ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.52
Committed: Sat Oct 24 14:57:32 2009 UTC (14 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.51: +7 -7 lines
Log Message:
Better version of last change

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.26
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.26
11     import java.util.AbstractQueue;
12     import java.util.Collection;
13 jsr166 1.35 import java.util.ConcurrentModificationException;
14 jsr166 1.26 import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.35 import java.util.Queue;
17 jsr166 1.26 import java.util.concurrent.locks.LockSupport;
18 dl 1.1 /**
19 jsr166 1.43 * An unbounded {@link TransferQueue} based on linked nodes.
20 dl 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
21     * to any given producer. The <em>head</em> of the queue is that
22     * element that has been on the queue the longest time for some
23     * producer. The <em>tail</em> of the queue is that element that has
24     * been on the queue the shortest time for some producer.
25     *
26 jsr166 1.11 * <p>Beware that, unlike in most collections, the {@code size}
27 dl 1.1 * method is <em>NOT</em> a constant-time operation. Because of the
28     * asynchronous nature of these queues, determining the current number
29     * of elements requires a traversal of the elements.
30     *
31     * <p>This class and its iterator implement all of the
32     * <em>optional</em> methods of the {@link Collection} and {@link
33     * Iterator} interfaces.
34     *
35     * <p>Memory consistency effects: As with other concurrent
36     * collections, actions in a thread prior to placing an object into a
37     * {@code LinkedTransferQueue}
38     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
39     * actions subsequent to the access or removal of that element from
40     * the {@code LinkedTransferQueue} in another thread.
41     *
42     * <p>This class is a member of the
43     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
44     * Java Collections Framework</a>.
45     *
46 dl 1.3 * @since 1.7
47 dl 1.1 * @author Doug Lea
48     * @param <E> the type of elements held in this collection
49     */
50     public class LinkedTransferQueue<E> extends AbstractQueue<E>
51     implements TransferQueue<E>, java.io.Serializable {
52     private static final long serialVersionUID = -3223113410248163686L;
53    
54     /*
55 dl 1.45 * *** Overview of Dual Queues with Slack ***
56 dl 1.1 *
57 dl 1.45 * Dual Queues, introduced by Scherer and Scott
58     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59     * (linked) queues in which nodes may represent either data or
60     * requests. When a thread tries to enqueue a data node, but
61     * encounters a request node, it instead "matches" and removes it;
62     * and vice versa for enqueuing requests. Blocking Dual Queues
63     * arrange that threads enqueuing unmatched requests block until
64     * other threads provide the match. Dual Synchronous Queues (see
65     * Scherer, Lea, & Scott
66     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67     * additionally arrange that threads enqueuing unmatched data also
68     * block. Dual Transfer Queues support all of these modes, as
69     * dictated by callers.
70     *
71     * A FIFO dual queue may be implemented using a variation of the
72     * Michael & Scott (M&S) lock-free queue algorithm
73     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74     * It maintains two pointer fields, "head", pointing to a
75     * (matched) node that in turn points to the first actual
76     * (unmatched) queue node (or null if empty); and "tail" that
77     * points to the last node on the queue (or again null if
78     * empty). For example, here is a possible queue with four data
79     * elements:
80     *
81     * head tail
82     * | |
83     * v v
84     * M -> U -> U -> U -> U
85     *
86     * The M&S queue algorithm is known to be prone to scalability and
87     * overhead limitations when maintaining (via CAS) these head and
88     * tail pointers. This has led to the development of
89     * contention-reducing variants such as elimination arrays (see
90     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91     * optimistic back pointers (see Ladan-Mozes & Shavit
92     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93     * However, the nature of dual queues enables a simpler tactic for
94     * improving M&S-style implementations when dual-ness is needed.
95     *
96     * In a dual queue, each node must atomically maintain its match
97     * status. While there are other possible variants, we implement
98     * this here as: for a data-mode node, matching entails CASing an
99     * "item" field from a non-null data value to null upon match, and
100     * vice-versa for request nodes, CASing from null to a data
101     * value. (Note that the linearization properties of this style of
102     * queue are easy to verify -- elements are made available by
103     * linking, and unavailable by matching.) Compared to plain M&S
104     * queues, this property of dual queues requires one additional
105     * successful atomic operation per enq/deq pair. But it also
106     * enables lower cost variants of queue maintenance mechanics. (A
107     * variation of this idea applies even for non-dual queues that
108 dl 1.48 * support deletion of interior elements, such as
109 dl 1.45 * j.u.c.ConcurrentLinkedQueue.)
110     *
111 dl 1.48 * Once a node is matched, its match status can never again
112     * change. We may thus arrange that the linked list of them
113     * contain a prefix of zero or more matched nodes, followed by a
114     * suffix of zero or more unmatched nodes. (Note that we allow
115     * both the prefix and suffix to be zero length, which in turn
116     * means that we do not use a dummy header.) If we were not
117     * concerned with either time or space efficiency, we could
118     * correctly perform enqueue and dequeue operations by traversing
119     * from a pointer to the initial node; CASing the item of the
120     * first unmatched node on match and CASing the next field of the
121     * trailing node on appends. (Plus some special-casing when
122     * initially empty). While this would be a terrible idea in
123     * itself, it does have the benefit of not requiring ANY atomic
124     * updates on head/tail fields.
125 dl 1.45 *
126     * We introduce here an approach that lies between the extremes of
127 dl 1.48 * never versus always updating queue (head and tail) pointers.
128     * This offers a tradeoff between sometimes requiring extra
129     * traversal steps to locate the first and/or last unmatched
130     * nodes, versus the reduced overhead and contention of fewer
131     * updates to queue pointers. For example, a possible snapshot of
132     * a queue is:
133 dl 1.45 *
134     * head tail
135     * | |
136     * v v
137     * M -> M -> U -> U -> U -> U
138     *
139     * The best value for this "slack" (the targeted maximum distance
140     * between the value of "head" and the first unmatched node, and
141     * similarly for "tail") is an empirical matter. We have found
142     * that using very small constants in the range of 1-3 work best
143     * over a range of platforms. Larger values introduce increasing
144 dl 1.48 * costs of cache misses and risks of long traversal chains, while
145 jsr166 1.49 * smaller values increase CAS contention and overhead.
146 dl 1.45 *
147     * Dual queues with slack differ from plain M&S dual queues by
148     * virtue of only sometimes updating head or tail pointers when
149     * matching, appending, or even traversing nodes; in order to
150     * maintain a targeted slack. The idea of "sometimes" may be
151     * operationalized in several ways. The simplest is to use a
152     * per-operation counter incremented on each traversal step, and
153     * to try (via CAS) to update the associated queue pointer
154     * whenever the count exceeds a threshold. Another, that requires
155     * more overhead, is to use random number generators to update
156     * with a given probability per traversal step.
157     *
158     * In any strategy along these lines, because CASes updating
159     * fields may fail, the actual slack may exceed targeted
160     * slack. However, they may be retried at any time to maintain
161     * targets. Even when using very small slack values, this
162     * approach works well for dual queues because it allows all
163     * operations up to the point of matching or appending an item
164 dl 1.50 * (hence potentially allowing progress by another thread) to be
165     * read-only, thus not introducing any further contention. As
166     * described below, we implement this by performing slack
167     * maintenance retries only after these points.
168 dl 1.45 *
169     * As an accompaniment to such techniques, traversal overhead can
170     * be further reduced without increasing contention of head
171 dl 1.50 * pointer updates: Threads may sometimes shortcut the "next" link
172     * path from the current "head" node to be closer to the currently
173     * known first unmatched node, and similarly for tail. Again, this
174     * may be triggered with using thresholds or randomization.
175 dl 1.45 *
176     * These ideas must be further extended to avoid unbounded amounts
177     * of costly-to-reclaim garbage caused by the sequential "next"
178     * links of nodes starting at old forgotten head nodes: As first
179     * described in detail by Boehm
180     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181     * delays noticing that any arbitrarily old node has become
182     * garbage, all newer dead nodes will also be unreclaimed.
183     * (Similar issues arise in non-GC environments.) To cope with
184     * this in our implementation, upon CASing to advance the head
185     * pointer, we set the "next" link of the previous head to point
186 jsr166 1.46 * only to itself; thus limiting the length of connected dead lists.
187 dl 1.45 * (We also take similar care to wipe out possibly garbage
188     * retaining values held in other Node fields.) However, doing so
189     * adds some further complexity to traversal: If any "next"
190     * pointer links to itself, it indicates that the current thread
191     * has lagged behind a head-update, and so the traversal must
192     * continue from the "head". Traversals trying to find the
193     * current tail starting from "tail" may also encounter
194     * self-links, in which case they also continue at "head".
195     *
196     * It is tempting in slack-based scheme to not even use CAS for
197     * updates (similarly to Ladan-Mozes & Shavit). However, this
198     * cannot be done for head updates under the above link-forgetting
199     * mechanics because an update may leave head at a detached node.
200     * And while direct writes are possible for tail updates, they
201     * increase the risk of long retraversals, and hence long garbage
202 dl 1.50 * chains, which can be much more costly than is worthwhile
203 dl 1.45 * considering that the cost difference of performing a CAS vs
204     * write is smaller when they are not triggered on each operation
205     * (especially considering that writes and CASes equally require
206     * additional GC bookkeeping ("write barriers") that are sometimes
207     * more costly than the writes themselves because of contention).
208     *
209 dl 1.48 * Removal of interior nodes (due to timed out or interrupted
210 dl 1.50 * waits, or calls to remove(x) or Iterator.remove) can use a
211     * scheme roughly similar to that described in Scherer, Lea, and
212     * Scott's SynchronousQueue. Given a predecessor, we can unsplice
213     * any node except the (actual) tail of the queue. To avoid
214     * build-up of cancelled trailing nodes, upon a request to remove
215     * a trailing node, it is placed in field "cleanMe" to be
216     * unspliced upon the next call to unsplice any other node.
217     * Situations needing such mechanics are not common but do occur
218     * in practice; for example when an unbounded series of short
219     * timed calls to poll repeatedly time out but never otherwise
220     * fall off the list because of an untimed call to take at the
221     * front of the queue. Note that maintaining field cleanMe does
222     * not otherwise much impact garbage retention even if never
223     * cleared by some other call because the held node will
224     * eventually either directly or indirectly lead to a self-link
225     * once off the list.
226 dl 1.45 *
227     * *** Overview of implementation ***
228     *
229 dl 1.50 * We use a threshold-based approach to updates, with a slack
230     * threshold of two -- that is, we update head/tail when the
231     * current pointer appears to be two or more steps away from the
232     * first/last node. The slack value is hard-wired: a path greater
233 dl 1.45 * than one is naturally implemented by checking equality of
234     * traversal pointers except when the list has only one element,
235 dl 1.50 * in which case we keep slack threshold at one. Avoiding tracking
236 dl 1.48 * explicit counts across method calls slightly simplifies an
237 dl 1.45 * already-messy implementation. Using randomization would
238     * probably work better if there were a low-quality dirt-cheap
239     * per-thread one available, but even ThreadLocalRandom is too
240     * heavy for these purposes.
241     *
242 dl 1.50 * With such a small slack threshold value, it is rarely
243     * worthwhile to augment this with path short-circuiting; i.e.,
244     * unsplicing nodes between head and the first unmatched node, or
245     * similarly for tail, rather than advancing head or tail
246     * proper. However, it is used (in awaitMatch) immediately before
247     * a waiting thread starts to block, as a final bit of helping at
248     * a point when contention with others is extremely unlikely
249     * (since if other threads that could release it are operating,
250     * then the current thread wouldn't be blocking).
251 dl 1.48 *
252     * We allow both the head and tail fields to be null before any
253     * nodes are enqueued; initializing upon first append. This
254     * simplifies some other logic, as well as providing more
255     * efficient explicit control paths instead of letting JVMs insert
256     * implicit NullPointerExceptions when they are null. While not
257     * currently fully implemented, we also leave open the possibility
258 jsr166 1.49 * of re-nulling these fields when empty (which is complicated to
259     * arrange, for little benefit.)
260 dl 1.45 *
261     * All enqueue/dequeue operations are handled by the single method
262     * "xfer" with parameters indicating whether to act as some form
263     * of offer, put, poll, take, or transfer (each possibly with
264     * timeout). The relative complexity of using one monolithic
265     * method outweighs the code bulk and maintenance problems of
266 dl 1.50 * using separate methods for each case.
267 dl 1.45 *
268     * Operation consists of up to three phases. The first is
269     * implemented within method xfer, the second in tryAppend, and
270     * the third in method awaitMatch.
271     *
272     * 1. Try to match an existing node
273     *
274     * Starting at head, skip already-matched nodes until finding
275     * an unmatched node of opposite mode, if one exists, in which
276     * case matching it and returning, also if necessary updating
277     * head to one past the matched node (or the node itself if the
278     * list has no other unmatched nodes). If the CAS misses, then
279 dl 1.48 * a loop retries advancing head by two steps until either
280     * success or the slack is at most two. By requiring that each
281     * attempt advances head by two (if applicable), we ensure that
282     * the slack does not grow without bound. Traversals also check
283     * if the initial head is now off-list, in which case they
284     * start at the new head.
285 dl 1.45 *
286     * If no candidates are found and the call was untimed
287     * poll/offer, (argument "how" is NOW) return.
288     *
289     * 2. Try to append a new node (method tryAppend)
290     *
291 dl 1.50 * Starting at current tail pointer, find the actual last node
292     * and try to append a new node (or if head was null, establish
293     * the first node). Nodes can be appended only if their
294     * predecessors are either already matched or are of the same
295     * mode. If we detect otherwise, then a new node with opposite
296     * mode must have been appended during traversal, so we must
297     * restart at phase 1. The traversal and update steps are
298     * otherwise similar to phase 1: Retrying upon CAS misses and
299     * checking for staleness. In particular, if a self-link is
300     * encountered, then we can safely jump to a node on the list
301     * by continuing the traversal at current head.
302 dl 1.45 *
303 jsr166 1.46 * On successful append, if the call was ASYNC, return.
304 dl 1.45 *
305     * 3. Await match or cancellation (method awaitMatch)
306     *
307     * Wait for another thread to match node; instead cancelling if
308 dl 1.50 * the current thread was interrupted or the wait timed out. On
309 dl 1.45 * multiprocessors, we use front-of-queue spinning: If a node
310     * appears to be the first unmatched node in the queue, it
311     * spins a bit before blocking. In either case, before blocking
312     * it tries to unsplice any nodes between the current "head"
313     * and the first unmatched node.
314     *
315     * Front-of-queue spinning vastly improves performance of
316     * heavily contended queues. And so long as it is relatively
317     * brief and "quiet", spinning does not much impact performance
318     * of less-contended queues. During spins threads check their
319     * interrupt status and generate a thread-local random number
320     * to decide to occasionally perform a Thread.yield. While
321     * yield has underdefined specs, we assume that might it help,
322     * and will not hurt in limiting impact of spinning on busy
323 dl 1.50 * systems. We also use smaller (1/2) spins for nodes that are
324     * not known to be front but whose predecessors have not
325     * blocked -- these "chained" spins avoid artifacts of
326 dl 1.45 * front-of-queue rules which otherwise lead to alternating
327     * nodes spinning vs blocking. Further, front threads that
328     * represent phase changes (from data to request node or vice
329     * versa) compared to their predecessors receive additional
330 dl 1.50 * chained spins, reflecting longer paths typically required to
331     * unblock threads during phase changes.
332 dl 1.45 */
333    
334     /** True if on multiprocessor */
335     private static final boolean MP =
336     Runtime.getRuntime().availableProcessors() > 1;
337    
338     /**
339 dl 1.50 * The number of times to spin (with randomly interspersed calls
340     * to Thread.yield) on multiprocessor before blocking when a node
341     * is apparently the first waiter in the queue. See above for
342     * explanation. Must be a power of two. The value is empirically
343     * derived -- it works pretty well across a variety of processors,
344     * numbers of CPUs, and OSes.
345 dl 1.45 */
346     private static final int FRONT_SPINS = 1 << 7;
347    
348     /**
349     * The number of times to spin before blocking when a node is
350 dl 1.50 * preceded by another node that is apparently spinning. Also
351     * serves as an increment to FRONT_SPINS on phase changes, and as
352     * base average frequency for yielding during spins. Must be a
353     * power of two.
354 dl 1.45 */
355 dl 1.50 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
356 dl 1.45
357     /**
358 jsr166 1.46 * Queue nodes. Uses Object, not E, for items to allow forgetting
359 dl 1.45 * them after use. Relies heavily on Unsafe mechanics to minimize
360 jsr166 1.46 * unnecessary ordering constraints: Writes that intrinsically
361 dl 1.45 * precede or follow CASes use simple relaxed forms. Other
362     * cleanups use releasing/lazy writes.
363     */
364     static final class Node {
365     final boolean isData; // false if this is a request node
366 jsr166 1.46 volatile Object item; // initially non-null if isData; CASed to match
367 dl 1.45 volatile Node next;
368     volatile Thread waiter; // null until waiting
369 dl 1.1
370 dl 1.45 // CAS methods for fields
371     final boolean casNext(Node cmp, Node val) {
372     return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
373     }
374 dl 1.1
375 dl 1.45 final boolean casItem(Object cmp, Object val) {
376     return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
377     }
378 dl 1.1
379 dl 1.45 /**
380 jsr166 1.46 * Creates a new node. Uses relaxed write because item can only
381     * be seen if followed by CAS.
382 dl 1.45 */
383     Node(Object item, boolean isData) {
384     UNSAFE.putObject(this, itemOffset, item); // relaxed write
385 dl 1.1 this.isData = isData;
386     }
387    
388 dl 1.45 /**
389     * Links node to itself to avoid garbage retention. Called
390     * only after CASing head field, so uses relaxed write.
391     */
392     final void forgetNext() {
393     UNSAFE.putObject(this, nextOffset, this);
394     }
395 jsr166 1.32
396 dl 1.45 /**
397     * Sets item to self (using a releasing/lazy write) and waiter
398     * to null, to avoid garbage retention after extracting or
399     * cancelling.
400     */
401     final void forgetContents() {
402     UNSAFE.putOrderedObject(this, itemOffset, this);
403     UNSAFE.putOrderedObject(this, waiterOffset, null);
404     }
405 jsr166 1.32
406 dl 1.45 /**
407     * Returns true if this node has been matched, including the
408     * case of artificial matches due to cancellation.
409     */
410     final boolean isMatched() {
411     Object x = item;
412     return x == this || (x != null) != isData;
413 dl 1.1 }
414 dl 1.15
415 dl 1.45 /**
416     * Returns true if a node with the given mode cannot be
417     * appended to this node because this node is unmatched and
418     * has opposite data mode.
419     */
420     final boolean cannotPrecede(boolean haveData) {
421     boolean d = isData;
422     Object x;
423     return d != haveData && (x = item) != this && (x != null) == d;
424 jsr166 1.31 }
425    
426     /**
427 jsr166 1.46 * Tries to artificially match a data node -- used by remove.
428 jsr166 1.31 */
429 dl 1.45 final boolean tryMatchData() {
430     Object x = item;
431     if (x != null && x != this && casItem(x, null)) {
432     LockSupport.unpark(waiter);
433     return true;
434 jsr166 1.31 }
435 dl 1.45 return false;
436 dl 1.15 }
437    
438 dl 1.45 // Unsafe mechanics
439     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
440     private static final long nextOffset =
441     objectFieldOffset(UNSAFE, "next", Node.class);
442     private static final long itemOffset =
443     objectFieldOffset(UNSAFE, "item", Node.class);
444     private static final long waiterOffset =
445     objectFieldOffset(UNSAFE, "waiter", Node.class);
446    
447 jsr166 1.24 private static final long serialVersionUID = -3375979862319811754L;
448 dl 1.1 }
449    
450 dl 1.45 /** head of the queue; null until first enqueue */
451     private transient volatile Node head;
452    
453     /** predecessor of dangling unspliceable node */
454     private transient volatile Node cleanMe; // decl here to reduce contention
455 dl 1.1
456 dl 1.45 /** tail of the queue; null until first append */
457     private transient volatile Node tail;
458 dl 1.1
459 dl 1.45 // CAS methods for fields
460     private boolean casTail(Node cmp, Node val) {
461     return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
462     }
463 jsr166 1.23
464 dl 1.45 private boolean casHead(Node cmp, Node val) {
465     return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
466     }
467 dl 1.1
468 dl 1.45 private boolean casCleanMe(Node cmp, Node val) {
469     return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
470     }
471 dl 1.1
472 dl 1.45 /*
473     * Possible values for "how" argument in xfer method. Beware that
474     * the order of assigned numerical values matters.
475 dl 1.1 */
476 dl 1.45 private static final int NOW = 0; // for untimed poll, tryTransfer
477     private static final int ASYNC = 1; // for offer, put, add
478     private static final int SYNC = 2; // for transfer, take
479     private static final int TIMEOUT = 3; // for timed poll, tryTransfer
480 jsr166 1.5
481 dl 1.1 /**
482 dl 1.45 * Implements all queuing methods. See above for explanation.
483 jsr166 1.17 *
484 dl 1.45 * @param e the item or null for take
485 jsr166 1.46 * @param haveData true if this is a put, else a take
486 dl 1.45 * @param how NOW, ASYNC, SYNC, or TIMEOUT
487 dl 1.1 * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
488 jsr166 1.46 * @return an item if matched, else e
489 dl 1.45 * @throws NullPointerException if haveData mode but e is null
490 dl 1.1 */
491 dl 1.45 private Object xfer(Object e, boolean haveData, int how, long nanos) {
492     if (haveData && (e == null))
493     throw new NullPointerException();
494     Node s = null; // the node to append, if needed
495 dl 1.1
496 dl 1.45 retry: for (;;) { // restart on append race
497 dl 1.1
498 dl 1.45 for (Node h = head, p = h; p != null;) { // find & match first node
499     boolean isData = p.isData;
500     Object item = p.item;
501     if (item != p && (item != null) == isData) { // unmatched
502     if (isData == haveData) // can't match
503     break;
504     if (p.casItem(item, e)) { // match
505 dl 1.52 for (Node q = p; q != h;) {
506     Node n = q.next; // update head by 2
507     if (n != null) // unless singleton
508     q = n;
509     if (head == h && casHead(h, q)) {
510 dl 1.45 h.forgetNext();
511     break;
512     } // advance and retry
513     if ((h = head) == null ||
514 dl 1.52 (q = h.next) == null || !q.isMatched())
515 dl 1.45 break; // unless slack < 2
516     }
517 dl 1.52 LockSupport.unpark(p.waiter);
518 dl 1.45 return item;
519 dl 1.1 }
520     }
521 dl 1.45 Node n = p.next;
522 jsr166 1.47 p = (p != n) ? n : (h = head); // Use head if p offlist
523 dl 1.45 }
524    
525     if (how >= ASYNC) { // No matches available
526     if (s == null)
527     s = new Node(e, haveData);
528     Node pred = tryAppend(s, haveData);
529     if (pred == null)
530     continue retry; // lost race vs opposite mode
531     if (how >= SYNC)
532 dl 1.50 return awaitMatch(s, pred, e, how, nanos);
533 dl 1.1 }
534 dl 1.45 return e; // not waiting
535 dl 1.1 }
536     }
537    
538     /**
539 jsr166 1.46 * Tries to append node s as tail.
540     *
541 dl 1.48 * @param s the node to append
542 dl 1.45 * @param haveData true if appending in data mode
543     * @return null on failure due to losing race with append in
544     * different mode, else s's predecessor, or s itself if no
545     * predecessor
546 dl 1.1 */
547 dl 1.45 private Node tryAppend(Node s, boolean haveData) {
548 dl 1.48 for (Node t = tail, p = t;;) { // move p to last node and append
549 dl 1.45 Node n, u; // temps for reads of next & tail
550     if (p == null && (p = head) == null) {
551     if (casHead(null, s))
552     return s; // initialize
553     }
554     else if (p.cannotPrecede(haveData))
555     return null; // lost race vs opposite mode
556 dl 1.48 else if ((n = p.next) != null) // not last; keep traversing
557 dl 1.45 p = p != t && t != (u = tail) ? (t = u) : // stale tail
558 jsr166 1.47 (p != n) ? n : null; // restart if off list
559 dl 1.45 else if (!p.casNext(null, s))
560     p = p.next; // re-read on CAS failure
561     else {
562 dl 1.48 if (p != t) { // update if slack now >= 2
563 dl 1.45 while ((tail != t || !casTail(t, s)) &&
564     (t = tail) != null &&
565     (s = t.next) != null && // advance and retry
566     (s = s.next) != null && s != t);
567 dl 1.1 }
568 dl 1.45 return p;
569 dl 1.1 }
570     }
571     }
572    
573     /**
574 dl 1.45 * Spins/yields/blocks until node s is matched or caller gives up.
575 dl 1.1 *
576     * @param s the waiting node
577 dl 1.50 * @param pred the predecessor of s, or s itself if it has no
578     * predecessor, or null if unknown (the null case does not occur
579     * in any current calls but may in possible future extensions)
580 dl 1.1 * @param e the comparison value for checking match
581 dl 1.45 * @param how either SYNC or TIMEOUT
582 dl 1.1 * @param nanos timeout value
583 dl 1.45 * @return matched item, or e if unmatched on interrupt or timeout
584 dl 1.1 */
585 dl 1.50 private Object awaitMatch(Node s, Node pred, Object e,
586 dl 1.45 int how, long nanos) {
587     long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
588     Thread w = Thread.currentThread();
589     int spins = -1; // initialized after first item and cancel checks
590     ThreadLocalRandom randomYields = null; // bound if needed
591 dl 1.1
592     for (;;) {
593 dl 1.45 Object item = s.item;
594     if (item != e) { // matched
595     s.forgetContents(); // avoid garbage
596     return item;
597     }
598     if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
599     s.casItem(e, s)) { // cancel
600     unsplice(pred, s);
601     return e;
602     }
603    
604     if (spins < 0) { // establish spins at/near front
605     if ((spins = spinsFor(pred, s.isData)) > 0)
606     randomYields = ThreadLocalRandom.current();
607     }
608 dl 1.50 else if (spins > 0) { // spin
609     if (--spins == 0)
610     shortenHeadPath(); // reduce slack before blocking
611     else if (randomYields.nextInt(CHAINED_SPINS) == 0)
612     Thread.yield(); // occasionally yield
613 dl 1.45 }
614     else if (s.waiter == null) {
615 dl 1.51 s.waiter = w; // request unpark then recheck
616 dl 1.1 }
617 dl 1.45 else if (how == TIMEOUT) {
618 dl 1.1 long now = System.nanoTime();
619 dl 1.45 if ((nanos -= now - lastTime) > 0)
620     LockSupport.parkNanos(this, nanos);
621 dl 1.1 lastTime = now;
622     }
623 dl 1.45 else {
624 dl 1.12 LockSupport.park(this);
625 dl 1.51 s.waiter = null;
626 dl 1.45 spins = -1; // spin if front upon wakeup
627 dl 1.1 }
628 dl 1.45 }
629     }
630    
631     /**
632 jsr166 1.46 * Returns spin/yield value for a node with given predecessor and
633 dl 1.45 * data mode. See above for explanation.
634     */
635     private static int spinsFor(Node pred, boolean haveData) {
636     if (MP && pred != null) {
637 dl 1.50 if (pred.isData != haveData) // phase change
638     return FRONT_SPINS + CHAINED_SPINS;
639     if (pred.isMatched()) // probably at front
640 dl 1.45 return FRONT_SPINS;
641     if (pred.waiter == null) // pred apparently spinning
642     return CHAINED_SPINS;
643     }
644     return 0;
645     }
646    
647     /**
648     * Tries (once) to unsplice nodes between head and first unmatched
649     * or trailing node; failing on contention.
650     */
651     private void shortenHeadPath() {
652     Node h, hn, p, q;
653     if ((p = h = head) != null && h.isMatched() &&
654     (q = hn = h.next) != null) {
655     Node n;
656     while ((n = q.next) != q) {
657     if (n == null || !q.isMatched()) {
658     if (hn != q && h.next == hn)
659     h.casNext(hn, q);
660     break;
661     }
662     p = q;
663     q = n;
664 dl 1.1 }
665     }
666     }
667    
668 dl 1.45 /* -------------- Traversal methods -------------- */
669    
670 dl 1.1 /**
671 jsr166 1.46 * Returns the first unmatched node of the given mode, or null if
672 dl 1.45 * none. Used by methods isEmpty, hasWaitingConsumer.
673 dl 1.9 */
674 dl 1.45 private Node firstOfMode(boolean data) {
675     for (Node p = head; p != null; ) {
676     if (!p.isMatched())
677 jsr166 1.47 return (p.isData == data) ? p : null;
678 dl 1.45 Node n = p.next;
679 jsr166 1.47 p = (n != p) ? n : head;
680 dl 1.45 }
681     return null;
682     }
683    
684     /**
685     * Returns the item in the first unmatched node with isData; or
686     * null if none. Used by peek.
687     */
688     private Object firstDataItem() {
689     for (Node p = head; p != null; ) {
690     boolean isData = p.isData;
691     Object item = p.item;
692     if (item != p && (item != null) == isData)
693     return isData ? item : null;
694     Node n = p.next;
695 jsr166 1.47 p = (n != p) ? n : head;
696 dl 1.45 }
697     return null;
698     }
699    
700     /**
701 jsr166 1.46 * Traverses and counts unmatched nodes of the given mode.
702     * Used by methods size and getWaitingConsumerCount.
703 dl 1.45 */
704     private int countOfMode(boolean data) {
705     int count = 0;
706     for (Node p = head; p != null; ) {
707     if (!p.isMatched()) {
708     if (p.isData != data)
709     return 0;
710     if (++count == Integer.MAX_VALUE) // saturated
711     break;
712 dl 1.9 }
713 dl 1.45 Node n = p.next;
714     if (n != p)
715     p = n;
716     else {
717     count = 0;
718     p = head;
719 dl 1.9 }
720     }
721 dl 1.45 return count;
722 jsr166 1.10 }
723 dl 1.9
724 dl 1.45 final class Itr implements Iterator<E> {
725     private Node nextNode; // next node to return item for
726     private Object nextItem; // the corresponding item
727     private Node lastRet; // last returned node, to support remove
728    
729     /**
730     * Moves to next node after prev, or first node if prev null.
731     */
732     private void advance(Node prev) {
733     lastRet = prev;
734     Node p;
735     if (prev == null || (p = prev.next) == prev)
736     p = head;
737     while (p != null) {
738     Object item = p.item;
739     if (p.isData) {
740     if (item != null && item != p) {
741     nextItem = item;
742     nextNode = p;
743     return;
744     }
745     }
746     else if (item == null)
747     break;
748     Node n = p.next;
749 jsr166 1.47 p = (n != p) ? n : head;
750 dl 1.45 }
751     nextNode = null;
752     }
753    
754     Itr() {
755     advance(null);
756     }
757    
758     public final boolean hasNext() {
759     return nextNode != null;
760     }
761    
762     public final E next() {
763     Node p = nextNode;
764     if (p == null) throw new NoSuchElementException();
765     Object e = nextItem;
766     advance(p);
767     return (E) e;
768     }
769    
770     public final void remove() {
771     Node p = lastRet;
772     if (p == null) throw new IllegalStateException();
773     lastRet = null;
774     findAndRemoveNode(p);
775     }
776     }
777    
778     /* -------------- Removal methods -------------- */
779    
780 dl 1.9 /**
781 dl 1.45 * Unsplices (now or later) the given deleted/cancelled node with
782     * the given predecessor.
783 jsr166 1.17 *
784 dl 1.45 * @param pred predecessor of node to be unspliced
785     * @param s the node to be unspliced
786 dl 1.1 */
787 dl 1.45 private void unsplice(Node pred, Node s) {
788     s.forgetContents(); // clear unneeded fields
789 dl 1.9 /*
790     * At any given time, exactly one node on list cannot be
791 dl 1.48 * unlinked -- the last inserted node. To accommodate this, if
792     * we cannot unlink s, we save its predecessor as "cleanMe",
793 dl 1.45 * processing the previously saved version first. Because only
794     * one node in the list can have a null next, at least one of
795     * node s or the node previously saved can always be
796 dl 1.9 * processed, so this always terminates.
797     */
798 dl 1.45 if (pred != null && pred != s) {
799     while (pred.next == s) {
800 jsr166 1.47 Node oldpred = (cleanMe == null) ? null : reclean();
801 dl 1.45 Node n = s.next;
802     if (n != null) {
803     if (n != s)
804     pred.casNext(s, n);
805 dl 1.9 break;
806 dl 1.45 }
807     if (oldpred == pred || // Already saved
808     (oldpred == null && casCleanMe(null, pred)))
809     break; // Postpone cleaning
810 dl 1.9 }
811     }
812     }
813 jsr166 1.5
814 dl 1.9 /**
815 dl 1.45 * Tries to unsplice the deleted/cancelled node held in cleanMe
816     * that was previously uncleanable because it was at tail.
817 jsr166 1.17 *
818 dl 1.9 * @return current cleanMe node (or null)
819     */
820 dl 1.45 private Node reclean() {
821 jsr166 1.10 /*
822 dl 1.45 * cleanMe is, or at one time was, predecessor of a cancelled
823     * node s that was the tail so could not be unspliced. If it
824 dl 1.9 * is no longer the tail, try to unsplice if necessary and
825     * make cleanMe slot available. This differs from similar
826 dl 1.45 * code in unsplice() because we must check that pred still
827     * points to a matched node that can be unspliced -- if not,
828     * we can (must) clear cleanMe without unsplicing. This can
829     * loop only due to contention.
830 dl 1.9 */
831 dl 1.45 Node pred;
832     while ((pred = cleanMe) != null) {
833     Node s = pred.next;
834     Node n;
835     if (s == null || s == pred || !s.isMatched())
836     casCleanMe(pred, null); // already gone
837     else if ((n = s.next) != null) {
838     if (n != s)
839     pred.casNext(s, n);
840     casCleanMe(pred, null);
841 dl 1.1 }
842 dl 1.45 else
843 dl 1.9 break;
844 dl 1.1 }
845 dl 1.9 return pred;
846 dl 1.1 }
847 jsr166 1.5
848 dl 1.1 /**
849 dl 1.45 * Main implementation of Iterator.remove(). Find
850     * and unsplice the given node.
851     */
852     final void findAndRemoveNode(Node s) {
853     if (s.tryMatchData()) {
854     Node pred = null;
855     Node p = head;
856     while (p != null) {
857     if (p == s) {
858     unsplice(pred, p);
859     break;
860     }
861     if (!p.isData && !p.isMatched())
862     break;
863     pred = p;
864     if ((p = p.next) == pred) { // stale
865     pred = null;
866     p = head;
867     }
868     }
869     }
870     }
871    
872     /**
873     * Main implementation of remove(Object)
874     */
875     private boolean findAndRemove(Object e) {
876     if (e != null) {
877     Node pred = null;
878     Node p = head;
879     while (p != null) {
880     Object item = p.item;
881     if (p.isData) {
882     if (item != null && item != p && e.equals(item) &&
883     p.tryMatchData()) {
884     unsplice(pred, p);
885     return true;
886     }
887     }
888     else if (item == null)
889     break;
890     pred = p;
891     if ((p = p.next) == pred) {
892     pred = null;
893     p = head;
894     }
895     }
896     }
897     return false;
898     }
899    
900    
901     /**
902 jsr166 1.11 * Creates an initially empty {@code LinkedTransferQueue}.
903 dl 1.1 */
904     public LinkedTransferQueue() {
905     }
906    
907     /**
908 jsr166 1.11 * Creates a {@code LinkedTransferQueue}
909 dl 1.1 * initially containing the elements of the given collection,
910     * added in traversal order of the collection's iterator.
911 jsr166 1.17 *
912 dl 1.1 * @param c the collection of elements to initially contain
913     * @throws NullPointerException if the specified collection or any
914     * of its elements are null
915     */
916     public LinkedTransferQueue(Collection<? extends E> c) {
917 dl 1.7 this();
918 dl 1.1 addAll(c);
919     }
920    
921 jsr166 1.29 /**
922 jsr166 1.35 * Inserts the specified element at the tail of this queue.
923     * As the queue is unbounded, this method will never block.
924     *
925     * @throws NullPointerException if the specified element is null
926 jsr166 1.29 */
927 jsr166 1.35 public void put(E e) {
928 dl 1.45 xfer(e, true, ASYNC, 0);
929 dl 1.1 }
930    
931 jsr166 1.29 /**
932 jsr166 1.35 * Inserts the specified element at the tail of this queue.
933     * As the queue is unbounded, this method will never block or
934     * return {@code false}.
935     *
936     * @return {@code true} (as specified by
937     * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
938     * @throws NullPointerException if the specified element is null
939 jsr166 1.29 */
940 jsr166 1.35 public boolean offer(E e, long timeout, TimeUnit unit) {
941 dl 1.45 xfer(e, true, ASYNC, 0);
942     return true;
943 dl 1.1 }
944    
945 jsr166 1.29 /**
946 jsr166 1.35 * Inserts the specified element at the tail of this queue.
947     * As the queue is unbounded, this method will never return {@code false}.
948     *
949     * @return {@code true} (as specified by
950     * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
951     * @throws NullPointerException if the specified element is null
952 jsr166 1.29 */
953 dl 1.1 public boolean offer(E e) {
954 dl 1.45 xfer(e, true, ASYNC, 0);
955 dl 1.1 return true;
956     }
957    
958 jsr166 1.29 /**
959 jsr166 1.35 * Inserts the specified element at the tail of this queue.
960 jsr166 1.37 * As the queue is unbounded, this method will never throw
961 jsr166 1.35 * {@link IllegalStateException} or return {@code false}.
962     *
963     * @return {@code true} (as specified by {@link Collection#add})
964     * @throws NullPointerException if the specified element is null
965 jsr166 1.29 */
966 dl 1.15 public boolean add(E e) {
967 dl 1.45 xfer(e, true, ASYNC, 0);
968     return true;
969 jsr166 1.35 }
970    
971     /**
972 jsr166 1.40 * Transfers the element to a waiting consumer immediately, if possible.
973     *
974     * <p>More precisely, transfers the specified element immediately
975     * if there exists a consumer already waiting to receive it (in
976     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
977     * otherwise returning {@code false} without enqueuing the element.
978 jsr166 1.35 *
979     * @throws NullPointerException if the specified element is null
980     */
981     public boolean tryTransfer(E e) {
982 dl 1.45 return xfer(e, true, NOW, 0) == null;
983 dl 1.15 }
984    
985 jsr166 1.29 /**
986 jsr166 1.40 * Transfers the element to a consumer, waiting if necessary to do so.
987     *
988     * <p>More precisely, transfers the specified element immediately
989     * if there exists a consumer already waiting to receive it (in
990     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
991     * else inserts the specified element at the tail of this queue
992     * and waits until the element is received by a consumer.
993 jsr166 1.35 *
994     * @throws NullPointerException if the specified element is null
995 jsr166 1.29 */
996 dl 1.1 public void transfer(E e) throws InterruptedException {
997 dl 1.45 if (xfer(e, true, SYNC, 0) != null) {
998     Thread.interrupted(); // failure possible only due to interrupt
999 dl 1.1 throw new InterruptedException();
1000 jsr166 1.6 }
1001 dl 1.1 }
1002    
1003 jsr166 1.29 /**
1004 jsr166 1.40 * Transfers the element to a consumer if it is possible to do so
1005     * before the timeout elapses.
1006     *
1007     * <p>More precisely, transfers the specified element immediately
1008     * if there exists a consumer already waiting to receive it (in
1009     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1010     * else inserts the specified element at the tail of this queue
1011     * and waits until the element is received by a consumer,
1012     * returning {@code false} if the specified wait time elapses
1013     * before the element can be transferred.
1014 jsr166 1.35 *
1015     * @throws NullPointerException if the specified element is null
1016 jsr166 1.29 */
1017 dl 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1018     throws InterruptedException {
1019 dl 1.45 if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1020 dl 1.1 return true;
1021     if (!Thread.interrupted())
1022     return false;
1023     throw new InterruptedException();
1024     }
1025    
1026     public E take() throws InterruptedException {
1027 dl 1.45 Object e = xfer(null, false, SYNC, 0);
1028 dl 1.1 if (e != null)
1029 dl 1.45 return (E)e;
1030 jsr166 1.6 Thread.interrupted();
1031 dl 1.1 throw new InterruptedException();
1032     }
1033    
1034     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1035 dl 1.45 Object e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1036 dl 1.1 if (e != null || !Thread.interrupted())
1037 dl 1.45 return (E)e;
1038 dl 1.1 throw new InterruptedException();
1039     }
1040    
1041     public E poll() {
1042 dl 1.45 return (E)xfer(null, false, NOW, 0);
1043 dl 1.1 }
1044    
1045 jsr166 1.29 /**
1046 jsr166 1.30 * @throws NullPointerException {@inheritDoc}
1047     * @throws IllegalArgumentException {@inheritDoc}
1048 jsr166 1.29 */
1049 dl 1.1 public int drainTo(Collection<? super E> c) {
1050     if (c == null)
1051     throw new NullPointerException();
1052     if (c == this)
1053     throw new IllegalArgumentException();
1054     int n = 0;
1055     E e;
1056     while ( (e = poll()) != null) {
1057     c.add(e);
1058     ++n;
1059     }
1060     return n;
1061     }
1062    
1063 jsr166 1.29 /**
1064 jsr166 1.30 * @throws NullPointerException {@inheritDoc}
1065     * @throws IllegalArgumentException {@inheritDoc}
1066 jsr166 1.29 */
1067 dl 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1068     if (c == null)
1069     throw new NullPointerException();
1070     if (c == this)
1071     throw new IllegalArgumentException();
1072     int n = 0;
1073     E e;
1074     while (n < maxElements && (e = poll()) != null) {
1075     c.add(e);
1076     ++n;
1077     }
1078     return n;
1079     }
1080    
1081 jsr166 1.35 /**
1082     * Returns an iterator over the elements in this queue in proper
1083     * sequence, from head to tail.
1084     *
1085     * <p>The returned iterator is a "weakly consistent" iterator that
1086     * will never throw
1087     * {@link ConcurrentModificationException ConcurrentModificationException},
1088     * and guarantees to traverse elements as they existed upon
1089     * construction of the iterator, and may (but is not guaranteed
1090     * to) reflect any modifications subsequent to construction.
1091     *
1092     * @return an iterator over the elements in this queue in proper sequence
1093     */
1094 dl 1.1 public Iterator<E> iterator() {
1095     return new Itr();
1096     }
1097    
1098     public E peek() {
1099 dl 1.45 return (E) firstDataItem();
1100 dl 1.1 }
1101    
1102 jsr166 1.41 /**
1103     * Returns {@code true} if this queue contains no elements.
1104     *
1105     * @return {@code true} if this queue contains no elements
1106     */
1107 dl 1.2 public boolean isEmpty() {
1108 dl 1.45 return firstOfMode(true) == null;
1109 dl 1.2 }
1110    
1111 dl 1.1 public boolean hasWaitingConsumer() {
1112 dl 1.45 return firstOfMode(false) != null;
1113 dl 1.1 }
1114 jsr166 1.5
1115 dl 1.1 /**
1116     * Returns the number of elements in this queue. If this queue
1117 jsr166 1.11 * contains more than {@code Integer.MAX_VALUE} elements, returns
1118     * {@code Integer.MAX_VALUE}.
1119 dl 1.1 *
1120     * <p>Beware that, unlike in most collections, this method is
1121     * <em>NOT</em> a constant-time operation. Because of the
1122     * asynchronous nature of these queues, determining the current
1123     * number of elements requires an O(n) traversal.
1124     *
1125     * @return the number of elements in this queue
1126     */
1127     public int size() {
1128 dl 1.45 return countOfMode(true);
1129 dl 1.1 }
1130    
1131     public int getWaitingConsumerCount() {
1132 dl 1.45 return countOfMode(false);
1133 dl 1.1 }
1134    
1135 jsr166 1.42 /**
1136     * Removes a single instance of the specified element from this queue,
1137     * if it is present. More formally, removes an element {@code e} such
1138     * that {@code o.equals(e)}, if this queue contains one or more such
1139     * elements.
1140     * Returns {@code true} if this queue contained the specified element
1141     * (or equivalently, if this queue changed as a result of the call).
1142     *
1143     * @param o element to be removed from this queue, if present
1144     * @return {@code true} if this queue changed as a result of the call
1145     */
1146 dl 1.15 public boolean remove(Object o) {
1147 dl 1.45 return findAndRemove(o);
1148 dl 1.15 }
1149    
1150 jsr166 1.35 /**
1151     * Always returns {@code Integer.MAX_VALUE} because a
1152     * {@code LinkedTransferQueue} is not capacity constrained.
1153     *
1154     * @return {@code Integer.MAX_VALUE} (as specified by
1155     * {@link BlockingQueue#remainingCapacity()})
1156     */
1157 dl 1.33 public int remainingCapacity() {
1158     return Integer.MAX_VALUE;
1159     }
1160    
1161 dl 1.1 /**
1162 jsr166 1.46 * Saves the state to a stream (that is, serializes it).
1163 dl 1.1 *
1164 jsr166 1.11 * @serialData All of the elements (each an {@code E}) in
1165 dl 1.1 * the proper order, followed by a null
1166     * @param s the stream
1167     */
1168     private void writeObject(java.io.ObjectOutputStream s)
1169     throws java.io.IOException {
1170     s.defaultWriteObject();
1171 jsr166 1.16 for (E e : this)
1172     s.writeObject(e);
1173 dl 1.1 // Use trailing null as sentinel
1174     s.writeObject(null);
1175     }
1176    
1177     /**
1178 jsr166 1.46 * Reconstitutes the Queue instance from a stream (that is,
1179     * deserializes it).
1180 jsr166 1.19 *
1181 dl 1.1 * @param s the stream
1182     */
1183     private void readObject(java.io.ObjectInputStream s)
1184     throws java.io.IOException, ClassNotFoundException {
1185     s.defaultReadObject();
1186     for (;;) {
1187 jsr166 1.25 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1188 dl 1.1 if (item == null)
1189     break;
1190     else
1191     offer(item);
1192     }
1193     }
1194 dl 1.7
1195    
1196 jsr166 1.28 // Unsafe mechanics
1197    
1198     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1199     private static final long headOffset =
1200 jsr166 1.31 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1201 jsr166 1.28 private static final long tailOffset =
1202 jsr166 1.31 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1203 jsr166 1.28 private static final long cleanMeOffset =
1204 jsr166 1.31 objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1205    
1206     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1207     String field, Class<?> klazz) {
1208 jsr166 1.28 try {
1209     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1210     } catch (NoSuchFieldException e) {
1211     // Convert Exception to corresponding Error
1212     NoSuchFieldError error = new NoSuchFieldError(field);
1213     error.initCause(e);
1214     throw error;
1215     }
1216     }
1217    
1218 jsr166 1.25 private static sun.misc.Unsafe getUnsafe() {
1219 jsr166 1.13 try {
1220 jsr166 1.25 return sun.misc.Unsafe.getUnsafe();
1221 jsr166 1.13 } catch (SecurityException se) {
1222     try {
1223     return java.security.AccessController.doPrivileged
1224 jsr166 1.28 (new java.security
1225     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1226 jsr166 1.25 public sun.misc.Unsafe run() throws Exception {
1227 jsr166 1.28 java.lang.reflect.Field f = sun.misc
1228     .Unsafe.class.getDeclaredField("theUnsafe");
1229     f.setAccessible(true);
1230     return (sun.misc.Unsafe) f.get(null);
1231 jsr166 1.13 }});
1232     } catch (java.security.PrivilegedActionException e) {
1233 jsr166 1.25 throw new RuntimeException("Could not initialize intrinsics",
1234     e.getCause());
1235 jsr166 1.13 }
1236     }
1237     }
1238 dl 1.45
1239 dl 1.1 }