ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.59 by dl, Sun Nov 21 13:55:04 2010 UTC vs.
Revision 1.72 by dl, Mon Nov 19 18:12:42 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 < import java.util.Random;
10 < import java.util.Collection;
11 < import java.util.concurrent.locks.LockSupport;
12 < import java.util.concurrent.RejectedExecutionException;
9 > import java.util.concurrent.atomic.AtomicInteger;
10  
11   /**
12   * A thread managed by a {@link ForkJoinPool}, which executes
# Line 27 | Line 24 | import java.util.concurrent.RejectedExec
24   */
25   public class ForkJoinWorkerThread extends Thread {
26      /*
30     * Overview:
31     *
27       * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
28 <     * ForkJoinTasks. This class includes bookkeeping in support of
29 <     * worker activation, suspension, and lifecycle control described
35 <     * in more detail in the internal documentation of class
36 <     * ForkJoinPool. And as described further below, this class also
37 <     * includes special-cased support for some ForkJoinTask
38 <     * methods. But the main mechanics involve work-stealing:
39 <     *
40 <     * Work-stealing queues are special forms of Deques that support
41 <     * only three of the four possible end-operations -- push, pop,
42 <     * and deq (aka steal), under the further constraints that push
43 <     * and pop are called only from the owning thread, while deq may
44 <     * be called from other threads.  (If you are unfamiliar with
45 <     * them, you probably want to read Herlihy and Shavit's book "The
46 <     * Art of Multiprocessor programming", chapter 16 describing these
47 <     * in more detail before proceeding.)  The main work-stealing
48 <     * queue design is roughly similar to those in the papers "Dynamic
49 <     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
50 <     * (http://research.sun.com/scalable/pubs/index.html) and
51 <     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
52 <     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
53 <     * The main differences ultimately stem from gc requirements that
54 <     * we null out taken slots as soon as we can, to maintain as small
55 <     * a footprint as possible even in programs generating huge
56 <     * numbers of tasks. To accomplish this, we shift the CAS
57 <     * arbitrating pop vs deq (steal) from being on the indices
58 <     * ("base" and "sp") to the slots themselves (mainly via method
59 <     * "casSlotNull()"). So, both a successful pop and deq mainly
60 <     * entail a CAS of a slot from non-null to null.  Because we rely
61 <     * on CASes of references, we do not need tag bits on base or sp.
62 <     * They are simple ints as used in any circular array-based queue
63 <     * (see for example ArrayDeque).  Updates to the indices must
64 <     * still be ordered in a way that guarantees that sp == base means
65 <     * the queue is empty, but otherwise may err on the side of
66 <     * possibly making the queue appear nonempty when a push, pop, or
67 <     * deq have not fully committed. Note that this means that the deq
68 <     * operation, considered individually, is not wait-free. One thief
69 <     * cannot successfully continue until another in-progress one (or,
70 <     * if previously empty, a push) completes.  However, in the
71 <     * aggregate, we ensure at least probabilistic non-blockingness.
72 <     * If an attempted steal fails, a thief always chooses a different
73 <     * random victim target to try next. So, in order for one thief to
74 <     * progress, it suffices for any in-progress deq or new push on
75 <     * any empty queue to complete. One reason this works well here is
76 <     * that apparently-nonempty often means soon-to-be-stealable,
77 <     * which gives threads a chance to set activation status if
78 <     * necessary before stealing.
79 <     *
80 <     * This approach also enables support for "async mode" where local
81 <     * task processing is in FIFO, not LIFO order; simply by using a
82 <     * version of deq rather than pop when locallyFifo is true (as set
83 <     * by the ForkJoinPool).  This allows use in message-passing
84 <     * frameworks in which tasks are never joined.
85 <     *
86 <     * When a worker would otherwise be blocked waiting to join a
87 <     * task, it first tries a form of linear helping: Each worker
88 <     * records (in field currentSteal) the most recent task it stole
89 <     * from some other worker. Plus, it records (in field currentJoin)
90 <     * the task it is currently actively joining. Method joinTask uses
91 <     * these markers to try to find a worker to help (i.e., steal back
92 <     * a task from and execute it) that could hasten completion of the
93 <     * actively joined task. In essence, the joiner executes a task
94 <     * that would be on its own local deque had the to-be-joined task
95 <     * not been stolen. This may be seen as a conservative variant of
96 <     * the approach in Wagner & Calder "Leapfrogging: a portable
97 <     * technique for implementing efficient futures" SIGPLAN Notices,
98 <     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
99 <     * in that: (1) We only maintain dependency links across workers
100 <     * upon steals, rather than use per-task bookkeeping.  This may
101 <     * require a linear scan of workers array to locate stealers, but
102 <     * usually doesn't because stealers leave hints (that may become
103 <     * stale/wrong) of where to locate them. This isolates cost to
104 <     * when it is needed, rather than adding to per-task overhead.
105 <     * (2) It is "shallow", ignoring nesting and potentially cyclic
106 <     * mutual steals.  (3) It is intentionally racy: field currentJoin
107 <     * is updated only while actively joining, which means that we
108 <     * miss links in the chain during long-lived tasks, GC stalls etc
109 <     * (which is OK since blocking in such cases is usually a good
110 <     * idea).  (4) We bound the number of attempts to find work (see
111 <     * MAX_HELP_DEPTH) and fall back to suspending the worker and if
112 <     * necessary replacing it with a spare (see
113 <     * ForkJoinPool.awaitJoin).
114 <     *
115 <     * Efficient implementation of these algorithms currently relies
116 <     * on an uncomfortable amount of "Unsafe" mechanics. To maintain
117 <     * correct orderings, reads and writes of variable base require
118 <     * volatile ordering.  Variable sp does not require volatile
119 <     * writes but still needs store-ordering, which we accomplish by
120 <     * pre-incrementing sp before filling the slot with an ordered
121 <     * store.  (Pre-incrementing also enables backouts used in
122 <     * joinTask.)  Because they are protected by volatile base reads,
123 <     * reads of the queue array and its slots by other threads do not
124 <     * need volatile load semantics, but writes (in push) require
125 <     * store order and CASes (in pop and deq) require (volatile) CAS
126 <     * semantics.  (Michael, Saraswat, and Vechev's algorithm has
127 <     * similar properties, but without support for nulling slots.)
128 <     * Since these combinations aren't supported using ordinary
129 <     * volatiles, the only way to accomplish these efficiently is to
130 <     * use direct Unsafe calls. (Using external AtomicIntegers and
131 <     * AtomicReferenceArrays for the indices and array is
132 <     * significantly slower because of memory locality and indirection
133 <     * effects.)
28 >     * ForkJoinTasks. For explanation, see the internal documentation
29 >     * of class ForkJoinPool.
30       *
31 <     * Further, performance on most platforms is very sensitive to
32 <     * placement and sizing of the (resizable) queue array.  Even
33 <     * though these queues don't usually become all that big, the
34 <     * initial size must be large enough to counteract cache
35 <     * contention effects across multiple queues (especially in the
36 <     * presence of GC cardmarking). Also, to improve thread-locality,
37 <     * queues are initialized after starting.  All together, these
142 <     * low-level implementation choices produce as much as a factor of
143 <     * 4 performance improvement compared to naive implementations,
144 <     * and enable the processing of billions of tasks per second,
145 <     * sometimes at the expense of ugliness.
146 <     */
147 <
148 <    /**
149 <     * Generator for initial random seeds for random victim
150 <     * selection. This is used only to create initial seeds. Random
151 <     * steals use a cheaper xorshift generator per steal attempt. We
152 <     * expect only rare contention on seedGenerator, so just use a
153 <     * plain Random.
154 <     */
155 <    private static final Random seedGenerator = new Random();
156 <
157 <    /**
158 <     * The maximum stolen->joining link depth allowed in helpJoinTask.
159 <     * Depths for legitimate chains are unbounded, but we use a fixed
160 <     * constant to avoid (otherwise unchecked) cycles and bound
161 <     * staleness of traversal parameters at the expense of sometimes
162 <     * blocking when we could be helping.
163 <     */
164 <    private static final int MAX_HELP_DEPTH = 8;
165 <
166 <    /**
167 <     * Capacity of work-stealing queue array upon initialization.
168 <     * Must be a power of two. Initial size must be at least 4, but is
169 <     * padded to minimize cache effects.
170 <     */
171 <    private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
172 <
173 <    /**
174 <     * Maximum work-stealing queue array size.  Must be less than or
175 <     * equal to 1 << (31 - width of array entry) to ensure lack of
176 <     * index wraparound. The value is set in the static block
177 <     * at the end of this file after obtaining width.
178 <     */
179 <    private static final int MAXIMUM_QUEUE_CAPACITY;
180 <
181 <    /**
182 <     * The pool this thread works in. Accessed directly by ForkJoinTask.
183 <     */
184 <    final ForkJoinPool pool;
185 <
186 <    /**
187 <     * The work-stealing queue array. Size must be a power of two.
188 <     * Initialized in onStart, to improve memory locality.
189 <     */
190 <    private ForkJoinTask<?>[] queue;
191 <
192 <    /**
193 <     * Index (mod queue.length) of least valid queue slot, which is
194 <     * always the next position to steal from if nonempty.
195 <     */
196 <    private volatile int base;
197 <
198 <    /**
199 <     * Index (mod queue.length) of next queue slot to push to or pop
200 <     * from. It is written only by owner thread, and accessed by other
201 <     * threads only after reading (volatile) base.  Both sp and base
202 <     * are allowed to wrap around on overflow, but (sp - base) still
203 <     * estimates size.
204 <     */
205 <    private int sp;
206 <
207 <    /**
208 <     * The index of most recent stealer, used as a hint to avoid
209 <     * traversal in method helpJoinTask. This is only a hint because a
210 <     * worker might have had multiple steals and this only holds one
211 <     * of them (usually the most current). Declared non-volatile,
212 <     * relying on other prevailing sync to keep reasonably current.
213 <     */
214 <    private int stealHint;
215 <
216 <    /**
217 <     * Run state of this worker. In addition to the usual run levels,
218 <     * tracks if this worker is suspended as a spare, and if it was
219 <     * killed (trimmed) while suspended. However, "active" status is
220 <     * maintained separately and modified only in conjunction with
221 <     * CASes of the pool's runState (which are currently sadly
222 <     * manually inlined for performance.)  Accessed directly by pool
223 <     * to simplify checks for normal (zero) status.
31 >     * This class just maintains links to its pool and WorkQueue.  The
32 >     * pool field is set upon construction, but the workQueue field is
33 >     * not set until the thread has started (unless forced early by a
34 >     * subclass constructor call to poolIndex()).  This provides
35 >     * better memory placement (because this thread allocates queue
36 >     * and bookkeeping fields) but because the field is non-final, we
37 >     * require that it never be accessed except by the owning thread.
38       */
225    volatile int runState;
39  
40 <    private static final int TERMINATING = 0x01;
41 <    private static final int TERMINATED  = 0x02;
229 <    private static final int SUSPENDED   = 0x04; // inactive spare
230 <    private static final int TRIMMED     = 0x08; // killed while suspended
40 >    final ForkJoinPool pool;                // the pool this thread works in
41 >    ForkJoinPool.WorkQueue workQueue;       // Work-stealing mechanics
42  
43      /**
44 <     * Number of steals. Directly accessed (and reset) by
234 <     * pool.tryAccumulateStealCount when idle.
44 >     * Sequence number for creating worker Names
45       */
46 <    int stealCount;
237 <
238 <    /**
239 <     * Seed for random number generator for choosing steal victims.
240 <     * Uses Marsaglia xorshift. Must be initialized as nonzero.
241 <     */
242 <    private int seed;
243 <
244 <    /**
245 <     * Activity status. When true, this worker is considered active.
246 <     * Accessed directly by pool.  Must be false upon construction.
247 <     */
248 <    boolean active;
249 <
250 <    /**
251 <     * True if use local fifo, not default lifo, for local polling.
252 <     * Shadows value from ForkJoinPool.
253 <     */
254 <    private final boolean locallyFifo;
255 <
256 <    /**
257 <     * Index of this worker in pool array. Set once by pool before
258 <     * running, and accessed directly by pool to locate this worker in
259 <     * its workers array.
260 <     */
261 <    int poolIndex;
262 <
263 <    /**
264 <     * The last pool event waited for. Accessed only by pool in
265 <     * callback methods invoked within this thread.
266 <     */
267 <    int lastEventCount;
268 <
269 <    /**
270 <     * Encoded index and event count of next event waiter. Accessed
271 <     * only by ForkJoinPool for managing event waiters.
272 <     */
273 <    volatile long nextWaiter;
274 <
275 <    /**
276 <     * Number of times this thread suspended as spare. Accessed only
277 <     * by pool.
278 <     */
279 <    int spareCount;
280 <
281 <    /**
282 <     * Encoded index and count of next spare waiter. Accessed only
283 <     * by ForkJoinPool for managing spares.
284 <     */
285 <    volatile int nextSpare;
286 <
287 <    /**
288 <     * The task currently being joined, set only when actively trying
289 <     * to help other stealers in helpJoinTask. Written only by this
290 <     * thread, but read by others.
291 <     */
292 <    private volatile ForkJoinTask<?> currentJoin;
293 <
294 <    /**
295 <     * The task most recently stolen from another worker (or
296 <     * submission queue).  Written only by this thread, but read by
297 <     * others.
298 <     */
299 <    private volatile ForkJoinTask<?> currentSteal;
46 >    private static final AtomicInteger threadNumber = new AtomicInteger();
47  
48      /**
49       * Creates a ForkJoinWorkerThread operating in the given pool.
# Line 305 | Line 52 | public class ForkJoinWorkerThread extend
52       * @throws NullPointerException if pool is null
53       */
54      protected ForkJoinWorkerThread(ForkJoinPool pool) {
55 <        this.pool = pool;
309 <        this.locallyFifo = pool.locallyFifo;
55 >        super(pool.workerNamePrefix.concat(Integer.toString(threadNumber.incrementAndGet())));
56          setDaemon(true);
57 <        // To avoid exposing construction details to subclasses,
58 <        // remaining initialization is in start() and onStart()
313 <    }
314 <
315 <    /**
316 <     * Performs additional initialization and starts this thread.
317 <     */
318 <    final void start(int poolIndex, UncaughtExceptionHandler ueh) {
319 <        this.poolIndex = poolIndex;
57 >        this.pool = pool;
58 >        Thread.UncaughtExceptionHandler ueh = pool.ueh;
59          if (ueh != null)
60              setUncaughtExceptionHandler(ueh);
322        start();
61      }
62  
325    // Public/protected methods
326
63      /**
64       * Returns the pool hosting this thread.
65       *
# Line 343 | Line 79 | public class ForkJoinWorkerThread extend
79       * @return the index number
80       */
81      public int getPoolIndex() {
82 <        return poolIndex;
82 >        // force early registration if called before started
83 >        ForkJoinPool.WorkQueue q;
84 >        if ((q = workQueue) == null) {
85 >            pool.registerWorker(this);
86 >            q = workQueue;
87 >        }
88 >        return q.poolIndex;
89      }
90  
91      /**
# Line 356 | Line 98 | public class ForkJoinWorkerThread extend
98       * processing tasks.
99       */
100      protected void onStart() {
359        int rs = seedGenerator.nextInt();
360        seed = rs == 0? 1 : rs; // seed must be nonzero
361
362        // Allocate name string and arrays in this thread
363        String pid = Integer.toString(pool.getPoolNumber());
364        String wid = Integer.toString(poolIndex);
365        setName("ForkJoinPool-" + pid + "-worker-" + wid);
366
367        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
101      }
102  
103      /**
# Line 376 | Line 109 | public class ForkJoinWorkerThread extend
109       * to an unrecoverable error, or {@code null} if completed normally
110       */
111      protected void onTermination(Throwable exception) {
379        try {
380            ForkJoinPool p = pool;
381            if (active) {
382                int a; // inline p.tryDecrementActiveCount
383                active = false;
384                do {} while (!UNSAFE.compareAndSwapInt
385                             (p, poolRunStateOffset, a = p.runState, a - 1));
386            }
387            cancelTasks();
388            setTerminated();
389            p.workerTerminated(this);
390        } catch (Throwable ex) {        // Shouldn't ever happen
391            if (exception == null)      // but if so, at least rethrown
392                exception = ex;
393        } finally {
394            if (exception != null)
395                UNSAFE.throwException(exception);
396        }
112      }
113  
114      /**
# Line 404 | Line 119 | public class ForkJoinWorkerThread extend
119      public void run() {
120          Throwable exception = null;
121          try {
122 +            pool.registerWorker(this);
123              onStart();
124 <            mainLoop();
124 >            pool.runWorker(workQueue);
125          } catch (Throwable ex) {
126              exception = ex;
127          } finally {
412            onTermination(exception);
413        }
414    }
415
416    // helpers for run()
417
418    /**
419     * Finds and executes tasks, and checks status while running.
420     */
421    private void mainLoop() {
422        boolean ran = false; // true if ran a task on last step
423        ForkJoinPool p = pool;
424        for (;;) {
425            p.preStep(this, ran);
426            if (runState != 0)
427                break;
428            ran = tryExecSteal() || tryExecSubmission();
429        }
430    }
431
432    /**
433     * Tries to steal a task and execute it.
434     *
435     * @return true if ran a task
436     */
437    private boolean tryExecSteal() {
438        ForkJoinTask<?> t;
439        if ((t = scan()) != null) {
440            t.quietlyExec();
441            UNSAFE.putOrderedObject(this, currentStealOffset, null);
442            if (sp != base)
443                execLocalTasks();
444            return true;
445        }
446        return false;
447    }
448
449    /**
450     * If a submission exists, try to activate and run it.
451     *
452     * @return true if ran a task
453     */
454    private boolean tryExecSubmission() {
455        ForkJoinPool p = pool;
456        // This loop is needed in case attempt to activate fails, in
457        // which case we only retry if there still appears to be a
458        // submission.
459        while (p.hasQueuedSubmissions()) {
460            ForkJoinTask<?> t; int a;
461            if (active || // inline p.tryIncrementActiveCount
462                (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
463                                                   a = p.runState, a + 1))) {
464                if ((t = p.pollSubmission()) != null) {
465                    UNSAFE.putOrderedObject(this, currentStealOffset, t);
466                    t.quietlyExec();
467                    UNSAFE.putOrderedObject(this, currentStealOffset, null);
468                    if (sp != base)
469                        execLocalTasks();
470                    return true;
471                }
472            }
473        }
474        return false;
475    }
476
477    /**
478     * Runs local tasks until queue is empty or shut down.  Call only
479     * while active.
480     */
481    private void execLocalTasks() {
482        while (runState == 0) {
483            ForkJoinTask<?> t = locallyFifo ? locallyDeqTask() : popTask();
484            if (t != null)
485                t.quietlyExec();
486            else if (sp == base)
487                break;
488        }
489    }
490
491    /*
492     * Intrinsics-based atomic writes for queue slots. These are
493     * basically the same as methods in AtomicReferenceArray, but
494     * specialized for (1) ForkJoinTask elements (2) requirement that
495     * nullness and bounds checks have already been performed by
496     * callers and (3) effective offsets are known not to overflow
497     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
498     * need corresponding version for reads: plain array reads are OK
499     * because they are protected by other volatile reads and are
500     * confirmed by CASes.
501     *
502     * Most uses don't actually call these methods, but instead contain
503     * inlined forms that enable more predictable optimization.  We
504     * don't define the version of write used in pushTask at all, but
505     * instead inline there a store-fenced array slot write.
506     */
507
508    /**
509     * CASes slot i of array q from t to null. Caller must ensure q is
510     * non-null and index is in range.
511     */
512    private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
513                                             ForkJoinTask<?> t) {
514        return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
515    }
516
517    /**
518     * Performs a volatile write of the given task at given slot of
519     * array q.  Caller must ensure q is non-null and index is in
520     * range. This method is used only during resets and backouts.
521     */
522    private static final void writeSlot(ForkJoinTask<?>[] q, int i,
523                                        ForkJoinTask<?> t) {
524        UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
525    }
526
527    // queue methods
528
529    /**
530     * Pushes a task. Call only from this thread.
531     *
532     * @param t the task. Caller must ensure non-null.
533     */
534    final void pushTask(ForkJoinTask<?> t) {
535        ForkJoinTask<?>[] q = queue;
536        int mask = q.length - 1; // implicit assert q != null
537        int s = sp++;            // ok to increment sp before slot write
538        UNSAFE.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
539        if ((s -= base) == 0)
540            pool.signalWork();   // was empty
541        else if (s == mask)
542            growQueue();         // is full
543    }
544
545    /**
546     * Tries to take a task from the base of the queue, failing if
547     * empty or contended. Note: Specializations of this code appear
548     * in locallyDeqTask and elsewhere.
549     *
550     * @return a task, or null if none or contended
551     */
552    final ForkJoinTask<?> deqTask() {
553        ForkJoinTask<?> t;
554        ForkJoinTask<?>[] q;
555        int b, i;
556        if (sp != (b = base) &&
557            (q = queue) != null && // must read q after b
558            (t = q[i = (q.length - 1) & b]) != null && base == b &&
559            UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
560            base = b + 1;
561            return t;
562        }
563        return null;
564    }
565
566    /**
567     * Tries to take a task from the base of own queue. Assumes active
568     * status.  Called only by this thread.
569     *
570     * @return a task, or null if none
571     */
572    final ForkJoinTask<?> locallyDeqTask() {
573        ForkJoinTask<?>[] q = queue;
574        if (q != null) {
575            ForkJoinTask<?> t;
576            int b, i;
577            while (sp != (b = base)) {
578                if ((t = q[i = (q.length - 1) & b]) != null && base == b &&
579                    UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
580                                                t, null)) {
581                    base = b + 1;
582                    return t;
583                }
584            }
585        }
586        return null;
587    }
588
589    /**
590     * Returns a popped task, or null if empty. Assumes active status.
591     * Called only by this thread.
592     */
593    private ForkJoinTask<?> popTask() {
594        ForkJoinTask<?>[] q = queue;
595        if (q != null) {
596            int s;
597            while ((s = sp) != base) {
598                int i = (q.length - 1) & --s;
599                long u = (i << qShift) + qBase; // raw offset
600                ForkJoinTask<?> t = q[i];
601                if (t == null)   // lost to stealer
602                    break;
603                if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
604                    /*
605                     * Note: here and in related methods, as a
606                     * performance (not correctness) issue, we'd like
607                     * to encourage compiler not to arbitrarily
608                     * postpone setting sp after successful CAS.
609                     * Currently there is no intrinsic for arranging
610                     * this, but using Unsafe putOrderedInt may be a
611                     * preferable strategy on some compilers even
612                     * though its main effect is a pre-, not post-
613                     * fence. To simplify possible changes, the option
614                     * is left in comments next to the associated
615                     * assignments.
616                     */
617                    sp = s; // putOrderedInt may encourage more timely write
618                    // UNSAFE.putOrderedInt(this, spOffset, s);
619                    return t;
620                }
621            }
622        }
623        return null;
624    }
625
626    /**
627     * Specialized version of popTask to pop only if topmost element
628     * is the given task. Called only by this thread while active.
629     *
630     * @param t the task. Caller must ensure non-null.
631     */
632    final boolean unpushTask(ForkJoinTask<?> t) {
633        int s;
634        ForkJoinTask<?>[] q = queue;
635        if ((s = sp) != base && q != null &&
636            UNSAFE.compareAndSwapObject
637            (q, (((q.length - 1) & --s) << qShift) + qBase, t, null)) {
638            sp = s; // putOrderedInt may encourage more timely write
639            // UNSAFE.putOrderedInt(this, spOffset, s);
640            return true;
641        }
642        return false;
643    }
644
645    /**
646     * Returns next task, or null if empty or contended.
647     */
648    final ForkJoinTask<?> peekTask() {
649        ForkJoinTask<?>[] q = queue;
650        if (q == null)
651            return null;
652        int mask = q.length - 1;
653        int i = locallyFifo ? base : (sp - 1);
654        return q[i & mask];
655    }
656
657    /**
658     * Doubles queue array size. Transfers elements by emulating
659     * steals (deqs) from old array and placing, oldest first, into
660     * new array.
661     */
662    private void growQueue() {
663        ForkJoinTask<?>[] oldQ = queue;
664        int oldSize = oldQ.length;
665        int newSize = oldSize << 1;
666        if (newSize > MAXIMUM_QUEUE_CAPACITY)
667            throw new RejectedExecutionException("Queue capacity exceeded");
668        ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
669
670        int b = base;
671        int bf = b + oldSize;
672        int oldMask = oldSize - 1;
673        int newMask = newSize - 1;
674        do {
675            int oldIndex = b & oldMask;
676            ForkJoinTask<?> t = oldQ[oldIndex];
677            if (t != null && !casSlotNull(oldQ, oldIndex, t))
678                t = null;
679            writeSlot(newQ, b & newMask, t);
680        } while (++b != bf);
681        pool.signalWork();
682    }
683
684    /**
685     * Computes next value for random victim probe in scan().  Scans
686     * don't require a very high quality generator, but also not a
687     * crummy one.  Marsaglia xor-shift is cheap and works well enough.
688     * Note: This is manually inlined in scan().
689     */
690    private static final int xorShift(int r) {
691        r ^= r << 13;
692        r ^= r >>> 17;
693        return r ^ (r << 5);
694    }
695
696    /**
697     * Tries to steal a task from another worker. Starts at a random
698     * index of workers array, and probes workers until finding one
699     * with non-empty queue or finding that all are empty.  It
700     * randomly selects the first n probes. If these are empty, it
701     * resorts to a circular sweep, which is necessary to accurately
702     * set active status. (The circular sweep uses steps of
703     * approximately half the array size plus 1, to avoid bias
704     * stemming from leftmost packing of the array in ForkJoinPool.)
705     *
706     * This method must be both fast and quiet -- usually avoiding
707     * memory accesses that could disrupt cache sharing etc other than
708     * those needed to check for and take tasks (or to activate if not
709     * already active). This accounts for, among other things,
710     * updating random seed in place without storing it until exit.
711     *
712     * @return a task, or null if none found
713     */
714    private ForkJoinTask<?> scan() {
715        ForkJoinPool p = pool;
716        ForkJoinWorkerThread[] ws;        // worker array
717        int n;                            // upper bound of #workers
718        if ((ws = p.workers) != null && (n = ws.length) > 1) {
719            boolean canSteal = active;    // shadow active status
720            int r = seed;                 // extract seed once
721            int mask = n - 1;
722            int j = -n;                   // loop counter
723            int k = r;                    // worker index, random if j < 0
724            for (;;) {
725                ForkJoinWorkerThread v = ws[k & mask];
726                r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // inline xorshift
727                ForkJoinTask<?>[] q; ForkJoinTask<?> t; int b, a;
728                if (v != null && (b = v.base) != v.sp &&
729                    (q = v.queue) != null) {
730                    int i = (q.length - 1) & b;
731                    long u = (i << qShift) + qBase; // raw offset
732                    int pid = poolIndex;
733                    if ((t = q[i]) != null) {
734                        if (!canSteal &&  // inline p.tryIncrementActiveCount
735                            UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
736                                                     a = p.runState, a + 1))
737                            canSteal = active = true;
738                        if (canSteal && v.base == b++ &&
739                            UNSAFE.compareAndSwapObject(q, u, t, null)) {
740                            v.base = b;
741                            v.stealHint = pid;
742                            UNSAFE.putOrderedObject(this,
743                                                    currentStealOffset, t);
744                            seed = r;
745                            ++stealCount;
746                            return t;
747                        }
748                    }
749                    j = -n;
750                    k = r;                // restart on contention
751                }
752                else if (++j <= 0)
753                    k = r;
754                else if (j <= n)
755                    k += (n >>> 1) | 1;
756                else
757                    break;
758            }
759        }
760        return null;
761    }
762
763    // Run State management
764
765    // status check methods used mainly by ForkJoinPool
766    final boolean isRunning()    { return runState == 0; }
767    final boolean isTerminated() { return (runState & TERMINATED) != 0; }
768    final boolean isSuspended()  { return (runState & SUSPENDED) != 0; }
769    final boolean isTrimmed()    { return (runState & TRIMMED) != 0; }
770
771    final boolean isTerminating() {
772        if ((runState & TERMINATING) != 0)
773            return true;
774        if (pool.isAtLeastTerminating()) { // propagate pool state
775            shutdown();
776            return true;
777        }
778        return false;
779    }
780
781    /**
782     * Sets state to TERMINATING. Does NOT unpark or interrupt
783     * to wake up if currently blocked. Callers must do so if desired.
784     */
785    final void shutdown() {
786        for (;;) {
787            int s = runState;
788            if ((s & (TERMINATING|TERMINATED)) != 0)
789                break;
790            if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
791                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
792                                             (s & ~SUSPENDED) |
793                                             (TRIMMED|TERMINATING)))
794                    break;
795            }
796            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
797                                              s | TERMINATING))
798                break;
799        }
800    }
801
802    /**
803     * Sets state to TERMINATED. Called only by onTermination().
804     */
805    private void setTerminated() {
806        int s;
807        do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
808                                               s = runState,
809                                               s | (TERMINATING|TERMINATED)));
810    }
811
812    /**
813     * If suspended, tries to set status to unsuspended.
814     * Does NOT wake up if blocked.
815     *
816     * @return true if successful
817     */
818    final boolean tryUnsuspend() {
819        int s;
820        while (((s = runState) & SUSPENDED) != 0) {
821            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
822                                         s & ~SUSPENDED))
823                return true;
824        }
825        return false;
826    }
827
828    /**
829     * Sets suspended status and blocks as spare until resumed
830     * or shutdown.
831     */
832    final void suspendAsSpare() {
833        for (;;) {                  // set suspended unless terminating
834            int s = runState;
835            if ((s & TERMINATING) != 0) { // must kill
836                if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
837                                             s | (TRIMMED | TERMINATING)))
838                    return;
839            }
840            else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
841                                              s | SUSPENDED))
842                break;
843        }
844        ForkJoinPool p = pool;
845        p.pushSpare(this);
846        while ((runState & SUSPENDED) != 0) {
847            if (p.tryAccumulateStealCount(this)) {
848                interrupted();          // clear/ignore interrupts
849                if ((runState & SUSPENDED) == 0)
850                    break;
851                LockSupport.park(this);
852            }
853        }
854    }
855
856    // Misc support methods for ForkJoinPool
857
858    /**
859     * Returns an estimate of the number of tasks in the queue.  Also
860     * used by ForkJoinTask.
861     */
862    final int getQueueSize() {
863        int n; // external calls must read base first
864        return (n = -base + sp) <= 0 ? 0 : n;
865    }
866
867    /**
868     * Removes and cancels all tasks in queue.  Can be called from any
869     * thread.
870     */
871    final void cancelTasks() {
872        ForkJoinTask<?> cj = currentJoin; // try to cancel ongoing tasks
873        if (cj != null && cj.status >= 0) {
874            cj.cancelIgnoringExceptions();
875            try {
876                this.interrupt(); // awaken wait
877            } catch (SecurityException ignore) {
878            }
879        }
880        ForkJoinTask<?> cs = currentSteal;
881        if (cs != null && cs.status >= 0)
882            cs.cancelIgnoringExceptions();
883        while (base != sp) {
884            ForkJoinTask<?> t = deqTask();
885            if (t != null)
886                t.cancelIgnoringExceptions();
887        }
888    }
889
890    /**
891     * Drains tasks to given collection c.
892     *
893     * @return the number of tasks drained
894     */
895    final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
896        int n = 0;
897        while (base != sp) {
898            ForkJoinTask<?> t = deqTask();
899            if (t != null) {
900                c.add(t);
901                ++n;
902            }
903        }
904        return n;
905    }
906
907    // Support methods for ForkJoinTask
908
909    /**
910     * Gets and removes a local task.
911     *
912     * @return a task, if available
913     */
914    final ForkJoinTask<?> pollLocalTask() {
915        ForkJoinPool p = pool;
916        while (sp != base) {
917            int a; // inline p.tryIncrementActiveCount
918            if (active ||
919                (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
920                                                   a = p.runState, a + 1)))
921                return locallyFifo ? locallyDeqTask() : popTask();
922        }
923        return null;
924    }
925
926    /**
927     * Gets and removes a local or stolen task.
928     *
929     * @return a task, if available
930     */
931    final ForkJoinTask<?> pollTask() {
932        ForkJoinTask<?> t = pollLocalTask();
933        if (t == null) {
934            t = scan();
935            // cannot retain/track/help steal
936            UNSAFE.putOrderedObject(this, currentStealOffset, null);
937        }
938        return t;
939    }
940
941    /**
942     * Possibly runs some tasks and/or blocks, until task is done.
943     *
944     * @param joinMe the task to join
945     * @param timed true if use timed wait
946     * @param nanos wait time if timed
947     */
948    final void joinTask(ForkJoinTask<?> joinMe, boolean timed, long nanos) {
949        // currentJoin only written by this thread; only need ordered store
950        ForkJoinTask<?> prevJoin = currentJoin;
951        UNSAFE.putOrderedObject(this, currentJoinOffset, joinMe);
952        pool.awaitJoin(joinMe, this, timed, nanos);
953        UNSAFE.putOrderedObject(this, currentJoinOffset, prevJoin);
954    }
955
956    /**
957     * Tries to locate and help perform tasks for a stealer of the
958     * given task, or in turn one of its stealers.  Traces
959     * currentSteal->currentJoin links looking for a thread working on
960     * a descendant of the given task and with a non-empty queue to
961     * steal back and execute tasks from.
962     *
963     * The implementation is very branchy to cope with potential
964     * inconsistencies or loops encountering chains that are stale,
965     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
966     * of these cases are dealt with by just returning back to the
967     * caller, who is expected to retry if other join mechanisms also
968     * don't work out.
969     *
970     * @param joinMe the task to join
971     * @param running if false, then must update pool count upon
972     *  running a task
973     * @return value of running on exit
974     */
975    final boolean helpJoinTask(ForkJoinTask<?> joinMe, boolean running) {
976        /*
977         * Initial checks to (1) abort if terminating; (2) clean out
978         * old cancelled tasks from local queue; (3) if joinMe is next
979         * task, run it; (4) omit scan if local queue nonempty (since
980         * it may contain non-descendents of joinMe).
981         */
982        ForkJoinPool p = pool;
983        for (;;) {
984            ForkJoinTask<?>[] q;
985            int s;
986            if (joinMe.status < 0)
987                return running;
988            else if ((runState & TERMINATING) != 0)
989                joinMe.cancelIgnoringExceptions();
990            else if ((s = sp) == base || (q = queue) == null)
991                break;                            // queue empty
992            else {
993                int i = (q.length - 1) & --s;
994                long u = (i << qShift) + qBase;   // raw offset
995                ForkJoinTask<?> t = q[i];
996                if (t == null)
997                    break;                        // lost to a stealer
998                else if (t != joinMe && t.status >= 0)
999                    return running;               // cannot safely help
1000                else if ((running ||
1001                          (running = p.tryIncrementRunningCount())) &&
1002                         UNSAFE.compareAndSwapObject(q, u, t, null)) {
1003                    sp = s; // putOrderedInt may encourage more timely write
1004                    // UNSAFE.putOrderedInt(this, spOffset, s);
1005                    if (t.status >= 0)
1006                        t.quietlyExec();
1007                }
1008            }
1009        }
1010
1011        int n;                                    // worker array size
1012        ForkJoinWorkerThread[] ws = p.workers;
1013        if (ws != null && (n = ws.length) > 1) {  // need at least 2 workers
1014            ForkJoinTask<?> task = joinMe;        // base of chain
1015            ForkJoinWorkerThread thread = this;   // thread with stolen task
1016
1017            outer:for (int d = 0; d < MAX_HELP_DEPTH; ++d) { // chain length
1018                // Try to find v, the stealer of task, by first using hint
1019                ForkJoinWorkerThread v = ws[thread.stealHint & (n - 1)];
1020                if (v == null || v.currentSteal != task) {
1021                    for (int j = 0; ; ++j) {      // search array
1022                        if (j < n) {
1023                            ForkJoinTask<?> vs;
1024                            if ((v = ws[j]) != null &&
1025                                (vs = v.currentSteal) != null) {
1026                                if (joinMe.status < 0)
1027                                    break outer;
1028                                if (vs == task) {
1029                                    if (task.status < 0)
1030                                        break outer; // stale
1031                                    thread.stealHint = j;
1032                                    break;        // save hint for next time
1033                                }
1034                            }
1035                        }
1036                        else
1037                            break outer;          // no stealer
1038                    }
1039                }
1040
1041                // Try to help v, using specialized form of deqTask
1042                for (;;) {
1043                    if (joinMe.status < 0)
1044                        break outer;
1045                    int b = v.base;
1046                    ForkJoinTask<?>[] q = v.queue;
1047                    if (b == v.sp || q == null)
1048                        break;                    // empty
1049                    int i = (q.length - 1) & b;
1050                    long u = (i << qShift) + qBase;
1051                    ForkJoinTask<?> t = q[i];
1052                    if (task.status < 0)
1053                        break outer;              // stale
1054                    if (t != null &&
1055                        (running ||
1056                         (running = p.tryIncrementRunningCount())) &&
1057                        v.base == b++ &&
1058                        UNSAFE.compareAndSwapObject(q, u, t, null)) {
1059                        if (t != joinMe && joinMe.status < 0) {
1060                            UNSAFE.putObjectVolatile(q, u, t);
1061                            break outer;          // joinMe cancelled; back out
1062                        }
1063                        v.base = b;
1064                        if (t.status >= 0) {
1065                            ForkJoinTask<?> ps = currentSteal;
1066                            int pid = poolIndex;
1067                            v.stealHint = pid;
1068                            UNSAFE.putOrderedObject(this,
1069                                                    currentStealOffset, t);
1070                            t.quietlyExec();
1071                            UNSAFE.putOrderedObject(this,
1072                                                    currentStealOffset, ps);
1073                        }
1074                    }
1075                }
1076
1077                // Try to descend to find v's stealer
1078                ForkJoinTask<?> next = v.currentJoin;
1079                if (task.status < 0 || next == null || next == task)
1080                    break;                       // stale, dead-end, or cyclic
1081                if ((runState & TERMINATING) != 0)
1082                    joinMe.cancelIgnoringExceptions();
1083                if (joinMe.status < 0)
1084                    break;
1085                task = next;
1086                thread = v;
1087            }
1088        }
1089        return running;
1090    }
1091
1092    /**
1093     * Implements ForkJoinTask.getSurplusQueuedTaskCount().
1094     * Returns an estimate of the number of tasks, offset by a
1095     * function of number of idle workers.
1096     *
1097     * This method provides a cheap heuristic guide for task
1098     * partitioning when programmers, frameworks, tools, or languages
1099     * have little or no idea about task granularity.  In essence by
1100     * offering this method, we ask users only about tradeoffs in
1101     * overhead vs expected throughput and its variance, rather than
1102     * how finely to partition tasks.
1103     *
1104     * In a steady state strict (tree-structured) computation, each
1105     * thread makes available for stealing enough tasks for other
1106     * threads to remain active. Inductively, if all threads play by
1107     * the same rules, each thread should make available only a
1108     * constant number of tasks.
1109     *
1110     * The minimum useful constant is just 1. But using a value of 1
1111     * would require immediate replenishment upon each steal to
1112     * maintain enough tasks, which is infeasible.  Further,
1113     * partitionings/granularities of offered tasks should minimize
1114     * steal rates, which in general means that threads nearer the top
1115     * of computation tree should generate more than those nearer the
1116     * bottom. In perfect steady state, each thread is at
1117     * approximately the same level of computation tree. However,
1118     * producing extra tasks amortizes the uncertainty of progress and
1119     * diffusion assumptions.
1120     *
1121     * So, users will want to use values larger, but not much larger
1122     * than 1 to both smooth over transient shortages and hedge
1123     * against uneven progress; as traded off against the cost of
1124     * extra task overhead. We leave the user to pick a threshold
1125     * value to compare with the results of this call to guide
1126     * decisions, but recommend values such as 3.
1127     *
1128     * When all threads are active, it is on average OK to estimate
1129     * surplus strictly locally. In steady-state, if one thread is
1130     * maintaining say 2 surplus tasks, then so are others. So we can
1131     * just use estimated queue length (although note that (sp - base)
1132     * can be an overestimate because of stealers lagging increments
1133     * of base).  However, this strategy alone leads to serious
1134     * mis-estimates in some non-steady-state conditions (ramp-up,
1135     * ramp-down, other stalls). We can detect many of these by
1136     * further considering the number of "idle" threads, that are
1137     * known to have zero queued tasks, so compensate by a factor of
1138     * (#idle/#active) threads.
1139     */
1140    final int getEstimatedSurplusTaskCount() {
1141        return sp - base - pool.idlePerActive();
1142    }
1143
1144    /**
1145     * Runs tasks until {@code pool.isQuiescent()}.
1146     */
1147    final void helpQuiescePool() {
1148        ForkJoinTask<?> ps = currentSteal; // to restore below
1149        for (;;) {
1150            ForkJoinTask<?> t = pollLocalTask();
1151            if (t != null || (t = scan()) != null)
1152                t.quietlyExec();
1153            else {
1154                ForkJoinPool p = pool;
1155                int a; // to inline CASes
1156                if (active) {
1157                    if (!UNSAFE.compareAndSwapInt
1158                        (p, poolRunStateOffset, a = p.runState, a - 1))
1159                        continue;   // retry later
1160                    active = false; // inactivate
1161                    UNSAFE.putOrderedObject(this, currentStealOffset, ps);
1162                }
1163                if (p.isQuiescent()) {
1164                    active = true; // re-activate
1165                    do {} while (!UNSAFE.compareAndSwapInt
1166                                 (p, poolRunStateOffset, a = p.runState, a+1));
1167                    return;
1168                }
1169            }
1170        }
1171    }
1172
1173    // Unsafe mechanics
1174
1175    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1176    private static final long spOffset =
1177        objectFieldOffset("sp", ForkJoinWorkerThread.class);
1178    private static final long runStateOffset =
1179        objectFieldOffset("runState", ForkJoinWorkerThread.class);
1180    private static final long currentJoinOffset =
1181        objectFieldOffset("currentJoin", ForkJoinWorkerThread.class);
1182    private static final long currentStealOffset =
1183        objectFieldOffset("currentSteal", ForkJoinWorkerThread.class);
1184    private static final long qBase =
1185        UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
1186    private static final long poolRunStateOffset = // to inline CAS
1187        objectFieldOffset("runState", ForkJoinPool.class);
1188
1189    private static final int qShift;
1190
1191    static {
1192        int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
1193        if ((s & (s-1)) != 0)
1194            throw new Error("data type scale not a power of two");
1195        qShift = 31 - Integer.numberOfLeadingZeros(s);
1196        MAXIMUM_QUEUE_CAPACITY = 1 << (31 - qShift);
1197    }
1198
1199    private static long objectFieldOffset(String field, Class<?> klazz) {
1200        try {
1201            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1202        } catch (NoSuchFieldException e) {
1203            // Convert Exception to corresponding Error
1204            NoSuchFieldError error = new NoSuchFieldError(field);
1205            error.initCause(e);
1206            throw error;
1207        }
1208    }
1209
1210    /**
1211     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1212     * Replace with a simple call to Unsafe.getUnsafe when integrating
1213     * into a jdk.
1214     *
1215     * @return a sun.misc.Unsafe
1216     */
1217    private static sun.misc.Unsafe getUnsafe() {
1218        try {
1219            return sun.misc.Unsafe.getUnsafe();
1220        } catch (SecurityException se) {
128              try {
129 <                return java.security.AccessController.doPrivileged
130 <                    (new java.security
131 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
132 <                        public sun.misc.Unsafe run() throws Exception {
133 <                            java.lang.reflect.Field f = sun.misc
134 <                                .Unsafe.class.getDeclaredField("theUnsafe");
1228 <                            f.setAccessible(true);
1229 <                            return (sun.misc.Unsafe) f.get(null);
1230 <                        }});
1231 <            } catch (java.security.PrivilegedActionException e) {
1232 <                throw new RuntimeException("Could not initialize intrinsics",
1233 <                                           e.getCause());
129 >                onTermination(exception);
130 >            } catch (Throwable ex) {
131 >                if (exception == null)
132 >                    exception = ex;
133 >            } finally {
134 >                pool.deregisterWorker(this, exception);
135              }
136          }
137      }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines