ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.68
Committed: Sun Nov 15 01:53:11 2009 UTC (14 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.67: +4 -4 lines
Log Message:
typos

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.26
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.26
11     import java.util.AbstractQueue;
12     import java.util.Collection;
13 jsr166 1.35 import java.util.ConcurrentModificationException;
14 jsr166 1.26 import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.35 import java.util.Queue;
17 jsr166 1.26 import java.util.concurrent.locks.LockSupport;
18 dl 1.1 /**
19 jsr166 1.43 * An unbounded {@link TransferQueue} based on linked nodes.
20 dl 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
21     * to any given producer. The <em>head</em> of the queue is that
22     * element that has been on the queue the longest time for some
23     * producer. The <em>tail</em> of the queue is that element that has
24     * been on the queue the shortest time for some producer.
25     *
26 jsr166 1.11 * <p>Beware that, unlike in most collections, the {@code size}
27 dl 1.1 * method is <em>NOT</em> a constant-time operation. Because of the
28     * asynchronous nature of these queues, determining the current number
29     * of elements requires a traversal of the elements.
30     *
31     * <p>This class and its iterator implement all of the
32     * <em>optional</em> methods of the {@link Collection} and {@link
33     * Iterator} interfaces.
34     *
35     * <p>Memory consistency effects: As with other concurrent
36     * collections, actions in a thread prior to placing an object into a
37     * {@code LinkedTransferQueue}
38     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
39     * actions subsequent to the access or removal of that element from
40     * the {@code LinkedTransferQueue} in another thread.
41     *
42     * <p>This class is a member of the
43     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
44     * Java Collections Framework</a>.
45     *
46 dl 1.3 * @since 1.7
47 dl 1.1 * @author Doug Lea
48     * @param <E> the type of elements held in this collection
49     */
50     public class LinkedTransferQueue<E> extends AbstractQueue<E>
51     implements TransferQueue<E>, java.io.Serializable {
52     private static final long serialVersionUID = -3223113410248163686L;
53    
54     /*
55 dl 1.45 * *** Overview of Dual Queues with Slack ***
56 dl 1.1 *
57 dl 1.45 * Dual Queues, introduced by Scherer and Scott
58     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59     * (linked) queues in which nodes may represent either data or
60     * requests. When a thread tries to enqueue a data node, but
61     * encounters a request node, it instead "matches" and removes it;
62     * and vice versa for enqueuing requests. Blocking Dual Queues
63     * arrange that threads enqueuing unmatched requests block until
64     * other threads provide the match. Dual Synchronous Queues (see
65     * Scherer, Lea, & Scott
66     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67     * additionally arrange that threads enqueuing unmatched data also
68     * block. Dual Transfer Queues support all of these modes, as
69     * dictated by callers.
70     *
71     * A FIFO dual queue may be implemented using a variation of the
72     * Michael & Scott (M&S) lock-free queue algorithm
73     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74     * It maintains two pointer fields, "head", pointing to a
75     * (matched) node that in turn points to the first actual
76     * (unmatched) queue node (or null if empty); and "tail" that
77     * points to the last node on the queue (or again null if
78     * empty). For example, here is a possible queue with four data
79     * elements:
80     *
81     * head tail
82     * | |
83     * v v
84     * M -> U -> U -> U -> U
85     *
86     * The M&S queue algorithm is known to be prone to scalability and
87     * overhead limitations when maintaining (via CAS) these head and
88     * tail pointers. This has led to the development of
89     * contention-reducing variants such as elimination arrays (see
90     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91     * optimistic back pointers (see Ladan-Mozes & Shavit
92     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93     * However, the nature of dual queues enables a simpler tactic for
94     * improving M&S-style implementations when dual-ness is needed.
95     *
96     * In a dual queue, each node must atomically maintain its match
97     * status. While there are other possible variants, we implement
98     * this here as: for a data-mode node, matching entails CASing an
99     * "item" field from a non-null data value to null upon match, and
100     * vice-versa for request nodes, CASing from null to a data
101     * value. (Note that the linearization properties of this style of
102     * queue are easy to verify -- elements are made available by
103     * linking, and unavailable by matching.) Compared to plain M&S
104     * queues, this property of dual queues requires one additional
105     * successful atomic operation per enq/deq pair. But it also
106     * enables lower cost variants of queue maintenance mechanics. (A
107     * variation of this idea applies even for non-dual queues that
108 dl 1.48 * support deletion of interior elements, such as
109 dl 1.45 * j.u.c.ConcurrentLinkedQueue.)
110     *
111 dl 1.48 * Once a node is matched, its match status can never again
112     * change. We may thus arrange that the linked list of them
113     * contain a prefix of zero or more matched nodes, followed by a
114     * suffix of zero or more unmatched nodes. (Note that we allow
115     * both the prefix and suffix to be zero length, which in turn
116     * means that we do not use a dummy header.) If we were not
117     * concerned with either time or space efficiency, we could
118     * correctly perform enqueue and dequeue operations by traversing
119     * from a pointer to the initial node; CASing the item of the
120     * first unmatched node on match and CASing the next field of the
121     * trailing node on appends. (Plus some special-casing when
122     * initially empty). While this would be a terrible idea in
123     * itself, it does have the benefit of not requiring ANY atomic
124     * updates on head/tail fields.
125 dl 1.45 *
126     * We introduce here an approach that lies between the extremes of
127 dl 1.48 * never versus always updating queue (head and tail) pointers.
128     * This offers a tradeoff between sometimes requiring extra
129     * traversal steps to locate the first and/or last unmatched
130     * nodes, versus the reduced overhead and contention of fewer
131     * updates to queue pointers. For example, a possible snapshot of
132     * a queue is:
133 dl 1.45 *
134     * head tail
135     * | |
136     * v v
137     * M -> M -> U -> U -> U -> U
138     *
139     * The best value for this "slack" (the targeted maximum distance
140     * between the value of "head" and the first unmatched node, and
141     * similarly for "tail") is an empirical matter. We have found
142     * that using very small constants in the range of 1-3 work best
143     * over a range of platforms. Larger values introduce increasing
144 dl 1.48 * costs of cache misses and risks of long traversal chains, while
145 jsr166 1.49 * smaller values increase CAS contention and overhead.
146 dl 1.45 *
147     * Dual queues with slack differ from plain M&S dual queues by
148     * virtue of only sometimes updating head or tail pointers when
149     * matching, appending, or even traversing nodes; in order to
150     * maintain a targeted slack. The idea of "sometimes" may be
151     * operationalized in several ways. The simplest is to use a
152     * per-operation counter incremented on each traversal step, and
153     * to try (via CAS) to update the associated queue pointer
154     * whenever the count exceeds a threshold. Another, that requires
155     * more overhead, is to use random number generators to update
156     * with a given probability per traversal step.
157     *
158     * In any strategy along these lines, because CASes updating
159     * fields may fail, the actual slack may exceed targeted
160     * slack. However, they may be retried at any time to maintain
161     * targets. Even when using very small slack values, this
162     * approach works well for dual queues because it allows all
163     * operations up to the point of matching or appending an item
164 dl 1.50 * (hence potentially allowing progress by another thread) to be
165     * read-only, thus not introducing any further contention. As
166     * described below, we implement this by performing slack
167     * maintenance retries only after these points.
168 dl 1.45 *
169     * As an accompaniment to such techniques, traversal overhead can
170     * be further reduced without increasing contention of head
171 dl 1.50 * pointer updates: Threads may sometimes shortcut the "next" link
172     * path from the current "head" node to be closer to the currently
173     * known first unmatched node, and similarly for tail. Again, this
174     * may be triggered with using thresholds or randomization.
175 dl 1.45 *
176     * These ideas must be further extended to avoid unbounded amounts
177     * of costly-to-reclaim garbage caused by the sequential "next"
178     * links of nodes starting at old forgotten head nodes: As first
179     * described in detail by Boehm
180     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181     * delays noticing that any arbitrarily old node has become
182     * garbage, all newer dead nodes will also be unreclaimed.
183     * (Similar issues arise in non-GC environments.) To cope with
184     * this in our implementation, upon CASing to advance the head
185     * pointer, we set the "next" link of the previous head to point
186 jsr166 1.46 * only to itself; thus limiting the length of connected dead lists.
187 dl 1.45 * (We also take similar care to wipe out possibly garbage
188     * retaining values held in other Node fields.) However, doing so
189     * adds some further complexity to traversal: If any "next"
190     * pointer links to itself, it indicates that the current thread
191     * has lagged behind a head-update, and so the traversal must
192     * continue from the "head". Traversals trying to find the
193     * current tail starting from "tail" may also encounter
194     * self-links, in which case they also continue at "head".
195     *
196     * It is tempting in slack-based scheme to not even use CAS for
197     * updates (similarly to Ladan-Mozes & Shavit). However, this
198     * cannot be done for head updates under the above link-forgetting
199     * mechanics because an update may leave head at a detached node.
200     * And while direct writes are possible for tail updates, they
201     * increase the risk of long retraversals, and hence long garbage
202 dl 1.50 * chains, which can be much more costly than is worthwhile
203 dl 1.45 * considering that the cost difference of performing a CAS vs
204     * write is smaller when they are not triggered on each operation
205     * (especially considering that writes and CASes equally require
206     * additional GC bookkeeping ("write barriers") that are sometimes
207     * more costly than the writes themselves because of contention).
208     *
209     * *** Overview of implementation ***
210     *
211 dl 1.50 * We use a threshold-based approach to updates, with a slack
212     * threshold of two -- that is, we update head/tail when the
213     * current pointer appears to be two or more steps away from the
214     * first/last node. The slack value is hard-wired: a path greater
215 dl 1.45 * than one is naturally implemented by checking equality of
216     * traversal pointers except when the list has only one element,
217 dl 1.50 * in which case we keep slack threshold at one. Avoiding tracking
218 dl 1.48 * explicit counts across method calls slightly simplifies an
219 dl 1.45 * already-messy implementation. Using randomization would
220     * probably work better if there were a low-quality dirt-cheap
221     * per-thread one available, but even ThreadLocalRandom is too
222     * heavy for these purposes.
223     *
224 dl 1.67 * With such a small slack threshold value, it is not worthwhile
225     * to augment this with path short-circuiting (i.e., unsplicing
226     * interior nodes) except in the case of cancellation/removal (see
227     * below).
228 dl 1.48 *
229     * We allow both the head and tail fields to be null before any
230     * nodes are enqueued; initializing upon first append. This
231     * simplifies some other logic, as well as providing more
232     * efficient explicit control paths instead of letting JVMs insert
233     * implicit NullPointerExceptions when they are null. While not
234     * currently fully implemented, we also leave open the possibility
235 jsr166 1.49 * of re-nulling these fields when empty (which is complicated to
236     * arrange, for little benefit.)
237 dl 1.45 *
238     * All enqueue/dequeue operations are handled by the single method
239     * "xfer" with parameters indicating whether to act as some form
240     * of offer, put, poll, take, or transfer (each possibly with
241     * timeout). The relative complexity of using one monolithic
242     * method outweighs the code bulk and maintenance problems of
243 dl 1.50 * using separate methods for each case.
244 dl 1.45 *
245     * Operation consists of up to three phases. The first is
246     * implemented within method xfer, the second in tryAppend, and
247     * the third in method awaitMatch.
248     *
249     * 1. Try to match an existing node
250     *
251     * Starting at head, skip already-matched nodes until finding
252     * an unmatched node of opposite mode, if one exists, in which
253     * case matching it and returning, also if necessary updating
254     * head to one past the matched node (or the node itself if the
255     * list has no other unmatched nodes). If the CAS misses, then
256 dl 1.48 * a loop retries advancing head by two steps until either
257     * success or the slack is at most two. By requiring that each
258     * attempt advances head by two (if applicable), we ensure that
259     * the slack does not grow without bound. Traversals also check
260     * if the initial head is now off-list, in which case they
261     * start at the new head.
262 dl 1.45 *
263     * If no candidates are found and the call was untimed
264     * poll/offer, (argument "how" is NOW) return.
265     *
266     * 2. Try to append a new node (method tryAppend)
267     *
268 dl 1.50 * Starting at current tail pointer, find the actual last node
269     * and try to append a new node (or if head was null, establish
270     * the first node). Nodes can be appended only if their
271     * predecessors are either already matched or are of the same
272     * mode. If we detect otherwise, then a new node with opposite
273     * mode must have been appended during traversal, so we must
274     * restart at phase 1. The traversal and update steps are
275     * otherwise similar to phase 1: Retrying upon CAS misses and
276     * checking for staleness. In particular, if a self-link is
277     * encountered, then we can safely jump to a node on the list
278     * by continuing the traversal at current head.
279 dl 1.45 *
280 jsr166 1.46 * On successful append, if the call was ASYNC, return.
281 dl 1.45 *
282     * 3. Await match or cancellation (method awaitMatch)
283     *
284     * Wait for another thread to match node; instead cancelling if
285 dl 1.50 * the current thread was interrupted or the wait timed out. On
286 dl 1.45 * multiprocessors, we use front-of-queue spinning: If a node
287     * appears to be the first unmatched node in the queue, it
288     * spins a bit before blocking. In either case, before blocking
289     * it tries to unsplice any nodes between the current "head"
290     * and the first unmatched node.
291     *
292     * Front-of-queue spinning vastly improves performance of
293     * heavily contended queues. And so long as it is relatively
294     * brief and "quiet", spinning does not much impact performance
295     * of less-contended queues. During spins threads check their
296     * interrupt status and generate a thread-local random number
297     * to decide to occasionally perform a Thread.yield. While
298     * yield has underdefined specs, we assume that might it help,
299     * and will not hurt in limiting impact of spinning on busy
300 dl 1.50 * systems. We also use smaller (1/2) spins for nodes that are
301     * not known to be front but whose predecessors have not
302     * blocked -- these "chained" spins avoid artifacts of
303 dl 1.45 * front-of-queue rules which otherwise lead to alternating
304     * nodes spinning vs blocking. Further, front threads that
305     * represent phase changes (from data to request node or vice
306     * versa) compared to their predecessors receive additional
307 dl 1.50 * chained spins, reflecting longer paths typically required to
308     * unblock threads during phase changes.
309 dl 1.67 *
310     *
311     * ** Unlinking removed interior nodes **
312     *
313     * In addition to minimizing garbage retention via self-linking
314     * described above, we also unlink removed interior nodes. These
315     * may arise due to timed out or interrupted waits, or calls to
316     * remove(x) or Iterator.remove. Normally, given a node that was
317     * at one time known to be the predecessor of some node s that is
318     * to be removed, we can unsplice s by CASing the next field of
319     * its predecessor if it still points to s (otherwise s must
320     * already have been removed or is now offlist). But there are two
321     * situations in which we cannot guarantee to make node s
322     * unreachable in this way: (1) If s is the trailing node of list
323     * (i.e., with null next), then it is pinned as the target node
324     * for appends, so can only be removed later when other nodes are
325     * appended. (2) We cannot necessarily unlink s given a
326     * predecessor node that is matched (including the case of being
327 jsr166 1.68 * cancelled): the predecessor may already be unspliced, in which
328     * case some previous reachable node may still point to s.
329     * (For further explanation see Herlihy & Shavit "The Art of
330 dl 1.67 * Multiprocessor Programming" chapter 9). Although, in both
331     * cases, we can rule out the need for further action if either s
332     * or its predecessor are (or can be made to be) at, or fall off
333     * from, the head of list.
334     *
335     * Without taking these into account, it would be possible for an
336     * unbounded number of supposedly removed nodes to remain
337     * reachable. Situations leading to such buildup are uncommon but
338     * can occur in practice; for example when a series of short timed
339     * calls to poll repeatedly time out but never otherwise fall off
340     * the list because of an untimed call to take at the front of the
341     * queue.
342     *
343     * When these cases arise, rather than always retraversing the
344     * entire list to find an actual predecessor to unlink (which
345     * won't help for case (1) anyway), we record a conservative
346     * estimate of possible unsplice failures (in "sweepVotes). We
347     * trigger a full sweep when the estimate exceeds a threshold
348     * indicating the maximum number of estimated removal failures to
349     * tolerate before sweeping through, unlinking cancelled nodes
350     * that were not unlinked upon initial removal. We perform sweeps
351     * by the thread hitting threshold (rather than background threads
352     * or by spreading work to other threads) because in the main
353     * contexts in which removal occurs, the caller is already
354     * timed-out, cancelled, or performing a potentially O(n)
355     * operation (i.e., remove(x)), none of which are time-critical
356     * enough to warrant the overhead that alternatives would impose
357     * on other threads.
358     *
359     * Because the sweepVotes estimate is conservative, and because
360     * nodes become unlinked "naturally" as they fall off the head of
361     * the queue, and because we allow votes to accumulate even while
362 jsr166 1.68 * sweeps are in progress, there are typically significantly fewer
363 dl 1.67 * such nodes than estimated. Choice of a threshold value
364     * balances the likelihood of wasted effort and contention, versus
365     * providing a worst-case bound on retention of interior nodes in
366     * quiescent queues. The value defined below was chosen
367     * empirically to balance these under various timeout scenarios.
368     *
369     * Note that we cannot self-link unlinked interior nodes during
370     * sweeps. However, the associated garbage chains terminate when
371     * some successor ultimately falls off the head of the list and is
372     * self-linked.
373 dl 1.45 */
374    
375     /** True if on multiprocessor */
376     private static final boolean MP =
377     Runtime.getRuntime().availableProcessors() > 1;
378    
379     /**
380 dl 1.50 * The number of times to spin (with randomly interspersed calls
381     * to Thread.yield) on multiprocessor before blocking when a node
382     * is apparently the first waiter in the queue. See above for
383     * explanation. Must be a power of two. The value is empirically
384     * derived -- it works pretty well across a variety of processors,
385     * numbers of CPUs, and OSes.
386 dl 1.45 */
387     private static final int FRONT_SPINS = 1 << 7;
388    
389     /**
390     * The number of times to spin before blocking when a node is
391 dl 1.50 * preceded by another node that is apparently spinning. Also
392     * serves as an increment to FRONT_SPINS on phase changes, and as
393     * base average frequency for yielding during spins. Must be a
394     * power of two.
395 dl 1.45 */
396 dl 1.50 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
397 dl 1.45
398     /**
399 dl 1.67 * The maximum number of estimated removal failures (sweepVotes)
400     * to tolerate before sweeping through the queue unlinking
401     * cancelled nodes that were not unlinked upon initial
402     * removal. See above for explanation. The value must be at least
403     * two to avoid useless sweeps when removing trailing nodes.
404     */
405     static final int SWEEP_THRESHOLD = 32;
406    
407     /**
408 jsr166 1.46 * Queue nodes. Uses Object, not E, for items to allow forgetting
409 dl 1.45 * them after use. Relies heavily on Unsafe mechanics to minimize
410 dl 1.67 * unnecessary ordering constraints: Writes that are intrinsically
411     * ordered wrt other accesses or CASes use simple relaxed forms.
412 dl 1.45 */
413 jsr166 1.61 static final class Node {
414 dl 1.45 final boolean isData; // false if this is a request node
415 jsr166 1.46 volatile Object item; // initially non-null if isData; CASed to match
416 jsr166 1.61 volatile Node next;
417 dl 1.45 volatile Thread waiter; // null until waiting
418 dl 1.1
419 dl 1.45 // CAS methods for fields
420 jsr166 1.61 final boolean casNext(Node cmp, Node val) {
421 dl 1.45 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
422     }
423 dl 1.1
424 dl 1.45 final boolean casItem(Object cmp, Object val) {
425 jsr166 1.55 assert cmp == null || cmp.getClass() != Node.class;
426 dl 1.45 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
427     }
428 dl 1.1
429 dl 1.45 /**
430 jsr166 1.46 * Creates a new node. Uses relaxed write because item can only
431     * be seen if followed by CAS.
432 dl 1.45 */
433 jsr166 1.61 Node(Object item, boolean isData) {
434 dl 1.45 UNSAFE.putObject(this, itemOffset, item); // relaxed write
435 dl 1.1 this.isData = isData;
436     }
437    
438 dl 1.45 /**
439     * Links node to itself to avoid garbage retention. Called
440     * only after CASing head field, so uses relaxed write.
441     */
442     final void forgetNext() {
443     UNSAFE.putObject(this, nextOffset, this);
444     }
445 jsr166 1.32
446 dl 1.45 /**
447 dl 1.67 * Sets item to self and waiter to null, to avoid garbage
448     * retention after matching or cancelling. Uses relaxed writes
449     * bacause order is already constrained in the only calling
450     * contexts: item is forgotten only after volatile/atomic
451     * mechanics that extract items. Similarly, clearing waiter
452     * follows either CAS or return from park (if ever parked;
453     * else we don't care).
454 dl 1.45 */
455     final void forgetContents() {
456 dl 1.67 UNSAFE.putObject(this, itemOffset, this);
457     UNSAFE.putObject(this, waiterOffset, null);
458 dl 1.45 }
459 jsr166 1.32
460 dl 1.45 /**
461     * Returns true if this node has been matched, including the
462     * case of artificial matches due to cancellation.
463     */
464     final boolean isMatched() {
465     Object x = item;
466 jsr166 1.57 return (x == this) || ((x == null) == isData);
467 dl 1.1 }
468 dl 1.15
469 dl 1.45 /**
470 jsr166 1.58 * Returns true if this is an unmatched request node.
471     */
472     final boolean isUnmatchedRequest() {
473     return !isData && item == null;
474     }
475    
476     /**
477 dl 1.45 * Returns true if a node with the given mode cannot be
478     * appended to this node because this node is unmatched and
479     * has opposite data mode.
480     */
481     final boolean cannotPrecede(boolean haveData) {
482     boolean d = isData;
483     Object x;
484     return d != haveData && (x = item) != this && (x != null) == d;
485 jsr166 1.31 }
486    
487     /**
488 jsr166 1.46 * Tries to artificially match a data node -- used by remove.
489 jsr166 1.31 */
490 dl 1.45 final boolean tryMatchData() {
491 jsr166 1.58 assert isData;
492 dl 1.45 Object x = item;
493     if (x != null && x != this && casItem(x, null)) {
494     LockSupport.unpark(waiter);
495     return true;
496 jsr166 1.31 }
497 dl 1.45 return false;
498 dl 1.15 }
499    
500 dl 1.45 // Unsafe mechanics
501     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
502     private static final long nextOffset =
503     objectFieldOffset(UNSAFE, "next", Node.class);
504     private static final long itemOffset =
505     objectFieldOffset(UNSAFE, "item", Node.class);
506     private static final long waiterOffset =
507     objectFieldOffset(UNSAFE, "waiter", Node.class);
508    
509 jsr166 1.24 private static final long serialVersionUID = -3375979862319811754L;
510 dl 1.1 }
511    
512 dl 1.45 /** head of the queue; null until first enqueue */
513 jsr166 1.61 transient volatile Node head;
514 dl 1.45
515     /** tail of the queue; null until first append */
516 jsr166 1.61 private transient volatile Node tail;
517 dl 1.1
518 dl 1.67 /** The number of apparent failures to unsplice removed nodes */
519     private transient volatile int sweepVotes;
520    
521 dl 1.45 // CAS methods for fields
522 jsr166 1.61 private boolean casTail(Node cmp, Node val) {
523 dl 1.45 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
524     }
525 jsr166 1.23
526 jsr166 1.61 private boolean casHead(Node cmp, Node val) {
527 dl 1.45 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
528     }
529 dl 1.1
530 dl 1.67 private boolean casSweepVotes(int cmp, int val) {
531     return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
532 dl 1.45 }
533 dl 1.1
534 dl 1.45 /*
535 jsr166 1.64 * Possible values for "how" argument in xfer method.
536 dl 1.1 */
537 jsr166 1.65 private static final int NOW = 0; // for untimed poll, tryTransfer
538     private static final int ASYNC = 1; // for offer, put, add
539     private static final int SYNC = 2; // for transfer, take
540     private static final int TIMED = 3; // for timed poll, tryTransfer
541 jsr166 1.5
542 jsr166 1.56 @SuppressWarnings("unchecked")
543     static <E> E cast(Object item) {
544     assert item == null || item.getClass() != Node.class;
545     return (E) item;
546     }
547    
548 dl 1.1 /**
549 dl 1.45 * Implements all queuing methods. See above for explanation.
550 jsr166 1.17 *
551 dl 1.45 * @param e the item or null for take
552 jsr166 1.46 * @param haveData true if this is a put, else a take
553 jsr166 1.65 * @param how NOW, ASYNC, SYNC, or TIMED
554     * @param nanos timeout in nanosecs, used only if mode is TIMED
555 jsr166 1.46 * @return an item if matched, else e
556 dl 1.45 * @throws NullPointerException if haveData mode but e is null
557 dl 1.1 */
558 jsr166 1.54 private E xfer(E e, boolean haveData, int how, long nanos) {
559 dl 1.45 if (haveData && (e == null))
560     throw new NullPointerException();
561 jsr166 1.61 Node s = null; // the node to append, if needed
562 dl 1.1
563 dl 1.45 retry: for (;;) { // restart on append race
564 dl 1.1
565 jsr166 1.61 for (Node h = head, p = h; p != null;) { // find & match first node
566 dl 1.45 boolean isData = p.isData;
567     Object item = p.item;
568     if (item != p && (item != null) == isData) { // unmatched
569     if (isData == haveData) // can't match
570     break;
571     if (p.casItem(item, e)) { // match
572 jsr166 1.61 for (Node q = p; q != h;) {
573 dl 1.67 Node n = q.next; // update by 2 unless singleton
574     if (head == h && casHead(h, n == null? q : n)) {
575 dl 1.45 h.forgetNext();
576     break;
577     } // advance and retry
578     if ((h = head) == null ||
579 dl 1.52 (q = h.next) == null || !q.isMatched())
580 dl 1.45 break; // unless slack < 2
581     }
582 dl 1.52 LockSupport.unpark(p.waiter);
583 jsr166 1.54 return this.<E>cast(item);
584 dl 1.1 }
585     }
586 jsr166 1.61 Node n = p.next;
587 jsr166 1.47 p = (p != n) ? n : (h = head); // Use head if p offlist
588 dl 1.45 }
589    
590 jsr166 1.64 if (how != NOW) { // No matches available
591 dl 1.45 if (s == null)
592 jsr166 1.61 s = new Node(e, haveData);
593     Node pred = tryAppend(s, haveData);
594 dl 1.45 if (pred == null)
595     continue retry; // lost race vs opposite mode
596 jsr166 1.64 if (how != ASYNC)
597 jsr166 1.65 return awaitMatch(s, pred, e, (how == TIMED), nanos);
598 dl 1.1 }
599 dl 1.45 return e; // not waiting
600 dl 1.1 }
601     }
602    
603     /**
604 jsr166 1.46 * Tries to append node s as tail.
605     *
606 dl 1.48 * @param s the node to append
607 dl 1.45 * @param haveData true if appending in data mode
608     * @return null on failure due to losing race with append in
609     * different mode, else s's predecessor, or s itself if no
610     * predecessor
611 dl 1.1 */
612 jsr166 1.61 private Node tryAppend(Node s, boolean haveData) {
613     for (Node t = tail, p = t;;) { // move p to last node and append
614     Node n, u; // temps for reads of next & tail
615 dl 1.45 if (p == null && (p = head) == null) {
616     if (casHead(null, s))
617     return s; // initialize
618     }
619     else if (p.cannotPrecede(haveData))
620     return null; // lost race vs opposite mode
621 dl 1.48 else if ((n = p.next) != null) // not last; keep traversing
622 dl 1.45 p = p != t && t != (u = tail) ? (t = u) : // stale tail
623 jsr166 1.47 (p != n) ? n : null; // restart if off list
624 dl 1.45 else if (!p.casNext(null, s))
625     p = p.next; // re-read on CAS failure
626     else {
627 dl 1.48 if (p != t) { // update if slack now >= 2
628 dl 1.45 while ((tail != t || !casTail(t, s)) &&
629     (t = tail) != null &&
630     (s = t.next) != null && // advance and retry
631     (s = s.next) != null && s != t);
632 dl 1.1 }
633 dl 1.45 return p;
634 dl 1.1 }
635     }
636     }
637    
638     /**
639 dl 1.45 * Spins/yields/blocks until node s is matched or caller gives up.
640 dl 1.1 *
641     * @param s the waiting node
642 dl 1.50 * @param pred the predecessor of s, or s itself if it has no
643     * predecessor, or null if unknown (the null case does not occur
644     * in any current calls but may in possible future extensions)
645 dl 1.1 * @param e the comparison value for checking match
646 jsr166 1.64 * @param timed if true, wait only until timeout elapses
647 jsr166 1.65 * @param nanos timeout in nanosecs, used only if timed is true
648 dl 1.45 * @return matched item, or e if unmatched on interrupt or timeout
649 dl 1.1 */
650 jsr166 1.64 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
651     long lastTime = timed ? System.nanoTime() : 0L;
652 dl 1.45 Thread w = Thread.currentThread();
653     int spins = -1; // initialized after first item and cancel checks
654     ThreadLocalRandom randomYields = null; // bound if needed
655 dl 1.1
656     for (;;) {
657 dl 1.45 Object item = s.item;
658     if (item != e) { // matched
659 jsr166 1.54 assert item != s;
660 dl 1.45 s.forgetContents(); // avoid garbage
661 jsr166 1.54 return this.<E>cast(item);
662 dl 1.45 }
663 jsr166 1.64 if ((w.isInterrupted() || (timed && nanos <= 0)) &&
664 dl 1.67 s.casItem(e, s)) { // cancel
665 dl 1.45 unsplice(pred, s);
666     return e;
667     }
668    
669     if (spins < 0) { // establish spins at/near front
670     if ((spins = spinsFor(pred, s.isData)) > 0)
671     randomYields = ThreadLocalRandom.current();
672     }
673 dl 1.50 else if (spins > 0) { // spin
674 dl 1.67 --spins;
675     if (randomYields.nextInt(CHAINED_SPINS) == 0)
676 dl 1.50 Thread.yield(); // occasionally yield
677 dl 1.45 }
678     else if (s.waiter == null) {
679 dl 1.51 s.waiter = w; // request unpark then recheck
680 dl 1.1 }
681 jsr166 1.64 else if (timed) {
682 dl 1.1 long now = System.nanoTime();
683 dl 1.45 if ((nanos -= now - lastTime) > 0)
684     LockSupport.parkNanos(this, nanos);
685 dl 1.1 lastTime = now;
686     }
687 dl 1.45 else {
688 dl 1.12 LockSupport.park(this);
689 dl 1.1 }
690 dl 1.45 }
691     }
692    
693     /**
694 jsr166 1.46 * Returns spin/yield value for a node with given predecessor and
695 dl 1.45 * data mode. See above for explanation.
696     */
697 jsr166 1.61 private static int spinsFor(Node pred, boolean haveData) {
698 dl 1.45 if (MP && pred != null) {
699 dl 1.50 if (pred.isData != haveData) // phase change
700     return FRONT_SPINS + CHAINED_SPINS;
701     if (pred.isMatched()) // probably at front
702 dl 1.45 return FRONT_SPINS;
703     if (pred.waiter == null) // pred apparently spinning
704     return CHAINED_SPINS;
705     }
706     return 0;
707     }
708    
709     /* -------------- Traversal methods -------------- */
710    
711 dl 1.1 /**
712 jsr166 1.62 * Returns the successor of p, or the head node if p.next has been
713     * linked to self, which will only be true if traversing with a
714     * stale pointer that is now off the list.
715     */
716     final Node succ(Node p) {
717     Node next = p.next;
718     return (p == next) ? head : next;
719     }
720    
721     /**
722 jsr166 1.46 * Returns the first unmatched node of the given mode, or null if
723 dl 1.45 * none. Used by methods isEmpty, hasWaitingConsumer.
724 dl 1.9 */
725 jsr166 1.62 private Node firstOfMode(boolean isData) {
726     for (Node p = head; p != null; p = succ(p)) {
727 dl 1.45 if (!p.isMatched())
728 jsr166 1.62 return (p.isData == isData) ? p : null;
729 dl 1.45 }
730     return null;
731     }
732    
733     /**
734     * Returns the item in the first unmatched node with isData; or
735 jsr166 1.54 * null if none. Used by peek.
736 dl 1.45 */
737 jsr166 1.54 private E firstDataItem() {
738 jsr166 1.62 for (Node p = head; p != null; p = succ(p)) {
739 dl 1.45 Object item = p.item;
740 jsr166 1.62 if (p.isData) {
741     if (item != null && item != p)
742     return this.<E>cast(item);
743     }
744     else if (item == null)
745     return null;
746 dl 1.45 }
747     return null;
748     }
749    
750     /**
751 jsr166 1.46 * Traverses and counts unmatched nodes of the given mode.
752     * Used by methods size and getWaitingConsumerCount.
753 dl 1.45 */
754     private int countOfMode(boolean data) {
755     int count = 0;
756 jsr166 1.61 for (Node p = head; p != null; ) {
757 dl 1.45 if (!p.isMatched()) {
758     if (p.isData != data)
759     return 0;
760     if (++count == Integer.MAX_VALUE) // saturated
761     break;
762 dl 1.9 }
763 jsr166 1.61 Node n = p.next;
764 dl 1.45 if (n != p)
765     p = n;
766     else {
767     count = 0;
768     p = head;
769 dl 1.9 }
770     }
771 dl 1.45 return count;
772 jsr166 1.10 }
773 dl 1.9
774 dl 1.45 final class Itr implements Iterator<E> {
775 jsr166 1.61 private Node nextNode; // next node to return item for
776     private E nextItem; // the corresponding item
777     private Node lastRet; // last returned node, to support remove
778     private Node lastPred; // predecessor to unlink lastRet
779 dl 1.45
780     /**
781     * Moves to next node after prev, or first node if prev null.
782     */
783 jsr166 1.61 private void advance(Node prev) {
784 dl 1.60 lastPred = lastRet;
785 dl 1.45 lastRet = prev;
786 jsr166 1.62 for (Node p = (prev == null) ? head : succ(prev);
787     p != null; p = succ(p)) {
788 dl 1.45 Object item = p.item;
789     if (p.isData) {
790     if (item != null && item != p) {
791 jsr166 1.54 nextItem = LinkedTransferQueue.this.<E>cast(item);
792 dl 1.45 nextNode = p;
793     return;
794     }
795     }
796     else if (item == null)
797     break;
798     }
799     nextNode = null;
800     }
801    
802     Itr() {
803     advance(null);
804     }
805    
806     public final boolean hasNext() {
807     return nextNode != null;
808     }
809    
810     public final E next() {
811 jsr166 1.61 Node p = nextNode;
812 dl 1.45 if (p == null) throw new NoSuchElementException();
813 jsr166 1.54 E e = nextItem;
814 dl 1.45 advance(p);
815 jsr166 1.54 return e;
816 dl 1.45 }
817    
818     public final void remove() {
819 jsr166 1.61 Node p = lastRet;
820 dl 1.45 if (p == null) throw new IllegalStateException();
821 dl 1.67 if (p.tryMatchData())
822     unsplice(lastPred, p);
823 dl 1.45 }
824     }
825    
826     /* -------------- Removal methods -------------- */
827    
828 dl 1.9 /**
829 dl 1.45 * Unsplices (now or later) the given deleted/cancelled node with
830     * the given predecessor.
831 jsr166 1.17 *
832 dl 1.67 * @param pred a node that was at one time known to be the
833     * predecessor of s, or null or s itself if s is/was at head
834 dl 1.45 * @param s the node to be unspliced
835 dl 1.1 */
836 dl 1.67 final void unsplice(Node pred, Node s) {
837     s.forgetContents(); // forget unneeded fields
838 dl 1.9 /*
839 dl 1.67 * See above for rationale. Briefly: if pred still points to
840     * s, try to unlink s. If s cannot be unlinked, because it is
841     * trailing node or pred might be unlinked, and neither pred
842     * nor s are head or offlist, add to sweepVotes, and if enough
843     * votes have accumulated, sweep.
844 dl 1.9 */
845 dl 1.67 if (pred != null && pred != s && pred.next == s) {
846     Node n = s.next;
847     if (n == null ||
848     (n != s && pred.casNext(s, n) && pred.isMatched())) {
849     for (;;) { // check if at, or could be, head
850     Node h = head;
851     if (h == pred || h == s || h == null)
852     return; // at head or list empty
853     if (!h.isMatched())
854     break;
855     Node hn = h.next;
856     if (hn == null)
857     return; // now empty
858     if (hn != h && casHead(h, hn))
859     h.forgetNext(); // advance head
860 dl 1.45 }
861 dl 1.67 if (pred.next != pred && s.next != s) { // recheck if offlist
862     for (;;) { // sweep now if enough votes
863     int v = sweepVotes;
864     if (v < SWEEP_THRESHOLD) {
865     if (casSweepVotes(v, v + 1))
866     break;
867     }
868     else if (casSweepVotes(v, 0)) {
869     sweep();
870     break;
871     }
872     }
873 jsr166 1.59 }
874 dl 1.9 }
875     }
876     }
877 jsr166 1.5
878 dl 1.9 /**
879 dl 1.67 * Unlink matched nodes encountered in a traversal from head
880 dl 1.9 */
881 dl 1.67 private void sweep() {
882     Node p = head, s, n;
883     while (p != null && (s = p.next) != null && (n = s.next) != null) {
884     if (p == s || s == n)
885     p = head; // stale
886     else if (s.isMatched())
887     p.casNext(s, n);
888 dl 1.45 else
889 dl 1.67 p = s;
890 dl 1.45 }
891     }
892    
893     /**
894     * Main implementation of remove(Object)
895     */
896     private boolean findAndRemove(Object e) {
897     if (e != null) {
898 jsr166 1.61 for (Node pred = null, p = head; p != null; ) {
899 dl 1.45 Object item = p.item;
900     if (p.isData) {
901     if (item != null && item != p && e.equals(item) &&
902     p.tryMatchData()) {
903     unsplice(pred, p);
904     return true;
905     }
906     }
907     else if (item == null)
908     break;
909     pred = p;
910 jsr166 1.58 if ((p = p.next) == pred) { // stale
911 dl 1.45 pred = null;
912     p = head;
913     }
914     }
915     }
916     return false;
917     }
918    
919    
920     /**
921 jsr166 1.11 * Creates an initially empty {@code LinkedTransferQueue}.
922 dl 1.1 */
923     public LinkedTransferQueue() {
924     }
925    
926     /**
927 jsr166 1.11 * Creates a {@code LinkedTransferQueue}
928 dl 1.1 * initially containing the elements of the given collection,
929     * added in traversal order of the collection's iterator.
930 jsr166 1.17 *
931 dl 1.1 * @param c the collection of elements to initially contain
932     * @throws NullPointerException if the specified collection or any
933     * of its elements are null
934     */
935     public LinkedTransferQueue(Collection<? extends E> c) {
936 dl 1.7 this();
937 dl 1.1 addAll(c);
938     }
939    
940 jsr166 1.29 /**
941 jsr166 1.35 * Inserts the specified element at the tail of this queue.
942     * As the queue is unbounded, this method will never block.
943     *
944     * @throws NullPointerException if the specified element is null
945 jsr166 1.29 */
946 jsr166 1.35 public void put(E e) {
947 dl 1.45 xfer(e, true, ASYNC, 0);
948 dl 1.1 }
949    
950 jsr166 1.29 /**
951 jsr166 1.35 * Inserts the specified element at the tail of this queue.
952     * As the queue is unbounded, this method will never block or
953     * return {@code false}.
954     *
955     * @return {@code true} (as specified by
956     * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
957     * @throws NullPointerException if the specified element is null
958 jsr166 1.29 */
959 jsr166 1.35 public boolean offer(E e, long timeout, TimeUnit unit) {
960 dl 1.45 xfer(e, true, ASYNC, 0);
961     return true;
962 dl 1.1 }
963    
964 jsr166 1.29 /**
965 jsr166 1.35 * Inserts the specified element at the tail of this queue.
966     * As the queue is unbounded, this method will never return {@code false}.
967     *
968     * @return {@code true} (as specified by
969     * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
970     * @throws NullPointerException if the specified element is null
971 jsr166 1.29 */
972 dl 1.1 public boolean offer(E e) {
973 dl 1.45 xfer(e, true, ASYNC, 0);
974 dl 1.1 return true;
975     }
976    
977 jsr166 1.29 /**
978 jsr166 1.35 * Inserts the specified element at the tail of this queue.
979 jsr166 1.37 * As the queue is unbounded, this method will never throw
980 jsr166 1.35 * {@link IllegalStateException} or return {@code false}.
981     *
982     * @return {@code true} (as specified by {@link Collection#add})
983     * @throws NullPointerException if the specified element is null
984 jsr166 1.29 */
985 dl 1.15 public boolean add(E e) {
986 dl 1.45 xfer(e, true, ASYNC, 0);
987     return true;
988 jsr166 1.35 }
989    
990     /**
991 jsr166 1.40 * Transfers the element to a waiting consumer immediately, if possible.
992     *
993     * <p>More precisely, transfers the specified element immediately
994     * if there exists a consumer already waiting to receive it (in
995     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
996     * otherwise returning {@code false} without enqueuing the element.
997 jsr166 1.35 *
998     * @throws NullPointerException if the specified element is null
999     */
1000     public boolean tryTransfer(E e) {
1001 dl 1.45 return xfer(e, true, NOW, 0) == null;
1002 dl 1.15 }
1003    
1004 jsr166 1.29 /**
1005 jsr166 1.40 * Transfers the element to a consumer, waiting if necessary to do so.
1006     *
1007     * <p>More precisely, transfers the specified element immediately
1008     * if there exists a consumer already waiting to receive it (in
1009     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1010     * else inserts the specified element at the tail of this queue
1011     * and waits until the element is received by a consumer.
1012 jsr166 1.35 *
1013     * @throws NullPointerException if the specified element is null
1014 jsr166 1.29 */
1015 dl 1.1 public void transfer(E e) throws InterruptedException {
1016 dl 1.45 if (xfer(e, true, SYNC, 0) != null) {
1017     Thread.interrupted(); // failure possible only due to interrupt
1018 dl 1.1 throw new InterruptedException();
1019 jsr166 1.6 }
1020 dl 1.1 }
1021    
1022 jsr166 1.29 /**
1023 jsr166 1.40 * Transfers the element to a consumer if it is possible to do so
1024     * before the timeout elapses.
1025     *
1026     * <p>More precisely, transfers the specified element immediately
1027     * if there exists a consumer already waiting to receive it (in
1028     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1029     * else inserts the specified element at the tail of this queue
1030     * and waits until the element is received by a consumer,
1031     * returning {@code false} if the specified wait time elapses
1032     * before the element can be transferred.
1033 jsr166 1.35 *
1034     * @throws NullPointerException if the specified element is null
1035 jsr166 1.29 */
1036 dl 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1037     throws InterruptedException {
1038 jsr166 1.65 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1039 dl 1.1 return true;
1040     if (!Thread.interrupted())
1041     return false;
1042     throw new InterruptedException();
1043     }
1044    
1045     public E take() throws InterruptedException {
1046 jsr166 1.54 E e = xfer(null, false, SYNC, 0);
1047 dl 1.1 if (e != null)
1048 jsr166 1.54 return e;
1049 jsr166 1.6 Thread.interrupted();
1050 dl 1.1 throw new InterruptedException();
1051     }
1052    
1053     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1054 jsr166 1.65 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1055 dl 1.1 if (e != null || !Thread.interrupted())
1056 jsr166 1.54 return e;
1057 dl 1.1 throw new InterruptedException();
1058     }
1059    
1060     public E poll() {
1061 jsr166 1.54 return xfer(null, false, NOW, 0);
1062 dl 1.1 }
1063    
1064 jsr166 1.29 /**
1065 jsr166 1.30 * @throws NullPointerException {@inheritDoc}
1066     * @throws IllegalArgumentException {@inheritDoc}
1067 jsr166 1.29 */
1068 dl 1.1 public int drainTo(Collection<? super E> c) {
1069     if (c == null)
1070     throw new NullPointerException();
1071     if (c == this)
1072     throw new IllegalArgumentException();
1073     int n = 0;
1074     E e;
1075     while ( (e = poll()) != null) {
1076     c.add(e);
1077     ++n;
1078     }
1079     return n;
1080     }
1081    
1082 jsr166 1.29 /**
1083 jsr166 1.30 * @throws NullPointerException {@inheritDoc}
1084     * @throws IllegalArgumentException {@inheritDoc}
1085 jsr166 1.29 */
1086 dl 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1087     if (c == null)
1088     throw new NullPointerException();
1089     if (c == this)
1090     throw new IllegalArgumentException();
1091     int n = 0;
1092     E e;
1093     while (n < maxElements && (e = poll()) != null) {
1094     c.add(e);
1095     ++n;
1096     }
1097     return n;
1098     }
1099    
1100 jsr166 1.35 /**
1101     * Returns an iterator over the elements in this queue in proper
1102     * sequence, from head to tail.
1103     *
1104     * <p>The returned iterator is a "weakly consistent" iterator that
1105     * will never throw
1106     * {@link ConcurrentModificationException ConcurrentModificationException},
1107     * and guarantees to traverse elements as they existed upon
1108     * construction of the iterator, and may (but is not guaranteed
1109     * to) reflect any modifications subsequent to construction.
1110     *
1111     * @return an iterator over the elements in this queue in proper sequence
1112     */
1113 dl 1.1 public Iterator<E> iterator() {
1114     return new Itr();
1115     }
1116    
1117     public E peek() {
1118 jsr166 1.54 return firstDataItem();
1119 dl 1.1 }
1120    
1121 jsr166 1.41 /**
1122     * Returns {@code true} if this queue contains no elements.
1123     *
1124     * @return {@code true} if this queue contains no elements
1125     */
1126 dl 1.2 public boolean isEmpty() {
1127 dl 1.45 return firstOfMode(true) == null;
1128 dl 1.2 }
1129    
1130 dl 1.1 public boolean hasWaitingConsumer() {
1131 dl 1.45 return firstOfMode(false) != null;
1132 dl 1.1 }
1133 jsr166 1.5
1134 dl 1.1 /**
1135     * Returns the number of elements in this queue. If this queue
1136 jsr166 1.11 * contains more than {@code Integer.MAX_VALUE} elements, returns
1137     * {@code Integer.MAX_VALUE}.
1138 dl 1.1 *
1139     * <p>Beware that, unlike in most collections, this method is
1140     * <em>NOT</em> a constant-time operation. Because of the
1141     * asynchronous nature of these queues, determining the current
1142     * number of elements requires an O(n) traversal.
1143     *
1144     * @return the number of elements in this queue
1145     */
1146     public int size() {
1147 dl 1.45 return countOfMode(true);
1148 dl 1.1 }
1149    
1150     public int getWaitingConsumerCount() {
1151 dl 1.45 return countOfMode(false);
1152 dl 1.1 }
1153    
1154 jsr166 1.42 /**
1155     * Removes a single instance of the specified element from this queue,
1156     * if it is present. More formally, removes an element {@code e} such
1157     * that {@code o.equals(e)}, if this queue contains one or more such
1158     * elements.
1159     * Returns {@code true} if this queue contained the specified element
1160     * (or equivalently, if this queue changed as a result of the call).
1161     *
1162     * @param o element to be removed from this queue, if present
1163     * @return {@code true} if this queue changed as a result of the call
1164     */
1165 dl 1.15 public boolean remove(Object o) {
1166 dl 1.45 return findAndRemove(o);
1167 dl 1.15 }
1168    
1169 jsr166 1.35 /**
1170     * Always returns {@code Integer.MAX_VALUE} because a
1171     * {@code LinkedTransferQueue} is not capacity constrained.
1172     *
1173     * @return {@code Integer.MAX_VALUE} (as specified by
1174     * {@link BlockingQueue#remainingCapacity()})
1175     */
1176 dl 1.33 public int remainingCapacity() {
1177     return Integer.MAX_VALUE;
1178     }
1179    
1180 dl 1.1 /**
1181 jsr166 1.46 * Saves the state to a stream (that is, serializes it).
1182 dl 1.1 *
1183 jsr166 1.11 * @serialData All of the elements (each an {@code E}) in
1184 dl 1.1 * the proper order, followed by a null
1185     * @param s the stream
1186     */
1187     private void writeObject(java.io.ObjectOutputStream s)
1188     throws java.io.IOException {
1189     s.defaultWriteObject();
1190 jsr166 1.16 for (E e : this)
1191     s.writeObject(e);
1192 dl 1.1 // Use trailing null as sentinel
1193     s.writeObject(null);
1194     }
1195    
1196     /**
1197 jsr166 1.46 * Reconstitutes the Queue instance from a stream (that is,
1198     * deserializes it).
1199 jsr166 1.19 *
1200 dl 1.1 * @param s the stream
1201     */
1202     private void readObject(java.io.ObjectInputStream s)
1203     throws java.io.IOException, ClassNotFoundException {
1204     s.defaultReadObject();
1205     for (;;) {
1206 jsr166 1.25 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1207 dl 1.1 if (item == null)
1208     break;
1209     else
1210     offer(item);
1211     }
1212     }
1213 dl 1.7
1214 jsr166 1.28 // Unsafe mechanics
1215    
1216     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1217     private static final long headOffset =
1218 jsr166 1.31 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1219 jsr166 1.28 private static final long tailOffset =
1220 jsr166 1.31 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1221 dl 1.67 private static final long sweepVotesOffset =
1222     objectFieldOffset(UNSAFE, "sweepVotes", LinkedTransferQueue.class);
1223 jsr166 1.31
1224     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1225     String field, Class<?> klazz) {
1226 jsr166 1.28 try {
1227     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1228     } catch (NoSuchFieldException e) {
1229     // Convert Exception to corresponding Error
1230     NoSuchFieldError error = new NoSuchFieldError(field);
1231     error.initCause(e);
1232     throw error;
1233     }
1234     }
1235    
1236 jsr166 1.53 /**
1237     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1238     * Replace with a simple call to Unsafe.getUnsafe when integrating
1239     * into a jdk.
1240     *
1241     * @return a sun.misc.Unsafe
1242     */
1243 jsr166 1.54 static sun.misc.Unsafe getUnsafe() {
1244 jsr166 1.13 try {
1245 jsr166 1.25 return sun.misc.Unsafe.getUnsafe();
1246 jsr166 1.13 } catch (SecurityException se) {
1247     try {
1248     return java.security.AccessController.doPrivileged
1249 jsr166 1.28 (new java.security
1250     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1251 jsr166 1.25 public sun.misc.Unsafe run() throws Exception {
1252 jsr166 1.28 java.lang.reflect.Field f = sun.misc
1253     .Unsafe.class.getDeclaredField("theUnsafe");
1254     f.setAccessible(true);
1255     return (sun.misc.Unsafe) f.get(null);
1256 jsr166 1.13 }});
1257     } catch (java.security.PrivilegedActionException e) {
1258 jsr166 1.25 throw new RuntimeException("Could not initialize intrinsics",
1259     e.getCause());
1260 jsr166 1.13 }
1261     }
1262     }
1263 dl 1.45
1264 dl 1.1 }