ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
Revision: 1.21
Committed: Mon Jul 27 20:57:44 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.20: +6 -5 lines
Log Message:
{@code (true|null)}

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.Collection;
12
13 /**
14 * A thread managed by a {@link ForkJoinPool}. This class is
15 * subclassable solely for the sake of adding functionality -- there
16 * are no overridable methods dealing with scheduling or
17 * execution. However, you can override initialization and termination
18 * methods surrounding the main task processing loop. If you do
19 * create such a subclass, you will also need to supply a custom
20 * ForkJoinWorkerThreadFactory to use it in a ForkJoinPool.
21 *
22 * @since 1.7
23 * @author Doug Lea
24 */
25 public class ForkJoinWorkerThread extends Thread {
26 /*
27 * Algorithm overview:
28 *
29 * 1. Work-Stealing: Work-stealing queues are special forms of
30 * Deques that support only three of the four possible
31 * end-operations -- push, pop, and deq (aka steal), and only do
32 * so under the constraints that push and pop are called only from
33 * the owning thread, while deq may be called from other threads.
34 * (If you are unfamiliar with them, you probably want to read
35 * Herlihy and Shavit's book "The Art of Multiprocessor
36 * programming", chapter 16 describing these in more detail before
37 * proceeding.) The main work-stealing queue design is roughly
38 * similar to "Dynamic Circular Work-Stealing Deque" by David
39 * Chase and Yossi Lev, SPAA 2005
40 * (http://research.sun.com/scalable/pubs/index.html). The main
41 * difference ultimately stems from gc requirements that we null
42 * out taken slots as soon as we can, to maintain as small a
43 * footprint as possible even in programs generating huge numbers
44 * of tasks. To accomplish this, we shift the CAS arbitrating pop
45 * vs deq (steal) from being on the indices ("base" and "sp") to
46 * the slots themselves (mainly via method "casSlotNull()"). So,
47 * both a successful pop and deq mainly entail CAS'ing a non-null
48 * slot to null. Because we rely on CASes of references, we do
49 * not need tag bits on base or sp. They are simple ints as used
50 * in any circular array-based queue (see for example ArrayDeque).
51 * Updates to the indices must still be ordered in a way that
52 * guarantees that (sp - base) > 0 means the queue is empty, but
53 * otherwise may err on the side of possibly making the queue
54 * appear nonempty when a push, pop, or deq have not fully
55 * committed. Note that this means that the deq operation,
56 * considered individually, is not wait-free. One thief cannot
57 * successfully continue until another in-progress one (or, if
58 * previously empty, a push) completes. However, in the
59 * aggregate, we ensure at least probabilistic non-blockingness. If
60 * an attempted steal fails, a thief always chooses a different
61 * random victim target to try next. So, in order for one thief to
62 * progress, it suffices for any in-progress deq or new push on
63 * any empty queue to complete. One reason this works well here is
64 * that apparently-nonempty often means soon-to-be-stealable,
65 * which gives threads a chance to activate if necessary before
66 * stealing (see below).
67 *
68 * Efficient implementation of this approach currently relies on
69 * an uncomfortable amount of "Unsafe" mechanics. To maintain
70 * correct orderings, reads and writes of variable base require
71 * volatile ordering. Variable sp does not require volatile write
72 * but needs cheaper store-ordering on writes. Because they are
73 * protected by volatile base reads, reads of the queue array and
74 * its slots do not need volatile load semantics, but writes (in
75 * push) require store order and CASes (in pop and deq) require
76 * (volatile) CAS semantics. Since these combinations aren't
77 * supported using ordinary volatiles, the only way to accomplish
78 * these efficiently is to use direct Unsafe calls. (Using external
79 * AtomicIntegers and AtomicReferenceArrays for the indices and
80 * array is significantly slower because of memory locality and
81 * indirection effects.) Further, performance on most platforms is
82 * very sensitive to placement and sizing of the (resizable) queue
83 * array. Even though these queues don't usually become all that
84 * big, the initial size must be large enough to counteract cache
85 * contention effects across multiple queues (especially in the
86 * presence of GC cardmarking). Also, to improve thread-locality,
87 * queues are currently initialized immediately after the thread
88 * gets the initial signal to start processing tasks. However,
89 * all queue-related methods except pushTask are written in a way
90 * that allows them to instead be lazily allocated and/or disposed
91 * of when empty. All together, these low-level implementation
92 * choices produce as much as a factor of 4 performance
93 * improvement compared to naive implementations, and enable the
94 * processing of billions of tasks per second, sometimes at the
95 * expense of ugliness.
96 *
97 * 2. Run control: The primary run control is based on a global
98 * counter (activeCount) held by the pool. It uses an algorithm
99 * similar to that in Herlihy and Shavit section 17.6 to cause
100 * threads to eventually block when all threads declare they are
101 * inactive. (See variable "scans".) For this to work, threads
102 * must be declared active when executing tasks, and before
103 * stealing a task. They must be inactive before blocking on the
104 * Pool Barrier (awaiting a new submission or other Pool
105 * event). In between, there is some free play which we take
106 * advantage of to avoid contention and rapid flickering of the
107 * global activeCount: If inactive, we activate only if a victim
108 * queue appears to be nonempty (see above). Similarly, a thread
109 * tries to inactivate only after a full scan of other threads.
110 * The net effect is that contention on activeCount is rarely a
111 * measurable performance issue. (There are also a few other cases
112 * where we scan for work rather than retry/block upon
113 * contention.)
114 *
115 * 3. Selection control. We maintain policy of always choosing to
116 * run local tasks rather than stealing, and always trying to
117 * steal tasks before trying to run a new submission. All steals
118 * are currently performed in randomly-chosen deq-order. It may be
119 * worthwhile to bias these with locality / anti-locality
120 * information, but doing this well probably requires more
121 * lower-level information from JVMs than currently provided.
122 */
123
124 /**
125 * Capacity of work-stealing queue array upon initialization.
126 * Must be a power of two. Initial size must be at least 2, but is
127 * padded to minimize cache effects.
128 */
129 private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
130
131 /**
132 * Maximum work-stealing queue array size. Must be less than or
133 * equal to 1 << 28 to ensure lack of index wraparound. (This
134 * is less than usual bounds, because we need leftshift by 3
135 * to be in int range).
136 */
137 private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
138
139 /**
140 * The pool this thread works in. Accessed directly by ForkJoinTask.
141 */
142 final ForkJoinPool pool;
143
144 /**
145 * The work-stealing queue array. Size must be a power of two.
146 * Initialized when thread starts, to improve memory locality.
147 */
148 private ForkJoinTask<?>[] queue;
149
150 /**
151 * Index (mod queue.length) of next queue slot to push to or pop
152 * from. It is written only by owner thread, via ordered store.
153 * Both sp and base are allowed to wrap around on overflow, but
154 * (sp - base) still estimates size.
155 */
156 private volatile int sp;
157
158 /**
159 * Index (mod queue.length) of least valid queue slot, which is
160 * always the next position to steal from if nonempty.
161 */
162 private volatile int base;
163
164 /**
165 * Activity status. When true, this worker is considered active.
166 * Must be false upon construction. It must be true when executing
167 * tasks, and BEFORE stealing a task. It must be false before
168 * calling pool.sync.
169 */
170 private boolean active;
171
172 /**
173 * Run state of this worker. Supports simple versions of the usual
174 * shutdown/shutdownNow control.
175 */
176 private volatile int runState;
177
178 /**
179 * Seed for random number generator for choosing steal victims.
180 * Uses Marsaglia xorshift. Must be nonzero upon initialization.
181 */
182 private int seed;
183
184 /**
185 * Number of steals, transferred to pool when idle
186 */
187 private int stealCount;
188
189 /**
190 * Index of this worker in pool array. Set once by pool before
191 * running, and accessed directly by pool during cleanup etc.
192 */
193 int poolIndex;
194
195 /**
196 * The last barrier event waited for. Accessed in pool callback
197 * methods, but only by current thread.
198 */
199 long lastEventCount;
200
201 /**
202 * True if use local fifo, not default lifo, for local polling
203 */
204 private boolean locallyFifo;
205
206 /**
207 * Creates a ForkJoinWorkerThread operating in the given pool.
208 *
209 * @param pool the pool this thread works in
210 * @throws NullPointerException if pool is null
211 */
212 protected ForkJoinWorkerThread(ForkJoinPool pool) {
213 if (pool == null) throw new NullPointerException();
214 this.pool = pool;
215 // Note: poolIndex is set by pool during construction
216 // Remaining initialization is deferred to onStart
217 }
218
219 // Public access methods
220
221 /**
222 * Returns the pool hosting this thread.
223 *
224 * @return the pool
225 */
226 public ForkJoinPool getPool() {
227 return pool;
228 }
229
230 /**
231 * Returns the index number of this thread in its pool. The
232 * returned value ranges from zero to the maximum number of
233 * threads (minus one) that have ever been created in the pool.
234 * This method may be useful for applications that track status or
235 * collect results per-worker rather than per-task.
236 *
237 * @return the index number
238 */
239 public int getPoolIndex() {
240 return poolIndex;
241 }
242
243 /**
244 * Establishes local first-in-first-out scheduling mode for forked
245 * tasks that are never joined.
246 *
247 * @param async if true, use locally FIFO scheduling
248 */
249 void setAsyncMode(boolean async) {
250 locallyFifo = async;
251 }
252
253 // Runstate management
254
255 // Runstate values. Order matters
256 private static final int RUNNING = 0;
257 private static final int SHUTDOWN = 1;
258 private static final int TERMINATING = 2;
259 private static final int TERMINATED = 3;
260
261 final boolean isShutdown() { return runState >= SHUTDOWN; }
262 final boolean isTerminating() { return runState >= TERMINATING; }
263 final boolean isTerminated() { return runState == TERMINATED; }
264 final boolean shutdown() { return transitionRunStateTo(SHUTDOWN); }
265 final boolean shutdownNow() { return transitionRunStateTo(TERMINATING); }
266
267 /**
268 * Transitions to at least the given state.
269 *
270 * @return {@code true} if not already at least at given state
271 */
272 private boolean transitionRunStateTo(int state) {
273 for (;;) {
274 int s = runState;
275 if (s >= state)
276 return false;
277 if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, state))
278 return true;
279 }
280 }
281
282 /**
283 * Tries to set status to active; fails on contention.
284 */
285 private boolean tryActivate() {
286 if (!active) {
287 if (!pool.tryIncrementActiveCount())
288 return false;
289 active = true;
290 }
291 return true;
292 }
293
294 /**
295 * Tries to set status to inactive; fails on contention.
296 */
297 private boolean tryInactivate() {
298 if (active) {
299 if (!pool.tryDecrementActiveCount())
300 return false;
301 active = false;
302 }
303 return true;
304 }
305
306 /**
307 * Computes next value for random victim probe. Scans don't
308 * require a very high quality generator, but also not a crummy
309 * one. Marsaglia xor-shift is cheap and works well.
310 */
311 private static int xorShift(int r) {
312 r ^= r << 1;
313 r ^= r >>> 3;
314 r ^= r << 10;
315 return r;
316 }
317
318 // Lifecycle methods
319
320 /**
321 * This method is required to be public, but should never be
322 * called explicitly. It performs the main run loop to execute
323 * ForkJoinTasks.
324 */
325 public void run() {
326 Throwable exception = null;
327 try {
328 onStart();
329 pool.sync(this); // await first pool event
330 mainLoop();
331 } catch (Throwable ex) {
332 exception = ex;
333 } finally {
334 onTermination(exception);
335 }
336 }
337
338 /**
339 * Executes tasks until shut down.
340 */
341 private void mainLoop() {
342 while (!isShutdown()) {
343 ForkJoinTask<?> t = pollTask();
344 if (t != null || (t = pollSubmission()) != null)
345 t.quietlyExec();
346 else if (tryInactivate())
347 pool.sync(this);
348 }
349 }
350
351 /**
352 * Initializes internal state after construction but before
353 * processing any tasks. If you override this method, you must
354 * invoke super.onStart() at the beginning of the method.
355 * Initialization requires care: Most fields must have legal
356 * default values, to ensure that attempted accesses from other
357 * threads work correctly even before this thread starts
358 * processing tasks.
359 */
360 protected void onStart() {
361 // Allocate while starting to improve chances of thread-local
362 // isolation
363 queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
364 // Initial value of seed need not be especially random but
365 // should differ across workers and must be nonzero
366 int p = poolIndex + 1;
367 seed = p + (p << 8) + (p << 16) + (p << 24); // spread bits
368 }
369
370 /**
371 * Performs cleanup associated with termination of this worker
372 * thread. If you override this method, you must invoke
373 * {@code super.onTermination} at the end of the overridden method.
374 *
375 * @param exception the exception causing this thread to abort due
376 * to an unrecoverable error, or {@code null} if completed normally
377 */
378 protected void onTermination(Throwable exception) {
379 // Execute remaining local tasks unless aborting or terminating
380 while (exception == null && !pool.isTerminating() && base != sp) {
381 try {
382 ForkJoinTask<?> t = popTask();
383 if (t != null)
384 t.quietlyExec();
385 } catch (Throwable ex) {
386 exception = ex;
387 }
388 }
389 // Cancel other tasks, transition status, notify pool, and
390 // propagate exception to uncaught exception handler
391 try {
392 do {} while (!tryInactivate()); // ensure inactive
393 cancelTasks();
394 runState = TERMINATED;
395 pool.workerTerminated(this);
396 } catch (Throwable ex) { // Shouldn't ever happen
397 if (exception == null) // but if so, at least rethrown
398 exception = ex;
399 } finally {
400 if (exception != null)
401 ForkJoinTask.rethrowException(exception);
402 }
403 }
404
405 // Intrinsics-based support for queue operations.
406
407 /**
408 * Adds in store-order the given task at given slot of q to null.
409 * Caller must ensure q is non-null and index is in range.
410 */
411 private static void setSlot(ForkJoinTask<?>[] q, int i,
412 ForkJoinTask<?> t) {
413 UNSAFE.putOrderedObject(q, (i << qShift) + qBase, t);
414 }
415
416 /**
417 * CAS given slot of q to null. Caller must ensure q is non-null
418 * and index is in range.
419 */
420 private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
421 ForkJoinTask<?> t) {
422 return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
423 }
424
425 /**
426 * Sets sp in store-order.
427 */
428 private void storeSp(int s) {
429 UNSAFE.putOrderedInt(this, spOffset, s);
430 }
431
432 // Main queue methods
433
434 /**
435 * Pushes a task. Called only by current thread.
436 *
437 * @param t the task. Caller must ensure non-null.
438 */
439 final void pushTask(ForkJoinTask<?> t) {
440 ForkJoinTask<?>[] q = queue;
441 int mask = q.length - 1;
442 int s = sp;
443 setSlot(q, s & mask, t);
444 storeSp(++s);
445 if ((s -= base) == 1)
446 pool.signalWork();
447 else if (s >= mask)
448 growQueue();
449 }
450
451 /**
452 * Tries to take a task from the base of the queue, failing if
453 * either empty or contended.
454 *
455 * @return a task, or null if none or contended
456 */
457 final ForkJoinTask<?> deqTask() {
458 ForkJoinTask<?> t;
459 ForkJoinTask<?>[] q;
460 int i;
461 int b;
462 if (sp != (b = base) &&
463 (q = queue) != null && // must read q after b
464 (t = q[i = (q.length - 1) & b]) != null &&
465 casSlotNull(q, i, t)) {
466 base = b + 1;
467 return t;
468 }
469 return null;
470 }
471
472 /**
473 * Returns a popped task, or null if empty. Ensures active status
474 * if non-null. Called only by current thread.
475 */
476 final ForkJoinTask<?> popTask() {
477 int s = sp;
478 while (s != base) {
479 if (tryActivate()) {
480 ForkJoinTask<?>[] q = queue;
481 int mask = q.length - 1;
482 int i = (s - 1) & mask;
483 ForkJoinTask<?> t = q[i];
484 if (t == null || !casSlotNull(q, i, t))
485 break;
486 storeSp(s - 1);
487 return t;
488 }
489 }
490 return null;
491 }
492
493 /**
494 * Specialized version of popTask to pop only if
495 * topmost element is the given task. Called only
496 * by current thread while active.
497 *
498 * @param t the task. Caller must ensure non-null.
499 */
500 final boolean unpushTask(ForkJoinTask<?> t) {
501 ForkJoinTask<?>[] q = queue;
502 int mask = q.length - 1;
503 int s = sp - 1;
504 if (casSlotNull(q, s & mask, t)) {
505 storeSp(s);
506 return true;
507 }
508 return false;
509 }
510
511 /**
512 * Returns next task.
513 */
514 final ForkJoinTask<?> peekTask() {
515 ForkJoinTask<?>[] q = queue;
516 if (q == null)
517 return null;
518 int mask = q.length - 1;
519 int i = locallyFifo ? base : (sp - 1);
520 return q[i & mask];
521 }
522
523 /**
524 * Doubles queue array size. Transfers elements by emulating
525 * steals (deqs) from old array and placing, oldest first, into
526 * new array.
527 */
528 private void growQueue() {
529 ForkJoinTask<?>[] oldQ = queue;
530 int oldSize = oldQ.length;
531 int newSize = oldSize << 1;
532 if (newSize > MAXIMUM_QUEUE_CAPACITY)
533 throw new RejectedExecutionException("Queue capacity exceeded");
534 ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
535
536 int b = base;
537 int bf = b + oldSize;
538 int oldMask = oldSize - 1;
539 int newMask = newSize - 1;
540 do {
541 int oldIndex = b & oldMask;
542 ForkJoinTask<?> t = oldQ[oldIndex];
543 if (t != null && !casSlotNull(oldQ, oldIndex, t))
544 t = null;
545 setSlot(newQ, b & newMask, t);
546 } while (++b != bf);
547 pool.signalWork();
548 }
549
550 /**
551 * Tries to steal a task from another worker. Starts at a random
552 * index of workers array, and probes workers until finding one
553 * with non-empty queue or finding that all are empty. It
554 * randomly selects the first n probes. If these are empty, it
555 * resorts to a full circular traversal, which is necessary to
556 * accurately set active status by caller. Also restarts if pool
557 * events occurred since last scan, which forces refresh of
558 * workers array, in case barrier was associated with resize.
559 *
560 * This method must be both fast and quiet -- usually avoiding
561 * memory accesses that could disrupt cache sharing etc other than
562 * those needed to check for and take tasks. This accounts for,
563 * among other things, updating random seed in place without
564 * storing it until exit.
565 *
566 * @return a task, or null if none found
567 */
568 private ForkJoinTask<?> scan() {
569 ForkJoinTask<?> t = null;
570 int r = seed; // extract once to keep scan quiet
571 ForkJoinWorkerThread[] ws; // refreshed on outer loop
572 int mask; // must be power 2 minus 1 and > 0
573 outer:do {
574 if ((ws = pool.workers) != null && (mask = ws.length - 1) > 0) {
575 int idx = r;
576 int probes = ~mask; // use random index while negative
577 for (;;) {
578 r = xorShift(r); // update random seed
579 ForkJoinWorkerThread v = ws[mask & idx];
580 if (v == null || v.sp == v.base) {
581 if (probes <= mask)
582 idx = (probes++ < 0) ? r : (idx + 1);
583 else
584 break;
585 }
586 else if (!tryActivate() || (t = v.deqTask()) == null)
587 continue outer; // restart on contention
588 else
589 break outer;
590 }
591 }
592 } while (pool.hasNewSyncEvent(this)); // retry on pool events
593 seed = r;
594 return t;
595 }
596
597 /**
598 * Gets and removes a local or stolen task.
599 *
600 * @return a task, if available
601 */
602 final ForkJoinTask<?> pollTask() {
603 ForkJoinTask<?> t = locallyFifo ? deqTask() : popTask();
604 if (t == null && (t = scan()) != null)
605 ++stealCount;
606 return t;
607 }
608
609 /**
610 * Gets a local task.
611 *
612 * @return a task, if available
613 */
614 final ForkJoinTask<?> pollLocalTask() {
615 return locallyFifo ? deqTask() : popTask();
616 }
617
618 /**
619 * Returns a pool submission, if one exists, activating first.
620 *
621 * @return a submission, if available
622 */
623 private ForkJoinTask<?> pollSubmission() {
624 ForkJoinPool p = pool;
625 while (p.hasQueuedSubmissions()) {
626 ForkJoinTask<?> t;
627 if (tryActivate() && (t = p.pollSubmission()) != null)
628 return t;
629 }
630 return null;
631 }
632
633 // Methods accessed only by Pool
634
635 /**
636 * Removes and cancels all tasks in queue. Can be called from any
637 * thread.
638 */
639 final void cancelTasks() {
640 ForkJoinTask<?> t;
641 while (base != sp && (t = deqTask()) != null)
642 t.cancelIgnoringExceptions();
643 }
644
645 /**
646 * Drains tasks to given collection c.
647 *
648 * @return the number of tasks drained
649 */
650 final int drainTasksTo(Collection<ForkJoinTask<?>> c) {
651 int n = 0;
652 ForkJoinTask<?> t;
653 while (base != sp && (t = deqTask()) != null) {
654 c.add(t);
655 ++n;
656 }
657 return n;
658 }
659
660 /**
661 * Gets and clears steal count for accumulation by pool. Called
662 * only when known to be idle (in pool.sync and termination).
663 */
664 final int getAndClearStealCount() {
665 int sc = stealCount;
666 stealCount = 0;
667 return sc;
668 }
669
670 /**
671 * Returns {@code true} if at least one worker in the given array
672 * appears to have at least one queued task.
673 *
674 * @param ws array of workers
675 */
676 static boolean hasQueuedTasks(ForkJoinWorkerThread[] ws) {
677 if (ws != null) {
678 int len = ws.length;
679 for (int j = 0; j < 2; ++j) { // need two passes for clean sweep
680 for (int i = 0; i < len; ++i) {
681 ForkJoinWorkerThread w = ws[i];
682 if (w != null && w.sp != w.base)
683 return true;
684 }
685 }
686 }
687 return false;
688 }
689
690 // Support methods for ForkJoinTask
691
692 /**
693 * Returns an estimate of the number of tasks in the queue.
694 */
695 final int getQueueSize() {
696 // suppress momentarily negative values
697 return Math.max(0, sp - base);
698 }
699
700 /**
701 * Returns an estimate of the number of tasks, offset by a
702 * function of number of idle workers.
703 */
704 final int getEstimatedSurplusTaskCount() {
705 // The halving approximates weighting idle vs non-idle workers
706 return (sp - base) - (pool.getIdleThreadCount() >>> 1);
707 }
708
709 /**
710 * Scans, returning early if joinMe done.
711 */
712 final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
713 ForkJoinTask<?> t = pollTask();
714 if (t != null && joinMe.status < 0 && sp == base) {
715 pushTask(t); // unsteal if done and this task would be stealable
716 t = null;
717 }
718 return t;
719 }
720
721 /**
722 * Runs tasks until {@code pool.isQuiescent()}.
723 */
724 final void helpQuiescePool() {
725 for (;;) {
726 ForkJoinTask<?> t = pollTask();
727 if (t != null)
728 t.quietlyExec();
729 else if (tryInactivate() && pool.isQuiescent())
730 break;
731 }
732 do {} while (!tryActivate()); // re-activate on exit
733 }
734
735 // Unsafe mechanics
736
737 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
738 private static final long spOffset =
739 objectFieldOffset("sp", ForkJoinWorkerThread.class);
740 private static final long runStateOffset =
741 objectFieldOffset("runState", ForkJoinWorkerThread.class);
742 private static final long qBase;
743 private static final int qShift;
744
745 static {
746 qBase = UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
747 int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
748 if ((s & (s-1)) != 0)
749 throw new Error("data type scale not a power of two");
750 qShift = 31 - Integer.numberOfLeadingZeros(s);
751 }
752
753 private static long objectFieldOffset(String field, Class<?> klazz) {
754 try {
755 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
756 } catch (NoSuchFieldException e) {
757 // Convert Exception to corresponding Error
758 NoSuchFieldError error = new NoSuchFieldError(field);
759 error.initCause(e);
760 throw error;
761 }
762 }
763
764 /**
765 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
766 * Replace with a simple call to Unsafe.getUnsafe when integrating
767 * into a jdk.
768 *
769 * @return a sun.misc.Unsafe
770 */
771 private static sun.misc.Unsafe getUnsafe() {
772 try {
773 return sun.misc.Unsafe.getUnsafe();
774 } catch (SecurityException se) {
775 try {
776 return java.security.AccessController.doPrivileged
777 (new java.security
778 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
779 public sun.misc.Unsafe run() throws Exception {
780 java.lang.reflect.Field f = sun.misc
781 .Unsafe.class.getDeclaredField("theUnsafe");
782 f.setAccessible(true);
783 return (sun.misc.Unsafe) f.get(null);
784 }});
785 } catch (java.security.PrivilegedActionException e) {
786 throw new RuntimeException("Could not initialize intrinsics",
787 e.getCause());
788 }
789 }
790 }
791 }