ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinWorkerThread.java (file contents):
Revision 1.9 by jsr166, Mon Jul 20 22:26:03 2009 UTC vs.
Revision 1.73 by dl, Wed Nov 21 19:54:39 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 import java.util.*;
9 import java.util.concurrent.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.concurrent.locks.*;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
8  
9   /**
10 < * A thread managed by a {@link ForkJoinPool}.  This class is
11 < * subclassable solely for the sake of adding functionality -- there
12 < * are no overridable methods dealing with scheduling or
13 < * execution. However, you can override initialization and termination
14 < * methods surrounding the main task processing loop.  If you do
15 < * create such a subclass, you will also need to supply a custom
16 < * ForkJoinWorkerThreadFactory to use it in a ForkJoinPool.
10 > * A thread managed by a {@link ForkJoinPool}, which executes
11 > * {@link ForkJoinTask}s.
12 > * This class is subclassable solely for the sake of adding
13 > * functionality -- there are no overridable methods dealing with
14 > * scheduling or execution.  However, you can override initialization
15 > * and termination methods surrounding the main task processing loop.
16 > * If you do create such a subclass, you will also need to supply a
17 > * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it
18 > * in a {@code ForkJoinPool}.
19   *
20 + * @since 1.7
21 + * @author Doug Lea
22   */
23   public class ForkJoinWorkerThread extends Thread {
24      /*
25 <     * Algorithm overview:
26 <     *
27 <     * 1. Work-Stealing: Work-stealing queues are special forms of
28 <     * Deques that support only three of the four possible
29 <     * end-operations -- push, pop, and deq (aka steal), and only do
30 <     * so under the constraints that push and pop are called only from
31 <     * the owning thread, while deq may be called from other threads.
32 <     * (If you are unfamiliar with them, you probably want to read
33 <     * Herlihy and Shavit's book "The Art of Multiprocessor
34 <     * programming", chapter 16 describing these in more detail before
37 <     * proceeding.)  The main work-stealing queue design is roughly
38 <     * similar to "Dynamic Circular Work-Stealing Deque" by David
39 <     * Chase and Yossi Lev, SPAA 2005
40 <     * (http://research.sun.com/scalable/pubs/index.html).  The main
41 <     * difference ultimately stems from gc requirements that we null
42 <     * out taken slots as soon as we can, to maintain as small a
43 <     * footprint as possible even in programs generating huge numbers
44 <     * of tasks. To accomplish this, we shift the CAS arbitrating pop
45 <     * vs deq (steal) from being on the indices ("base" and "sp") to
46 <     * the slots themselves (mainly via method "casSlotNull()"). So,
47 <     * both a successful pop and deq mainly entail CAS'ing a nonnull
48 <     * slot to null.  Because we rely on CASes of references, we do
49 <     * not need tag bits on base or sp.  They are simple ints as used
50 <     * in any circular array-based queue (see for example ArrayDeque).
51 <     * Updates to the indices must still be ordered in a way that
52 <     * guarantees that (sp - base) > 0 means the queue is empty, but
53 <     * otherwise may err on the side of possibly making the queue
54 <     * appear nonempty when a push, pop, or deq have not fully
55 <     * committed. Note that this means that the deq operation,
56 <     * considered individually, is not wait-free. One thief cannot
57 <     * successfully continue until another in-progress one (or, if
58 <     * previously empty, a push) completes.  However, in the
59 <     * aggregate, we ensure at least probabilistic non-blockingness. If
60 <     * an attempted steal fails, a thief always chooses a different
61 <     * random victim target to try next. So, in order for one thief to
62 <     * progress, it suffices for any in-progress deq or new push on
63 <     * any empty queue to complete. One reason this works well here is
64 <     * that apparently-nonempty often means soon-to-be-stealable,
65 <     * which gives threads a chance to activate if necessary before
66 <     * stealing (see below).
67 <     *
68 <     * Efficient implementation of this approach currently relies on
69 <     * an uncomfortable amount of "Unsafe" mechanics. To maintain
70 <     * correct orderings, reads and writes of variable base require
71 <     * volatile ordering.  Variable sp does not require volatile write
72 <     * but needs cheaper store-ordering on writes.  Because they are
73 <     * protected by volatile base reads, reads of the queue array and
74 <     * its slots do not need volatile load semantics, but writes (in
75 <     * push) require store order and CASes (in pop and deq) require
76 <     * (volatile) CAS semantics. Since these combinations aren't
77 <     * supported using ordinary volatiles, the only way to accomplish
78 <     * these efficiently is to use direct Unsafe calls. (Using external
79 <     * AtomicIntegers and AtomicReferenceArrays for the indices and
80 <     * array is significantly slower because of memory locality and
81 <     * indirection effects.) Further, performance on most platforms is
82 <     * very sensitive to placement and sizing of the (resizable) queue
83 <     * array.  Even though these queues don't usually become all that
84 <     * big, the initial size must be large enough to counteract cache
85 <     * contention effects across multiple queues (especially in the
86 <     * presence of GC cardmarking). Also, to improve thread-locality,
87 <     * queues are currently initialized immediately after the thread
88 <     * gets the initial signal to start processing tasks.  However,
89 <     * all queue-related methods except pushTask are written in a way
90 <     * that allows them to instead be lazily allocated and/or disposed
91 <     * of when empty. All together, these low-level implementation
92 <     * choices produce as much as a factor of 4 performance
93 <     * improvement compared to naive implementations, and enable the
94 <     * processing of billions of tasks per second, sometimes at the
95 <     * expense of ugliness.
96 <     *
97 <     * 2. Run control: The primary run control is based on a global
98 <     * counter (activeCount) held by the pool. It uses an algorithm
99 <     * similar to that in Herlihy and Shavit section 17.6 to cause
100 <     * threads to eventually block when all threads declare they are
101 <     * inactive. (See variable "scans".)  For this to work, threads
102 <     * must be declared active when executing tasks, and before
103 <     * stealing a task. They must be inactive before blocking on the
104 <     * Pool Barrier (awaiting a new submission or other Pool
105 <     * event). In between, there is some free play which we take
106 <     * advantage of to avoid contention and rapid flickering of the
107 <     * global activeCount: If inactive, we activate only if a victim
108 <     * queue appears to be nonempty (see above).  Similarly, a thread
109 <     * tries to inactivate only after a full scan of other threads.
110 <     * The net effect is that contention on activeCount is rarely a
111 <     * measurable performance issue. (There are also a few other cases
112 <     * where we scan for work rather than retry/block upon
113 <     * contention.)
114 <     *
115 <     * 3. Selection control. We maintain policy of always choosing to
116 <     * run local tasks rather than stealing, and always trying to
117 <     * steal tasks before trying to run a new submission. All steals
118 <     * are currently performed in randomly-chosen deq-order. It may be
119 <     * worthwhile to bias these with locality / anti-locality
120 <     * information, but doing this well probably requires more
121 <     * lower-level information from JVMs than currently provided.
122 <     */
123 <
124 <    /**
125 <     * Capacity of work-stealing queue array upon initialization.
126 <     * Must be a power of two. Initial size must be at least 2, but is
127 <     * padded to minimize cache effects.
128 <     */
129 <    private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
130 <
131 <    /**
132 <     * Maximum work-stealing queue array size.  Must be less than or
133 <     * equal to 1 << 28 to ensure lack of index wraparound. (This
134 <     * is less than usual bounds, because we need leftshift by 3
135 <     * to be in int range).
136 <     */
137 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
138 <
139 <    /**
140 <     * The pool this thread works in. Accessed directly by ForkJoinTask
141 <     */
142 <    final ForkJoinPool pool;
143 <
144 <    /**
145 <     * The work-stealing queue array. Size must be a power of two.
146 <     * Initialized when thread starts, to improve memory locality.
147 <     */
148 <    private ForkJoinTask<?>[] queue;
149 <
150 <    /**
151 <     * Index (mod queue.length) of next queue slot to push to or pop
152 <     * from. It is written only by owner thread, via ordered store.
153 <     * Both sp and base are allowed to wrap around on overflow, but
154 <     * (sp - base) still estimates size.
155 <     */
156 <    private volatile int sp;
157 <
158 <    /**
159 <     * Index (mod queue.length) of least valid queue slot, which is
160 <     * always the next position to steal from if nonempty.
161 <     */
162 <    private volatile int base;
163 <
164 <    /**
165 <     * Activity status. When true, this worker is considered active.
166 <     * Must be false upon construction. It must be true when executing
167 <     * tasks, and BEFORE stealing a task. It must be false before
168 <     * calling pool.sync
169 <     */
170 <    private boolean active;
171 <
172 <    /**
173 <     * Run state of this worker. Supports simple versions of the usual
174 <     * shutdown/shutdownNow control.
175 <     */
176 <    private volatile int runState;
177 <
178 <    /**
179 <     * Seed for random number generator for choosing steal victims.
180 <     * Uses Marsaglia xorshift. Must be nonzero upon initialization.
181 <     */
182 <    private int seed;
183 <
184 <    /**
185 <     * Number of steals, transferred to pool when idle
25 >     * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
26 >     * ForkJoinTasks. For explanation, see the internal documentation
27 >     * of class ForkJoinPool.
28 >     *
29 >     * This class just maintains links to its pool and WorkQueue.  The
30 >     * pool field is set immediately upon construction, but the
31 >     * workQueue field is not set until a call to registerWorker
32 >     * completes. This leads to a visibility race, that is tolerated
33 >     * by requiring that the workQueue field is only accessed by the
34 >     * owning thread.
35       */
187    private int stealCount;
36  
37 <    /**
38 <     * Index of this worker in pool array. Set once by pool before
191 <     * running, and accessed directly by pool during cleanup etc
192 <     */
193 <    int poolIndex;
194 <
195 <    /**
196 <     * The last barrier event waited for. Accessed in pool callback
197 <     * methods, but only by current thread.
198 <     */
199 <    long lastEventCount;
200 <
201 <    /**
202 <     * True if use local fifo, not default lifo, for local polling
203 <     */
204 <    private boolean locallyFifo;
37 >    final ForkJoinPool pool;                // the pool this thread works in
38 >    final ForkJoinPool.WorkQueue workQueue; // work-stealing mechanics
39  
40      /**
41       * Creates a ForkJoinWorkerThread operating in the given pool.
42 +     *
43       * @param pool the pool this thread works in
44       * @throws NullPointerException if pool is null
45       */
46      protected ForkJoinWorkerThread(ForkJoinPool pool) {
47 <        if (pool == null) throw new NullPointerException();
47 >        // Use a placeholder until a useful name can be set in registerWorker
48 >        super("aForkJoinWorkerThread");
49          this.pool = pool;
50 <        // Note: poolIndex is set by pool during construction
215 <        // Remaining initialization is deferred to onStart
50 >        this.workQueue = pool.registerWorker(this);
51      }
52  
218    // Public access methods
219
53      /**
54 <     * Returns the pool hosting this thread
54 >     * Returns the pool hosting this thread.
55 >     *
56       * @return the pool
57       */
58      public ForkJoinPool getPool() {
# Line 231 | Line 65 | public class ForkJoinWorkerThread extend
65       * threads (minus one) that have ever been created in the pool.
66       * This method may be useful for applications that track status or
67       * collect results per-worker rather than per-task.
68 <     * @return the index number.
68 >     *
69 >     * @return the index number
70       */
71      public int getPoolIndex() {
72 <        return poolIndex;
238 <    }
239 <
240 <    /**
241 <     * Establishes local first-in-first-out scheduling mode for forked
242 <     * tasks that are never joined.
243 <     * @param async if true, use locally FIFO scheduling
244 <     */
245 <    void setAsyncMode(boolean async) {
246 <        locallyFifo = async;
247 <    }
248 <
249 <    // Runstate management
250 <
251 <    // Runstate values. Order matters
252 <    private static final int RUNNING     = 0;
253 <    private static final int SHUTDOWN    = 1;
254 <    private static final int TERMINATING = 2;
255 <    private static final int TERMINATED  = 3;
256 <
257 <    final boolean isShutdown()    { return runState >= SHUTDOWN;  }
258 <    final boolean isTerminating() { return runState >= TERMINATING;  }
259 <    final boolean isTerminated()  { return runState == TERMINATED; }
260 <    final boolean shutdown()      { return transitionRunStateTo(SHUTDOWN); }
261 <    final boolean shutdownNow()   { return transitionRunStateTo(TERMINATING); }
262 <
263 <    /**
264 <     * Transition to at least the given state. Return true if not
265 <     * already at least given state.
266 <     */
267 <    private boolean transitionRunStateTo(int state) {
268 <        for (;;) {
269 <            int s = runState;
270 <            if (s >= state)
271 <                return false;
272 <            if (_unsafe.compareAndSwapInt(this, runStateOffset, s, state))
273 <                return true;
274 <        }
275 <    }
276 <
277 <    /**
278 <     * Try to set status to active; fail on contention
279 <     */
280 <    private boolean tryActivate() {
281 <        if (!active) {
282 <            if (!pool.tryIncrementActiveCount())
283 <                return false;
284 <            active = true;
285 <        }
286 <        return true;
287 <    }
288 <
289 <    /**
290 <     * Try to set status to active; fail on contention
291 <     */
292 <    private boolean tryInactivate() {
293 <        if (active) {
294 <            if (!pool.tryDecrementActiveCount())
295 <                return false;
296 <            active = false;
297 <        }
298 <        return true;
299 <    }
300 <
301 <    /**
302 <     * Computes next value for random victim probe. Scans don't
303 <     * require a very high quality generator, but also not a crummy
304 <     * one. Marsaglia xor-shift is cheap and works well.
305 <     */
306 <    private static int xorShift(int r) {
307 <        r ^= r << 1;
308 <        r ^= r >>> 3;
309 <        r ^= r << 10;
310 <        return r;
311 <    }
312 <
313 <    // Lifecycle methods
314 <
315 <    /**
316 <     * This method is required to be public, but should never be
317 <     * called explicitly. It performs the main run loop to execute
318 <     * ForkJoinTasks.
319 <     */
320 <    public void run() {
321 <        Throwable exception = null;
322 <        try {
323 <            onStart();
324 <            pool.sync(this); // await first pool event
325 <            mainLoop();
326 <        } catch (Throwable ex) {
327 <            exception = ex;
328 <        } finally {
329 <            onTermination(exception);
330 <        }
331 <    }
332 <
333 <    /**
334 <     * Execute tasks until shut down.
335 <     */
336 <    private void mainLoop() {
337 <        while (!isShutdown()) {
338 <            ForkJoinTask<?> t = pollTask();
339 <            if (t != null || (t = pollSubmission()) != null)
340 <                t.quietlyExec();
341 <            else if (tryInactivate())
342 <                pool.sync(this);
343 <        }
72 >        return workQueue.poolIndex;
73      }
74  
75      /**
76       * Initializes internal state after construction but before
77       * processing any tasks. If you override this method, you must
78 <     * invoke super.onStart() at the beginning of the method.
78 >     * invoke {@code super.onStart()} at the beginning of the method.
79       * Initialization requires care: Most fields must have legal
80       * default values, to ensure that attempted accesses from other
81       * threads work correctly even before this thread starts
82       * processing tasks.
83       */
84      protected void onStart() {
356        // Allocate while starting to improve chances of thread-local
357        // isolation
358        queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
359        // Initial value of seed need not be especially random but
360        // should differ across workers and must be nonzero
361        int p = poolIndex + 1;
362        seed = p + (p << 8) + (p << 16) + (p << 24); // spread bits
85      }
86  
87      /**
88 <     * Perform cleanup associated with termination of this worker
88 >     * Performs cleanup associated with termination of this worker
89       * thread.  If you override this method, you must invoke
90 <     * super.onTermination at the end of the overridden method.
90 >     * {@code super.onTermination} at the end of the overridden method.
91       *
92       * @param exception the exception causing this thread to abort due
93 <     * to an unrecoverable error, or null if completed normally.
93 >     * to an unrecoverable error, or {@code null} if completed normally
94       */
95      protected void onTermination(Throwable exception) {
374        // Execute remaining local tasks unless aborting or terminating
375        while (exception == null &&  !pool.isTerminating() && base != sp) {
376            try {
377                ForkJoinTask<?> t = popTask();
378                if (t != null)
379                    t.quietlyExec();
380            } catch(Throwable ex) {
381                exception = ex;
382            }
383        }
384        // Cancel other tasks, transition status, notify pool, and
385        // propagate exception to uncaught exception handler
386        try {
387            do;while (!tryInactivate()); // ensure inactive
388            cancelTasks();
389            runState = TERMINATED;
390            pool.workerTerminated(this);
391        } catch (Throwable ex) {        // Shouldn't ever happen
392            if (exception == null)      // but if so, at least rethrown
393                exception = ex;
394        } finally {
395            if (exception != null)
396                ForkJoinTask.rethrowException(exception);
397        }
398    }
399
400    // Intrinsics-based support for queue operations.
401
402    /**
403     * Add in store-order the given task at given slot of q to
404     * null. Caller must ensure q is nonnull and index is in range.
405     */
406    private static void setSlot(ForkJoinTask<?>[] q, int i,
407                                ForkJoinTask<?> t){
408        _unsafe.putOrderedObject(q, (i << qShift) + qBase, t);
409    }
410
411    /**
412     * CAS given slot of q to null. Caller must ensure q is nonnull
413     * and index is in range.
414     */
415    private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
416                                       ForkJoinTask<?> t) {
417        return _unsafe.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
96      }
97  
98      /**
99 <     * Sets sp in store-order.
100 <     */
101 <    private void storeSp(int s) {
424 <        _unsafe.putOrderedInt(this, spOffset, s);
425 <    }
426 <
427 <    // Main queue methods
428 <
429 <    /**
430 <     * Pushes a task. Called only by current thread.
431 <     * @param t the task. Caller must ensure nonnull
432 <     */
433 <    final void pushTask(ForkJoinTask<?> t) {
434 <        ForkJoinTask<?>[] q = queue;
435 <        int mask = q.length - 1;
436 <        int s = sp;
437 <        setSlot(q, s & mask, t);
438 <        storeSp(++s);
439 <        if ((s -= base) == 1)
440 <            pool.signalWork();
441 <        else if (s >= mask)
442 <            growQueue();
443 <    }
444 <
445 <    /**
446 <     * Tries to take a task from the base of the queue, failing if
447 <     * either empty or contended.
448 <     * @return a task, or null if none or contended.
449 <     */
450 <    final ForkJoinTask<?> deqTask() {
451 <        ForkJoinTask<?> t;
452 <        ForkJoinTask<?>[] q;
453 <        int i;
454 <        int b;
455 <        if (sp != (b = base) &&
456 <            (q = queue) != null && // must read q after b
457 <            (t = q[i = (q.length - 1) & b]) != null &&
458 <            casSlotNull(q, i, t)) {
459 <            base = b + 1;
460 <            return t;
461 <        }
462 <        return null;
463 <    }
464 <
465 <    /**
466 <     * Returns a popped task, or null if empty. Ensures active status
467 <     * if nonnull. Called only by current thread.
468 <     */
469 <    final ForkJoinTask<?> popTask() {
470 <        int s = sp;
471 <        while (s != base) {
472 <            if (tryActivate()) {
473 <                ForkJoinTask<?>[] q = queue;
474 <                int mask = q.length - 1;
475 <                int i = (s - 1) & mask;
476 <                ForkJoinTask<?> t = q[i];
477 <                if (t == null || !casSlotNull(q, i, t))
478 <                    break;
479 <                storeSp(s - 1);
480 <                return t;
481 <            }
482 <        }
483 <        return null;
484 <    }
485 <
486 <    /**
487 <     * Specialized version of popTask to pop only if
488 <     * topmost element is the given task. Called only
489 <     * by current thread while active.
490 <     * @param t the task. Caller must ensure nonnull
491 <     */
492 <    final boolean unpushTask(ForkJoinTask<?> t) {
493 <        ForkJoinTask<?>[] q = queue;
494 <        int mask = q.length - 1;
495 <        int s = sp - 1;
496 <        if (casSlotNull(q, s & mask, t)) {
497 <            storeSp(s);
498 <            return true;
499 <        }
500 <        return false;
501 <    }
502 <
503 <    /**
504 <     * Returns next task.
505 <     */
506 <    final ForkJoinTask<?> peekTask() {
507 <        ForkJoinTask<?>[] q = queue;
508 <        if (q == null)
509 <            return null;
510 <        int mask = q.length - 1;
511 <        int i = locallyFifo? base : (sp - 1);
512 <        return q[i & mask];
513 <    }
514 <
515 <    /**
516 <     * Doubles queue array size. Transfers elements by emulating
517 <     * steals (deqs) from old array and placing, oldest first, into
518 <     * new array.
519 <     */
520 <    private void growQueue() {
521 <        ForkJoinTask<?>[] oldQ = queue;
522 <        int oldSize = oldQ.length;
523 <        int newSize = oldSize << 1;
524 <        if (newSize > MAXIMUM_QUEUE_CAPACITY)
525 <            throw new RejectedExecutionException("Queue capacity exceeded");
526 <        ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
527 <
528 <        int b = base;
529 <        int bf = b + oldSize;
530 <        int oldMask = oldSize - 1;
531 <        int newMask = newSize - 1;
532 <        do {
533 <            int oldIndex = b & oldMask;
534 <            ForkJoinTask<?> t = oldQ[oldIndex];
535 <            if (t != null && !casSlotNull(oldQ, oldIndex, t))
536 <                t = null;
537 <            setSlot(newQ, b & newMask, t);
538 <        } while (++b != bf);
539 <        pool.signalWork();
540 <    }
541 <
542 <    /**
543 <     * Tries to steal a task from another worker. Starts at a random
544 <     * index of workers array, and probes workers until finding one
545 <     * with non-empty queue or finding that all are empty.  It
546 <     * randomly selects the first n probes. If these are empty, it
547 <     * resorts to a full circular traversal, which is necessary to
548 <     * accurately set active status by caller. Also restarts if pool
549 <     * events occurred since last scan, which forces refresh of
550 <     * workers array, in case barrier was associated with resize.
551 <     *
552 <     * This method must be both fast and quiet -- usually avoiding
553 <     * memory accesses that could disrupt cache sharing etc other than
554 <     * those needed to check for and take tasks. This accounts for,
555 <     * among other things, updating random seed in place without
556 <     * storing it until exit.
557 <     *
558 <     * @return a task, or null if none found
559 <     */
560 <    private ForkJoinTask<?> scan() {
561 <        ForkJoinTask<?> t = null;
562 <        int r = seed;                    // extract once to keep scan quiet
563 <        ForkJoinWorkerThread[] ws;       // refreshed on outer loop
564 <        int mask;                        // must be power 2 minus 1 and > 0
565 <        outer:do {
566 <            if ((ws = pool.workers) != null && (mask = ws.length - 1) > 0) {
567 <                int idx = r;
568 <                int probes = ~mask;      // use random index while negative
569 <                for (;;) {
570 <                    r = xorShift(r);     // update random seed
571 <                    ForkJoinWorkerThread v = ws[mask & idx];
572 <                    if (v == null || v.sp == v.base) {
573 <                        if (probes <= mask)
574 <                            idx = (probes++ < 0)? r : (idx + 1);
575 <                        else
576 <                            break;
577 <                    }
578 <                    else if (!tryActivate() || (t = v.deqTask()) == null)
579 <                        continue outer;  // restart on contention
580 <                    else
581 <                        break outer;
582 <                }
583 <            }
584 <        } while (pool.hasNewSyncEvent(this)); // retry on pool events
585 <        seed = r;
586 <        return t;
587 <    }
588 <
589 <    /**
590 <     * gets and removes a local or stolen a task
591 <     * @return a task, if available
592 <     */
593 <    final ForkJoinTask<?> pollTask() {
594 <        ForkJoinTask<?> t = locallyFifo? deqTask() : popTask();
595 <        if (t == null && (t = scan()) != null)
596 <            ++stealCount;
597 <        return t;
598 <    }
599 <
600 <    /**
601 <     * gets a local task
602 <     * @return a task, if available
603 <     */
604 <    final ForkJoinTask<?> pollLocalTask() {
605 <        return locallyFifo? deqTask() : popTask();
606 <    }
607 <
608 <    /**
609 <     * Returns a pool submission, if one exists, activating first.
610 <     * @return a submission, if available
611 <     */
612 <    private ForkJoinTask<?> pollSubmission() {
613 <        ForkJoinPool p = pool;
614 <        while (p.hasQueuedSubmissions()) {
615 <            ForkJoinTask<?> t;
616 <            if (tryActivate() && (t = p.pollSubmission()) != null)
617 <                return t;
618 <        }
619 <        return null;
620 <    }
621 <
622 <    // Methods accessed only by Pool
623 <
624 <    /**
625 <     * Removes and cancels all tasks in queue.  Can be called from any
626 <     * thread.
627 <     */
628 <    final void cancelTasks() {
629 <        ForkJoinTask<?> t;
630 <        while (base != sp && (t = deqTask()) != null)
631 <            t.cancelIgnoringExceptions();
632 <    }
633 <
634 <    /**
635 <     * Drains tasks to given collection c
636 <     * @return the number of tasks drained
637 <     */
638 <    final int drainTasksTo(Collection<ForkJoinTask<?>> c) {
639 <        int n = 0;
640 <        ForkJoinTask<?> t;
641 <        while (base != sp && (t = deqTask()) != null) {
642 <            c.add(t);
643 <            ++n;
644 <        }
645 <        return n;
646 <    }
647 <
648 <    /**
649 <     * Get and clear steal count for accumulation by pool.  Called
650 <     * only when known to be idle (in pool.sync and termination).
651 <     */
652 <    final int getAndClearStealCount() {
653 <        int sc = stealCount;
654 <        stealCount = 0;
655 <        return sc;
656 <    }
657 <
658 <    /**
659 <     * Returns true if at least one worker in the given array appears
660 <     * to have at least one queued task.
661 <     * @param ws array of workers
662 <     */
663 <    static boolean hasQueuedTasks(ForkJoinWorkerThread[] ws) {
664 <        if (ws != null) {
665 <            int len = ws.length;
666 <            for (int j = 0; j < 2; ++j) { // need two passes for clean sweep
667 <                for (int i = 0; i < len; ++i) {
668 <                    ForkJoinWorkerThread w = ws[i];
669 <                    if (w != null && w.sp != w.base)
670 <                        return true;
671 <                }
672 <            }
673 <        }
674 <        return false;
675 <    }
676 <
677 <    // Support methods for ForkJoinTask
678 <
679 <    /**
680 <     * Returns an estimate of the number of tasks in the queue.
681 <     */
682 <    final int getQueueSize() {
683 <        int n = sp - base;
684 <        return n < 0? 0 : n; // suppress momentarily negative values
685 <    }
686 <
687 <    /**
688 <     * Returns an estimate of the number of tasks, offset by a
689 <     * function of number of idle workers.
690 <     */
691 <    final int getEstimatedSurplusTaskCount() {
692 <        // The halving approximates weighting idle vs non-idle workers
693 <        return (sp - base) - (pool.getIdleThreadCount() >>> 1);
694 <    }
695 <
696 <    /**
697 <     * Scan, returning early if joinMe done
698 <     */
699 <    final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
700 <        ForkJoinTask<?> t = pollTask();
701 <        if (t != null && joinMe.status < 0 && sp == base) {
702 <            pushTask(t); // unsteal if done and this task would be stealable
703 <            t = null;
704 <        }
705 <        return t;
706 <    }
707 <
708 <    /**
709 <     * Runs tasks until pool isQuiescent
99 >     * This method is required to be public, but should never be
100 >     * called explicitly. It performs the main run loop to execute
101 >     * {@link ForkJoinTask}s.
102       */
103 <    final void helpQuiescePool() {
104 <        for (;;) {
713 <            ForkJoinTask<?> t = pollTask();
714 <            if (t != null)
715 <                t.quietlyExec();
716 <            else if (tryInactivate() && pool.isQuiescent())
717 <                break;
718 <        }
719 <        do;while (!tryActivate()); // re-activate on exit
720 <    }
721 <
722 <    // Temporary Unsafe mechanics for preliminary release
723 <    private static Unsafe getUnsafe() throws Throwable {
103 >    public void run() {
104 >        Throwable exception = null;
105          try {
106 <            return Unsafe.getUnsafe();
107 <        } catch (SecurityException se) {
106 >            onStart();
107 >            pool.runWorker(workQueue);
108 >        } catch (Throwable ex) {
109 >            exception = ex;
110 >        } finally {
111              try {
112 <                return java.security.AccessController.doPrivileged
113 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
114 <                        public Unsafe run() throws Exception {
115 <                            return getUnsafePrivileged();
116 <                        }});
117 <            } catch (java.security.PrivilegedActionException e) {
734 <                throw e.getCause();
112 >                onTermination(exception);
113 >            } catch (Throwable ex) {
114 >                if (exception == null)
115 >                    exception = ex;
116 >            } finally {
117 >                pool.deregisterWorker(this, exception);
118              }
119          }
120      }
738
739    private static Unsafe getUnsafePrivileged()
740            throws NoSuchFieldException, IllegalAccessException {
741        Field f = Unsafe.class.getDeclaredField("theUnsafe");
742        f.setAccessible(true);
743        return (Unsafe) f.get(null);
744    }
745
746    private static long fieldOffset(String fieldName)
747            throws NoSuchFieldException {
748        return _unsafe.objectFieldOffset
749            (ForkJoinWorkerThread.class.getDeclaredField(fieldName));
750    }
751
752    static final Unsafe _unsafe;
753    static final long baseOffset;
754    static final long spOffset;
755    static final long runStateOffset;
756    static final long qBase;
757    static final int qShift;
758    static {
759        try {
760            _unsafe = getUnsafe();
761            baseOffset = fieldOffset("base");
762            spOffset = fieldOffset("sp");
763            runStateOffset = fieldOffset("runState");
764            qBase = _unsafe.arrayBaseOffset(ForkJoinTask[].class);
765            int s = _unsafe.arrayIndexScale(ForkJoinTask[].class);
766            if ((s & (s-1)) != 0)
767                throw new Error("data type scale not a power of two");
768            qShift = 31 - Integer.numberOfLeadingZeros(s);
769        } catch (Throwable e) {
770            throw new RuntimeException("Could not initialize intrinsics", e);
771        }
772    }
121   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines