ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.46
Committed: Thu Oct 22 08:19:44 2009 UTC (14 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.45: +20 -19 lines
Log Message:
minor doc fixes

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.26
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.26
11     import java.util.AbstractQueue;
12     import java.util.Collection;
13 jsr166 1.35 import java.util.ConcurrentModificationException;
14 jsr166 1.26 import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.35 import java.util.Queue;
17 jsr166 1.26 import java.util.concurrent.locks.LockSupport;
18 dl 1.1 /**
19 jsr166 1.43 * An unbounded {@link TransferQueue} based on linked nodes.
20 dl 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
21     * to any given producer. The <em>head</em> of the queue is that
22     * element that has been on the queue the longest time for some
23     * producer. The <em>tail</em> of the queue is that element that has
24     * been on the queue the shortest time for some producer.
25     *
26 jsr166 1.11 * <p>Beware that, unlike in most collections, the {@code size}
27 dl 1.1 * method is <em>NOT</em> a constant-time operation. Because of the
28     * asynchronous nature of these queues, determining the current number
29     * of elements requires a traversal of the elements.
30     *
31     * <p>This class and its iterator implement all of the
32     * <em>optional</em> methods of the {@link Collection} and {@link
33     * Iterator} interfaces.
34     *
35     * <p>Memory consistency effects: As with other concurrent
36     * collections, actions in a thread prior to placing an object into a
37     * {@code LinkedTransferQueue}
38     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
39     * actions subsequent to the access or removal of that element from
40     * the {@code LinkedTransferQueue} in another thread.
41     *
42     * <p>This class is a member of the
43     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
44     * Java Collections Framework</a>.
45     *
46 dl 1.3 * @since 1.7
47 dl 1.1 * @author Doug Lea
48     * @param <E> the type of elements held in this collection
49     */
50     public class LinkedTransferQueue<E> extends AbstractQueue<E>
51     implements TransferQueue<E>, java.io.Serializable {
52     private static final long serialVersionUID = -3223113410248163686L;
53    
54     /*
55 dl 1.45 * *** Overview of Dual Queues with Slack ***
56 dl 1.1 *
57 dl 1.45 * Dual Queues, introduced by Scherer and Scott
58     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59     * (linked) queues in which nodes may represent either data or
60     * requests. When a thread tries to enqueue a data node, but
61     * encounters a request node, it instead "matches" and removes it;
62     * and vice versa for enqueuing requests. Blocking Dual Queues
63     * arrange that threads enqueuing unmatched requests block until
64     * other threads provide the match. Dual Synchronous Queues (see
65     * Scherer, Lea, & Scott
66     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67     * additionally arrange that threads enqueuing unmatched data also
68     * block. Dual Transfer Queues support all of these modes, as
69     * dictated by callers.
70     *
71     * A FIFO dual queue may be implemented using a variation of the
72     * Michael & Scott (M&S) lock-free queue algorithm
73     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74     * It maintains two pointer fields, "head", pointing to a
75     * (matched) node that in turn points to the first actual
76     * (unmatched) queue node (or null if empty); and "tail" that
77     * points to the last node on the queue (or again null if
78     * empty). For example, here is a possible queue with four data
79     * elements:
80     *
81     * head tail
82     * | |
83     * v v
84     * M -> U -> U -> U -> U
85     *
86     * The M&S queue algorithm is known to be prone to scalability and
87     * overhead limitations when maintaining (via CAS) these head and
88     * tail pointers. This has led to the development of
89     * contention-reducing variants such as elimination arrays (see
90     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91     * optimistic back pointers (see Ladan-Mozes & Shavit
92     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93     * However, the nature of dual queues enables a simpler tactic for
94     * improving M&S-style implementations when dual-ness is needed.
95     *
96     * In a dual queue, each node must atomically maintain its match
97     * status. While there are other possible variants, we implement
98     * this here as: for a data-mode node, matching entails CASing an
99     * "item" field from a non-null data value to null upon match, and
100     * vice-versa for request nodes, CASing from null to a data
101     * value. (Note that the linearization properties of this style of
102     * queue are easy to verify -- elements are made available by
103     * linking, and unavailable by matching.) Compared to plain M&S
104     * queues, this property of dual queues requires one additional
105     * successful atomic operation per enq/deq pair. But it also
106     * enables lower cost variants of queue maintenance mechanics. (A
107     * variation of this idea applies even for non-dual queues that
108     * support deletion of embedded elements, such as
109     * j.u.c.ConcurrentLinkedQueue.)
110     *
111     * Once a node is matched, its item can never again change. We
112     * may thus arrange that the linked list of them contains a prefix
113     * of zero or more matched nodes, followed by a suffix of zero or
114     * more unmatched nodes. (Note that we allow both the prefix and
115     * suffix to be zero length, which in turn means that we do not
116     * use a dummy header.) If we were not concerned with either time
117     * or space efficiency, we could correctly perform enqueue and
118     * dequeue operations by traversing from a pointer to the initial
119     * node; CASing the item of the first unmatched node on match and
120     * CASing the next field of the trailing node on appends. While
121     * this would be a terrible idea in itself, it does have the
122     * benefit of not requiring ANY atomic updates on head/tail
123     * fields.
124     *
125     * We introduce here an approach that lies between the extremes of
126     * never versus always updating queue (head and tail) pointers
127 jsr166 1.46 * that reflects the tradeoff of sometimes requiring extra traversal
128 dl 1.45 * steps to locate the first and/or last unmatched nodes, versus
129     * the reduced overhead and contention of fewer updates to queue
130     * pointers. For example, a possible snapshot of a queue is:
131     *
132     * head tail
133     * | |
134     * v v
135     * M -> M -> U -> U -> U -> U
136     *
137     * The best value for this "slack" (the targeted maximum distance
138     * between the value of "head" and the first unmatched node, and
139     * similarly for "tail") is an empirical matter. We have found
140     * that using very small constants in the range of 1-3 work best
141     * over a range of platforms. Larger values introduce increasing
142     * costs of cache misses and risks of long traversal chains.
143     *
144     * Dual queues with slack differ from plain M&S dual queues by
145     * virtue of only sometimes updating head or tail pointers when
146     * matching, appending, or even traversing nodes; in order to
147     * maintain a targeted slack. The idea of "sometimes" may be
148     * operationalized in several ways. The simplest is to use a
149     * per-operation counter incremented on each traversal step, and
150     * to try (via CAS) to update the associated queue pointer
151     * whenever the count exceeds a threshold. Another, that requires
152     * more overhead, is to use random number generators to update
153     * with a given probability per traversal step.
154     *
155     * In any strategy along these lines, because CASes updating
156     * fields may fail, the actual slack may exceed targeted
157     * slack. However, they may be retried at any time to maintain
158     * targets. Even when using very small slack values, this
159     * approach works well for dual queues because it allows all
160     * operations up to the point of matching or appending an item
161     * (hence potentially releasing another thread) to be read-only,
162     * thus not introducing any further contention. As described
163     * below, we implement this by performing slack maintenance
164     * retries only after these points.
165     *
166     * As an accompaniment to such techniques, traversal overhead can
167     * be further reduced without increasing contention of head
168     * pointer updates. During traversals, threads may sometimes
169     * shortcut the "next" link path from the current "head" node to
170     * be closer to the currently known first unmatched node. Again,
171     * this may be triggered with using thresholds or randomization.
172     *
173     * These ideas must be further extended to avoid unbounded amounts
174     * of costly-to-reclaim garbage caused by the sequential "next"
175     * links of nodes starting at old forgotten head nodes: As first
176     * described in detail by Boehm
177     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
178     * delays noticing that any arbitrarily old node has become
179     * garbage, all newer dead nodes will also be unreclaimed.
180     * (Similar issues arise in non-GC environments.) To cope with
181     * this in our implementation, upon CASing to advance the head
182     * pointer, we set the "next" link of the previous head to point
183 jsr166 1.46 * only to itself; thus limiting the length of connected dead lists.
184 dl 1.45 * (We also take similar care to wipe out possibly garbage
185     * retaining values held in other Node fields.) However, doing so
186     * adds some further complexity to traversal: If any "next"
187     * pointer links to itself, it indicates that the current thread
188     * has lagged behind a head-update, and so the traversal must
189     * continue from the "head". Traversals trying to find the
190     * current tail starting from "tail" may also encounter
191     * self-links, in which case they also continue at "head".
192     *
193     * It is tempting in slack-based scheme to not even use CAS for
194     * updates (similarly to Ladan-Mozes & Shavit). However, this
195     * cannot be done for head updates under the above link-forgetting
196     * mechanics because an update may leave head at a detached node.
197     * And while direct writes are possible for tail updates, they
198     * increase the risk of long retraversals, and hence long garbage
199     * chains which can be much more costly than is worthwhile
200     * considering that the cost difference of performing a CAS vs
201     * write is smaller when they are not triggered on each operation
202     * (especially considering that writes and CASes equally require
203     * additional GC bookkeeping ("write barriers") that are sometimes
204     * more costly than the writes themselves because of contention).
205     *
206     * Removal of internal nodes (due to timed out or interrupted
207     * waits, or calls to remove or Iterator.remove) uses a scheme
208     * roughly similar to that in Scherer, Lea, and Scott
209     * SynchronousQueue. Given a predecessor, we can unsplice any node
210     * except the (actual) tail of the queue. To avoid build-up of
211     * cancelled trailing nodes, upon a request to remove a trailing
212     * node, it is placed in field "cleanMe" to be unspliced later.
213     *
214     * *** Overview of implementation ***
215     *
216     * We use a threshold-based approach to updates, with a target
217     * slack of two. The slack value is hard-wired: a path greater
218     * than one is naturally implemented by checking equality of
219     * traversal pointers except when the list has only one element,
220     * in which case we keep max slack at one. Avoiding tracking
221     * explicit counts across situations slightly simplifies an
222     * already-messy implementation. Using randomization would
223     * probably work better if there were a low-quality dirt-cheap
224     * per-thread one available, but even ThreadLocalRandom is too
225     * heavy for these purposes.
226     *
227     * With such a small slack value, path short-circuiting is rarely
228     * worthwhile. However, it is used (in awaitMatch) immediately
229     * before a waiting thread starts to block, as a final bit of
230     * helping at a point when contention with others is extremely
231     * unlikely (since if other threads that could release it are
232     * operating, then the current thread wouldn't be blocking).
233     *
234     * All enqueue/dequeue operations are handled by the single method
235     * "xfer" with parameters indicating whether to act as some form
236     * of offer, put, poll, take, or transfer (each possibly with
237     * timeout). The relative complexity of using one monolithic
238     * method outweighs the code bulk and maintenance problems of
239     * using nine separate methods.
240     *
241     * Operation consists of up to three phases. The first is
242     * implemented within method xfer, the second in tryAppend, and
243     * the third in method awaitMatch.
244     *
245     * 1. Try to match an existing node
246     *
247     * Starting at head, skip already-matched nodes until finding
248     * an unmatched node of opposite mode, if one exists, in which
249     * case matching it and returning, also if necessary updating
250     * head to one past the matched node (or the node itself if the
251     * list has no other unmatched nodes). If the CAS misses, then
252     * a retry loops until the slack is at most two. Traversals
253     * also check if the initial head is now off-list, in which
254     * case they start at the new head.
255     *
256     * If no candidates are found and the call was untimed
257     * poll/offer, (argument "how" is NOW) return.
258     *
259     * 2. Try to append a new node (method tryAppend)
260     *
261     * Starting at current tail pointer, try to append a new node
262     * to the list (or if head was null, establish the first
263     * node). Nodes can be appended only if their predecessors are
264     * either already matched or are of the same mode. If we detect
265     * otherwise, then a new node with opposite mode must have been
266     * appended during traversal, so must restart at phase 1. The
267     * traversal and update steps are otherwise similar to phase 1:
268     * Retrying upon CAS misses and checking for staleness. In
269     * particular, if a self-link is encountered, then we can
270     * safely jump to a node on the list by continuing the
271     * traversal at current head.
272     *
273 jsr166 1.46 * On successful append, if the call was ASYNC, return.
274 dl 1.45 *
275     * 3. Await match or cancellation (method awaitMatch)
276     *
277     * Wait for another thread to match node; instead cancelling if
278     * current thread was interrupted or the wait timed out. On
279     * multiprocessors, we use front-of-queue spinning: If a node
280     * appears to be the first unmatched node in the queue, it
281     * spins a bit before blocking. In either case, before blocking
282     * it tries to unsplice any nodes between the current "head"
283     * and the first unmatched node.
284     *
285     * Front-of-queue spinning vastly improves performance of
286     * heavily contended queues. And so long as it is relatively
287     * brief and "quiet", spinning does not much impact performance
288     * of less-contended queues. During spins threads check their
289     * interrupt status and generate a thread-local random number
290     * to decide to occasionally perform a Thread.yield. While
291     * yield has underdefined specs, we assume that might it help,
292     * and will not hurt in limiting impact of spinning on busy
293     * systems. We also use much smaller (1/4) spins for nodes
294     * that are not known to be front but whose predecessors have
295     * not blocked -- these "chained" spins avoid artifacts of
296     * front-of-queue rules which otherwise lead to alternating
297     * nodes spinning vs blocking. Further, front threads that
298     * represent phase changes (from data to request node or vice
299     * versa) compared to their predecessors receive additional
300     * spins, reflecting the longer code path lengths necessary to
301     * release them under contention.
302     */
303    
304     /** True if on multiprocessor */
305     private static final boolean MP =
306     Runtime.getRuntime().availableProcessors() > 1;
307    
308     /**
309     * The number of times to spin (with on average one randomly
310     * interspersed call to Thread.yield) on multiprocessor before
311     * blocking when a node is apparently the first waiter in the
312     * queue. See above for explanation. Must be a power of two. The
313     * value is empirically derived -- it works pretty well across a
314     * variety of processors, numbers of CPUs, and OSes.
315     */
316     private static final int FRONT_SPINS = 1 << 7;
317    
318     /**
319     * The number of times to spin before blocking when a node is
320     * preceded by another node that is apparently spinning.
321     */
322     private static final int CHAINED_SPINS = FRONT_SPINS >>> 2;
323    
324     /**
325 jsr166 1.46 * Queue nodes. Uses Object, not E, for items to allow forgetting
326 dl 1.45 * them after use. Relies heavily on Unsafe mechanics to minimize
327 jsr166 1.46 * unnecessary ordering constraints: Writes that intrinsically
328 dl 1.45 * precede or follow CASes use simple relaxed forms. Other
329     * cleanups use releasing/lazy writes.
330     */
331     static final class Node {
332     final boolean isData; // false if this is a request node
333 jsr166 1.46 volatile Object item; // initially non-null if isData; CASed to match
334 dl 1.45 volatile Node next;
335     volatile Thread waiter; // null until waiting
336 dl 1.1
337 dl 1.45 // CAS methods for fields
338     final boolean casNext(Node cmp, Node val) {
339     return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
340     }
341 dl 1.1
342 dl 1.45 final boolean casItem(Object cmp, Object val) {
343     return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
344     }
345 dl 1.1
346 dl 1.45 /**
347 jsr166 1.46 * Creates a new node. Uses relaxed write because item can only
348     * be seen if followed by CAS.
349 dl 1.45 */
350     Node(Object item, boolean isData) {
351     UNSAFE.putObject(this, itemOffset, item); // relaxed write
352 dl 1.1 this.isData = isData;
353     }
354    
355 dl 1.45 /**
356     * Links node to itself to avoid garbage retention. Called
357     * only after CASing head field, so uses relaxed write.
358     */
359     final void forgetNext() {
360     UNSAFE.putObject(this, nextOffset, this);
361     }
362 jsr166 1.32
363 dl 1.45 /**
364     * Sets item to self (using a releasing/lazy write) and waiter
365     * to null, to avoid garbage retention after extracting or
366     * cancelling.
367     */
368     final void forgetContents() {
369     UNSAFE.putOrderedObject(this, itemOffset, this);
370     UNSAFE.putOrderedObject(this, waiterOffset, null);
371     }
372 jsr166 1.32
373 dl 1.45 /**
374     * Returns true if this node has been matched, including the
375     * case of artificial matches due to cancellation.
376     */
377     final boolean isMatched() {
378     Object x = item;
379     return x == this || (x != null) != isData;
380 dl 1.1 }
381 dl 1.15
382 dl 1.45 /**
383     * Returns true if a node with the given mode cannot be
384     * appended to this node because this node is unmatched and
385     * has opposite data mode.
386     */
387     final boolean cannotPrecede(boolean haveData) {
388     boolean d = isData;
389     Object x;
390     return d != haveData && (x = item) != this && (x != null) == d;
391 jsr166 1.31 }
392    
393     /**
394 jsr166 1.46 * Tries to artificially match a data node -- used by remove.
395 jsr166 1.31 */
396 dl 1.45 final boolean tryMatchData() {
397     Object x = item;
398     if (x != null && x != this && casItem(x, null)) {
399     LockSupport.unpark(waiter);
400     return true;
401 jsr166 1.31 }
402 dl 1.45 return false;
403 dl 1.15 }
404    
405 dl 1.45 // Unsafe mechanics
406     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
407     private static final long nextOffset =
408     objectFieldOffset(UNSAFE, "next", Node.class);
409     private static final long itemOffset =
410     objectFieldOffset(UNSAFE, "item", Node.class);
411     private static final long waiterOffset =
412     objectFieldOffset(UNSAFE, "waiter", Node.class);
413    
414 jsr166 1.24 private static final long serialVersionUID = -3375979862319811754L;
415 dl 1.1 }
416    
417 dl 1.45 /** head of the queue; null until first enqueue */
418     private transient volatile Node head;
419    
420     /** predecessor of dangling unspliceable node */
421     private transient volatile Node cleanMe; // decl here to reduce contention
422 dl 1.1
423 dl 1.45 /** tail of the queue; null until first append */
424     private transient volatile Node tail;
425 dl 1.1
426 dl 1.45 // CAS methods for fields
427     private boolean casTail(Node cmp, Node val) {
428     return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
429     }
430 jsr166 1.23
431 dl 1.45 private boolean casHead(Node cmp, Node val) {
432     return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
433     }
434 dl 1.1
435 dl 1.45 private boolean casCleanMe(Node cmp, Node val) {
436     return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
437     }
438 dl 1.1
439 dl 1.45 /*
440     * Possible values for "how" argument in xfer method. Beware that
441     * the order of assigned numerical values matters.
442 dl 1.1 */
443 dl 1.45 private static final int NOW = 0; // for untimed poll, tryTransfer
444     private static final int ASYNC = 1; // for offer, put, add
445     private static final int SYNC = 2; // for transfer, take
446     private static final int TIMEOUT = 3; // for timed poll, tryTransfer
447 jsr166 1.5
448 dl 1.1 /**
449 dl 1.45 * Implements all queuing methods. See above for explanation.
450 jsr166 1.17 *
451 dl 1.45 * @param e the item or null for take
452 jsr166 1.46 * @param haveData true if this is a put, else a take
453 dl 1.45 * @param how NOW, ASYNC, SYNC, or TIMEOUT
454 dl 1.1 * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
455 jsr166 1.46 * @return an item if matched, else e
456 dl 1.45 * @throws NullPointerException if haveData mode but e is null
457 dl 1.1 */
458 dl 1.45 private Object xfer(Object e, boolean haveData, int how, long nanos) {
459     if (haveData && (e == null))
460     throw new NullPointerException();
461     Node s = null; // the node to append, if needed
462 dl 1.1
463 dl 1.45 retry: for (;;) { // restart on append race
464 dl 1.1
465 dl 1.45 for (Node h = head, p = h; p != null;) { // find & match first node
466     boolean isData = p.isData;
467     Object item = p.item;
468     if (item != p && (item != null) == isData) { // unmatched
469     if (isData == haveData) // can't match
470     break;
471     if (p.casItem(item, e)) { // match
472     Thread w = p.waiter;
473     while (p != h) { // update head
474     Node n = p.next; // by 2 unless singleton
475     if (n != null)
476     p = n;
477     if (head == h && casHead(h, p)) {
478     h.forgetNext();
479     break;
480     } // advance and retry
481     if ((h = head) == null ||
482     (p = h.next) == null || !p.isMatched())
483     break; // unless slack < 2
484     }
485     LockSupport.unpark(w);
486     return item;
487 dl 1.1 }
488     }
489 dl 1.45 Node n = p.next;
490     p = p != n ? n : (h = head); // Use head if p offlist
491     }
492    
493     if (how >= ASYNC) { // No matches available
494     if (s == null)
495     s = new Node(e, haveData);
496     Node pred = tryAppend(s, haveData);
497     if (pred == null)
498     continue retry; // lost race vs opposite mode
499     if (how >= SYNC)
500     return awaitMatch(pred, s, e, how, nanos);
501 dl 1.1 }
502 dl 1.45 return e; // not waiting
503 dl 1.1 }
504     }
505    
506     /**
507 jsr166 1.46 * Tries to append node s as tail.
508     *
509 dl 1.45 * @param haveData true if appending in data mode
510     * @param s the node to append
511     * @return null on failure due to losing race with append in
512     * different mode, else s's predecessor, or s itself if no
513     * predecessor
514 dl 1.1 */
515 dl 1.45 private Node tryAppend(Node s, boolean haveData) {
516     for (Node t = tail, p = t;;) { // move p to actual tail and append
517     Node n, u; // temps for reads of next & tail
518     if (p == null && (p = head) == null) {
519     if (casHead(null, s))
520     return s; // initialize
521     }
522     else if (p.cannotPrecede(haveData))
523     return null; // lost race vs opposite mode
524     else if ((n = p.next) != null) // Not tail; keep traversing
525     p = p != t && t != (u = tail) ? (t = u) : // stale tail
526     p != n ? n : null; // restart if off list
527     else if (!p.casNext(null, s))
528     p = p.next; // re-read on CAS failure
529     else {
530     if (p != t) { // Update if slack now >= 2
531     while ((tail != t || !casTail(t, s)) &&
532     (t = tail) != null &&
533     (s = t.next) != null && // advance and retry
534     (s = s.next) != null && s != t);
535 dl 1.1 }
536 dl 1.45 return p;
537 dl 1.1 }
538     }
539     }
540    
541     /**
542 dl 1.45 * Spins/yields/blocks until node s is matched or caller gives up.
543 dl 1.1 *
544 dl 1.45 * @param pred the predecessor of s or s or null if none
545 dl 1.1 * @param s the waiting node
546     * @param e the comparison value for checking match
547 dl 1.45 * @param how either SYNC or TIMEOUT
548 dl 1.1 * @param nanos timeout value
549 dl 1.45 * @return matched item, or e if unmatched on interrupt or timeout
550 dl 1.1 */
551 dl 1.45 private Object awaitMatch(Node pred, Node s, Object e,
552     int how, long nanos) {
553     long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
554     Thread w = Thread.currentThread();
555     int spins = -1; // initialized after first item and cancel checks
556     ThreadLocalRandom randomYields = null; // bound if needed
557 dl 1.1
558     for (;;) {
559 dl 1.45 Object item = s.item;
560     if (item != e) { // matched
561     s.forgetContents(); // avoid garbage
562     return item;
563     }
564     if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
565     s.casItem(e, s)) { // cancel
566     unsplice(pred, s);
567     return e;
568     }
569    
570     if (spins < 0) { // establish spins at/near front
571     if ((spins = spinsFor(pred, s.isData)) > 0)
572     randomYields = ThreadLocalRandom.current();
573     }
574     else if (spins > 0) { // spin, occasionally yield
575     if (randomYields.nextInt(FRONT_SPINS) == 0)
576     Thread.yield();
577     --spins;
578     }
579     else if (s.waiter == null) {
580     shortenHeadPath(); // reduce slack before blocking
581     s.waiter = w; // request unpark
582 dl 1.1 }
583 dl 1.45 else if (how == TIMEOUT) {
584 dl 1.1 long now = System.nanoTime();
585 dl 1.45 if ((nanos -= now - lastTime) > 0)
586     LockSupport.parkNanos(this, nanos);
587 dl 1.1 lastTime = now;
588     }
589 dl 1.45 else {
590 dl 1.12 LockSupport.park(this);
591 dl 1.45 spins = -1; // spin if front upon wakeup
592 dl 1.1 }
593 dl 1.45 }
594     }
595    
596     /**
597 jsr166 1.46 * Returns spin/yield value for a node with given predecessor and
598 dl 1.45 * data mode. See above for explanation.
599     */
600     private static int spinsFor(Node pred, boolean haveData) {
601     if (MP && pred != null) {
602     boolean predData = pred.isData;
603     if (predData != haveData) // front and phase change
604     return FRONT_SPINS + (FRONT_SPINS >>> 1);
605     if (predData != (pred.item != null)) // probably at front
606     return FRONT_SPINS;
607     if (pred.waiter == null) // pred apparently spinning
608     return CHAINED_SPINS;
609     }
610     return 0;
611     }
612    
613     /**
614     * Tries (once) to unsplice nodes between head and first unmatched
615     * or trailing node; failing on contention.
616     */
617     private void shortenHeadPath() {
618     Node h, hn, p, q;
619     if ((p = h = head) != null && h.isMatched() &&
620     (q = hn = h.next) != null) {
621     Node n;
622     while ((n = q.next) != q) {
623     if (n == null || !q.isMatched()) {
624     if (hn != q && h.next == hn)
625     h.casNext(hn, q);
626     break;
627     }
628     p = q;
629     q = n;
630 dl 1.1 }
631     }
632     }
633    
634 dl 1.45 /* -------------- Traversal methods -------------- */
635    
636 dl 1.1 /**
637 jsr166 1.46 * Returns the first unmatched node of the given mode, or null if
638 dl 1.45 * none. Used by methods isEmpty, hasWaitingConsumer.
639 dl 1.9 */
640 dl 1.45 private Node firstOfMode(boolean data) {
641     for (Node p = head; p != null; ) {
642     if (!p.isMatched())
643     return p.isData == data? p : null;
644     Node n = p.next;
645     p = n != p ? n : head;
646     }
647     return null;
648     }
649    
650     /**
651     * Returns the item in the first unmatched node with isData; or
652     * null if none. Used by peek.
653     */
654     private Object firstDataItem() {
655     for (Node p = head; p != null; ) {
656     boolean isData = p.isData;
657     Object item = p.item;
658     if (item != p && (item != null) == isData)
659     return isData ? item : null;
660     Node n = p.next;
661     p = n != p ? n : head;
662     }
663     return null;
664     }
665    
666     /**
667 jsr166 1.46 * Traverses and counts unmatched nodes of the given mode.
668     * Used by methods size and getWaitingConsumerCount.
669 dl 1.45 */
670     private int countOfMode(boolean data) {
671     int count = 0;
672     for (Node p = head; p != null; ) {
673     if (!p.isMatched()) {
674     if (p.isData != data)
675     return 0;
676     if (++count == Integer.MAX_VALUE) // saturated
677     break;
678 dl 1.9 }
679 dl 1.45 Node n = p.next;
680     if (n != p)
681     p = n;
682     else {
683     count = 0;
684     p = head;
685 dl 1.9 }
686     }
687 dl 1.45 return count;
688 jsr166 1.10 }
689 dl 1.9
690 dl 1.45 final class Itr implements Iterator<E> {
691     private Node nextNode; // next node to return item for
692     private Object nextItem; // the corresponding item
693     private Node lastRet; // last returned node, to support remove
694    
695     /**
696     * Moves to next node after prev, or first node if prev null.
697     */
698     private void advance(Node prev) {
699     lastRet = prev;
700     Node p;
701     if (prev == null || (p = prev.next) == prev)
702     p = head;
703     while (p != null) {
704     Object item = p.item;
705     if (p.isData) {
706     if (item != null && item != p) {
707     nextItem = item;
708     nextNode = p;
709     return;
710     }
711     }
712     else if (item == null)
713     break;
714     Node n = p.next;
715     p = n != p ? n : head;
716     }
717     nextNode = null;
718     }
719    
720     Itr() {
721     advance(null);
722     }
723    
724     public final boolean hasNext() {
725     return nextNode != null;
726     }
727    
728     public final E next() {
729     Node p = nextNode;
730     if (p == null) throw new NoSuchElementException();
731     Object e = nextItem;
732     advance(p);
733     return (E) e;
734     }
735    
736     public final void remove() {
737     Node p = lastRet;
738     if (p == null) throw new IllegalStateException();
739     lastRet = null;
740     findAndRemoveNode(p);
741     }
742     }
743    
744     /* -------------- Removal methods -------------- */
745    
746 dl 1.9 /**
747 dl 1.45 * Unsplices (now or later) the given deleted/cancelled node with
748     * the given predecessor.
749 jsr166 1.17 *
750 dl 1.45 * @param pred predecessor of node to be unspliced
751     * @param s the node to be unspliced
752 dl 1.1 */
753 dl 1.45 private void unsplice(Node pred, Node s) {
754     s.forgetContents(); // clear unneeded fields
755 dl 1.9 /*
756     * At any given time, exactly one node on list cannot be
757     * deleted -- the last inserted node. To accommodate this, if
758     * we cannot delete s, we save its predecessor as "cleanMe",
759 dl 1.45 * processing the previously saved version first. Because only
760     * one node in the list can have a null next, at least one of
761     * node s or the node previously saved can always be
762 dl 1.9 * processed, so this always terminates.
763     */
764 dl 1.45 if (pred != null && pred != s) {
765     while (pred.next == s) {
766     Node oldpred = cleanMe == null? null : reclean();
767     Node n = s.next;
768     if (n != null) {
769     if (n != s)
770     pred.casNext(s, n);
771 dl 1.9 break;
772 dl 1.45 }
773     if (oldpred == pred || // Already saved
774     (oldpred == null && casCleanMe(null, pred)))
775     break; // Postpone cleaning
776 dl 1.9 }
777     }
778     }
779 jsr166 1.5
780 dl 1.9 /**
781 dl 1.45 * Tries to unsplice the deleted/cancelled node held in cleanMe
782     * that was previously uncleanable because it was at tail.
783 jsr166 1.17 *
784 dl 1.9 * @return current cleanMe node (or null)
785     */
786 dl 1.45 private Node reclean() {
787 jsr166 1.10 /*
788 dl 1.45 * cleanMe is, or at one time was, predecessor of a cancelled
789     * node s that was the tail so could not be unspliced. If it
790 dl 1.9 * is no longer the tail, try to unsplice if necessary and
791     * make cleanMe slot available. This differs from similar
792 dl 1.45 * code in unsplice() because we must check that pred still
793     * points to a matched node that can be unspliced -- if not,
794     * we can (must) clear cleanMe without unsplicing. This can
795     * loop only due to contention.
796 dl 1.9 */
797 dl 1.45 Node pred;
798     while ((pred = cleanMe) != null) {
799     Node s = pred.next;
800     Node n;
801     if (s == null || s == pred || !s.isMatched())
802     casCleanMe(pred, null); // already gone
803     else if ((n = s.next) != null) {
804     if (n != s)
805     pred.casNext(s, n);
806     casCleanMe(pred, null);
807 dl 1.1 }
808 dl 1.45 else
809 dl 1.9 break;
810 dl 1.1 }
811 dl 1.9 return pred;
812 dl 1.1 }
813 jsr166 1.5
814 dl 1.1 /**
815 dl 1.45 * Main implementation of Iterator.remove(). Find
816     * and unsplice the given node.
817     */
818     final void findAndRemoveNode(Node s) {
819     if (s.tryMatchData()) {
820     Node pred = null;
821     Node p = head;
822     while (p != null) {
823     if (p == s) {
824     unsplice(pred, p);
825     break;
826     }
827     if (!p.isData && !p.isMatched())
828     break;
829     pred = p;
830     if ((p = p.next) == pred) { // stale
831     pred = null;
832     p = head;
833     }
834     }
835     }
836     }
837    
838     /**
839     * Main implementation of remove(Object)
840     */
841     private boolean findAndRemove(Object e) {
842     if (e != null) {
843     Node pred = null;
844     Node p = head;
845     while (p != null) {
846     Object item = p.item;
847     if (p.isData) {
848     if (item != null && item != p && e.equals(item) &&
849     p.tryMatchData()) {
850     unsplice(pred, p);
851     return true;
852     }
853     }
854     else if (item == null)
855     break;
856     pred = p;
857     if ((p = p.next) == pred) {
858     pred = null;
859     p = head;
860     }
861     }
862     }
863     return false;
864     }
865    
866    
867     /**
868 jsr166 1.11 * Creates an initially empty {@code LinkedTransferQueue}.
869 dl 1.1 */
870     public LinkedTransferQueue() {
871     }
872    
873     /**
874 jsr166 1.11 * Creates a {@code LinkedTransferQueue}
875 dl 1.1 * initially containing the elements of the given collection,
876     * added in traversal order of the collection's iterator.
877 jsr166 1.17 *
878 dl 1.1 * @param c the collection of elements to initially contain
879     * @throws NullPointerException if the specified collection or any
880     * of its elements are null
881     */
882     public LinkedTransferQueue(Collection<? extends E> c) {
883 dl 1.7 this();
884 dl 1.1 addAll(c);
885     }
886    
887 jsr166 1.29 /**
888 jsr166 1.35 * Inserts the specified element at the tail of this queue.
889     * As the queue is unbounded, this method will never block.
890     *
891     * @throws NullPointerException if the specified element is null
892 jsr166 1.29 */
893 jsr166 1.35 public void put(E e) {
894 dl 1.45 xfer(e, true, ASYNC, 0);
895 dl 1.1 }
896    
897 jsr166 1.29 /**
898 jsr166 1.35 * Inserts the specified element at the tail of this queue.
899     * As the queue is unbounded, this method will never block or
900     * return {@code false}.
901     *
902     * @return {@code true} (as specified by
903     * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
904     * @throws NullPointerException if the specified element is null
905 jsr166 1.29 */
906 jsr166 1.35 public boolean offer(E e, long timeout, TimeUnit unit) {
907 dl 1.45 xfer(e, true, ASYNC, 0);
908     return true;
909 dl 1.1 }
910    
911 jsr166 1.29 /**
912 jsr166 1.35 * Inserts the specified element at the tail of this queue.
913     * As the queue is unbounded, this method will never return {@code false}.
914     *
915     * @return {@code true} (as specified by
916     * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
917     * @throws NullPointerException if the specified element is null
918 jsr166 1.29 */
919 dl 1.1 public boolean offer(E e) {
920 dl 1.45 xfer(e, true, ASYNC, 0);
921 dl 1.1 return true;
922     }
923    
924 jsr166 1.29 /**
925 jsr166 1.35 * Inserts the specified element at the tail of this queue.
926 jsr166 1.37 * As the queue is unbounded, this method will never throw
927 jsr166 1.35 * {@link IllegalStateException} or return {@code false}.
928     *
929     * @return {@code true} (as specified by {@link Collection#add})
930     * @throws NullPointerException if the specified element is null
931 jsr166 1.29 */
932 dl 1.15 public boolean add(E e) {
933 dl 1.45 xfer(e, true, ASYNC, 0);
934     return true;
935 jsr166 1.35 }
936    
937     /**
938 jsr166 1.40 * Transfers the element to a waiting consumer immediately, if possible.
939     *
940     * <p>More precisely, transfers the specified element immediately
941     * if there exists a consumer already waiting to receive it (in
942     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
943     * otherwise returning {@code false} without enqueuing the element.
944 jsr166 1.35 *
945     * @throws NullPointerException if the specified element is null
946     */
947     public boolean tryTransfer(E e) {
948 dl 1.45 return xfer(e, true, NOW, 0) == null;
949 dl 1.15 }
950    
951 jsr166 1.29 /**
952 jsr166 1.40 * Transfers the element to a consumer, waiting if necessary to do so.
953     *
954     * <p>More precisely, transfers the specified element immediately
955     * if there exists a consumer already waiting to receive it (in
956     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
957     * else inserts the specified element at the tail of this queue
958     * and waits until the element is received by a consumer.
959 jsr166 1.35 *
960     * @throws NullPointerException if the specified element is null
961 jsr166 1.29 */
962 dl 1.1 public void transfer(E e) throws InterruptedException {
963 dl 1.45 if (xfer(e, true, SYNC, 0) != null) {
964     Thread.interrupted(); // failure possible only due to interrupt
965 dl 1.1 throw new InterruptedException();
966 jsr166 1.6 }
967 dl 1.1 }
968    
969 jsr166 1.29 /**
970 jsr166 1.40 * Transfers the element to a consumer if it is possible to do so
971     * before the timeout elapses.
972     *
973     * <p>More precisely, transfers the specified element immediately
974     * if there exists a consumer already waiting to receive it (in
975     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
976     * else inserts the specified element at the tail of this queue
977     * and waits until the element is received by a consumer,
978     * returning {@code false} if the specified wait time elapses
979     * before the element can be transferred.
980 jsr166 1.35 *
981     * @throws NullPointerException if the specified element is null
982 jsr166 1.29 */
983 dl 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
984     throws InterruptedException {
985 dl 1.45 if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
986 dl 1.1 return true;
987     if (!Thread.interrupted())
988     return false;
989     throw new InterruptedException();
990     }
991    
992     public E take() throws InterruptedException {
993 dl 1.45 Object e = xfer(null, false, SYNC, 0);
994 dl 1.1 if (e != null)
995 dl 1.45 return (E)e;
996 jsr166 1.6 Thread.interrupted();
997 dl 1.1 throw new InterruptedException();
998     }
999    
1000     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1001 dl 1.45 Object e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1002 dl 1.1 if (e != null || !Thread.interrupted())
1003 dl 1.45 return (E)e;
1004 dl 1.1 throw new InterruptedException();
1005     }
1006    
1007     public E poll() {
1008 dl 1.45 return (E)xfer(null, false, NOW, 0);
1009 dl 1.1 }
1010    
1011 jsr166 1.29 /**
1012 jsr166 1.30 * @throws NullPointerException {@inheritDoc}
1013     * @throws IllegalArgumentException {@inheritDoc}
1014 jsr166 1.29 */
1015 dl 1.1 public int drainTo(Collection<? super E> c) {
1016     if (c == null)
1017     throw new NullPointerException();
1018     if (c == this)
1019     throw new IllegalArgumentException();
1020     int n = 0;
1021     E e;
1022     while ( (e = poll()) != null) {
1023     c.add(e);
1024     ++n;
1025     }
1026     return n;
1027     }
1028    
1029 jsr166 1.29 /**
1030 jsr166 1.30 * @throws NullPointerException {@inheritDoc}
1031     * @throws IllegalArgumentException {@inheritDoc}
1032 jsr166 1.29 */
1033 dl 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1034     if (c == null)
1035     throw new NullPointerException();
1036     if (c == this)
1037     throw new IllegalArgumentException();
1038     int n = 0;
1039     E e;
1040     while (n < maxElements && (e = poll()) != null) {
1041     c.add(e);
1042     ++n;
1043     }
1044     return n;
1045     }
1046    
1047 jsr166 1.35 /**
1048     * Returns an iterator over the elements in this queue in proper
1049     * sequence, from head to tail.
1050     *
1051     * <p>The returned iterator is a "weakly consistent" iterator that
1052     * will never throw
1053     * {@link ConcurrentModificationException ConcurrentModificationException},
1054     * and guarantees to traverse elements as they existed upon
1055     * construction of the iterator, and may (but is not guaranteed
1056     * to) reflect any modifications subsequent to construction.
1057     *
1058     * @return an iterator over the elements in this queue in proper sequence
1059     */
1060 dl 1.1 public Iterator<E> iterator() {
1061     return new Itr();
1062     }
1063    
1064     public E peek() {
1065 dl 1.45 return (E) firstDataItem();
1066 dl 1.1 }
1067    
1068 jsr166 1.41 /**
1069     * Returns {@code true} if this queue contains no elements.
1070     *
1071     * @return {@code true} if this queue contains no elements
1072     */
1073 dl 1.2 public boolean isEmpty() {
1074 dl 1.45 return firstOfMode(true) == null;
1075 dl 1.2 }
1076    
1077 dl 1.1 public boolean hasWaitingConsumer() {
1078 dl 1.45 return firstOfMode(false) != null;
1079 dl 1.1 }
1080 jsr166 1.5
1081 dl 1.1 /**
1082     * Returns the number of elements in this queue. If this queue
1083 jsr166 1.11 * contains more than {@code Integer.MAX_VALUE} elements, returns
1084     * {@code Integer.MAX_VALUE}.
1085 dl 1.1 *
1086     * <p>Beware that, unlike in most collections, this method is
1087     * <em>NOT</em> a constant-time operation. Because of the
1088     * asynchronous nature of these queues, determining the current
1089     * number of elements requires an O(n) traversal.
1090     *
1091     * @return the number of elements in this queue
1092     */
1093     public int size() {
1094 dl 1.45 return countOfMode(true);
1095 dl 1.1 }
1096    
1097     public int getWaitingConsumerCount() {
1098 dl 1.45 return countOfMode(false);
1099 dl 1.1 }
1100    
1101 jsr166 1.42 /**
1102     * Removes a single instance of the specified element from this queue,
1103     * if it is present. More formally, removes an element {@code e} such
1104     * that {@code o.equals(e)}, if this queue contains one or more such
1105     * elements.
1106     * Returns {@code true} if this queue contained the specified element
1107     * (or equivalently, if this queue changed as a result of the call).
1108     *
1109     * @param o element to be removed from this queue, if present
1110     * @return {@code true} if this queue changed as a result of the call
1111     */
1112 dl 1.15 public boolean remove(Object o) {
1113 dl 1.45 return findAndRemove(o);
1114 dl 1.15 }
1115    
1116 jsr166 1.35 /**
1117     * Always returns {@code Integer.MAX_VALUE} because a
1118     * {@code LinkedTransferQueue} is not capacity constrained.
1119     *
1120     * @return {@code Integer.MAX_VALUE} (as specified by
1121     * {@link BlockingQueue#remainingCapacity()})
1122     */
1123 dl 1.33 public int remainingCapacity() {
1124     return Integer.MAX_VALUE;
1125     }
1126    
1127 dl 1.1 /**
1128 jsr166 1.46 * Saves the state to a stream (that is, serializes it).
1129 dl 1.1 *
1130 jsr166 1.11 * @serialData All of the elements (each an {@code E}) in
1131 dl 1.1 * the proper order, followed by a null
1132     * @param s the stream
1133     */
1134     private void writeObject(java.io.ObjectOutputStream s)
1135     throws java.io.IOException {
1136     s.defaultWriteObject();
1137 jsr166 1.16 for (E e : this)
1138     s.writeObject(e);
1139 dl 1.1 // Use trailing null as sentinel
1140     s.writeObject(null);
1141     }
1142    
1143     /**
1144 jsr166 1.46 * Reconstitutes the Queue instance from a stream (that is,
1145     * deserializes it).
1146 jsr166 1.19 *
1147 dl 1.1 * @param s the stream
1148     */
1149     private void readObject(java.io.ObjectInputStream s)
1150     throws java.io.IOException, ClassNotFoundException {
1151     s.defaultReadObject();
1152     for (;;) {
1153 jsr166 1.25 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1154 dl 1.1 if (item == null)
1155     break;
1156     else
1157     offer(item);
1158     }
1159     }
1160 dl 1.7
1161    
1162 jsr166 1.28 // Unsafe mechanics
1163    
1164     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1165     private static final long headOffset =
1166 jsr166 1.31 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1167 jsr166 1.28 private static final long tailOffset =
1168 jsr166 1.31 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1169 jsr166 1.28 private static final long cleanMeOffset =
1170 jsr166 1.31 objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1171    
1172     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1173     String field, Class<?> klazz) {
1174 jsr166 1.28 try {
1175     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1176     } catch (NoSuchFieldException e) {
1177     // Convert Exception to corresponding Error
1178     NoSuchFieldError error = new NoSuchFieldError(field);
1179     error.initCause(e);
1180     throw error;
1181     }
1182     }
1183    
1184 jsr166 1.25 private static sun.misc.Unsafe getUnsafe() {
1185 jsr166 1.13 try {
1186 jsr166 1.25 return sun.misc.Unsafe.getUnsafe();
1187 jsr166 1.13 } catch (SecurityException se) {
1188     try {
1189     return java.security.AccessController.doPrivileged
1190 jsr166 1.28 (new java.security
1191     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1192 jsr166 1.25 public sun.misc.Unsafe run() throws Exception {
1193 jsr166 1.28 java.lang.reflect.Field f = sun.misc
1194     .Unsafe.class.getDeclaredField("theUnsafe");
1195     f.setAccessible(true);
1196     return (sun.misc.Unsafe) f.get(null);
1197 jsr166 1.13 }});
1198     } catch (java.security.PrivilegedActionException e) {
1199 jsr166 1.25 throw new RuntimeException("Could not initialize intrinsics",
1200     e.getCause());
1201 jsr166 1.13 }
1202     }
1203     }
1204 dl 1.45
1205 dl 1.1 }