ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.66
Committed: Mon Nov 2 18:38:37 2009 UTC (14 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.65: +3 -2 lines
Log Message:
coding style

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.26
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.26
11     import java.util.AbstractQueue;
12     import java.util.Collection;
13 jsr166 1.35 import java.util.ConcurrentModificationException;
14 jsr166 1.26 import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.35 import java.util.Queue;
17 jsr166 1.26 import java.util.concurrent.locks.LockSupport;
18 dl 1.1 /**
19 jsr166 1.43 * An unbounded {@link TransferQueue} based on linked nodes.
20 dl 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
21     * to any given producer. The <em>head</em> of the queue is that
22     * element that has been on the queue the longest time for some
23     * producer. The <em>tail</em> of the queue is that element that has
24     * been on the queue the shortest time for some producer.
25     *
26 jsr166 1.11 * <p>Beware that, unlike in most collections, the {@code size}
27 dl 1.1 * method is <em>NOT</em> a constant-time operation. Because of the
28     * asynchronous nature of these queues, determining the current number
29     * of elements requires a traversal of the elements.
30     *
31     * <p>This class and its iterator implement all of the
32     * <em>optional</em> methods of the {@link Collection} and {@link
33     * Iterator} interfaces.
34     *
35     * <p>Memory consistency effects: As with other concurrent
36     * collections, actions in a thread prior to placing an object into a
37     * {@code LinkedTransferQueue}
38     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
39     * actions subsequent to the access or removal of that element from
40     * the {@code LinkedTransferQueue} in another thread.
41     *
42     * <p>This class is a member of the
43     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
44     * Java Collections Framework</a>.
45     *
46 dl 1.3 * @since 1.7
47 dl 1.1 * @author Doug Lea
48     * @param <E> the type of elements held in this collection
49     */
50     public class LinkedTransferQueue<E> extends AbstractQueue<E>
51     implements TransferQueue<E>, java.io.Serializable {
52     private static final long serialVersionUID = -3223113410248163686L;
53    
54     /*
55 dl 1.45 * *** Overview of Dual Queues with Slack ***
56 dl 1.1 *
57 dl 1.45 * Dual Queues, introduced by Scherer and Scott
58     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59     * (linked) queues in which nodes may represent either data or
60     * requests. When a thread tries to enqueue a data node, but
61     * encounters a request node, it instead "matches" and removes it;
62     * and vice versa for enqueuing requests. Blocking Dual Queues
63     * arrange that threads enqueuing unmatched requests block until
64     * other threads provide the match. Dual Synchronous Queues (see
65     * Scherer, Lea, & Scott
66     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67     * additionally arrange that threads enqueuing unmatched data also
68     * block. Dual Transfer Queues support all of these modes, as
69     * dictated by callers.
70     *
71     * A FIFO dual queue may be implemented using a variation of the
72     * Michael & Scott (M&S) lock-free queue algorithm
73     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74     * It maintains two pointer fields, "head", pointing to a
75     * (matched) node that in turn points to the first actual
76     * (unmatched) queue node (or null if empty); and "tail" that
77     * points to the last node on the queue (or again null if
78     * empty). For example, here is a possible queue with four data
79     * elements:
80     *
81     * head tail
82     * | |
83     * v v
84     * M -> U -> U -> U -> U
85     *
86     * The M&S queue algorithm is known to be prone to scalability and
87     * overhead limitations when maintaining (via CAS) these head and
88     * tail pointers. This has led to the development of
89     * contention-reducing variants such as elimination arrays (see
90     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91     * optimistic back pointers (see Ladan-Mozes & Shavit
92     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93     * However, the nature of dual queues enables a simpler tactic for
94     * improving M&S-style implementations when dual-ness is needed.
95     *
96     * In a dual queue, each node must atomically maintain its match
97     * status. While there are other possible variants, we implement
98     * this here as: for a data-mode node, matching entails CASing an
99     * "item" field from a non-null data value to null upon match, and
100     * vice-versa for request nodes, CASing from null to a data
101     * value. (Note that the linearization properties of this style of
102     * queue are easy to verify -- elements are made available by
103     * linking, and unavailable by matching.) Compared to plain M&S
104     * queues, this property of dual queues requires one additional
105     * successful atomic operation per enq/deq pair. But it also
106     * enables lower cost variants of queue maintenance mechanics. (A
107     * variation of this idea applies even for non-dual queues that
108 dl 1.48 * support deletion of interior elements, such as
109 dl 1.45 * j.u.c.ConcurrentLinkedQueue.)
110     *
111 dl 1.48 * Once a node is matched, its match status can never again
112     * change. We may thus arrange that the linked list of them
113     * contain a prefix of zero or more matched nodes, followed by a
114     * suffix of zero or more unmatched nodes. (Note that we allow
115     * both the prefix and suffix to be zero length, which in turn
116     * means that we do not use a dummy header.) If we were not
117     * concerned with either time or space efficiency, we could
118     * correctly perform enqueue and dequeue operations by traversing
119     * from a pointer to the initial node; CASing the item of the
120     * first unmatched node on match and CASing the next field of the
121     * trailing node on appends. (Plus some special-casing when
122     * initially empty). While this would be a terrible idea in
123     * itself, it does have the benefit of not requiring ANY atomic
124     * updates on head/tail fields.
125 dl 1.45 *
126     * We introduce here an approach that lies between the extremes of
127 dl 1.48 * never versus always updating queue (head and tail) pointers.
128     * This offers a tradeoff between sometimes requiring extra
129     * traversal steps to locate the first and/or last unmatched
130     * nodes, versus the reduced overhead and contention of fewer
131     * updates to queue pointers. For example, a possible snapshot of
132     * a queue is:
133 dl 1.45 *
134     * head tail
135     * | |
136     * v v
137     * M -> M -> U -> U -> U -> U
138     *
139     * The best value for this "slack" (the targeted maximum distance
140     * between the value of "head" and the first unmatched node, and
141     * similarly for "tail") is an empirical matter. We have found
142     * that using very small constants in the range of 1-3 work best
143     * over a range of platforms. Larger values introduce increasing
144 dl 1.48 * costs of cache misses and risks of long traversal chains, while
145 jsr166 1.49 * smaller values increase CAS contention and overhead.
146 dl 1.45 *
147     * Dual queues with slack differ from plain M&S dual queues by
148     * virtue of only sometimes updating head or tail pointers when
149     * matching, appending, or even traversing nodes; in order to
150     * maintain a targeted slack. The idea of "sometimes" may be
151     * operationalized in several ways. The simplest is to use a
152     * per-operation counter incremented on each traversal step, and
153     * to try (via CAS) to update the associated queue pointer
154     * whenever the count exceeds a threshold. Another, that requires
155     * more overhead, is to use random number generators to update
156     * with a given probability per traversal step.
157     *
158     * In any strategy along these lines, because CASes updating
159     * fields may fail, the actual slack may exceed targeted
160     * slack. However, they may be retried at any time to maintain
161     * targets. Even when using very small slack values, this
162     * approach works well for dual queues because it allows all
163     * operations up to the point of matching or appending an item
164 dl 1.50 * (hence potentially allowing progress by another thread) to be
165     * read-only, thus not introducing any further contention. As
166     * described below, we implement this by performing slack
167     * maintenance retries only after these points.
168 dl 1.45 *
169     * As an accompaniment to such techniques, traversal overhead can
170     * be further reduced without increasing contention of head
171 dl 1.50 * pointer updates: Threads may sometimes shortcut the "next" link
172     * path from the current "head" node to be closer to the currently
173     * known first unmatched node, and similarly for tail. Again, this
174     * may be triggered with using thresholds or randomization.
175 dl 1.45 *
176     * These ideas must be further extended to avoid unbounded amounts
177     * of costly-to-reclaim garbage caused by the sequential "next"
178     * links of nodes starting at old forgotten head nodes: As first
179     * described in detail by Boehm
180     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181     * delays noticing that any arbitrarily old node has become
182     * garbage, all newer dead nodes will also be unreclaimed.
183     * (Similar issues arise in non-GC environments.) To cope with
184     * this in our implementation, upon CASing to advance the head
185     * pointer, we set the "next" link of the previous head to point
186 jsr166 1.46 * only to itself; thus limiting the length of connected dead lists.
187 dl 1.45 * (We also take similar care to wipe out possibly garbage
188     * retaining values held in other Node fields.) However, doing so
189     * adds some further complexity to traversal: If any "next"
190     * pointer links to itself, it indicates that the current thread
191     * has lagged behind a head-update, and so the traversal must
192     * continue from the "head". Traversals trying to find the
193     * current tail starting from "tail" may also encounter
194     * self-links, in which case they also continue at "head".
195     *
196     * It is tempting in slack-based scheme to not even use CAS for
197     * updates (similarly to Ladan-Mozes & Shavit). However, this
198     * cannot be done for head updates under the above link-forgetting
199     * mechanics because an update may leave head at a detached node.
200     * And while direct writes are possible for tail updates, they
201     * increase the risk of long retraversals, and hence long garbage
202 dl 1.50 * chains, which can be much more costly than is worthwhile
203 dl 1.45 * considering that the cost difference of performing a CAS vs
204     * write is smaller when they are not triggered on each operation
205     * (especially considering that writes and CASes equally require
206     * additional GC bookkeeping ("write barriers") that are sometimes
207     * more costly than the writes themselves because of contention).
208     *
209 dl 1.48 * Removal of interior nodes (due to timed out or interrupted
210 dl 1.50 * waits, or calls to remove(x) or Iterator.remove) can use a
211     * scheme roughly similar to that described in Scherer, Lea, and
212     * Scott's SynchronousQueue. Given a predecessor, we can unsplice
213     * any node except the (actual) tail of the queue. To avoid
214     * build-up of cancelled trailing nodes, upon a request to remove
215     * a trailing node, it is placed in field "cleanMe" to be
216     * unspliced upon the next call to unsplice any other node.
217     * Situations needing such mechanics are not common but do occur
218     * in practice; for example when an unbounded series of short
219     * timed calls to poll repeatedly time out but never otherwise
220     * fall off the list because of an untimed call to take at the
221     * front of the queue. Note that maintaining field cleanMe does
222     * not otherwise much impact garbage retention even if never
223     * cleared by some other call because the held node will
224     * eventually either directly or indirectly lead to a self-link
225     * once off the list.
226 dl 1.45 *
227     * *** Overview of implementation ***
228     *
229 dl 1.50 * We use a threshold-based approach to updates, with a slack
230     * threshold of two -- that is, we update head/tail when the
231     * current pointer appears to be two or more steps away from the
232     * first/last node. The slack value is hard-wired: a path greater
233 dl 1.45 * than one is naturally implemented by checking equality of
234     * traversal pointers except when the list has only one element,
235 dl 1.50 * in which case we keep slack threshold at one. Avoiding tracking
236 dl 1.48 * explicit counts across method calls slightly simplifies an
237 dl 1.45 * already-messy implementation. Using randomization would
238     * probably work better if there were a low-quality dirt-cheap
239     * per-thread one available, but even ThreadLocalRandom is too
240     * heavy for these purposes.
241     *
242 dl 1.50 * With such a small slack threshold value, it is rarely
243     * worthwhile to augment this with path short-circuiting; i.e.,
244     * unsplicing nodes between head and the first unmatched node, or
245     * similarly for tail, rather than advancing head or tail
246     * proper. However, it is used (in awaitMatch) immediately before
247     * a waiting thread starts to block, as a final bit of helping at
248     * a point when contention with others is extremely unlikely
249     * (since if other threads that could release it are operating,
250     * then the current thread wouldn't be blocking).
251 dl 1.48 *
252     * We allow both the head and tail fields to be null before any
253     * nodes are enqueued; initializing upon first append. This
254     * simplifies some other logic, as well as providing more
255     * efficient explicit control paths instead of letting JVMs insert
256     * implicit NullPointerExceptions when they are null. While not
257     * currently fully implemented, we also leave open the possibility
258 jsr166 1.49 * of re-nulling these fields when empty (which is complicated to
259     * arrange, for little benefit.)
260 dl 1.45 *
261     * All enqueue/dequeue operations are handled by the single method
262     * "xfer" with parameters indicating whether to act as some form
263     * of offer, put, poll, take, or transfer (each possibly with
264     * timeout). The relative complexity of using one monolithic
265     * method outweighs the code bulk and maintenance problems of
266 dl 1.50 * using separate methods for each case.
267 dl 1.45 *
268     * Operation consists of up to three phases. The first is
269     * implemented within method xfer, the second in tryAppend, and
270     * the third in method awaitMatch.
271     *
272     * 1. Try to match an existing node
273     *
274     * Starting at head, skip already-matched nodes until finding
275     * an unmatched node of opposite mode, if one exists, in which
276     * case matching it and returning, also if necessary updating
277     * head to one past the matched node (or the node itself if the
278     * list has no other unmatched nodes). If the CAS misses, then
279 dl 1.48 * a loop retries advancing head by two steps until either
280     * success or the slack is at most two. By requiring that each
281     * attempt advances head by two (if applicable), we ensure that
282     * the slack does not grow without bound. Traversals also check
283     * if the initial head is now off-list, in which case they
284     * start at the new head.
285 dl 1.45 *
286     * If no candidates are found and the call was untimed
287     * poll/offer, (argument "how" is NOW) return.
288     *
289     * 2. Try to append a new node (method tryAppend)
290     *
291 dl 1.50 * Starting at current tail pointer, find the actual last node
292     * and try to append a new node (or if head was null, establish
293     * the first node). Nodes can be appended only if their
294     * predecessors are either already matched or are of the same
295     * mode. If we detect otherwise, then a new node with opposite
296     * mode must have been appended during traversal, so we must
297     * restart at phase 1. The traversal and update steps are
298     * otherwise similar to phase 1: Retrying upon CAS misses and
299     * checking for staleness. In particular, if a self-link is
300     * encountered, then we can safely jump to a node on the list
301     * by continuing the traversal at current head.
302 dl 1.45 *
303 jsr166 1.46 * On successful append, if the call was ASYNC, return.
304 dl 1.45 *
305     * 3. Await match or cancellation (method awaitMatch)
306     *
307     * Wait for another thread to match node; instead cancelling if
308 dl 1.50 * the current thread was interrupted or the wait timed out. On
309 dl 1.45 * multiprocessors, we use front-of-queue spinning: If a node
310     * appears to be the first unmatched node in the queue, it
311     * spins a bit before blocking. In either case, before blocking
312     * it tries to unsplice any nodes between the current "head"
313     * and the first unmatched node.
314     *
315     * Front-of-queue spinning vastly improves performance of
316     * heavily contended queues. And so long as it is relatively
317     * brief and "quiet", spinning does not much impact performance
318     * of less-contended queues. During spins threads check their
319     * interrupt status and generate a thread-local random number
320     * to decide to occasionally perform a Thread.yield. While
321     * yield has underdefined specs, we assume that might it help,
322     * and will not hurt in limiting impact of spinning on busy
323 dl 1.50 * systems. We also use smaller (1/2) spins for nodes that are
324     * not known to be front but whose predecessors have not
325     * blocked -- these "chained" spins avoid artifacts of
326 dl 1.45 * front-of-queue rules which otherwise lead to alternating
327     * nodes spinning vs blocking. Further, front threads that
328     * represent phase changes (from data to request node or vice
329     * versa) compared to their predecessors receive additional
330 dl 1.50 * chained spins, reflecting longer paths typically required to
331     * unblock threads during phase changes.
332 dl 1.45 */
333    
334     /** True if on multiprocessor */
335     private static final boolean MP =
336     Runtime.getRuntime().availableProcessors() > 1;
337    
338     /**
339 dl 1.50 * The number of times to spin (with randomly interspersed calls
340     * to Thread.yield) on multiprocessor before blocking when a node
341     * is apparently the first waiter in the queue. See above for
342     * explanation. Must be a power of two. The value is empirically
343     * derived -- it works pretty well across a variety of processors,
344     * numbers of CPUs, and OSes.
345 dl 1.45 */
346     private static final int FRONT_SPINS = 1 << 7;
347    
348     /**
349     * The number of times to spin before blocking when a node is
350 dl 1.50 * preceded by another node that is apparently spinning. Also
351     * serves as an increment to FRONT_SPINS on phase changes, and as
352     * base average frequency for yielding during spins. Must be a
353     * power of two.
354 dl 1.45 */
355 dl 1.50 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
356 dl 1.45
357     /**
358 jsr166 1.46 * Queue nodes. Uses Object, not E, for items to allow forgetting
359 dl 1.45 * them after use. Relies heavily on Unsafe mechanics to minimize
360 jsr166 1.46 * unnecessary ordering constraints: Writes that intrinsically
361 dl 1.45 * precede or follow CASes use simple relaxed forms. Other
362     * cleanups use releasing/lazy writes.
363     */
364 jsr166 1.61 static final class Node {
365 dl 1.45 final boolean isData; // false if this is a request node
366 jsr166 1.46 volatile Object item; // initially non-null if isData; CASed to match
367 jsr166 1.61 volatile Node next;
368 dl 1.45 volatile Thread waiter; // null until waiting
369 dl 1.1
370 dl 1.45 // CAS methods for fields
371 jsr166 1.61 final boolean casNext(Node cmp, Node val) {
372 dl 1.45 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
373     }
374 dl 1.1
375 dl 1.45 final boolean casItem(Object cmp, Object val) {
376 jsr166 1.55 assert cmp == null || cmp.getClass() != Node.class;
377 dl 1.45 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
378     }
379 dl 1.1
380 dl 1.45 /**
381 jsr166 1.46 * Creates a new node. Uses relaxed write because item can only
382     * be seen if followed by CAS.
383 dl 1.45 */
384 jsr166 1.61 Node(Object item, boolean isData) {
385 dl 1.45 UNSAFE.putObject(this, itemOffset, item); // relaxed write
386 dl 1.1 this.isData = isData;
387     }
388    
389 dl 1.45 /**
390     * Links node to itself to avoid garbage retention. Called
391     * only after CASing head field, so uses relaxed write.
392     */
393     final void forgetNext() {
394     UNSAFE.putObject(this, nextOffset, this);
395     }
396 jsr166 1.32
397 dl 1.45 /**
398     * Sets item to self (using a releasing/lazy write) and waiter
399     * to null, to avoid garbage retention after extracting or
400     * cancelling.
401     */
402     final void forgetContents() {
403     UNSAFE.putOrderedObject(this, itemOffset, this);
404     UNSAFE.putOrderedObject(this, waiterOffset, null);
405     }
406 jsr166 1.32
407 dl 1.45 /**
408     * Returns true if this node has been matched, including the
409     * case of artificial matches due to cancellation.
410     */
411     final boolean isMatched() {
412     Object x = item;
413 jsr166 1.57 return (x == this) || ((x == null) == isData);
414 dl 1.1 }
415 dl 1.15
416 dl 1.45 /**
417 jsr166 1.58 * Returns true if this is an unmatched request node.
418     */
419     final boolean isUnmatchedRequest() {
420     return !isData && item == null;
421     }
422    
423     /**
424 dl 1.45 * Returns true if a node with the given mode cannot be
425     * appended to this node because this node is unmatched and
426     * has opposite data mode.
427     */
428     final boolean cannotPrecede(boolean haveData) {
429     boolean d = isData;
430     Object x;
431     return d != haveData && (x = item) != this && (x != null) == d;
432 jsr166 1.31 }
433    
434     /**
435 jsr166 1.46 * Tries to artificially match a data node -- used by remove.
436 jsr166 1.31 */
437 dl 1.45 final boolean tryMatchData() {
438 jsr166 1.58 assert isData;
439 dl 1.45 Object x = item;
440     if (x != null && x != this && casItem(x, null)) {
441     LockSupport.unpark(waiter);
442     return true;
443 jsr166 1.31 }
444 dl 1.45 return false;
445 dl 1.15 }
446    
447 dl 1.45 // Unsafe mechanics
448     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
449     private static final long nextOffset =
450     objectFieldOffset(UNSAFE, "next", Node.class);
451     private static final long itemOffset =
452     objectFieldOffset(UNSAFE, "item", Node.class);
453     private static final long waiterOffset =
454     objectFieldOffset(UNSAFE, "waiter", Node.class);
455    
456 jsr166 1.24 private static final long serialVersionUID = -3375979862319811754L;
457 dl 1.1 }
458    
459 dl 1.45 /** head of the queue; null until first enqueue */
460 jsr166 1.61 transient volatile Node head;
461 dl 1.45
462     /** predecessor of dangling unspliceable node */
463 jsr166 1.61 private transient volatile Node cleanMe; // decl here reduces contention
464 dl 1.1
465 dl 1.45 /** tail of the queue; null until first append */
466 jsr166 1.61 private transient volatile Node tail;
467 dl 1.1
468 dl 1.45 // CAS methods for fields
469 jsr166 1.61 private boolean casTail(Node cmp, Node val) {
470 dl 1.45 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
471     }
472 jsr166 1.23
473 jsr166 1.61 private boolean casHead(Node cmp, Node val) {
474 dl 1.45 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
475     }
476 dl 1.1
477 jsr166 1.61 private boolean casCleanMe(Node cmp, Node val) {
478 dl 1.45 return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
479     }
480 dl 1.1
481 dl 1.45 /*
482 jsr166 1.64 * Possible values for "how" argument in xfer method.
483 dl 1.1 */
484 jsr166 1.65 private static final int NOW = 0; // for untimed poll, tryTransfer
485     private static final int ASYNC = 1; // for offer, put, add
486     private static final int SYNC = 2; // for transfer, take
487     private static final int TIMED = 3; // for timed poll, tryTransfer
488 jsr166 1.5
489 jsr166 1.56 @SuppressWarnings("unchecked")
490     static <E> E cast(Object item) {
491     assert item == null || item.getClass() != Node.class;
492     return (E) item;
493     }
494    
495 dl 1.1 /**
496 dl 1.45 * Implements all queuing methods. See above for explanation.
497 jsr166 1.17 *
498 dl 1.45 * @param e the item or null for take
499 jsr166 1.46 * @param haveData true if this is a put, else a take
500 jsr166 1.65 * @param how NOW, ASYNC, SYNC, or TIMED
501     * @param nanos timeout in nanosecs, used only if mode is TIMED
502 jsr166 1.46 * @return an item if matched, else e
503 dl 1.45 * @throws NullPointerException if haveData mode but e is null
504 dl 1.1 */
505 jsr166 1.54 private E xfer(E e, boolean haveData, int how, long nanos) {
506 dl 1.45 if (haveData && (e == null))
507     throw new NullPointerException();
508 jsr166 1.61 Node s = null; // the node to append, if needed
509 dl 1.1
510 dl 1.45 retry: for (;;) { // restart on append race
511 dl 1.1
512 jsr166 1.61 for (Node h = head, p = h; p != null;) { // find & match first node
513 dl 1.45 boolean isData = p.isData;
514     Object item = p.item;
515     if (item != p && (item != null) == isData) { // unmatched
516     if (isData == haveData) // can't match
517     break;
518     if (p.casItem(item, e)) { // match
519 jsr166 1.61 for (Node q = p; q != h;) {
520     Node n = q.next; // update head by 2
521 dl 1.52 if (n != null) // unless singleton
522     q = n;
523     if (head == h && casHead(h, q)) {
524 dl 1.45 h.forgetNext();
525     break;
526     } // advance and retry
527     if ((h = head) == null ||
528 dl 1.52 (q = h.next) == null || !q.isMatched())
529 dl 1.45 break; // unless slack < 2
530     }
531 dl 1.52 LockSupport.unpark(p.waiter);
532 jsr166 1.54 return this.<E>cast(item);
533 dl 1.1 }
534     }
535 jsr166 1.61 Node n = p.next;
536 jsr166 1.47 p = (p != n) ? n : (h = head); // Use head if p offlist
537 dl 1.45 }
538    
539 jsr166 1.64 if (how != NOW) { // No matches available
540 dl 1.45 if (s == null)
541 jsr166 1.61 s = new Node(e, haveData);
542     Node pred = tryAppend(s, haveData);
543 dl 1.45 if (pred == null)
544     continue retry; // lost race vs opposite mode
545 jsr166 1.64 if (how != ASYNC)
546 jsr166 1.65 return awaitMatch(s, pred, e, (how == TIMED), nanos);
547 dl 1.1 }
548 dl 1.45 return e; // not waiting
549 dl 1.1 }
550     }
551    
552     /**
553 jsr166 1.46 * Tries to append node s as tail.
554     *
555 dl 1.48 * @param s the node to append
556 dl 1.45 * @param haveData true if appending in data mode
557     * @return null on failure due to losing race with append in
558     * different mode, else s's predecessor, or s itself if no
559     * predecessor
560 dl 1.1 */
561 jsr166 1.61 private Node tryAppend(Node s, boolean haveData) {
562     for (Node t = tail, p = t;;) { // move p to last node and append
563     Node n, u; // temps for reads of next & tail
564 dl 1.45 if (p == null && (p = head) == null) {
565     if (casHead(null, s))
566     return s; // initialize
567     }
568     else if (p.cannotPrecede(haveData))
569     return null; // lost race vs opposite mode
570 dl 1.48 else if ((n = p.next) != null) // not last; keep traversing
571 dl 1.45 p = p != t && t != (u = tail) ? (t = u) : // stale tail
572 jsr166 1.47 (p != n) ? n : null; // restart if off list
573 dl 1.45 else if (!p.casNext(null, s))
574     p = p.next; // re-read on CAS failure
575     else {
576 dl 1.48 if (p != t) { // update if slack now >= 2
577 dl 1.45 while ((tail != t || !casTail(t, s)) &&
578     (t = tail) != null &&
579     (s = t.next) != null && // advance and retry
580     (s = s.next) != null && s != t);
581 dl 1.1 }
582 dl 1.45 return p;
583 dl 1.1 }
584     }
585     }
586    
587     /**
588 dl 1.45 * Spins/yields/blocks until node s is matched or caller gives up.
589 dl 1.1 *
590     * @param s the waiting node
591 dl 1.50 * @param pred the predecessor of s, or s itself if it has no
592     * predecessor, or null if unknown (the null case does not occur
593     * in any current calls but may in possible future extensions)
594 dl 1.1 * @param e the comparison value for checking match
595 jsr166 1.64 * @param timed if true, wait only until timeout elapses
596 jsr166 1.65 * @param nanos timeout in nanosecs, used only if timed is true
597 dl 1.45 * @return matched item, or e if unmatched on interrupt or timeout
598 dl 1.1 */
599 jsr166 1.64 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
600     long lastTime = timed ? System.nanoTime() : 0L;
601 dl 1.45 Thread w = Thread.currentThread();
602     int spins = -1; // initialized after first item and cancel checks
603     ThreadLocalRandom randomYields = null; // bound if needed
604 dl 1.1
605     for (;;) {
606 dl 1.45 Object item = s.item;
607     if (item != e) { // matched
608 jsr166 1.54 assert item != s;
609 dl 1.45 s.forgetContents(); // avoid garbage
610 jsr166 1.54 return this.<E>cast(item);
611 dl 1.45 }
612 jsr166 1.64 if ((w.isInterrupted() || (timed && nanos <= 0)) &&
613 jsr166 1.54 s.casItem(e, s)) { // cancel
614 dl 1.45 unsplice(pred, s);
615     return e;
616     }
617    
618     if (spins < 0) { // establish spins at/near front
619     if ((spins = spinsFor(pred, s.isData)) > 0)
620     randomYields = ThreadLocalRandom.current();
621     }
622 dl 1.50 else if (spins > 0) { // spin
623     if (--spins == 0)
624     shortenHeadPath(); // reduce slack before blocking
625     else if (randomYields.nextInt(CHAINED_SPINS) == 0)
626     Thread.yield(); // occasionally yield
627 dl 1.45 }
628     else if (s.waiter == null) {
629 dl 1.51 s.waiter = w; // request unpark then recheck
630 dl 1.1 }
631 jsr166 1.64 else if (timed) {
632 dl 1.1 long now = System.nanoTime();
633 dl 1.45 if ((nanos -= now - lastTime) > 0)
634     LockSupport.parkNanos(this, nanos);
635 dl 1.1 lastTime = now;
636     }
637 dl 1.45 else {
638 dl 1.12 LockSupport.park(this);
639 dl 1.51 s.waiter = null;
640 dl 1.45 spins = -1; // spin if front upon wakeup
641 dl 1.1 }
642 dl 1.45 }
643     }
644    
645     /**
646 jsr166 1.46 * Returns spin/yield value for a node with given predecessor and
647 dl 1.45 * data mode. See above for explanation.
648     */
649 jsr166 1.61 private static int spinsFor(Node pred, boolean haveData) {
650 dl 1.45 if (MP && pred != null) {
651 dl 1.50 if (pred.isData != haveData) // phase change
652     return FRONT_SPINS + CHAINED_SPINS;
653     if (pred.isMatched()) // probably at front
654 dl 1.45 return FRONT_SPINS;
655     if (pred.waiter == null) // pred apparently spinning
656     return CHAINED_SPINS;
657     }
658     return 0;
659     }
660    
661     /**
662     * Tries (once) to unsplice nodes between head and first unmatched
663     * or trailing node; failing on contention.
664     */
665     private void shortenHeadPath() {
666 jsr166 1.61 Node h, hn, p, q;
667 dl 1.45 if ((p = h = head) != null && h.isMatched() &&
668     (q = hn = h.next) != null) {
669 jsr166 1.61 Node n;
670 dl 1.45 while ((n = q.next) != q) {
671     if (n == null || !q.isMatched()) {
672     if (hn != q && h.next == hn)
673     h.casNext(hn, q);
674     break;
675     }
676     p = q;
677     q = n;
678 dl 1.1 }
679     }
680     }
681    
682 dl 1.45 /* -------------- Traversal methods -------------- */
683    
684 dl 1.1 /**
685 jsr166 1.62 * Returns the successor of p, or the head node if p.next has been
686     * linked to self, which will only be true if traversing with a
687     * stale pointer that is now off the list.
688     */
689     final Node succ(Node p) {
690     Node next = p.next;
691     return (p == next) ? head : next;
692     }
693    
694     /**
695 jsr166 1.46 * Returns the first unmatched node of the given mode, or null if
696 dl 1.45 * none. Used by methods isEmpty, hasWaitingConsumer.
697 dl 1.9 */
698 jsr166 1.62 private Node firstOfMode(boolean isData) {
699     for (Node p = head; p != null; p = succ(p)) {
700 dl 1.45 if (!p.isMatched())
701 jsr166 1.62 return (p.isData == isData) ? p : null;
702 dl 1.45 }
703     return null;
704     }
705    
706     /**
707     * Returns the item in the first unmatched node with isData; or
708 jsr166 1.54 * null if none. Used by peek.
709 dl 1.45 */
710 jsr166 1.54 private E firstDataItem() {
711 jsr166 1.62 for (Node p = head; p != null; p = succ(p)) {
712 dl 1.45 Object item = p.item;
713 jsr166 1.62 if (p.isData) {
714     if (item != null && item != p)
715     return this.<E>cast(item);
716     }
717     else if (item == null)
718     return null;
719 dl 1.45 }
720     return null;
721     }
722    
723     /**
724 jsr166 1.46 * Traverses and counts unmatched nodes of the given mode.
725     * Used by methods size and getWaitingConsumerCount.
726 dl 1.45 */
727     private int countOfMode(boolean data) {
728     int count = 0;
729 jsr166 1.61 for (Node p = head; p != null; ) {
730 dl 1.45 if (!p.isMatched()) {
731     if (p.isData != data)
732     return 0;
733     if (++count == Integer.MAX_VALUE) // saturated
734     break;
735 dl 1.9 }
736 jsr166 1.61 Node n = p.next;
737 dl 1.45 if (n != p)
738     p = n;
739     else {
740     count = 0;
741     p = head;
742 dl 1.9 }
743     }
744 dl 1.45 return count;
745 jsr166 1.10 }
746 dl 1.9
747 dl 1.45 final class Itr implements Iterator<E> {
748 jsr166 1.61 private Node nextNode; // next node to return item for
749     private E nextItem; // the corresponding item
750     private Node lastRet; // last returned node, to support remove
751     private Node lastPred; // predecessor to unlink lastRet
752 dl 1.45
753     /**
754     * Moves to next node after prev, or first node if prev null.
755     */
756 jsr166 1.61 private void advance(Node prev) {
757 dl 1.60 lastPred = lastRet;
758 dl 1.45 lastRet = prev;
759 jsr166 1.62 for (Node p = (prev == null) ? head : succ(prev);
760     p != null; p = succ(p)) {
761 dl 1.45 Object item = p.item;
762     if (p.isData) {
763     if (item != null && item != p) {
764 jsr166 1.54 nextItem = LinkedTransferQueue.this.<E>cast(item);
765 dl 1.45 nextNode = p;
766     return;
767     }
768     }
769     else if (item == null)
770     break;
771     }
772     nextNode = null;
773     }
774    
775     Itr() {
776     advance(null);
777     }
778    
779     public final boolean hasNext() {
780     return nextNode != null;
781     }
782    
783     public final E next() {
784 jsr166 1.61 Node p = nextNode;
785 dl 1.45 if (p == null) throw new NoSuchElementException();
786 jsr166 1.54 E e = nextItem;
787 dl 1.45 advance(p);
788 jsr166 1.54 return e;
789 dl 1.45 }
790    
791     public final void remove() {
792 jsr166 1.61 Node p = lastRet;
793 dl 1.45 if (p == null) throw new IllegalStateException();
794 dl 1.60 findAndRemoveDataNode(lastPred, p);
795 dl 1.45 }
796     }
797    
798     /* -------------- Removal methods -------------- */
799    
800 dl 1.9 /**
801 dl 1.45 * Unsplices (now or later) the given deleted/cancelled node with
802     * the given predecessor.
803 jsr166 1.17 *
804 dl 1.45 * @param pred predecessor of node to be unspliced
805     * @param s the node to be unspliced
806 dl 1.1 */
807 jsr166 1.61 private void unsplice(Node pred, Node s) {
808 dl 1.45 s.forgetContents(); // clear unneeded fields
809 dl 1.9 /*
810     * At any given time, exactly one node on list cannot be
811 dl 1.48 * unlinked -- the last inserted node. To accommodate this, if
812     * we cannot unlink s, we save its predecessor as "cleanMe",
813 dl 1.45 * processing the previously saved version first. Because only
814     * one node in the list can have a null next, at least one of
815     * node s or the node previously saved can always be
816 dl 1.9 * processed, so this always terminates.
817     */
818 dl 1.45 if (pred != null && pred != s) {
819     while (pred.next == s) {
820 jsr166 1.61 Node oldpred = (cleanMe == null) ? null : reclean();
821     Node n = s.next;
822 dl 1.45 if (n != null) {
823     if (n != s)
824     pred.casNext(s, n);
825 dl 1.9 break;
826 dl 1.45 }
827     if (oldpred == pred || // Already saved
828 jsr166 1.59 ((oldpred == null || oldpred.next == s) &&
829     casCleanMe(oldpred, pred))) {
830     break;
831     }
832 dl 1.9 }
833     }
834     }
835 jsr166 1.5
836 dl 1.9 /**
837 dl 1.45 * Tries to unsplice the deleted/cancelled node held in cleanMe
838     * that was previously uncleanable because it was at tail.
839 jsr166 1.17 *
840 dl 1.9 * @return current cleanMe node (or null)
841     */
842 jsr166 1.61 private Node reclean() {
843 jsr166 1.10 /*
844 dl 1.45 * cleanMe is, or at one time was, predecessor of a cancelled
845     * node s that was the tail so could not be unspliced. If it
846 dl 1.9 * is no longer the tail, try to unsplice if necessary and
847     * make cleanMe slot available. This differs from similar
848 dl 1.45 * code in unsplice() because we must check that pred still
849     * points to a matched node that can be unspliced -- if not,
850     * we can (must) clear cleanMe without unsplicing. This can
851     * loop only due to contention.
852 dl 1.9 */
853 jsr166 1.61 Node pred;
854 dl 1.45 while ((pred = cleanMe) != null) {
855 jsr166 1.61 Node s = pred.next;
856     Node n;
857 dl 1.45 if (s == null || s == pred || !s.isMatched())
858     casCleanMe(pred, null); // already gone
859     else if ((n = s.next) != null) {
860     if (n != s)
861     pred.casNext(s, n);
862     casCleanMe(pred, null);
863 dl 1.1 }
864 dl 1.45 else
865 dl 1.9 break;
866 dl 1.1 }
867 dl 1.9 return pred;
868 dl 1.1 }
869 jsr166 1.5
870 dl 1.1 /**
871 jsr166 1.66 * Main implementation of Iterator.remove(). Finds
872     * and unsplices the given data node.
873     *
874 dl 1.60 * @param possiblePred possible predecessor of s
875     * @param s the node to remove
876 dl 1.45 */
877 jsr166 1.61 final void findAndRemoveDataNode(Node possiblePred, Node s) {
878 jsr166 1.58 assert s.isData;
879 dl 1.45 if (s.tryMatchData()) {
880 dl 1.60 if (possiblePred != null && possiblePred.next == s)
881     unsplice(possiblePred, s); // was actual predecessor
882     else {
883 jsr166 1.61 for (Node pred = null, p = head; p != null; ) {
884 dl 1.60 if (p == s) {
885     unsplice(pred, p);
886     break;
887     }
888     if (p.isUnmatchedRequest())
889     break;
890     pred = p;
891     if ((p = p.next) == pred) { // stale
892     pred = null;
893     p = head;
894     }
895 dl 1.45 }
896     }
897     }
898     }
899    
900     /**
901     * Main implementation of remove(Object)
902     */
903     private boolean findAndRemove(Object e) {
904     if (e != null) {
905 jsr166 1.61 for (Node pred = null, p = head; p != null; ) {
906 dl 1.45 Object item = p.item;
907     if (p.isData) {
908     if (item != null && item != p && e.equals(item) &&
909     p.tryMatchData()) {
910     unsplice(pred, p);
911     return true;
912     }
913     }
914     else if (item == null)
915     break;
916     pred = p;
917 jsr166 1.58 if ((p = p.next) == pred) { // stale
918 dl 1.45 pred = null;
919     p = head;
920     }
921     }
922     }
923     return false;
924     }
925    
926    
927     /**
928 jsr166 1.11 * Creates an initially empty {@code LinkedTransferQueue}.
929 dl 1.1 */
930     public LinkedTransferQueue() {
931     }
932    
933     /**
934 jsr166 1.11 * Creates a {@code LinkedTransferQueue}
935 dl 1.1 * initially containing the elements of the given collection,
936     * added in traversal order of the collection's iterator.
937 jsr166 1.17 *
938 dl 1.1 * @param c the collection of elements to initially contain
939     * @throws NullPointerException if the specified collection or any
940     * of its elements are null
941     */
942     public LinkedTransferQueue(Collection<? extends E> c) {
943 dl 1.7 this();
944 dl 1.1 addAll(c);
945     }
946    
947 jsr166 1.29 /**
948 jsr166 1.35 * Inserts the specified element at the tail of this queue.
949     * As the queue is unbounded, this method will never block.
950     *
951     * @throws NullPointerException if the specified element is null
952 jsr166 1.29 */
953 jsr166 1.35 public void put(E e) {
954 dl 1.45 xfer(e, true, ASYNC, 0);
955 dl 1.1 }
956    
957 jsr166 1.29 /**
958 jsr166 1.35 * Inserts the specified element at the tail of this queue.
959     * As the queue is unbounded, this method will never block or
960     * return {@code false}.
961     *
962     * @return {@code true} (as specified by
963     * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
964     * @throws NullPointerException if the specified element is null
965 jsr166 1.29 */
966 jsr166 1.35 public boolean offer(E e, long timeout, TimeUnit unit) {
967 dl 1.45 xfer(e, true, ASYNC, 0);
968     return true;
969 dl 1.1 }
970    
971 jsr166 1.29 /**
972 jsr166 1.35 * Inserts the specified element at the tail of this queue.
973     * As the queue is unbounded, this method will never return {@code false}.
974     *
975     * @return {@code true} (as specified by
976     * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
977     * @throws NullPointerException if the specified element is null
978 jsr166 1.29 */
979 dl 1.1 public boolean offer(E e) {
980 dl 1.45 xfer(e, true, ASYNC, 0);
981 dl 1.1 return true;
982     }
983    
984 jsr166 1.29 /**
985 jsr166 1.35 * Inserts the specified element at the tail of this queue.
986 jsr166 1.37 * As the queue is unbounded, this method will never throw
987 jsr166 1.35 * {@link IllegalStateException} or return {@code false}.
988     *
989     * @return {@code true} (as specified by {@link Collection#add})
990     * @throws NullPointerException if the specified element is null
991 jsr166 1.29 */
992 dl 1.15 public boolean add(E e) {
993 dl 1.45 xfer(e, true, ASYNC, 0);
994     return true;
995 jsr166 1.35 }
996    
997     /**
998 jsr166 1.40 * Transfers the element to a waiting consumer immediately, if possible.
999     *
1000     * <p>More precisely, transfers the specified element immediately
1001     * if there exists a consumer already waiting to receive it (in
1002     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1003     * otherwise returning {@code false} without enqueuing the element.
1004 jsr166 1.35 *
1005     * @throws NullPointerException if the specified element is null
1006     */
1007     public boolean tryTransfer(E e) {
1008 dl 1.45 return xfer(e, true, NOW, 0) == null;
1009 dl 1.15 }
1010    
1011 jsr166 1.29 /**
1012 jsr166 1.40 * Transfers the element to a consumer, waiting if necessary to do so.
1013     *
1014     * <p>More precisely, transfers the specified element immediately
1015     * if there exists a consumer already waiting to receive it (in
1016     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1017     * else inserts the specified element at the tail of this queue
1018     * and waits until the element is received by a consumer.
1019 jsr166 1.35 *
1020     * @throws NullPointerException if the specified element is null
1021 jsr166 1.29 */
1022 dl 1.1 public void transfer(E e) throws InterruptedException {
1023 dl 1.45 if (xfer(e, true, SYNC, 0) != null) {
1024     Thread.interrupted(); // failure possible only due to interrupt
1025 dl 1.1 throw new InterruptedException();
1026 jsr166 1.6 }
1027 dl 1.1 }
1028    
1029 jsr166 1.29 /**
1030 jsr166 1.40 * Transfers the element to a consumer if it is possible to do so
1031     * before the timeout elapses.
1032     *
1033     * <p>More precisely, transfers the specified element immediately
1034     * if there exists a consumer already waiting to receive it (in
1035     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1036     * else inserts the specified element at the tail of this queue
1037     * and waits until the element is received by a consumer,
1038     * returning {@code false} if the specified wait time elapses
1039     * before the element can be transferred.
1040 jsr166 1.35 *
1041     * @throws NullPointerException if the specified element is null
1042 jsr166 1.29 */
1043 dl 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1044     throws InterruptedException {
1045 jsr166 1.65 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1046 dl 1.1 return true;
1047     if (!Thread.interrupted())
1048     return false;
1049     throw new InterruptedException();
1050     }
1051    
1052     public E take() throws InterruptedException {
1053 jsr166 1.54 E e = xfer(null, false, SYNC, 0);
1054 dl 1.1 if (e != null)
1055 jsr166 1.54 return e;
1056 jsr166 1.6 Thread.interrupted();
1057 dl 1.1 throw new InterruptedException();
1058     }
1059    
1060     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1061 jsr166 1.65 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1062 dl 1.1 if (e != null || !Thread.interrupted())
1063 jsr166 1.54 return e;
1064 dl 1.1 throw new InterruptedException();
1065     }
1066    
1067     public E poll() {
1068 jsr166 1.54 return xfer(null, false, NOW, 0);
1069 dl 1.1 }
1070    
1071 jsr166 1.29 /**
1072 jsr166 1.30 * @throws NullPointerException {@inheritDoc}
1073     * @throws IllegalArgumentException {@inheritDoc}
1074 jsr166 1.29 */
1075 dl 1.1 public int drainTo(Collection<? super E> c) {
1076     if (c == null)
1077     throw new NullPointerException();
1078     if (c == this)
1079     throw new IllegalArgumentException();
1080     int n = 0;
1081     E e;
1082     while ( (e = poll()) != null) {
1083     c.add(e);
1084     ++n;
1085     }
1086     return n;
1087     }
1088    
1089 jsr166 1.29 /**
1090 jsr166 1.30 * @throws NullPointerException {@inheritDoc}
1091     * @throws IllegalArgumentException {@inheritDoc}
1092 jsr166 1.29 */
1093 dl 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1094     if (c == null)
1095     throw new NullPointerException();
1096     if (c == this)
1097     throw new IllegalArgumentException();
1098     int n = 0;
1099     E e;
1100     while (n < maxElements && (e = poll()) != null) {
1101     c.add(e);
1102     ++n;
1103     }
1104     return n;
1105     }
1106    
1107 jsr166 1.35 /**
1108     * Returns an iterator over the elements in this queue in proper
1109     * sequence, from head to tail.
1110     *
1111     * <p>The returned iterator is a "weakly consistent" iterator that
1112     * will never throw
1113     * {@link ConcurrentModificationException ConcurrentModificationException},
1114     * and guarantees to traverse elements as they existed upon
1115     * construction of the iterator, and may (but is not guaranteed
1116     * to) reflect any modifications subsequent to construction.
1117     *
1118     * @return an iterator over the elements in this queue in proper sequence
1119     */
1120 dl 1.1 public Iterator<E> iterator() {
1121     return new Itr();
1122     }
1123    
1124     public E peek() {
1125 jsr166 1.54 return firstDataItem();
1126 dl 1.1 }
1127    
1128 jsr166 1.41 /**
1129     * Returns {@code true} if this queue contains no elements.
1130     *
1131     * @return {@code true} if this queue contains no elements
1132     */
1133 dl 1.2 public boolean isEmpty() {
1134 dl 1.45 return firstOfMode(true) == null;
1135 dl 1.2 }
1136    
1137 dl 1.1 public boolean hasWaitingConsumer() {
1138 dl 1.45 return firstOfMode(false) != null;
1139 dl 1.1 }
1140 jsr166 1.5
1141 dl 1.1 /**
1142     * Returns the number of elements in this queue. If this queue
1143 jsr166 1.11 * contains more than {@code Integer.MAX_VALUE} elements, returns
1144     * {@code Integer.MAX_VALUE}.
1145 dl 1.1 *
1146     * <p>Beware that, unlike in most collections, this method is
1147     * <em>NOT</em> a constant-time operation. Because of the
1148     * asynchronous nature of these queues, determining the current
1149     * number of elements requires an O(n) traversal.
1150     *
1151     * @return the number of elements in this queue
1152     */
1153     public int size() {
1154 dl 1.45 return countOfMode(true);
1155 dl 1.1 }
1156    
1157     public int getWaitingConsumerCount() {
1158 dl 1.45 return countOfMode(false);
1159 dl 1.1 }
1160    
1161 jsr166 1.42 /**
1162     * Removes a single instance of the specified element from this queue,
1163     * if it is present. More formally, removes an element {@code e} such
1164     * that {@code o.equals(e)}, if this queue contains one or more such
1165     * elements.
1166     * Returns {@code true} if this queue contained the specified element
1167     * (or equivalently, if this queue changed as a result of the call).
1168     *
1169     * @param o element to be removed from this queue, if present
1170     * @return {@code true} if this queue changed as a result of the call
1171     */
1172 dl 1.15 public boolean remove(Object o) {
1173 dl 1.45 return findAndRemove(o);
1174 dl 1.15 }
1175    
1176 jsr166 1.35 /**
1177     * Always returns {@code Integer.MAX_VALUE} because a
1178     * {@code LinkedTransferQueue} is not capacity constrained.
1179     *
1180     * @return {@code Integer.MAX_VALUE} (as specified by
1181     * {@link BlockingQueue#remainingCapacity()})
1182     */
1183 dl 1.33 public int remainingCapacity() {
1184     return Integer.MAX_VALUE;
1185     }
1186    
1187 dl 1.1 /**
1188 jsr166 1.46 * Saves the state to a stream (that is, serializes it).
1189 dl 1.1 *
1190 jsr166 1.11 * @serialData All of the elements (each an {@code E}) in
1191 dl 1.1 * the proper order, followed by a null
1192     * @param s the stream
1193     */
1194     private void writeObject(java.io.ObjectOutputStream s)
1195     throws java.io.IOException {
1196     s.defaultWriteObject();
1197 jsr166 1.16 for (E e : this)
1198     s.writeObject(e);
1199 dl 1.1 // Use trailing null as sentinel
1200     s.writeObject(null);
1201     }
1202    
1203     /**
1204 jsr166 1.46 * Reconstitutes the Queue instance from a stream (that is,
1205     * deserializes it).
1206 jsr166 1.19 *
1207 dl 1.1 * @param s the stream
1208     */
1209     private void readObject(java.io.ObjectInputStream s)
1210     throws java.io.IOException, ClassNotFoundException {
1211     s.defaultReadObject();
1212     for (;;) {
1213 jsr166 1.25 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1214 dl 1.1 if (item == null)
1215     break;
1216     else
1217     offer(item);
1218     }
1219     }
1220 dl 1.7
1221 jsr166 1.28 // Unsafe mechanics
1222    
1223     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1224     private static final long headOffset =
1225 jsr166 1.31 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1226 jsr166 1.28 private static final long tailOffset =
1227 jsr166 1.31 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1228 jsr166 1.28 private static final long cleanMeOffset =
1229 jsr166 1.31 objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1230    
1231     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1232     String field, Class<?> klazz) {
1233 jsr166 1.28 try {
1234     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1235     } catch (NoSuchFieldException e) {
1236     // Convert Exception to corresponding Error
1237     NoSuchFieldError error = new NoSuchFieldError(field);
1238     error.initCause(e);
1239     throw error;
1240     }
1241     }
1242    
1243 jsr166 1.53 /**
1244     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1245     * Replace with a simple call to Unsafe.getUnsafe when integrating
1246     * into a jdk.
1247     *
1248     * @return a sun.misc.Unsafe
1249     */
1250 jsr166 1.54 static sun.misc.Unsafe getUnsafe() {
1251 jsr166 1.13 try {
1252 jsr166 1.25 return sun.misc.Unsafe.getUnsafe();
1253 jsr166 1.13 } catch (SecurityException se) {
1254     try {
1255     return java.security.AccessController.doPrivileged
1256 jsr166 1.28 (new java.security
1257     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1258 jsr166 1.25 public sun.misc.Unsafe run() throws Exception {
1259 jsr166 1.28 java.lang.reflect.Field f = sun.misc
1260     .Unsafe.class.getDeclaredField("theUnsafe");
1261     f.setAccessible(true);
1262     return (sun.misc.Unsafe) f.get(null);
1263 jsr166 1.13 }});
1264     } catch (java.security.PrivilegedActionException e) {
1265 jsr166 1.25 throw new RuntimeException("Could not initialize intrinsics",
1266     e.getCause());
1267 jsr166 1.13 }
1268     }
1269     }
1270 dl 1.45
1271 dl 1.1 }