ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.45
Committed: Wed Oct 21 16:30:40 2009 UTC (14 years, 7 months ago) by dl
Branch: MAIN
Changes since 1.44: +733 -515 lines
Log Message:
Overhaul implementation

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.26
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.26
11     import java.util.AbstractQueue;
12     import java.util.Collection;
13 jsr166 1.35 import java.util.ConcurrentModificationException;
14 jsr166 1.26 import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.35 import java.util.Queue;
17 jsr166 1.26 import java.util.concurrent.locks.LockSupport;
18 dl 1.1 /**
19 jsr166 1.43 * An unbounded {@link TransferQueue} based on linked nodes.
20 dl 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
21     * to any given producer. The <em>head</em> of the queue is that
22     * element that has been on the queue the longest time for some
23     * producer. The <em>tail</em> of the queue is that element that has
24     * been on the queue the shortest time for some producer.
25     *
26 jsr166 1.11 * <p>Beware that, unlike in most collections, the {@code size}
27 dl 1.1 * method is <em>NOT</em> a constant-time operation. Because of the
28     * asynchronous nature of these queues, determining the current number
29     * of elements requires a traversal of the elements.
30     *
31     * <p>This class and its iterator implement all of the
32     * <em>optional</em> methods of the {@link Collection} and {@link
33     * Iterator} interfaces.
34     *
35     * <p>Memory consistency effects: As with other concurrent
36     * collections, actions in a thread prior to placing an object into a
37     * {@code LinkedTransferQueue}
38     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
39     * actions subsequent to the access or removal of that element from
40     * the {@code LinkedTransferQueue} in another thread.
41     *
42     * <p>This class is a member of the
43     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
44     * Java Collections Framework</a>.
45     *
46 dl 1.3 * @since 1.7
47 dl 1.1 * @author Doug Lea
48     * @param <E> the type of elements held in this collection
49     */
50     public class LinkedTransferQueue<E> extends AbstractQueue<E>
51     implements TransferQueue<E>, java.io.Serializable {
52     private static final long serialVersionUID = -3223113410248163686L;
53    
54     /*
55 dl 1.45 * *** Overview of Dual Queues with Slack ***
56 dl 1.1 *
57 dl 1.45 * Dual Queues, introduced by Scherer and Scott
58     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59     * (linked) queues in which nodes may represent either data or
60     * requests. When a thread tries to enqueue a data node, but
61     * encounters a request node, it instead "matches" and removes it;
62     * and vice versa for enqueuing requests. Blocking Dual Queues
63     * arrange that threads enqueuing unmatched requests block until
64     * other threads provide the match. Dual Synchronous Queues (see
65     * Scherer, Lea, & Scott
66     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67     * additionally arrange that threads enqueuing unmatched data also
68     * block. Dual Transfer Queues support all of these modes, as
69     * dictated by callers.
70     *
71     * A FIFO dual queue may be implemented using a variation of the
72     * Michael & Scott (M&S) lock-free queue algorithm
73     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74     * It maintains two pointer fields, "head", pointing to a
75     * (matched) node that in turn points to the first actual
76     * (unmatched) queue node (or null if empty); and "tail" that
77     * points to the last node on the queue (or again null if
78     * empty). For example, here is a possible queue with four data
79     * elements:
80     *
81     * head tail
82     * | |
83     * v v
84     * M -> U -> U -> U -> U
85     *
86     * The M&S queue algorithm is known to be prone to scalability and
87     * overhead limitations when maintaining (via CAS) these head and
88     * tail pointers. This has led to the development of
89     * contention-reducing variants such as elimination arrays (see
90     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91     * optimistic back pointers (see Ladan-Mozes & Shavit
92     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93     * However, the nature of dual queues enables a simpler tactic for
94     * improving M&S-style implementations when dual-ness is needed.
95     *
96     * In a dual queue, each node must atomically maintain its match
97     * status. While there are other possible variants, we implement
98     * this here as: for a data-mode node, matching entails CASing an
99     * "item" field from a non-null data value to null upon match, and
100     * vice-versa for request nodes, CASing from null to a data
101     * value. (Note that the linearization properties of this style of
102     * queue are easy to verify -- elements are made available by
103     * linking, and unavailable by matching.) Compared to plain M&S
104     * queues, this property of dual queues requires one additional
105     * successful atomic operation per enq/deq pair. But it also
106     * enables lower cost variants of queue maintenance mechanics. (A
107     * variation of this idea applies even for non-dual queues that
108     * support deletion of embedded elements, such as
109     * j.u.c.ConcurrentLinkedQueue.)
110     *
111     * Once a node is matched, its item can never again change. We
112     * may thus arrange that the linked list of them contains a prefix
113     * of zero or more matched nodes, followed by a suffix of zero or
114     * more unmatched nodes. (Note that we allow both the prefix and
115     * suffix to be zero length, which in turn means that we do not
116     * use a dummy header.) If we were not concerned with either time
117     * or space efficiency, we could correctly perform enqueue and
118     * dequeue operations by traversing from a pointer to the initial
119     * node; CASing the item of the first unmatched node on match and
120     * CASing the next field of the trailing node on appends. While
121     * this would be a terrible idea in itself, it does have the
122     * benefit of not requiring ANY atomic updates on head/tail
123     * fields.
124     *
125     * We introduce here an approach that lies between the extremes of
126     * never versus always updating queue (head and tail) pointers
127     * that reflects the tradeoff of sometimes require extra traversal
128     * steps to locate the first and/or last unmatched nodes, versus
129     * the reduced overhead and contention of fewer updates to queue
130     * pointers. For example, a possible snapshot of a queue is:
131     *
132     * head tail
133     * | |
134     * v v
135     * M -> M -> U -> U -> U -> U
136     *
137     * The best value for this "slack" (the targeted maximum distance
138     * between the value of "head" and the first unmatched node, and
139     * similarly for "tail") is an empirical matter. We have found
140     * that using very small constants in the range of 1-3 work best
141     * over a range of platforms. Larger values introduce increasing
142     * costs of cache misses and risks of long traversal chains.
143     *
144     * Dual queues with slack differ from plain M&S dual queues by
145     * virtue of only sometimes updating head or tail pointers when
146     * matching, appending, or even traversing nodes; in order to
147     * maintain a targeted slack. The idea of "sometimes" may be
148     * operationalized in several ways. The simplest is to use a
149     * per-operation counter incremented on each traversal step, and
150     * to try (via CAS) to update the associated queue pointer
151     * whenever the count exceeds a threshold. Another, that requires
152     * more overhead, is to use random number generators to update
153     * with a given probability per traversal step.
154     *
155     * In any strategy along these lines, because CASes updating
156     * fields may fail, the actual slack may exceed targeted
157     * slack. However, they may be retried at any time to maintain
158     * targets. Even when using very small slack values, this
159     * approach works well for dual queues because it allows all
160     * operations up to the point of matching or appending an item
161     * (hence potentially releasing another thread) to be read-only,
162     * thus not introducing any further contention. As described
163     * below, we implement this by performing slack maintenance
164     * retries only after these points.
165     *
166     * As an accompaniment to such techniques, traversal overhead can
167     * be further reduced without increasing contention of head
168     * pointer updates. During traversals, threads may sometimes
169     * shortcut the "next" link path from the current "head" node to
170     * be closer to the currently known first unmatched node. Again,
171     * this may be triggered with using thresholds or randomization.
172     *
173     * These ideas must be further extended to avoid unbounded amounts
174     * of costly-to-reclaim garbage caused by the sequential "next"
175     * links of nodes starting at old forgotten head nodes: As first
176     * described in detail by Boehm
177     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
178     * delays noticing that any arbitrarily old node has become
179     * garbage, all newer dead nodes will also be unreclaimed.
180     * (Similar issues arise in non-GC environments.) To cope with
181     * this in our implementation, upon CASing to advance the head
182     * pointer, we set the "next" link of the previous head to point
183     * only to itself; thus limiting the length connected dead lists.
184     * (We also take similar care to wipe out possibly garbage
185     * retaining values held in other Node fields.) However, doing so
186     * adds some further complexity to traversal: If any "next"
187     * pointer links to itself, it indicates that the current thread
188     * has lagged behind a head-update, and so the traversal must
189     * continue from the "head". Traversals trying to find the
190     * current tail starting from "tail" may also encounter
191     * self-links, in which case they also continue at "head".
192     *
193     * It is tempting in slack-based scheme to not even use CAS for
194     * updates (similarly to Ladan-Mozes & Shavit). However, this
195     * cannot be done for head updates under the above link-forgetting
196     * mechanics because an update may leave head at a detached node.
197     * And while direct writes are possible for tail updates, they
198     * increase the risk of long retraversals, and hence long garbage
199     * chains which can be much more costly than is worthwhile
200     * considering that the cost difference of performing a CAS vs
201     * write is smaller when they are not triggered on each operation
202     * (especially considering that writes and CASes equally require
203     * additional GC bookkeeping ("write barriers") that are sometimes
204     * more costly than the writes themselves because of contention).
205     *
206     * Removal of internal nodes (due to timed out or interrupted
207     * waits, or calls to remove or Iterator.remove) uses a scheme
208     * roughly similar to that in Scherer, Lea, and Scott
209     * SynchronousQueue. Given a predecessor, we can unsplice any node
210     * except the (actual) tail of the queue. To avoid build-up of
211     * cancelled trailing nodes, upon a request to remove a trailing
212     * node, it is placed in field "cleanMe" to be unspliced later.
213     *
214     * *** Overview of implementation ***
215     *
216     * We use a threshold-based approach to updates, with a target
217     * slack of two. The slack value is hard-wired: a path greater
218     * than one is naturally implemented by checking equality of
219     * traversal pointers except when the list has only one element,
220     * in which case we keep max slack at one. Avoiding tracking
221     * explicit counts across situations slightly simplifies an
222     * already-messy implementation. Using randomization would
223     * probably work better if there were a low-quality dirt-cheap
224     * per-thread one available, but even ThreadLocalRandom is too
225     * heavy for these purposes.
226     *
227     * With such a small slack value, path short-circuiting is rarely
228     * worthwhile. However, it is used (in awaitMatch) immediately
229     * before a waiting thread starts to block, as a final bit of
230     * helping at a point when contention with others is extremely
231     * unlikely (since if other threads that could release it are
232     * operating, then the current thread wouldn't be blocking).
233     *
234     * All enqueue/dequeue operations are handled by the single method
235     * "xfer" with parameters indicating whether to act as some form
236     * of offer, put, poll, take, or transfer (each possibly with
237     * timeout). The relative complexity of using one monolithic
238     * method outweighs the code bulk and maintenance problems of
239     * using nine separate methods.
240     *
241     * Operation consists of up to three phases. The first is
242     * implemented within method xfer, the second in tryAppend, and
243     * the third in method awaitMatch.
244     *
245     * 1. Try to match an existing node
246     *
247     * Starting at head, skip already-matched nodes until finding
248     * an unmatched node of opposite mode, if one exists, in which
249     * case matching it and returning, also if necessary updating
250     * head to one past the matched node (or the node itself if the
251     * list has no other unmatched nodes). If the CAS misses, then
252     * a retry loops until the slack is at most two. Traversals
253     * also check if the initial head is now off-list, in which
254     * case they start at the new head.
255     *
256     * If no candidates are found and the call was untimed
257     * poll/offer, (argument "how" is NOW) return.
258     *
259     * 2. Try to append a new node (method tryAppend)
260     *
261     * Starting at current tail pointer, try to append a new node
262     * to the list (or if head was null, establish the first
263     * node). Nodes can be appended only if their predecessors are
264     * either already matched or are of the same mode. If we detect
265     * otherwise, then a new node with opposite mode must have been
266     * appended during traversal, so must restart at phase 1. The
267     * traversal and update steps are otherwise similar to phase 1:
268     * Retrying upon CAS misses and checking for staleness. In
269     * particular, if a self-link is encountered, then we can
270     * safely jump to a node on the list by continuing the
271     * traversal at current head.
272     *
273     * On successful append, if the call was ASYNC, return
274     *
275     * 3. Await match or cancellation (method awaitMatch)
276     *
277     * Wait for another thread to match node; instead cancelling if
278     * current thread was interrupted or the wait timed out. On
279     * multiprocessors, we use front-of-queue spinning: If a node
280     * appears to be the first unmatched node in the queue, it
281     * spins a bit before blocking. In either case, before blocking
282     * it tries to unsplice any nodes between the current "head"
283     * and the first unmatched node.
284     *
285     * Front-of-queue spinning vastly improves performance of
286     * heavily contended queues. And so long as it is relatively
287     * brief and "quiet", spinning does not much impact performance
288     * of less-contended queues. During spins threads check their
289     * interrupt status and generate a thread-local random number
290     * to decide to occasionally perform a Thread.yield. While
291     * yield has underdefined specs, we assume that might it help,
292     * and will not hurt in limiting impact of spinning on busy
293     * systems. We also use much smaller (1/4) spins for nodes
294     * that are not known to be front but whose predecessors have
295     * not blocked -- these "chained" spins avoid artifacts of
296     * front-of-queue rules which otherwise lead to alternating
297     * nodes spinning vs blocking. Further, front threads that
298     * represent phase changes (from data to request node or vice
299     * versa) compared to their predecessors receive additional
300     * spins, reflecting the longer code path lengths necessary to
301     * release them under contention.
302     */
303    
304     /** True if on multiprocessor */
305     private static final boolean MP =
306     Runtime.getRuntime().availableProcessors() > 1;
307    
308     /**
309     * The number of times to spin (with on average one randomly
310     * interspersed call to Thread.yield) on multiprocessor before
311     * blocking when a node is apparently the first waiter in the
312     * queue. See above for explanation. Must be a power of two. The
313     * value is empirically derived -- it works pretty well across a
314     * variety of processors, numbers of CPUs, and OSes.
315     */
316     private static final int FRONT_SPINS = 1 << 7;
317    
318     /**
319     * The number of times to spin before blocking when a node is
320     * preceded by another node that is apparently spinning.
321     */
322     private static final int CHAINED_SPINS = FRONT_SPINS >>> 2;
323    
324     /**
325     * Queue nodes. Uses Object, not E for items to allow forgetting
326     * them after use. Relies heavily on Unsafe mechanics to minimize
327     * unecessary ordering constraints: Writes that intrinsically
328     * precede or follow CASes use simple relaxed forms. Other
329     * cleanups use releasing/lazy writes.
330     */
331     static final class Node {
332     final boolean isData; // false if this is a request node
333     volatile Object item; // initially nonnull if isData; CASed to match
334     volatile Node next;
335     volatile Thread waiter; // null until waiting
336 dl 1.1
337 dl 1.45 // CAS methods for fields
338     final boolean casNext(Node cmp, Node val) {
339     return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
340     }
341 dl 1.1
342 dl 1.45 final boolean casItem(Object cmp, Object val) {
343     return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
344     }
345 dl 1.1
346 dl 1.45 /**
347     * Create a new node. Uses relaxed write because item can only
348     * be seen if followed by CAS
349     */
350     Node(Object item, boolean isData) {
351     UNSAFE.putObject(this, itemOffset, item); // relaxed write
352 dl 1.1 this.isData = isData;
353     }
354    
355 dl 1.45 /**
356     * Links node to itself to avoid garbage retention. Called
357     * only after CASing head field, so uses relaxed write.
358     */
359     final void forgetNext() {
360     UNSAFE.putObject(this, nextOffset, this);
361     }
362 jsr166 1.32
363 dl 1.45 /**
364     * Sets item to self (using a releasing/lazy write) and waiter
365     * to null, to avoid garbage retention after extracting or
366     * cancelling.
367     */
368     final void forgetContents() {
369     UNSAFE.putOrderedObject(this, itemOffset, this);
370     UNSAFE.putOrderedObject(this, waiterOffset, null);
371     }
372 jsr166 1.32
373 dl 1.45 /**
374     * Returns true if this node has been matched, including the
375     * case of artificial matches due to cancellation.
376     */
377     final boolean isMatched() {
378     Object x = item;
379     return x == this || (x != null) != isData;
380 dl 1.1 }
381 dl 1.15
382 dl 1.45 /**
383     * Returns true if a node with the given mode cannot be
384     * appended to this node because this node is unmatched and
385     * has opposite data mode.
386     */
387     final boolean cannotPrecede(boolean haveData) {
388     boolean d = isData;
389     Object x;
390     return d != haveData && (x = item) != this && (x != null) == d;
391 jsr166 1.31 }
392    
393     /**
394 dl 1.45 * Tries to artifically match a data node -- used by remove.
395 jsr166 1.31 */
396 dl 1.45 final boolean tryMatchData() {
397     Object x = item;
398     if (x != null && x != this && casItem(x, null)) {
399     LockSupport.unpark(waiter);
400     return true;
401 jsr166 1.31 }
402 dl 1.45 return false;
403 dl 1.15 }
404    
405 dl 1.45 // Unsafe mechanics
406     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
407     private static final long nextOffset =
408     objectFieldOffset(UNSAFE, "next", Node.class);
409     private static final long itemOffset =
410     objectFieldOffset(UNSAFE, "item", Node.class);
411     private static final long waiterOffset =
412     objectFieldOffset(UNSAFE, "waiter", Node.class);
413    
414 jsr166 1.24 private static final long serialVersionUID = -3375979862319811754L;
415 dl 1.1 }
416    
417 dl 1.45 /** head of the queue; null until first enqueue */
418     private transient volatile Node head;
419    
420     /** predecessor of dangling unspliceable node */
421     private transient volatile Node cleanMe; // decl here to reduce contention
422 dl 1.1
423 dl 1.45 /** tail of the queue; null until first append */
424     private transient volatile Node tail;
425 dl 1.1
426 dl 1.45 // CAS methods for fields
427     private boolean casTail(Node cmp, Node val) {
428     return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
429     }
430 jsr166 1.23
431 dl 1.45 private boolean casHead(Node cmp, Node val) {
432     return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
433     }
434 dl 1.1
435 dl 1.45 private boolean casCleanMe(Node cmp, Node val) {
436     return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
437     }
438 dl 1.1
439 dl 1.45 /*
440     * Possible values for "how" argument in xfer method. Beware that
441     * the order of assigned numerical values matters.
442 dl 1.1 */
443 dl 1.45 private static final int NOW = 0; // for untimed poll, tryTransfer
444     private static final int ASYNC = 1; // for offer, put, add
445     private static final int SYNC = 2; // for transfer, take
446     private static final int TIMEOUT = 3; // for timed poll, tryTransfer
447 jsr166 1.5
448 dl 1.1 /**
449 dl 1.45 * Implements all queuing methods. See above for explanation.
450 jsr166 1.17 *
451 dl 1.45 * @param e the item or null for take
452     * @param haveData true if this is a put else a take
453     * @param how NOW, ASYNC, SYNC, or TIMEOUT
454 dl 1.1 * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
455 dl 1.45 * @return an item if matched, else e;
456     * @throws NullPointerException if haveData mode but e is null
457 dl 1.1 */
458 dl 1.45 private Object xfer(Object e, boolean haveData, int how, long nanos) {
459     if (haveData && (e == null))
460     throw new NullPointerException();
461     Node s = null; // the node to append, if needed
462 dl 1.1
463 dl 1.45 retry: for (;;) { // restart on append race
464 dl 1.1
465 dl 1.45 for (Node h = head, p = h; p != null;) { // find & match first node
466     boolean isData = p.isData;
467     Object item = p.item;
468     if (item != p && (item != null) == isData) { // unmatched
469     if (isData == haveData) // can't match
470     break;
471     if (p.casItem(item, e)) { // match
472     Thread w = p.waiter;
473     while (p != h) { // update head
474     Node n = p.next; // by 2 unless singleton
475     if (n != null)
476     p = n;
477     if (head == h && casHead(h, p)) {
478     h.forgetNext();
479     break;
480     } // advance and retry
481     if ((h = head) == null ||
482     (p = h.next) == null || !p.isMatched())
483     break; // unless slack < 2
484     }
485     LockSupport.unpark(w);
486     return item;
487 dl 1.1 }
488     }
489 dl 1.45 Node n = p.next;
490     p = p != n ? n : (h = head); // Use head if p offlist
491     }
492    
493     if (how >= ASYNC) { // No matches available
494     if (s == null)
495     s = new Node(e, haveData);
496     Node pred = tryAppend(s, haveData);
497     if (pred == null)
498     continue retry; // lost race vs opposite mode
499     if (how >= SYNC)
500     return awaitMatch(pred, s, e, how, nanos);
501 dl 1.1 }
502 dl 1.45 return e; // not waiting
503 dl 1.1 }
504     }
505    
506     /**
507 dl 1.45 * Tries to append node s as tail
508     * @param haveData true if appending in data mode
509     * @param s the node to append
510     * @return null on failure due to losing race with append in
511     * different mode, else s's predecessor, or s itself if no
512     * predecessor
513 dl 1.1 */
514 dl 1.45 private Node tryAppend(Node s, boolean haveData) {
515     for (Node t = tail, p = t;;) { // move p to actual tail and append
516     Node n, u; // temps for reads of next & tail
517     if (p == null && (p = head) == null) {
518     if (casHead(null, s))
519     return s; // initialize
520     }
521     else if (p.cannotPrecede(haveData))
522     return null; // lost race vs opposite mode
523     else if ((n = p.next) != null) // Not tail; keep traversing
524     p = p != t && t != (u = tail) ? (t = u) : // stale tail
525     p != n ? n : null; // restart if off list
526     else if (!p.casNext(null, s))
527     p = p.next; // re-read on CAS failure
528     else {
529     if (p != t) { // Update if slack now >= 2
530     while ((tail != t || !casTail(t, s)) &&
531     (t = tail) != null &&
532     (s = t.next) != null && // advance and retry
533     (s = s.next) != null && s != t);
534 dl 1.1 }
535 dl 1.45 return p;
536 dl 1.1 }
537     }
538     }
539    
540     /**
541 dl 1.45 * Spins/yields/blocks until node s is matched or caller gives up.
542 dl 1.1 *
543 dl 1.45 * @param pred the predecessor of s or s or null if none
544 dl 1.1 * @param s the waiting node
545     * @param e the comparison value for checking match
546 dl 1.45 * @param how either SYNC or TIMEOUT
547 dl 1.1 * @param nanos timeout value
548 dl 1.45 * @return matched item, or e if unmatched on interrupt or timeout
549 dl 1.1 */
550 dl 1.45 private Object awaitMatch(Node pred, Node s, Object e,
551     int how, long nanos) {
552     long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
553     Thread w = Thread.currentThread();
554     int spins = -1; // initialized after first item and cancel checks
555     ThreadLocalRandom randomYields = null; // bound if needed
556 dl 1.1
557     for (;;) {
558 dl 1.45 Object item = s.item;
559     if (item != e) { // matched
560     s.forgetContents(); // avoid garbage
561     return item;
562     }
563     if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
564     s.casItem(e, s)) { // cancel
565     unsplice(pred, s);
566     return e;
567     }
568    
569     if (spins < 0) { // establish spins at/near front
570     if ((spins = spinsFor(pred, s.isData)) > 0)
571     randomYields = ThreadLocalRandom.current();
572     }
573     else if (spins > 0) { // spin, occasionally yield
574     if (randomYields.nextInt(FRONT_SPINS) == 0)
575     Thread.yield();
576     --spins;
577     }
578     else if (s.waiter == null) {
579     shortenHeadPath(); // reduce slack before blocking
580     s.waiter = w; // request unpark
581 dl 1.1 }
582 dl 1.45 else if (how == TIMEOUT) {
583 dl 1.1 long now = System.nanoTime();
584 dl 1.45 if ((nanos -= now - lastTime) > 0)
585     LockSupport.parkNanos(this, nanos);
586 dl 1.1 lastTime = now;
587     }
588 dl 1.45 else {
589 dl 1.12 LockSupport.park(this);
590 dl 1.45 spins = -1; // spin if front upon wakeup
591 dl 1.1 }
592 dl 1.45 }
593     }
594    
595     /**
596     * Return spin/yield value for a node with given predecessor and
597     * data mode. See above for explanation.
598     */
599     private static int spinsFor(Node pred, boolean haveData) {
600     if (MP && pred != null) {
601     boolean predData = pred.isData;
602     if (predData != haveData) // front and phase change
603     return FRONT_SPINS + (FRONT_SPINS >>> 1);
604     if (predData != (pred.item != null)) // probably at front
605     return FRONT_SPINS;
606     if (pred.waiter == null) // pred apparently spinning
607     return CHAINED_SPINS;
608     }
609     return 0;
610     }
611    
612     /**
613     * Tries (once) to unsplice nodes between head and first unmatched
614     * or trailing node; failing on contention.
615     */
616     private void shortenHeadPath() {
617     Node h, hn, p, q;
618     if ((p = h = head) != null && h.isMatched() &&
619     (q = hn = h.next) != null) {
620     Node n;
621     while ((n = q.next) != q) {
622     if (n == null || !q.isMatched()) {
623     if (hn != q && h.next == hn)
624     h.casNext(hn, q);
625     break;
626     }
627     p = q;
628     q = n;
629 dl 1.1 }
630     }
631     }
632    
633 dl 1.45 /* -------------- Traversal methods -------------- */
634    
635 dl 1.1 /**
636 dl 1.45 * Return the first unmatched node of the given mode, or null if
637     * none. Used by methods isEmpty, hasWaitingConsumer.
638 dl 1.9 */
639 dl 1.45 private Node firstOfMode(boolean data) {
640     for (Node p = head; p != null; ) {
641     if (!p.isMatched())
642     return p.isData == data? p : null;
643     Node n = p.next;
644     p = n != p ? n : head;
645     }
646     return null;
647     }
648    
649     /**
650     * Returns the item in the first unmatched node with isData; or
651     * null if none. Used by peek.
652     */
653     private Object firstDataItem() {
654     for (Node p = head; p != null; ) {
655     boolean isData = p.isData;
656     Object item = p.item;
657     if (item != p && (item != null) == isData)
658     return isData ? item : null;
659     Node n = p.next;
660     p = n != p ? n : head;
661     }
662     return null;
663     }
664    
665     /**
666     * Traverse and count nodes of the given mode.
667     * Used by methds size and getWaitingConsumerCount.
668     */
669     private int countOfMode(boolean data) {
670     int count = 0;
671     for (Node p = head; p != null; ) {
672     if (!p.isMatched()) {
673     if (p.isData != data)
674     return 0;
675     if (++count == Integer.MAX_VALUE) // saturated
676     break;
677 dl 1.9 }
678 dl 1.45 Node n = p.next;
679     if (n != p)
680     p = n;
681     else {
682     count = 0;
683     p = head;
684 dl 1.9 }
685     }
686 dl 1.45 return count;
687 jsr166 1.10 }
688 dl 1.9
689 dl 1.45 final class Itr implements Iterator<E> {
690     private Node nextNode; // next node to return item for
691     private Object nextItem; // the corresponding item
692     private Node lastRet; // last returned node, to support remove
693    
694     /**
695     * Moves to next node after prev, or first node if prev null.
696     */
697     private void advance(Node prev) {
698     lastRet = prev;
699     Node p;
700     if (prev == null || (p = prev.next) == prev)
701     p = head;
702     while (p != null) {
703     Object item = p.item;
704     if (p.isData) {
705     if (item != null && item != p) {
706     nextItem = item;
707     nextNode = p;
708     return;
709     }
710     }
711     else if (item == null)
712     break;
713     Node n = p.next;
714     p = n != p ? n : head;
715     }
716     nextNode = null;
717     }
718    
719     Itr() {
720     advance(null);
721     }
722    
723     public final boolean hasNext() {
724     return nextNode != null;
725     }
726    
727     public final E next() {
728     Node p = nextNode;
729     if (p == null) throw new NoSuchElementException();
730     Object e = nextItem;
731     advance(p);
732     return (E) e;
733     }
734    
735     public final void remove() {
736     Node p = lastRet;
737     if (p == null) throw new IllegalStateException();
738     lastRet = null;
739     findAndRemoveNode(p);
740     }
741     }
742    
743     /* -------------- Removal methods -------------- */
744    
745 dl 1.9 /**
746 dl 1.45 * Unsplices (now or later) the given deleted/cancelled node with
747     * the given predecessor.
748 jsr166 1.17 *
749 dl 1.45 * @param pred predecessor of node to be unspliced
750     * @param s the node to be unspliced
751 dl 1.1 */
752 dl 1.45 private void unsplice(Node pred, Node s) {
753     s.forgetContents(); // clear unneeded fields
754 dl 1.9 /*
755     * At any given time, exactly one node on list cannot be
756     * deleted -- the last inserted node. To accommodate this, if
757     * we cannot delete s, we save its predecessor as "cleanMe",
758 dl 1.45 * processing the previously saved version first. Because only
759     * one node in the list can have a null next, at least one of
760     * node s or the node previously saved can always be
761 dl 1.9 * processed, so this always terminates.
762     */
763 dl 1.45 if (pred != null && pred != s) {
764     while (pred.next == s) {
765     Node oldpred = cleanMe == null? null : reclean();
766     Node n = s.next;
767     if (n != null) {
768     if (n != s)
769     pred.casNext(s, n);
770 dl 1.9 break;
771 dl 1.45 }
772     if (oldpred == pred || // Already saved
773     (oldpred == null && casCleanMe(null, pred)))
774     break; // Postpone cleaning
775 dl 1.9 }
776     }
777     }
778 jsr166 1.5
779 dl 1.9 /**
780 dl 1.45 * Tries to unsplice the deleted/cancelled node held in cleanMe
781     * that was previously uncleanable because it was at tail.
782 jsr166 1.17 *
783 dl 1.9 * @return current cleanMe node (or null)
784     */
785 dl 1.45 private Node reclean() {
786 jsr166 1.10 /*
787 dl 1.45 * cleanMe is, or at one time was, predecessor of a cancelled
788     * node s that was the tail so could not be unspliced. If it
789 dl 1.9 * is no longer the tail, try to unsplice if necessary and
790     * make cleanMe slot available. This differs from similar
791 dl 1.45 * code in unsplice() because we must check that pred still
792     * points to a matched node that can be unspliced -- if not,
793     * we can (must) clear cleanMe without unsplicing. This can
794     * loop only due to contention.
795 dl 1.9 */
796 dl 1.45 Node pred;
797     while ((pred = cleanMe) != null) {
798     Node s = pred.next;
799     Node n;
800     if (s == null || s == pred || !s.isMatched())
801     casCleanMe(pred, null); // already gone
802     else if ((n = s.next) != null) {
803     if (n != s)
804     pred.casNext(s, n);
805     casCleanMe(pred, null);
806 dl 1.1 }
807 dl 1.45 else
808 dl 1.9 break;
809 dl 1.1 }
810 dl 1.9 return pred;
811 dl 1.1 }
812 jsr166 1.5
813 dl 1.1 /**
814 dl 1.45 * Main implementation of Iterator.remove(). Find
815     * and unsplice the given node.
816     */
817     final void findAndRemoveNode(Node s) {
818     if (s.tryMatchData()) {
819     Node pred = null;
820     Node p = head;
821     while (p != null) {
822     if (p == s) {
823     unsplice(pred, p);
824     break;
825     }
826     if (!p.isData && !p.isMatched())
827     break;
828     pred = p;
829     if ((p = p.next) == pred) { // stale
830     pred = null;
831     p = head;
832     }
833     }
834     }
835     }
836    
837     /**
838     * Main implementation of remove(Object)
839     */
840     private boolean findAndRemove(Object e) {
841     if (e != null) {
842     Node pred = null;
843     Node p = head;
844     while (p != null) {
845     Object item = p.item;
846     if (p.isData) {
847     if (item != null && item != p && e.equals(item) &&
848     p.tryMatchData()) {
849     unsplice(pred, p);
850     return true;
851     }
852     }
853     else if (item == null)
854     break;
855     pred = p;
856     if ((p = p.next) == pred) {
857     pred = null;
858     p = head;
859     }
860     }
861     }
862     return false;
863     }
864    
865    
866     /**
867 jsr166 1.11 * Creates an initially empty {@code LinkedTransferQueue}.
868 dl 1.1 */
869     public LinkedTransferQueue() {
870     }
871    
872     /**
873 jsr166 1.11 * Creates a {@code LinkedTransferQueue}
874 dl 1.1 * initially containing the elements of the given collection,
875     * added in traversal order of the collection's iterator.
876 jsr166 1.17 *
877 dl 1.1 * @param c the collection of elements to initially contain
878     * @throws NullPointerException if the specified collection or any
879     * of its elements are null
880     */
881     public LinkedTransferQueue(Collection<? extends E> c) {
882 dl 1.7 this();
883 dl 1.1 addAll(c);
884     }
885    
886 jsr166 1.29 /**
887 jsr166 1.35 * Inserts the specified element at the tail of this queue.
888     * As the queue is unbounded, this method will never block.
889     *
890     * @throws NullPointerException if the specified element is null
891 jsr166 1.29 */
892 jsr166 1.35 public void put(E e) {
893 dl 1.45 xfer(e, true, ASYNC, 0);
894 dl 1.1 }
895    
896 jsr166 1.29 /**
897 jsr166 1.35 * Inserts the specified element at the tail of this queue.
898     * As the queue is unbounded, this method will never block or
899     * return {@code false}.
900     *
901     * @return {@code true} (as specified by
902     * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
903     * @throws NullPointerException if the specified element is null
904 jsr166 1.29 */
905 jsr166 1.35 public boolean offer(E e, long timeout, TimeUnit unit) {
906 dl 1.45 xfer(e, true, ASYNC, 0);
907     return true;
908 dl 1.1 }
909    
910 jsr166 1.29 /**
911 jsr166 1.35 * Inserts the specified element at the tail of this queue.
912     * As the queue is unbounded, this method will never return {@code false}.
913     *
914     * @return {@code true} (as specified by
915     * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
916     * @throws NullPointerException if the specified element is null
917 jsr166 1.29 */
918 dl 1.1 public boolean offer(E e) {
919 dl 1.45 xfer(e, true, ASYNC, 0);
920 dl 1.1 return true;
921     }
922    
923 jsr166 1.29 /**
924 jsr166 1.35 * Inserts the specified element at the tail of this queue.
925 jsr166 1.37 * As the queue is unbounded, this method will never throw
926 jsr166 1.35 * {@link IllegalStateException} or return {@code false}.
927     *
928     * @return {@code true} (as specified by {@link Collection#add})
929     * @throws NullPointerException if the specified element is null
930 jsr166 1.29 */
931 dl 1.15 public boolean add(E e) {
932 dl 1.45 xfer(e, true, ASYNC, 0);
933     return true;
934 jsr166 1.35 }
935    
936     /**
937 jsr166 1.40 * Transfers the element to a waiting consumer immediately, if possible.
938     *
939     * <p>More precisely, transfers the specified element immediately
940     * if there exists a consumer already waiting to receive it (in
941     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
942     * otherwise returning {@code false} without enqueuing the element.
943 jsr166 1.35 *
944     * @throws NullPointerException if the specified element is null
945     */
946     public boolean tryTransfer(E e) {
947 dl 1.45 return xfer(e, true, NOW, 0) == null;
948 dl 1.15 }
949    
950 jsr166 1.29 /**
951 jsr166 1.40 * Transfers the element to a consumer, waiting if necessary to do so.
952     *
953     * <p>More precisely, transfers the specified element immediately
954     * if there exists a consumer already waiting to receive it (in
955     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
956     * else inserts the specified element at the tail of this queue
957     * and waits until the element is received by a consumer.
958 jsr166 1.35 *
959     * @throws NullPointerException if the specified element is null
960 jsr166 1.29 */
961 dl 1.1 public void transfer(E e) throws InterruptedException {
962 dl 1.45 if (xfer(e, true, SYNC, 0) != null) {
963     Thread.interrupted(); // failure possible only due to interrupt
964 dl 1.1 throw new InterruptedException();
965 jsr166 1.6 }
966 dl 1.1 }
967    
968 jsr166 1.29 /**
969 jsr166 1.40 * Transfers the element to a consumer if it is possible to do so
970     * before the timeout elapses.
971     *
972     * <p>More precisely, transfers the specified element immediately
973     * if there exists a consumer already waiting to receive it (in
974     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
975     * else inserts the specified element at the tail of this queue
976     * and waits until the element is received by a consumer,
977     * returning {@code false} if the specified wait time elapses
978     * before the element can be transferred.
979 jsr166 1.35 *
980     * @throws NullPointerException if the specified element is null
981 jsr166 1.29 */
982 dl 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
983     throws InterruptedException {
984 dl 1.45 if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
985 dl 1.1 return true;
986     if (!Thread.interrupted())
987     return false;
988     throw new InterruptedException();
989     }
990    
991     public E take() throws InterruptedException {
992 dl 1.45 Object e = xfer(null, false, SYNC, 0);
993 dl 1.1 if (e != null)
994 dl 1.45 return (E)e;
995 jsr166 1.6 Thread.interrupted();
996 dl 1.1 throw new InterruptedException();
997     }
998    
999     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1000 dl 1.45 Object e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1001 dl 1.1 if (e != null || !Thread.interrupted())
1002 dl 1.45 return (E)e;
1003 dl 1.1 throw new InterruptedException();
1004     }
1005    
1006     public E poll() {
1007 dl 1.45 return (E)xfer(null, false, NOW, 0);
1008 dl 1.1 }
1009    
1010 jsr166 1.29 /**
1011 jsr166 1.30 * @throws NullPointerException {@inheritDoc}
1012     * @throws IllegalArgumentException {@inheritDoc}
1013 jsr166 1.29 */
1014 dl 1.1 public int drainTo(Collection<? super E> c) {
1015     if (c == null)
1016     throw new NullPointerException();
1017     if (c == this)
1018     throw new IllegalArgumentException();
1019     int n = 0;
1020     E e;
1021     while ( (e = poll()) != null) {
1022     c.add(e);
1023     ++n;
1024     }
1025     return n;
1026     }
1027    
1028 jsr166 1.29 /**
1029 jsr166 1.30 * @throws NullPointerException {@inheritDoc}
1030     * @throws IllegalArgumentException {@inheritDoc}
1031 jsr166 1.29 */
1032 dl 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1033     if (c == null)
1034     throw new NullPointerException();
1035     if (c == this)
1036     throw new IllegalArgumentException();
1037     int n = 0;
1038     E e;
1039     while (n < maxElements && (e = poll()) != null) {
1040     c.add(e);
1041     ++n;
1042     }
1043     return n;
1044     }
1045    
1046 jsr166 1.35 /**
1047     * Returns an iterator over the elements in this queue in proper
1048     * sequence, from head to tail.
1049     *
1050     * <p>The returned iterator is a "weakly consistent" iterator that
1051     * will never throw
1052     * {@link ConcurrentModificationException ConcurrentModificationException},
1053     * and guarantees to traverse elements as they existed upon
1054     * construction of the iterator, and may (but is not guaranteed
1055     * to) reflect any modifications subsequent to construction.
1056     *
1057     * @return an iterator over the elements in this queue in proper sequence
1058     */
1059 dl 1.1 public Iterator<E> iterator() {
1060     return new Itr();
1061     }
1062    
1063     public E peek() {
1064 dl 1.45 return (E) firstDataItem();
1065 dl 1.1 }
1066    
1067 jsr166 1.41 /**
1068     * Returns {@code true} if this queue contains no elements.
1069     *
1070     * @return {@code true} if this queue contains no elements
1071     */
1072 dl 1.2 public boolean isEmpty() {
1073 dl 1.45 return firstOfMode(true) == null;
1074 dl 1.2 }
1075    
1076 dl 1.1 public boolean hasWaitingConsumer() {
1077 dl 1.45 return firstOfMode(false) != null;
1078 dl 1.1 }
1079 jsr166 1.5
1080 dl 1.1 /**
1081     * Returns the number of elements in this queue. If this queue
1082 jsr166 1.11 * contains more than {@code Integer.MAX_VALUE} elements, returns
1083     * {@code Integer.MAX_VALUE}.
1084 dl 1.1 *
1085     * <p>Beware that, unlike in most collections, this method is
1086     * <em>NOT</em> a constant-time operation. Because of the
1087     * asynchronous nature of these queues, determining the current
1088     * number of elements requires an O(n) traversal.
1089     *
1090     * @return the number of elements in this queue
1091     */
1092     public int size() {
1093 dl 1.45 return countOfMode(true);
1094 dl 1.1 }
1095    
1096     public int getWaitingConsumerCount() {
1097 dl 1.45 return countOfMode(false);
1098 dl 1.1 }
1099    
1100 jsr166 1.42 /**
1101     * Removes a single instance of the specified element from this queue,
1102     * if it is present. More formally, removes an element {@code e} such
1103     * that {@code o.equals(e)}, if this queue contains one or more such
1104     * elements.
1105     * Returns {@code true} if this queue contained the specified element
1106     * (or equivalently, if this queue changed as a result of the call).
1107     *
1108     * @param o element to be removed from this queue, if present
1109     * @return {@code true} if this queue changed as a result of the call
1110     */
1111 dl 1.15 public boolean remove(Object o) {
1112 dl 1.45 return findAndRemove(o);
1113 dl 1.15 }
1114    
1115 jsr166 1.35 /**
1116     * Always returns {@code Integer.MAX_VALUE} because a
1117     * {@code LinkedTransferQueue} is not capacity constrained.
1118     *
1119     * @return {@code Integer.MAX_VALUE} (as specified by
1120     * {@link BlockingQueue#remainingCapacity()})
1121     */
1122 dl 1.33 public int remainingCapacity() {
1123     return Integer.MAX_VALUE;
1124     }
1125    
1126 dl 1.1 /**
1127     * Save the state to a stream (that is, serialize it).
1128     *
1129 jsr166 1.11 * @serialData All of the elements (each an {@code E}) in
1130 dl 1.1 * the proper order, followed by a null
1131     * @param s the stream
1132     */
1133     private void writeObject(java.io.ObjectOutputStream s)
1134     throws java.io.IOException {
1135     s.defaultWriteObject();
1136 jsr166 1.16 for (E e : this)
1137     s.writeObject(e);
1138 dl 1.1 // Use trailing null as sentinel
1139     s.writeObject(null);
1140     }
1141    
1142     /**
1143     * Reconstitute the Queue instance from a stream (that is,
1144     * deserialize it).
1145 jsr166 1.19 *
1146 dl 1.1 * @param s the stream
1147     */
1148     private void readObject(java.io.ObjectInputStream s)
1149     throws java.io.IOException, ClassNotFoundException {
1150     s.defaultReadObject();
1151     for (;;) {
1152 jsr166 1.25 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1153 dl 1.1 if (item == null)
1154     break;
1155     else
1156     offer(item);
1157     }
1158     }
1159 dl 1.7
1160    
1161 jsr166 1.28 // Unsafe mechanics
1162    
1163     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1164     private static final long headOffset =
1165 jsr166 1.31 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1166 jsr166 1.28 private static final long tailOffset =
1167 jsr166 1.31 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1168 jsr166 1.28 private static final long cleanMeOffset =
1169 jsr166 1.31 objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1170    
1171     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1172     String field, Class<?> klazz) {
1173 jsr166 1.28 try {
1174     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1175     } catch (NoSuchFieldException e) {
1176     // Convert Exception to corresponding Error
1177     NoSuchFieldError error = new NoSuchFieldError(field);
1178     error.initCause(e);
1179     throw error;
1180     }
1181     }
1182    
1183 jsr166 1.25 private static sun.misc.Unsafe getUnsafe() {
1184 jsr166 1.13 try {
1185 jsr166 1.25 return sun.misc.Unsafe.getUnsafe();
1186 jsr166 1.13 } catch (SecurityException se) {
1187     try {
1188     return java.security.AccessController.doPrivileged
1189 jsr166 1.28 (new java.security
1190     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1191 jsr166 1.25 public sun.misc.Unsafe run() throws Exception {
1192 jsr166 1.28 java.lang.reflect.Field f = sun.misc
1193     .Unsafe.class.getDeclaredField("theUnsafe");
1194     f.setAccessible(true);
1195     return (sun.misc.Unsafe) f.get(null);
1196 jsr166 1.13 }});
1197     } catch (java.security.PrivilegedActionException e) {
1198 jsr166 1.25 throw new RuntimeException("Could not initialize intrinsics",
1199     e.getCause());
1200 jsr166 1.13 }
1201     }
1202     }
1203 dl 1.45
1204 dl 1.1 }