ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
Revision: 1.29
Committed: Thu Aug 6 15:13:54 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.28: +1 -1 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.Collection;
12
13 /**
14 * A thread managed by a {@link ForkJoinPool}. This class is
15 * subclassable solely for the sake of adding functionality -- there
16 * are no overridable methods dealing with scheduling or execution.
17 * However, you can override initialization and termination methods
18 * surrounding the main task processing loop. If you do create such a
19 * subclass, you will also need to supply a custom {@link
20 * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
21 * ForkJoinPool}.
22 *
23 * @since 1.7
24 * @author Doug Lea
25 */
26 public class ForkJoinWorkerThread extends Thread {
27 /*
28 * Algorithm overview:
29 *
30 * 1. Work-Stealing: Work-stealing queues are special forms of
31 * Deques that support only three of the four possible
32 * end-operations -- push, pop, and deq (aka steal), and only do
33 * so under the constraints that push and pop are called only from
34 * the owning thread, while deq may be called from other threads.
35 * (If you are unfamiliar with them, you probably want to read
36 * Herlihy and Shavit's book "The Art of Multiprocessor
37 * programming", chapter 16 describing these in more detail before
38 * proceeding.) The main work-stealing queue design is roughly
39 * similar to "Dynamic Circular Work-Stealing Deque" by David
40 * Chase and Yossi Lev, SPAA 2005
41 * (http://research.sun.com/scalable/pubs/index.html). The main
42 * difference ultimately stems from gc requirements that we null
43 * out taken slots as soon as we can, to maintain as small a
44 * footprint as possible even in programs generating huge numbers
45 * of tasks. To accomplish this, we shift the CAS arbitrating pop
46 * vs deq (steal) from being on the indices ("base" and "sp") to
47 * the slots themselves (mainly via method "casSlotNull()"). So,
48 * both a successful pop and deq mainly entail CAS'ing a non-null
49 * slot to null. Because we rely on CASes of references, we do
50 * not need tag bits on base or sp. They are simple ints as used
51 * in any circular array-based queue (see for example ArrayDeque).
52 * Updates to the indices must still be ordered in a way that
53 * guarantees that (sp - base) > 0 means the queue is empty, but
54 * otherwise may err on the side of possibly making the queue
55 * appear nonempty when a push, pop, or deq have not fully
56 * committed. Note that this means that the deq operation,
57 * considered individually, is not wait-free. One thief cannot
58 * successfully continue until another in-progress one (or, if
59 * previously empty, a push) completes. However, in the
60 * aggregate, we ensure at least probabilistic
61 * non-blockingness. If an attempted steal fails, a thief always
62 * chooses a different random victim target to try next. So, in
63 * order for one thief to progress, it suffices for any
64 * in-progress deq or new push on any empty queue to complete. One
65 * reason this works well here is that apparently-nonempty often
66 * means soon-to-be-stealable, which gives threads a chance to
67 * activate if necessary before stealing (see below).
68 *
69 * This approach also enables support for "async mode" where local
70 * task processing is in FIFO, not LIFO order; simply by using a
71 * version of deq rather than pop when locallyFifo is true (as set
72 * by the ForkJoinPool). This allows use in message-passing
73 * frameworks in which tasks are never joined.
74 *
75 * Efficient implementation of this approach currently relies on
76 * an uncomfortable amount of "Unsafe" mechanics. To maintain
77 * correct orderings, reads and writes of variable base require
78 * volatile ordering. Variable sp does not require volatile write
79 * but needs cheaper store-ordering on writes. Because they are
80 * protected by volatile base reads, reads of the queue array and
81 * its slots do not need volatile load semantics, but writes (in
82 * push) require store order and CASes (in pop and deq) require
83 * (volatile) CAS semantics. (See "Idempotent work stealing" by
84 * Michael, Saraswat, and Vechev, PPoPP 2009
85 * http://portal.acm.org/citation.cfm?id=1504186 for an algorithm
86 * with similar properties, but without support for nulling
87 * slots.) Since these combinations aren't supported using
88 * ordinary volatiles, the only way to accomplish these
89 * efficiently is to use direct Unsafe calls. (Using external
90 * AtomicIntegers and AtomicReferenceArrays for the indices and
91 * array is significantly slower because of memory locality and
92 * indirection effects.)
93 *
94 * Further, performance on most platforms is very sensitive to
95 * placement and sizing of the (resizable) queue array. Even
96 * though these queues don't usually become all that big, the
97 * initial size must be large enough to counteract cache
98 * contention effects across multiple queues (especially in the
99 * presence of GC cardmarking). Also, to improve thread-locality,
100 * queues are currently initialized immediately after the thread
101 * gets the initial signal to start processing tasks. However,
102 * all queue-related methods except pushTask are written in a way
103 * that allows them to instead be lazily allocated and/or disposed
104 * of when empty. All together, these low-level implementation
105 * choices produce as much as a factor of 4 performance
106 * improvement compared to naive implementations, and enable the
107 * processing of billions of tasks per second, sometimes at the
108 * expense of ugliness.
109 *
110 * 2. Run control: The primary run control is based on a global
111 * counter (activeCount) held by the pool. It uses an algorithm
112 * similar to that in Herlihy and Shavit section 17.6 to cause
113 * threads to eventually block when all threads declare they are
114 * inactive. For this to work, threads must be declared active
115 * when executing tasks, and before stealing a task. They must be
116 * inactive before blocking on the Pool Barrier (awaiting a new
117 * submission or other Pool event). In between, there is some free
118 * play which we take advantage of to avoid contention and rapid
119 * flickering of the global activeCount: If inactive, we activate
120 * only if a victim queue appears to be nonempty (see above).
121 * Similarly, a thread tries to inactivate only after a full scan
122 * of other threads. The net effect is that contention on
123 * activeCount is rarely a measurable performance issue. (There
124 * are also a few other cases where we scan for work rather than
125 * retry/block upon contention.)
126 *
127 * 3. Selection control. We maintain policy of always choosing to
128 * run local tasks rather than stealing, and always trying to
129 * steal tasks before trying to run a new submission. All steals
130 * are currently performed in randomly-chosen deq-order. It may be
131 * worthwhile to bias these with locality / anti-locality
132 * information, but doing this well probably requires more
133 * lower-level information from JVMs than currently provided.
134 */
135
136 /**
137 * Capacity of work-stealing queue array upon initialization.
138 * Must be a power of two. Initial size must be at least 2, but is
139 * padded to minimize cache effects.
140 */
141 private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
142
143 /**
144 * Maximum work-stealing queue array size. Must be less than or
145 * equal to 1 << 28 to ensure lack of index wraparound. (This
146 * is less than usual bounds, because we need leftshift by 3
147 * to be in int range).
148 */
149 private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
150
151 /**
152 * The pool this thread works in. Accessed directly by ForkJoinTask.
153 */
154 final ForkJoinPool pool;
155
156 /**
157 * The work-stealing queue array. Size must be a power of two.
158 * Initialized when thread starts, to improve memory locality.
159 */
160 private ForkJoinTask<?>[] queue;
161
162 /**
163 * Index (mod queue.length) of next queue slot to push to or pop
164 * from. It is written only by owner thread, via ordered store.
165 * Both sp and base are allowed to wrap around on overflow, but
166 * (sp - base) still estimates size.
167 */
168 private volatile int sp;
169
170 /**
171 * Index (mod queue.length) of least valid queue slot, which is
172 * always the next position to steal from if nonempty.
173 */
174 private volatile int base;
175
176 /**
177 * Activity status. When true, this worker is considered active.
178 * Must be false upon construction. It must be true when executing
179 * tasks, and BEFORE stealing a task. It must be false before
180 * calling pool.sync.
181 */
182 private boolean active;
183
184 /**
185 * Run state of this worker. Supports simple versions of the usual
186 * shutdown/shutdownNow control.
187 */
188 private volatile int runState;
189
190 /**
191 * Seed for random number generator for choosing steal victims.
192 * Uses Marsaglia xorshift. Must be nonzero upon initialization.
193 */
194 private int seed;
195
196 /**
197 * Number of steals, transferred to pool when idle
198 */
199 private int stealCount;
200
201 /**
202 * Index of this worker in pool array. Set once by pool before
203 * running, and accessed directly by pool during cleanup etc.
204 */
205 int poolIndex;
206
207 /**
208 * The last barrier event waited for. Accessed in pool callback
209 * methods, but only by current thread.
210 */
211 long lastEventCount;
212
213 /**
214 * True if use local fifo, not default lifo, for local polling
215 */
216 private boolean locallyFifo;
217
218 /**
219 * Creates a ForkJoinWorkerThread operating in the given pool.
220 *
221 * @param pool the pool this thread works in
222 * @throws NullPointerException if pool is null
223 */
224 protected ForkJoinWorkerThread(ForkJoinPool pool) {
225 if (pool == null) throw new NullPointerException();
226 this.pool = pool;
227 // Note: poolIndex is set by pool during construction
228 // Remaining initialization is deferred to onStart
229 }
230
231 // Public access methods
232
233 /**
234 * Returns the pool hosting this thread.
235 *
236 * @return the pool
237 */
238 public ForkJoinPool getPool() {
239 return pool;
240 }
241
242 /**
243 * Returns the index number of this thread in its pool. The
244 * returned value ranges from zero to the maximum number of
245 * threads (minus one) that have ever been created in the pool.
246 * This method may be useful for applications that track status or
247 * collect results per-worker rather than per-task.
248 *
249 * @return the index number
250 */
251 public int getPoolIndex() {
252 return poolIndex;
253 }
254
255 /**
256 * Establishes local first-in-first-out scheduling mode for forked
257 * tasks that are never joined.
258 *
259 * @param async if true, use locally FIFO scheduling
260 */
261 void setAsyncMode(boolean async) {
262 locallyFifo = async;
263 }
264
265 // Runstate management
266
267 // Runstate values. Order matters
268 private static final int RUNNING = 0;
269 private static final int SHUTDOWN = 1;
270 private static final int TERMINATING = 2;
271 private static final int TERMINATED = 3;
272
273 final boolean isShutdown() { return runState >= SHUTDOWN; }
274 final boolean isTerminating() { return runState >= TERMINATING; }
275 final boolean isTerminated() { return runState == TERMINATED; }
276 final boolean shutdown() { return transitionRunStateTo(SHUTDOWN); }
277 final boolean shutdownNow() { return transitionRunStateTo(TERMINATING); }
278
279 /**
280 * Transitions to at least the given state.
281 *
282 * @return {@code true} if not already at least at given state
283 */
284 private boolean transitionRunStateTo(int state) {
285 for (;;) {
286 int s = runState;
287 if (s >= state)
288 return false;
289 if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, state))
290 return true;
291 }
292 }
293
294 /**
295 * Tries to set status to active; fails on contention.
296 */
297 private boolean tryActivate() {
298 if (!active) {
299 if (!pool.tryIncrementActiveCount())
300 return false;
301 active = true;
302 }
303 return true;
304 }
305
306 /**
307 * Tries to set status to inactive; fails on contention.
308 */
309 private boolean tryInactivate() {
310 if (active) {
311 if (!pool.tryDecrementActiveCount())
312 return false;
313 active = false;
314 }
315 return true;
316 }
317
318 /**
319 * Computes next value for random victim probe. Scans don't
320 * require a very high quality generator, but also not a crummy
321 * one. Marsaglia xor-shift is cheap and works well.
322 */
323 private static int xorShift(int r) {
324 r ^= (r << 13);
325 r ^= (r >>> 17);
326 return r ^ (r << 5);
327 }
328
329 // Lifecycle methods
330
331 /**
332 * This method is required to be public, but should never be
333 * called explicitly. It performs the main run loop to execute
334 * ForkJoinTasks.
335 */
336 public void run() {
337 Throwable exception = null;
338 try {
339 onStart();
340 pool.sync(this); // await first pool event
341 mainLoop();
342 } catch (Throwable ex) {
343 exception = ex;
344 } finally {
345 onTermination(exception);
346 }
347 }
348
349 /**
350 * Executes tasks until shut down.
351 */
352 private void mainLoop() {
353 while (!isShutdown()) {
354 ForkJoinTask<?> t = pollTask();
355 if (t != null || (t = pollSubmission()) != null)
356 t.quietlyExec();
357 else if (tryInactivate())
358 pool.sync(this);
359 }
360 }
361
362 /**
363 * Initializes internal state after construction but before
364 * processing any tasks. If you override this method, you must
365 * invoke super.onStart() at the beginning of the method.
366 * Initialization requires care: Most fields must have legal
367 * default values, to ensure that attempted accesses from other
368 * threads work correctly even before this thread starts
369 * processing tasks.
370 */
371 protected void onStart() {
372 // Allocate while starting to improve chances of thread-local
373 // isolation
374 queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
375 // Initial value of seed need not be especially random but
376 // should differ across workers and must be nonzero
377 int p = poolIndex + 1;
378 seed = p + (p << 8) + (p << 16) + (p << 24); // spread bits
379 }
380
381 /**
382 * Performs cleanup associated with termination of this worker
383 * thread. If you override this method, you must invoke
384 * {@code super.onTermination} at the end of the overridden method.
385 *
386 * @param exception the exception causing this thread to abort due
387 * to an unrecoverable error, or {@code null} if completed normally
388 */
389 protected void onTermination(Throwable exception) {
390 // Execute remaining local tasks unless aborting or terminating
391 while (exception == null && pool.isProcessingTasks() && base != sp) {
392 try {
393 ForkJoinTask<?> t = popTask();
394 if (t != null)
395 t.quietlyExec();
396 } catch (Throwable ex) {
397 exception = ex;
398 }
399 }
400 // Cancel other tasks, transition status, notify pool, and
401 // propagate exception to uncaught exception handler
402 try {
403 do {} while (!tryInactivate()); // ensure inactive
404 cancelTasks();
405 runState = TERMINATED;
406 pool.workerTerminated(this);
407 } catch (Throwable ex) { // Shouldn't ever happen
408 if (exception == null) // but if so, at least rethrown
409 exception = ex;
410 } finally {
411 if (exception != null)
412 ForkJoinTask.rethrowException(exception);
413 }
414 }
415
416 // Intrinsics-based support for queue operations.
417
418 /**
419 * Adds in store-order the given task at given slot of q to null.
420 * Caller must ensure q is non-null and index is in range.
421 */
422 private static void setSlot(ForkJoinTask<?>[] q, int i,
423 ForkJoinTask<?> t) {
424 UNSAFE.putOrderedObject(q, (i << qShift) + qBase, t);
425 }
426
427 /**
428 * CAS given slot of q to null. Caller must ensure q is non-null
429 * and index is in range.
430 */
431 private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
432 ForkJoinTask<?> t) {
433 return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
434 }
435
436 /**
437 * Sets sp in store-order.
438 */
439 private void storeSp(int s) {
440 UNSAFE.putOrderedInt(this, spOffset, s);
441 }
442
443 // Main queue methods
444
445 /**
446 * Pushes a task. Called only by current thread.
447 *
448 * @param t the task. Caller must ensure non-null.
449 */
450 final void pushTask(ForkJoinTask<?> t) {
451 ForkJoinTask<?>[] q = queue;
452 int mask = q.length - 1;
453 int s = sp;
454 setSlot(q, s & mask, t);
455 storeSp(++s);
456 if ((s -= base) == 1)
457 pool.signalWork();
458 else if (s >= mask)
459 growQueue();
460 }
461
462 /**
463 * Tries to take a task from the base of the queue, failing if
464 * either empty or contended.
465 *
466 * @return a task, or null if none or contended
467 */
468 final ForkJoinTask<?> deqTask() {
469 ForkJoinTask<?> t;
470 ForkJoinTask<?>[] q;
471 int i;
472 int b;
473 if (sp != (b = base) &&
474 (q = queue) != null && // must read q after b
475 (t = q[i = (q.length - 1) & b]) != null &&
476 casSlotNull(q, i, t)) {
477 base = b + 1;
478 return t;
479 }
480 return null;
481 }
482
483 /**
484 * Tries to take a task from the base of own queue, activating if
485 * necessary, failing only if empty. Called only by current thread.
486 *
487 * @return a task, or null if none
488 */
489 final ForkJoinTask<?> locallyDeqTask() {
490 int b;
491 while (sp != (b = base)) {
492 if (tryActivate()) {
493 ForkJoinTask<?>[] q = queue;
494 int i = (q.length - 1) & b;
495 ForkJoinTask<?> t = q[i];
496 if (t != null && casSlotNull(q, i, t)) {
497 base = b + 1;
498 return t;
499 }
500 }
501 }
502 return null;
503 }
504
505 /**
506 * Returns a popped task, or null if empty. Ensures active status
507 * if non-null. Called only by current thread.
508 */
509 final ForkJoinTask<?> popTask() {
510 int s = sp;
511 while (s != base) {
512 if (tryActivate()) {
513 ForkJoinTask<?>[] q = queue;
514 int mask = q.length - 1;
515 int i = (s - 1) & mask;
516 ForkJoinTask<?> t = q[i];
517 if (t == null || !casSlotNull(q, i, t))
518 break;
519 storeSp(s - 1);
520 return t;
521 }
522 }
523 return null;
524 }
525
526 /**
527 * Specialized version of popTask to pop only if
528 * topmost element is the given task. Called only
529 * by current thread while active.
530 *
531 * @param t the task. Caller must ensure non-null.
532 */
533 final boolean unpushTask(ForkJoinTask<?> t) {
534 ForkJoinTask<?>[] q = queue;
535 int mask = q.length - 1;
536 int s = sp - 1;
537 if (casSlotNull(q, s & mask, t)) {
538 storeSp(s);
539 return true;
540 }
541 return false;
542 }
543
544 /**
545 * Returns next task or null if empty or contended
546 */
547 final ForkJoinTask<?> peekTask() {
548 ForkJoinTask<?>[] q = queue;
549 if (q == null)
550 return null;
551 int mask = q.length - 1;
552 int i = locallyFifo ? base : (sp - 1);
553 return q[i & mask];
554 }
555
556 /**
557 * Doubles queue array size. Transfers elements by emulating
558 * steals (deqs) from old array and placing, oldest first, into
559 * new array.
560 */
561 private void growQueue() {
562 ForkJoinTask<?>[] oldQ = queue;
563 int oldSize = oldQ.length;
564 int newSize = oldSize << 1;
565 if (newSize > MAXIMUM_QUEUE_CAPACITY)
566 throw new RejectedExecutionException("Queue capacity exceeded");
567 ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
568
569 int b = base;
570 int bf = b + oldSize;
571 int oldMask = oldSize - 1;
572 int newMask = newSize - 1;
573 do {
574 int oldIndex = b & oldMask;
575 ForkJoinTask<?> t = oldQ[oldIndex];
576 if (t != null && !casSlotNull(oldQ, oldIndex, t))
577 t = null;
578 setSlot(newQ, b & newMask, t);
579 } while (++b != bf);
580 pool.signalWork();
581 }
582
583 /**
584 * Tries to steal a task from another worker. Starts at a random
585 * index of workers array, and probes workers until finding one
586 * with non-empty queue or finding that all are empty. It
587 * randomly selects the first n probes. If these are empty, it
588 * resorts to a full circular traversal, which is necessary to
589 * accurately set active status by caller. Also restarts if pool
590 * events occurred since last scan, which forces refresh of
591 * workers array, in case barrier was associated with resize.
592 *
593 * This method must be both fast and quiet -- usually avoiding
594 * memory accesses that could disrupt cache sharing etc other than
595 * those needed to check for and take tasks. This accounts for,
596 * among other things, updating random seed in place without
597 * storing it until exit.
598 *
599 * @return a task, or null if none found
600 */
601 private ForkJoinTask<?> scan() {
602 ForkJoinTask<?> t = null;
603 int r = seed; // extract once to keep scan quiet
604 ForkJoinWorkerThread[] ws; // refreshed on outer loop
605 int mask; // must be power 2 minus 1 and > 0
606 outer:do {
607 if ((ws = pool.workers) != null && (mask = ws.length - 1) > 0) {
608 int idx = r;
609 int probes = ~mask; // use random index while negative
610 for (;;) {
611 r = xorShift(r); // update random seed
612 ForkJoinWorkerThread v = ws[mask & idx];
613 if (v == null || v.sp == v.base) {
614 if (probes <= mask)
615 idx = (probes++ < 0) ? r : (idx + 1);
616 else
617 break;
618 }
619 else if (!tryActivate() || (t = v.deqTask()) == null)
620 continue outer; // restart on contention
621 else
622 break outer;
623 }
624 }
625 } while (pool.hasNewSyncEvent(this)); // retry on pool events
626 seed = r;
627 return t;
628 }
629
630 /**
631 * Gets and removes a local or stolen task.
632 *
633 * @return a task, if available
634 */
635 final ForkJoinTask<?> pollTask() {
636 ForkJoinTask<?> t = locallyFifo ? locallyDeqTask() : popTask();
637 if (t == null && (t = scan()) != null)
638 ++stealCount;
639 return t;
640 }
641
642 /**
643 * Gets a local task.
644 *
645 * @return a task, if available
646 */
647 final ForkJoinTask<?> pollLocalTask() {
648 return locallyFifo ? locallyDeqTask() : popTask();
649 }
650
651 /**
652 * Returns a pool submission, if one exists, activating first.
653 *
654 * @return a submission, if available
655 */
656 private ForkJoinTask<?> pollSubmission() {
657 ForkJoinPool p = pool;
658 while (p.hasQueuedSubmissions()) {
659 ForkJoinTask<?> t;
660 if (tryActivate() && (t = p.pollSubmission()) != null)
661 return t;
662 }
663 return null;
664 }
665
666 // Methods accessed only by Pool
667
668 /**
669 * Removes and cancels all tasks in queue. Can be called from any
670 * thread.
671 */
672 final void cancelTasks() {
673 ForkJoinTask<?> t;
674 while (base != sp && (t = deqTask()) != null)
675 t.cancelIgnoringExceptions();
676 }
677
678 /**
679 * Drains tasks to given collection c.
680 *
681 * @return the number of tasks drained
682 */
683 final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
684 int n = 0;
685 ForkJoinTask<?> t;
686 while (base != sp && (t = deqTask()) != null) {
687 c.add(t);
688 ++n;
689 }
690 return n;
691 }
692
693 /**
694 * Gets and clears steal count for accumulation by pool. Called
695 * only when known to be idle (in pool.sync and termination).
696 */
697 final int getAndClearStealCount() {
698 int sc = stealCount;
699 stealCount = 0;
700 return sc;
701 }
702
703 /**
704 * Returns {@code true} if at least one worker in the given array
705 * appears to have at least one queued task.
706 *
707 * @param ws array of workers
708 */
709 static boolean hasQueuedTasks(ForkJoinWorkerThread[] ws) {
710 if (ws != null) {
711 int len = ws.length;
712 for (int j = 0; j < 2; ++j) { // need two passes for clean sweep
713 for (int i = 0; i < len; ++i) {
714 ForkJoinWorkerThread w = ws[i];
715 if (w != null && w.sp != w.base)
716 return true;
717 }
718 }
719 }
720 return false;
721 }
722
723 // Support methods for ForkJoinTask
724
725 /**
726 * Returns an estimate of the number of tasks in the queue.
727 */
728 final int getQueueSize() {
729 // suppress momentarily negative values
730 return Math.max(0, sp - base);
731 }
732
733 /**
734 * Returns an estimate of the number of tasks, offset by a
735 * function of number of idle workers.
736 */
737 final int getEstimatedSurplusTaskCount() {
738 // The halving approximates weighting idle vs non-idle workers
739 return (sp - base) - (pool.getIdleThreadCount() >>> 1);
740 }
741
742 /**
743 * Scans, returning early if joinMe done.
744 */
745 final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
746 ForkJoinTask<?> t = pollTask();
747 if (t != null && joinMe.status < 0 && sp == base) {
748 pushTask(t); // unsteal if done and this task would be stealable
749 t = null;
750 }
751 return t;
752 }
753
754 /**
755 * Runs tasks until {@code pool.isQuiescent()}.
756 */
757 final void helpQuiescePool() {
758 for (;;) {
759 ForkJoinTask<?> t = pollTask();
760 if (t != null)
761 t.quietlyExec();
762 else if (tryInactivate() && pool.isQuiescent())
763 break;
764 }
765 do {} while (!tryActivate()); // re-activate on exit
766 }
767
768 // Unsafe mechanics
769
770 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
771 private static final long spOffset =
772 objectFieldOffset("sp", ForkJoinWorkerThread.class);
773 private static final long runStateOffset =
774 objectFieldOffset("runState", ForkJoinWorkerThread.class);
775 private static final long qBase;
776 private static final int qShift;
777
778 static {
779 qBase = UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
780 int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
781 if ((s & (s-1)) != 0)
782 throw new Error("data type scale not a power of two");
783 qShift = 31 - Integer.numberOfLeadingZeros(s);
784 }
785
786 private static long objectFieldOffset(String field, Class<?> klazz) {
787 try {
788 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
789 } catch (NoSuchFieldException e) {
790 // Convert Exception to corresponding Error
791 NoSuchFieldError error = new NoSuchFieldError(field);
792 error.initCause(e);
793 throw error;
794 }
795 }
796
797 /**
798 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
799 * Replace with a simple call to Unsafe.getUnsafe when integrating
800 * into a jdk.
801 *
802 * @return a sun.misc.Unsafe
803 */
804 private static sun.misc.Unsafe getUnsafe() {
805 try {
806 return sun.misc.Unsafe.getUnsafe();
807 } catch (SecurityException se) {
808 try {
809 return java.security.AccessController.doPrivileged
810 (new java.security
811 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
812 public sun.misc.Unsafe run() throws Exception {
813 java.lang.reflect.Field f = sun.misc
814 .Unsafe.class.getDeclaredField("theUnsafe");
815 f.setAccessible(true);
816 return (sun.misc.Unsafe) f.get(null);
817 }});
818 } catch (java.security.PrivilegedActionException e) {
819 throw new RuntimeException("Could not initialize intrinsics",
820 e.getCause());
821 }
822 }
823 }
824 }