in the queue.
714 <     */
715 <    final int getQueueSize() {
716 <        int n = sp - base;
717 <        return n <= 0? 0 : n; // suppress momentarily negative values
718 <    }
719 <
720 <    /**
721 <     * Returns an estimate of the number of tasks, offset by a
722 <     * function of number of idle workers.
723 <     */
724 <    final int getEstimatedSurplusTaskCount() {
725 <        // The halving approximates weighting idle vs non-idle workers
726 <        return (sp - base) - (pool.getIdleThreadCount() >>> 1);
727 <    }
728 <
729 <    // Per-worker exported random numbers
730 <
731 <    // Same constants as java.util.Random
732 <    final static long JURandomMultiplier = 0x5DEECE66DL;
733 <    final static long JURandomAddend = 0xBL;
734 <    final static long JURandomMask = (1L << 48) - 1;
735 <
736 <    private final int nextJURandom(int bits) {
737 <        long next = (juRandomSeed * JURandomMultiplier + JURandomAddend) &
738 <            JURandomMask;
739 <        juRandomSeed = next;
740 <        return (int)(next >>> (48 - bits));
741 <    }
742 <
743 <    private final int nextJURandomInt(int n) {
744 <        if (n <= 0)
745 <            throw new IllegalArgumentException("n must be positive");
746 <        int bits = nextJURandom(31);
747 <        if ((n & -n) == n)
748 <            return (int)((n * (long)bits) >> 31);
749 <
750 <        for (;;) {
751 <            int val = bits % n;
752 <            if (bits - val + (n-1) >= 0)
753 <                return val;
754 <            bits = nextJURandom(31);
755 <        }
756 <    }
757 <
758 <    private final long nextJURandomLong() {
759 <        return ((long)(nextJURandom(32)) << 32) + nextJURandom(32);
760 <    }
761 <
762 <    private final long nextJURandomLong(long n) {
763 <        if (n <= 0)
764 <            throw new IllegalArgumentException("n must be positive");
765 <        long offset = 0;
766 <        while (n >= Integer.MAX_VALUE) { // randomly pick half range
767 <            int bits = nextJURandom(2); // 2nd bit for odd vs even split
768 <            long half = n >>> 1;
769 <            long nextn = ((bits & 2) == 0)? half : n - half;
770 <            if ((bits & 1) == 0)
771 <                offset += n - nextn;
772 <            n = nextn;
773 <        }
774 <        return offset + nextJURandomInt((int)n);
775 <    }
776 <
777 <    private final double nextJURandomDouble() {
778 <        return (((long)(nextJURandom(26)) << 27) + nextJURandom(27))
779 <            / (double)(1L << 53);
780 <    }
781 <
782 <    /**
783 <     * Returns a random integer using a per-worker random
784 <     * number generator with the same properties as
785 <     * {@link java.util.Random#nextInt}
786 <     * @return the next pseudorandom, uniformly distributed {@code int}
787 <     *         value from this worker's random number generator's sequence
788 <     */
789 <    public static int nextRandomInt() {
790 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
791 <            nextJURandom(32);
792 <    }
793 <
794 <    /**
795 <     * Returns a random integer using a per-worker random
796 <     * number generator with the same properties as
797 <     * {@link java.util.Random#nextInt(int)}
798 <     * @param n the bound on the random number to be returned.  Must be
799 <     *        positive.
800 <     * @return the next pseudorandom, uniformly distributed {@code int}
801 <     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
802 <     *         from this worker's random number generator's sequence
803 <     * @throws IllegalArgumentException if n is not positive
804 <     */
805 <    public static int nextRandomInt(int n) {
806 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
807 <            nextJURandomInt(n);
808 <    }
809 <
810 <    /**
811 <     * Returns a random long using a per-worker random
812 <     * number generator with the same properties as
813 <     * {@link java.util.Random#nextLong}
814 <     * @return the next pseudorandom, uniformly distributed {@code long}
815 <     *         value from this worker's random number generator's sequence
816 <     */
817 <    public static long nextRandomLong() {
818 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
819 <            nextJURandomLong();
820 <    }
821 <
822 <    /**
823 <     * Returns a random integer using a per-worker random
824 <     * number generator with the same properties as
825 <     * {@link java.util.Random#nextInt(int)}
826 <     * @param n the bound on the random number to be returned.  Must be
827 <     *        positive.
828 <     * @return the next pseudorandom, uniformly distributed {@code int}
829 <     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
830 <     *         from this worker's random number generator's sequence
831 <     * @throws IllegalArgumentException if n is not positive
832 <     */
833 <    public static long nextRandomLong(long n) {
834 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
835 <            nextJURandomLong(n);
836 <    }
837 <
838 <    /**
839 <     * Returns a random double using a per-worker random
840 <     * number generator with the same properties as
841 <     * {@link java.util.Random#nextDouble}
842 <     * @return the next pseudorandom, uniformly distributed {@code double}
843 <     *         value between {@code 0.0} and {@code 1.0} from this
844 <     *         worker's random number generator's sequence
845 <     */
846 <    public static double nextRandomDouble() {
847 <        return ((ForkJoinWorkerThread)(Thread.currentThread())).
848 <            nextJURandomDouble();
849 <    }
850 <
851 <    // Temporary Unsafe mechanics for preliminary release
852 <
853 <    static final Unsafe _unsafe;
854 <    static final long baseOffset;
855 <    static final long spOffset;
856 <    static final long qBase;
857 <    static final int qShift;
858 <    static final long runStateOffset;
859 <    static {
860 <        try {
861 <            if (ForkJoinWorkerThread.class.getClassLoader() != null) {
862 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
863 <                f.setAccessible(true);
864 <                _unsafe = (Unsafe)f.get(null);
128 >            try {
129 >                onTermination(exception);
130 >            } catch (Throwable ex) {
131 >                if (exception == null)
132 >                    exception = ex;
133 >            } finally {
134 >                pool.deregisterWorker(this, exception);
135              }
866            else
867                _unsafe = Unsafe.getUnsafe();
868            baseOffset = _unsafe.objectFieldOffset
869                (ForkJoinWorkerThread.class.getDeclaredField("base"));
870            spOffset = _unsafe.objectFieldOffset
871                (ForkJoinWorkerThread.class.getDeclaredField("sp"));
872            runStateOffset = _unsafe.objectFieldOffset
873                (ForkJoinWorkerThread.class.getDeclaredField("runState"));
874            qBase = _unsafe.arrayBaseOffset(ForkJoinTask[].class);
875            int s = _unsafe.arrayIndexScale(ForkJoinTask[].class);
876            if ((s & (s-1)) != 0)
877                throw new Error("data type scale not a power of two");
878            qShift = 31 - Integer.numberOfLeadingZeros(s);
879        } catch (Exception e) {
880            throw new RuntimeException("Could not initialize intrinsics", e);
136          }
137      }
138   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines