ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.78
Committed: Thu Sep 9 16:52:49 2010 UTC (13 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.77: +1 -1 lines
Log Message:
Restore dropped condition

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.26
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.26
11     import java.util.AbstractQueue;
12     import java.util.Collection;
13 jsr166 1.35 import java.util.ConcurrentModificationException;
14 jsr166 1.26 import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.35 import java.util.Queue;
17 jsr166 1.26 import java.util.concurrent.locks.LockSupport;
18 dl 1.73
19 dl 1.1 /**
20 jsr166 1.43 * An unbounded {@link TransferQueue} based on linked nodes.
21 dl 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
22     * to any given producer. The <em>head</em> of the queue is that
23     * element that has been on the queue the longest time for some
24     * producer. The <em>tail</em> of the queue is that element that has
25     * been on the queue the shortest time for some producer.
26     *
27 jsr166 1.11 * <p>Beware that, unlike in most collections, the {@code size}
28 dl 1.1 * method is <em>NOT</em> a constant-time operation. Because of the
29     * asynchronous nature of these queues, determining the current number
30     * of elements requires a traversal of the elements.
31     *
32     * <p>This class and its iterator implement all of the
33     * <em>optional</em> methods of the {@link Collection} and {@link
34     * Iterator} interfaces.
35     *
36     * <p>Memory consistency effects: As with other concurrent
37     * collections, actions in a thread prior to placing an object into a
38     * {@code LinkedTransferQueue}
39     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
40     * actions subsequent to the access or removal of that element from
41     * the {@code LinkedTransferQueue} in another thread.
42     *
43     * <p>This class is a member of the
44     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
45     * Java Collections Framework</a>.
46     *
47 dl 1.3 * @since 1.7
48 dl 1.1 * @author Doug Lea
49     * @param <E> the type of elements held in this collection
50     */
51     public class LinkedTransferQueue<E> extends AbstractQueue<E>
52     implements TransferQueue<E>, java.io.Serializable {
53     private static final long serialVersionUID = -3223113410248163686L;
54    
55     /*
56 dl 1.45 * *** Overview of Dual Queues with Slack ***
57 dl 1.1 *
58 dl 1.45 * Dual Queues, introduced by Scherer and Scott
59     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
60     * (linked) queues in which nodes may represent either data or
61     * requests. When a thread tries to enqueue a data node, but
62     * encounters a request node, it instead "matches" and removes it;
63     * and vice versa for enqueuing requests. Blocking Dual Queues
64     * arrange that threads enqueuing unmatched requests block until
65     * other threads provide the match. Dual Synchronous Queues (see
66     * Scherer, Lea, & Scott
67     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
68     * additionally arrange that threads enqueuing unmatched data also
69     * block. Dual Transfer Queues support all of these modes, as
70     * dictated by callers.
71     *
72     * A FIFO dual queue may be implemented using a variation of the
73     * Michael & Scott (M&S) lock-free queue algorithm
74     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
75     * It maintains two pointer fields, "head", pointing to a
76     * (matched) node that in turn points to the first actual
77     * (unmatched) queue node (or null if empty); and "tail" that
78     * points to the last node on the queue (or again null if
79     * empty). For example, here is a possible queue with four data
80     * elements:
81     *
82     * head tail
83     * | |
84     * v v
85     * M -> U -> U -> U -> U
86     *
87     * The M&S queue algorithm is known to be prone to scalability and
88     * overhead limitations when maintaining (via CAS) these head and
89     * tail pointers. This has led to the development of
90     * contention-reducing variants such as elimination arrays (see
91     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
92     * optimistic back pointers (see Ladan-Mozes & Shavit
93     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
94     * However, the nature of dual queues enables a simpler tactic for
95     * improving M&S-style implementations when dual-ness is needed.
96     *
97     * In a dual queue, each node must atomically maintain its match
98     * status. While there are other possible variants, we implement
99     * this here as: for a data-mode node, matching entails CASing an
100     * "item" field from a non-null data value to null upon match, and
101     * vice-versa for request nodes, CASing from null to a data
102     * value. (Note that the linearization properties of this style of
103     * queue are easy to verify -- elements are made available by
104     * linking, and unavailable by matching.) Compared to plain M&S
105     * queues, this property of dual queues requires one additional
106     * successful atomic operation per enq/deq pair. But it also
107     * enables lower cost variants of queue maintenance mechanics. (A
108     * variation of this idea applies even for non-dual queues that
109 dl 1.48 * support deletion of interior elements, such as
110 dl 1.45 * j.u.c.ConcurrentLinkedQueue.)
111     *
112 dl 1.48 * Once a node is matched, its match status can never again
113     * change. We may thus arrange that the linked list of them
114     * contain a prefix of zero or more matched nodes, followed by a
115     * suffix of zero or more unmatched nodes. (Note that we allow
116     * both the prefix and suffix to be zero length, which in turn
117     * means that we do not use a dummy header.) If we were not
118     * concerned with either time or space efficiency, we could
119     * correctly perform enqueue and dequeue operations by traversing
120     * from a pointer to the initial node; CASing the item of the
121     * first unmatched node on match and CASing the next field of the
122     * trailing node on appends. (Plus some special-casing when
123     * initially empty). While this would be a terrible idea in
124     * itself, it does have the benefit of not requiring ANY atomic
125     * updates on head/tail fields.
126 dl 1.45 *
127     * We introduce here an approach that lies between the extremes of
128 dl 1.48 * never versus always updating queue (head and tail) pointers.
129     * This offers a tradeoff between sometimes requiring extra
130     * traversal steps to locate the first and/or last unmatched
131     * nodes, versus the reduced overhead and contention of fewer
132     * updates to queue pointers. For example, a possible snapshot of
133     * a queue is:
134 dl 1.45 *
135     * head tail
136     * | |
137     * v v
138     * M -> M -> U -> U -> U -> U
139     *
140     * The best value for this "slack" (the targeted maximum distance
141     * between the value of "head" and the first unmatched node, and
142     * similarly for "tail") is an empirical matter. We have found
143     * that using very small constants in the range of 1-3 work best
144     * over a range of platforms. Larger values introduce increasing
145 dl 1.48 * costs of cache misses and risks of long traversal chains, while
146 jsr166 1.49 * smaller values increase CAS contention and overhead.
147 dl 1.45 *
148     * Dual queues with slack differ from plain M&S dual queues by
149     * virtue of only sometimes updating head or tail pointers when
150     * matching, appending, or even traversing nodes; in order to
151     * maintain a targeted slack. The idea of "sometimes" may be
152     * operationalized in several ways. The simplest is to use a
153     * per-operation counter incremented on each traversal step, and
154     * to try (via CAS) to update the associated queue pointer
155     * whenever the count exceeds a threshold. Another, that requires
156     * more overhead, is to use random number generators to update
157     * with a given probability per traversal step.
158     *
159     * In any strategy along these lines, because CASes updating
160     * fields may fail, the actual slack may exceed targeted
161     * slack. However, they may be retried at any time to maintain
162     * targets. Even when using very small slack values, this
163     * approach works well for dual queues because it allows all
164     * operations up to the point of matching or appending an item
165 dl 1.50 * (hence potentially allowing progress by another thread) to be
166     * read-only, thus not introducing any further contention. As
167     * described below, we implement this by performing slack
168     * maintenance retries only after these points.
169 dl 1.45 *
170     * As an accompaniment to such techniques, traversal overhead can
171     * be further reduced without increasing contention of head
172 dl 1.50 * pointer updates: Threads may sometimes shortcut the "next" link
173     * path from the current "head" node to be closer to the currently
174     * known first unmatched node, and similarly for tail. Again, this
175     * may be triggered with using thresholds or randomization.
176 dl 1.45 *
177     * These ideas must be further extended to avoid unbounded amounts
178     * of costly-to-reclaim garbage caused by the sequential "next"
179     * links of nodes starting at old forgotten head nodes: As first
180     * described in detail by Boehm
181     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
182     * delays noticing that any arbitrarily old node has become
183     * garbage, all newer dead nodes will also be unreclaimed.
184     * (Similar issues arise in non-GC environments.) To cope with
185     * this in our implementation, upon CASing to advance the head
186     * pointer, we set the "next" link of the previous head to point
187 jsr166 1.46 * only to itself; thus limiting the length of connected dead lists.
188 dl 1.45 * (We also take similar care to wipe out possibly garbage
189     * retaining values held in other Node fields.) However, doing so
190     * adds some further complexity to traversal: If any "next"
191     * pointer links to itself, it indicates that the current thread
192     * has lagged behind a head-update, and so the traversal must
193     * continue from the "head". Traversals trying to find the
194     * current tail starting from "tail" may also encounter
195     * self-links, in which case they also continue at "head".
196     *
197     * It is tempting in slack-based scheme to not even use CAS for
198     * updates (similarly to Ladan-Mozes & Shavit). However, this
199     * cannot be done for head updates under the above link-forgetting
200     * mechanics because an update may leave head at a detached node.
201     * And while direct writes are possible for tail updates, they
202     * increase the risk of long retraversals, and hence long garbage
203 dl 1.50 * chains, which can be much more costly than is worthwhile
204 dl 1.45 * considering that the cost difference of performing a CAS vs
205     * write is smaller when they are not triggered on each operation
206     * (especially considering that writes and CASes equally require
207     * additional GC bookkeeping ("write barriers") that are sometimes
208     * more costly than the writes themselves because of contention).
209     *
210     * *** Overview of implementation ***
211     *
212 dl 1.50 * We use a threshold-based approach to updates, with a slack
213     * threshold of two -- that is, we update head/tail when the
214     * current pointer appears to be two or more steps away from the
215     * first/last node. The slack value is hard-wired: a path greater
216 dl 1.45 * than one is naturally implemented by checking equality of
217     * traversal pointers except when the list has only one element,
218 dl 1.50 * in which case we keep slack threshold at one. Avoiding tracking
219 dl 1.48 * explicit counts across method calls slightly simplifies an
220 dl 1.45 * already-messy implementation. Using randomization would
221     * probably work better if there were a low-quality dirt-cheap
222     * per-thread one available, but even ThreadLocalRandom is too
223     * heavy for these purposes.
224     *
225 dl 1.67 * With such a small slack threshold value, it is not worthwhile
226     * to augment this with path short-circuiting (i.e., unsplicing
227     * interior nodes) except in the case of cancellation/removal (see
228     * below).
229 dl 1.48 *
230     * We allow both the head and tail fields to be null before any
231     * nodes are enqueued; initializing upon first append. This
232     * simplifies some other logic, as well as providing more
233     * efficient explicit control paths instead of letting JVMs insert
234     * implicit NullPointerExceptions when they are null. While not
235     * currently fully implemented, we also leave open the possibility
236 jsr166 1.49 * of re-nulling these fields when empty (which is complicated to
237     * arrange, for little benefit.)
238 dl 1.45 *
239     * All enqueue/dequeue operations are handled by the single method
240     * "xfer" with parameters indicating whether to act as some form
241     * of offer, put, poll, take, or transfer (each possibly with
242     * timeout). The relative complexity of using one monolithic
243     * method outweighs the code bulk and maintenance problems of
244 dl 1.50 * using separate methods for each case.
245 dl 1.45 *
246     * Operation consists of up to three phases. The first is
247     * implemented within method xfer, the second in tryAppend, and
248     * the third in method awaitMatch.
249     *
250     * 1. Try to match an existing node
251     *
252     * Starting at head, skip already-matched nodes until finding
253     * an unmatched node of opposite mode, if one exists, in which
254     * case matching it and returning, also if necessary updating
255     * head to one past the matched node (or the node itself if the
256     * list has no other unmatched nodes). If the CAS misses, then
257 dl 1.48 * a loop retries advancing head by two steps until either
258     * success or the slack is at most two. By requiring that each
259     * attempt advances head by two (if applicable), we ensure that
260     * the slack does not grow without bound. Traversals also check
261     * if the initial head is now off-list, in which case they
262     * start at the new head.
263 dl 1.45 *
264     * If no candidates are found and the call was untimed
265     * poll/offer, (argument "how" is NOW) return.
266     *
267     * 2. Try to append a new node (method tryAppend)
268     *
269 dl 1.50 * Starting at current tail pointer, find the actual last node
270     * and try to append a new node (or if head was null, establish
271     * the first node). Nodes can be appended only if their
272     * predecessors are either already matched or are of the same
273     * mode. If we detect otherwise, then a new node with opposite
274     * mode must have been appended during traversal, so we must
275     * restart at phase 1. The traversal and update steps are
276     * otherwise similar to phase 1: Retrying upon CAS misses and
277     * checking for staleness. In particular, if a self-link is
278     * encountered, then we can safely jump to a node on the list
279     * by continuing the traversal at current head.
280 dl 1.45 *
281 jsr166 1.46 * On successful append, if the call was ASYNC, return.
282 dl 1.45 *
283     * 3. Await match or cancellation (method awaitMatch)
284     *
285     * Wait for another thread to match node; instead cancelling if
286 dl 1.50 * the current thread was interrupted or the wait timed out. On
287 dl 1.45 * multiprocessors, we use front-of-queue spinning: If a node
288     * appears to be the first unmatched node in the queue, it
289     * spins a bit before blocking. In either case, before blocking
290     * it tries to unsplice any nodes between the current "head"
291     * and the first unmatched node.
292     *
293     * Front-of-queue spinning vastly improves performance of
294     * heavily contended queues. And so long as it is relatively
295     * brief and "quiet", spinning does not much impact performance
296     * of less-contended queues. During spins threads check their
297     * interrupt status and generate a thread-local random number
298     * to decide to occasionally perform a Thread.yield. While
299     * yield has underdefined specs, we assume that might it help,
300     * and will not hurt in limiting impact of spinning on busy
301 dl 1.50 * systems. We also use smaller (1/2) spins for nodes that are
302     * not known to be front but whose predecessors have not
303     * blocked -- these "chained" spins avoid artifacts of
304 dl 1.45 * front-of-queue rules which otherwise lead to alternating
305     * nodes spinning vs blocking. Further, front threads that
306     * represent phase changes (from data to request node or vice
307     * versa) compared to their predecessors receive additional
308 dl 1.50 * chained spins, reflecting longer paths typically required to
309     * unblock threads during phase changes.
310 dl 1.67 *
311     *
312     * ** Unlinking removed interior nodes **
313     *
314     * In addition to minimizing garbage retention via self-linking
315     * described above, we also unlink removed interior nodes. These
316     * may arise due to timed out or interrupted waits, or calls to
317     * remove(x) or Iterator.remove. Normally, given a node that was
318     * at one time known to be the predecessor of some node s that is
319     * to be removed, we can unsplice s by CASing the next field of
320     * its predecessor if it still points to s (otherwise s must
321     * already have been removed or is now offlist). But there are two
322     * situations in which we cannot guarantee to make node s
323     * unreachable in this way: (1) If s is the trailing node of list
324     * (i.e., with null next), then it is pinned as the target node
325 jsr166 1.74 * for appends, so can only be removed later after other nodes are
326 dl 1.67 * appended. (2) We cannot necessarily unlink s given a
327     * predecessor node that is matched (including the case of being
328 jsr166 1.68 * cancelled): the predecessor may already be unspliced, in which
329     * case some previous reachable node may still point to s.
330     * (For further explanation see Herlihy & Shavit "The Art of
331 dl 1.67 * Multiprocessor Programming" chapter 9). Although, in both
332     * cases, we can rule out the need for further action if either s
333     * or its predecessor are (or can be made to be) at, or fall off
334     * from, the head of list.
335     *
336     * Without taking these into account, it would be possible for an
337     * unbounded number of supposedly removed nodes to remain
338     * reachable. Situations leading to such buildup are uncommon but
339     * can occur in practice; for example when a series of short timed
340     * calls to poll repeatedly time out but never otherwise fall off
341     * the list because of an untimed call to take at the front of the
342     * queue.
343     *
344     * When these cases arise, rather than always retraversing the
345     * entire list to find an actual predecessor to unlink (which
346     * won't help for case (1) anyway), we record a conservative
347 jsr166 1.75 * estimate of possible unsplice failures (in "sweepVotes").
348     * We trigger a full sweep when the estimate exceeds a threshold
349     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
350     * removal failures to tolerate before sweeping through, unlinking
351     * cancelled nodes that were not unlinked upon initial removal.
352     * We perform sweeps by the thread hitting threshold (rather than
353     * background threads or by spreading work to other threads)
354     * because in the main contexts in which removal occurs, the
355     * caller is already timed-out, cancelled, or performing a
356     * potentially O(n) operation (e.g. remove(x)), none of which are
357     * time-critical enough to warrant the overhead that alternatives
358     * would impose on other threads.
359 dl 1.67 *
360     * Because the sweepVotes estimate is conservative, and because
361     * nodes become unlinked "naturally" as they fall off the head of
362     * the queue, and because we allow votes to accumulate even while
363 jsr166 1.68 * sweeps are in progress, there are typically significantly fewer
364 dl 1.67 * such nodes than estimated. Choice of a threshold value
365     * balances the likelihood of wasted effort and contention, versus
366     * providing a worst-case bound on retention of interior nodes in
367     * quiescent queues. The value defined below was chosen
368     * empirically to balance these under various timeout scenarios.
369     *
370     * Note that we cannot self-link unlinked interior nodes during
371     * sweeps. However, the associated garbage chains terminate when
372     * some successor ultimately falls off the head of the list and is
373     * self-linked.
374 dl 1.45 */
375    
376     /** True if on multiprocessor */
377     private static final boolean MP =
378     Runtime.getRuntime().availableProcessors() > 1;
379    
380     /**
381 dl 1.50 * The number of times to spin (with randomly interspersed calls
382     * to Thread.yield) on multiprocessor before blocking when a node
383     * is apparently the first waiter in the queue. See above for
384     * explanation. Must be a power of two. The value is empirically
385     * derived -- it works pretty well across a variety of processors,
386     * numbers of CPUs, and OSes.
387 dl 1.45 */
388     private static final int FRONT_SPINS = 1 << 7;
389    
390     /**
391     * The number of times to spin before blocking when a node is
392 dl 1.50 * preceded by another node that is apparently spinning. Also
393     * serves as an increment to FRONT_SPINS on phase changes, and as
394     * base average frequency for yielding during spins. Must be a
395     * power of two.
396 dl 1.45 */
397 dl 1.50 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
398 dl 1.45
399     /**
400 dl 1.67 * The maximum number of estimated removal failures (sweepVotes)
401     * to tolerate before sweeping through the queue unlinking
402     * cancelled nodes that were not unlinked upon initial
403     * removal. See above for explanation. The value must be at least
404     * two to avoid useless sweeps when removing trailing nodes.
405     */
406     static final int SWEEP_THRESHOLD = 32;
407    
408     /**
409 jsr166 1.46 * Queue nodes. Uses Object, not E, for items to allow forgetting
410 dl 1.45 * them after use. Relies heavily on Unsafe mechanics to minimize
411 dl 1.67 * unnecessary ordering constraints: Writes that are intrinsically
412     * ordered wrt other accesses or CASes use simple relaxed forms.
413 dl 1.45 */
414 jsr166 1.61 static final class Node {
415 dl 1.45 final boolean isData; // false if this is a request node
416 jsr166 1.46 volatile Object item; // initially non-null if isData; CASed to match
417 jsr166 1.61 volatile Node next;
418 dl 1.45 volatile Thread waiter; // null until waiting
419 dl 1.1
420 dl 1.45 // CAS methods for fields
421 jsr166 1.61 final boolean casNext(Node cmp, Node val) {
422 dl 1.45 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
423     }
424 dl 1.1
425 dl 1.45 final boolean casItem(Object cmp, Object val) {
426 dl 1.73 // assert cmp == null || cmp.getClass() != Node.class;
427 dl 1.45 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
428     }
429 dl 1.1
430 dl 1.45 /**
431 jsr166 1.76 * Constructs a new node. Uses relaxed write because item can
432     * only be seen after publication via casNext.
433 dl 1.45 */
434 jsr166 1.61 Node(Object item, boolean isData) {
435 dl 1.45 UNSAFE.putObject(this, itemOffset, item); // relaxed write
436 dl 1.1 this.isData = isData;
437     }
438    
439 dl 1.45 /**
440     * Links node to itself to avoid garbage retention. Called
441     * only after CASing head field, so uses relaxed write.
442     */
443     final void forgetNext() {
444     UNSAFE.putObject(this, nextOffset, this);
445     }
446 jsr166 1.32
447 dl 1.45 /**
448 dl 1.67 * Sets item to self and waiter to null, to avoid garbage
449     * retention after matching or cancelling. Uses relaxed writes
450 dl 1.73 * because order is already constrained in the only calling
451 dl 1.67 * contexts: item is forgotten only after volatile/atomic
452     * mechanics that extract items. Similarly, clearing waiter
453     * follows either CAS or return from park (if ever parked;
454     * else we don't care).
455 dl 1.45 */
456     final void forgetContents() {
457 dl 1.67 UNSAFE.putObject(this, itemOffset, this);
458     UNSAFE.putObject(this, waiterOffset, null);
459 dl 1.45 }
460 jsr166 1.32
461 dl 1.45 /**
462     * Returns true if this node has been matched, including the
463     * case of artificial matches due to cancellation.
464     */
465     final boolean isMatched() {
466     Object x = item;
467 jsr166 1.57 return (x == this) || ((x == null) == isData);
468 dl 1.1 }
469 dl 1.15
470 dl 1.45 /**
471 jsr166 1.58 * Returns true if this is an unmatched request node.
472     */
473     final boolean isUnmatchedRequest() {
474     return !isData && item == null;
475     }
476    
477     /**
478 dl 1.45 * Returns true if a node with the given mode cannot be
479     * appended to this node because this node is unmatched and
480     * has opposite data mode.
481     */
482     final boolean cannotPrecede(boolean haveData) {
483     boolean d = isData;
484     Object x;
485     return d != haveData && (x = item) != this && (x != null) == d;
486 jsr166 1.31 }
487    
488     /**
489 jsr166 1.46 * Tries to artificially match a data node -- used by remove.
490 jsr166 1.31 */
491 dl 1.45 final boolean tryMatchData() {
492 dl 1.73 // assert isData;
493 dl 1.45 Object x = item;
494     if (x != null && x != this && casItem(x, null)) {
495     LockSupport.unpark(waiter);
496     return true;
497 jsr166 1.31 }
498 dl 1.45 return false;
499 dl 1.15 }
500    
501 dl 1.45 // Unsafe mechanics
502     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
503     private static final long nextOffset =
504     objectFieldOffset(UNSAFE, "next", Node.class);
505     private static final long itemOffset =
506     objectFieldOffset(UNSAFE, "item", Node.class);
507     private static final long waiterOffset =
508     objectFieldOffset(UNSAFE, "waiter", Node.class);
509    
510 jsr166 1.24 private static final long serialVersionUID = -3375979862319811754L;
511 dl 1.1 }
512    
513 dl 1.45 /** head of the queue; null until first enqueue */
514 jsr166 1.61 transient volatile Node head;
515 dl 1.45
516     /** tail of the queue; null until first append */
517 jsr166 1.61 private transient volatile Node tail;
518 dl 1.1
519 dl 1.67 /** The number of apparent failures to unsplice removed nodes */
520     private transient volatile int sweepVotes;
521    
522 dl 1.45 // CAS methods for fields
523 jsr166 1.61 private boolean casTail(Node cmp, Node val) {
524 dl 1.45 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
525     }
526 jsr166 1.23
527 jsr166 1.61 private boolean casHead(Node cmp, Node val) {
528 dl 1.45 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
529     }
530 dl 1.1
531 dl 1.67 private boolean casSweepVotes(int cmp, int val) {
532     return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
533 dl 1.45 }
534 dl 1.1
535 dl 1.45 /*
536 jsr166 1.64 * Possible values for "how" argument in xfer method.
537 dl 1.1 */
538 jsr166 1.65 private static final int NOW = 0; // for untimed poll, tryTransfer
539     private static final int ASYNC = 1; // for offer, put, add
540     private static final int SYNC = 2; // for transfer, take
541     private static final int TIMED = 3; // for timed poll, tryTransfer
542 jsr166 1.5
543 jsr166 1.56 @SuppressWarnings("unchecked")
544     static <E> E cast(Object item) {
545 dl 1.73 // assert item == null || item.getClass() != Node.class;
546 jsr166 1.56 return (E) item;
547     }
548    
549 dl 1.1 /**
550 dl 1.45 * Implements all queuing methods. See above for explanation.
551 jsr166 1.17 *
552 dl 1.45 * @param e the item or null for take
553 jsr166 1.46 * @param haveData true if this is a put, else a take
554 jsr166 1.65 * @param how NOW, ASYNC, SYNC, or TIMED
555     * @param nanos timeout in nanosecs, used only if mode is TIMED
556 jsr166 1.46 * @return an item if matched, else e
557 dl 1.45 * @throws NullPointerException if haveData mode but e is null
558 dl 1.1 */
559 jsr166 1.54 private E xfer(E e, boolean haveData, int how, long nanos) {
560 dl 1.45 if (haveData && (e == null))
561     throw new NullPointerException();
562 jsr166 1.61 Node s = null; // the node to append, if needed
563 dl 1.1
564 dl 1.45 retry: for (;;) { // restart on append race
565 dl 1.1
566 jsr166 1.61 for (Node h = head, p = h; p != null;) { // find & match first node
567 dl 1.45 boolean isData = p.isData;
568     Object item = p.item;
569     if (item != p && (item != null) == isData) { // unmatched
570     if (isData == haveData) // can't match
571     break;
572     if (p.casItem(item, e)) { // match
573 jsr166 1.61 for (Node q = p; q != h;) {
574 dl 1.67 Node n = q.next; // update by 2 unless singleton
575     if (head == h && casHead(h, n == null? q : n)) {
576 dl 1.45 h.forgetNext();
577     break;
578     } // advance and retry
579     if ((h = head) == null ||
580 dl 1.52 (q = h.next) == null || !q.isMatched())
581 dl 1.45 break; // unless slack < 2
582     }
583 dl 1.52 LockSupport.unpark(p.waiter);
584 jsr166 1.54 return this.<E>cast(item);
585 dl 1.1 }
586     }
587 jsr166 1.61 Node n = p.next;
588 jsr166 1.47 p = (p != n) ? n : (h = head); // Use head if p offlist
589 dl 1.45 }
590    
591 jsr166 1.64 if (how != NOW) { // No matches available
592 dl 1.45 if (s == null)
593 jsr166 1.61 s = new Node(e, haveData);
594     Node pred = tryAppend(s, haveData);
595 dl 1.45 if (pred == null)
596     continue retry; // lost race vs opposite mode
597 jsr166 1.64 if (how != ASYNC)
598 jsr166 1.65 return awaitMatch(s, pred, e, (how == TIMED), nanos);
599 dl 1.1 }
600 dl 1.45 return e; // not waiting
601 dl 1.1 }
602     }
603    
604     /**
605 jsr166 1.46 * Tries to append node s as tail.
606     *
607 dl 1.48 * @param s the node to append
608 dl 1.45 * @param haveData true if appending in data mode
609     * @return null on failure due to losing race with append in
610     * different mode, else s's predecessor, or s itself if no
611     * predecessor
612 dl 1.1 */
613 jsr166 1.61 private Node tryAppend(Node s, boolean haveData) {
614     for (Node t = tail, p = t;;) { // move p to last node and append
615     Node n, u; // temps for reads of next & tail
616 dl 1.45 if (p == null && (p = head) == null) {
617     if (casHead(null, s))
618     return s; // initialize
619     }
620     else if (p.cannotPrecede(haveData))
621     return null; // lost race vs opposite mode
622 dl 1.48 else if ((n = p.next) != null) // not last; keep traversing
623 dl 1.45 p = p != t && t != (u = tail) ? (t = u) : // stale tail
624 jsr166 1.47 (p != n) ? n : null; // restart if off list
625 dl 1.45 else if (!p.casNext(null, s))
626     p = p.next; // re-read on CAS failure
627     else {
628 dl 1.48 if (p != t) { // update if slack now >= 2
629 dl 1.45 while ((tail != t || !casTail(t, s)) &&
630     (t = tail) != null &&
631     (s = t.next) != null && // advance and retry
632     (s = s.next) != null && s != t);
633 dl 1.1 }
634 dl 1.45 return p;
635 dl 1.1 }
636     }
637     }
638    
639     /**
640 dl 1.45 * Spins/yields/blocks until node s is matched or caller gives up.
641 dl 1.1 *
642     * @param s the waiting node
643 dl 1.50 * @param pred the predecessor of s, or s itself if it has no
644     * predecessor, or null if unknown (the null case does not occur
645     * in any current calls but may in possible future extensions)
646 dl 1.1 * @param e the comparison value for checking match
647 jsr166 1.64 * @param timed if true, wait only until timeout elapses
648 jsr166 1.65 * @param nanos timeout in nanosecs, used only if timed is true
649 dl 1.45 * @return matched item, or e if unmatched on interrupt or timeout
650 dl 1.1 */
651 jsr166 1.64 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
652     long lastTime = timed ? System.nanoTime() : 0L;
653 dl 1.45 Thread w = Thread.currentThread();
654     int spins = -1; // initialized after first item and cancel checks
655     ThreadLocalRandom randomYields = null; // bound if needed
656 dl 1.1
657     for (;;) {
658 dl 1.45 Object item = s.item;
659     if (item != e) { // matched
660 dl 1.73 // assert item != s;
661 dl 1.45 s.forgetContents(); // avoid garbage
662 jsr166 1.54 return this.<E>cast(item);
663 dl 1.45 }
664 jsr166 1.64 if ((w.isInterrupted() || (timed && nanos <= 0)) &&
665 dl 1.67 s.casItem(e, s)) { // cancel
666 dl 1.45 unsplice(pred, s);
667     return e;
668     }
669    
670     if (spins < 0) { // establish spins at/near front
671     if ((spins = spinsFor(pred, s.isData)) > 0)
672     randomYields = ThreadLocalRandom.current();
673     }
674 dl 1.50 else if (spins > 0) { // spin
675 dl 1.67 --spins;
676     if (randomYields.nextInt(CHAINED_SPINS) == 0)
677 dl 1.50 Thread.yield(); // occasionally yield
678 dl 1.45 }
679     else if (s.waiter == null) {
680 dl 1.51 s.waiter = w; // request unpark then recheck
681 dl 1.1 }
682 jsr166 1.64 else if (timed) {
683 dl 1.1 long now = System.nanoTime();
684 dl 1.45 if ((nanos -= now - lastTime) > 0)
685     LockSupport.parkNanos(this, nanos);
686 dl 1.1 lastTime = now;
687     }
688 dl 1.45 else {
689 dl 1.12 LockSupport.park(this);
690 dl 1.1 }
691 dl 1.45 }
692     }
693    
694     /**
695 jsr166 1.46 * Returns spin/yield value for a node with given predecessor and
696 dl 1.45 * data mode. See above for explanation.
697     */
698 jsr166 1.61 private static int spinsFor(Node pred, boolean haveData) {
699 dl 1.45 if (MP && pred != null) {
700 dl 1.50 if (pred.isData != haveData) // phase change
701     return FRONT_SPINS + CHAINED_SPINS;
702     if (pred.isMatched()) // probably at front
703 dl 1.45 return FRONT_SPINS;
704     if (pred.waiter == null) // pred apparently spinning
705     return CHAINED_SPINS;
706     }
707     return 0;
708     }
709    
710     /* -------------- Traversal methods -------------- */
711    
712 dl 1.1 /**
713 jsr166 1.62 * Returns the successor of p, or the head node if p.next has been
714     * linked to self, which will only be true if traversing with a
715     * stale pointer that is now off the list.
716     */
717     final Node succ(Node p) {
718     Node next = p.next;
719     return (p == next) ? head : next;
720     }
721    
722     /**
723 jsr166 1.46 * Returns the first unmatched node of the given mode, or null if
724 dl 1.45 * none. Used by methods isEmpty, hasWaitingConsumer.
725 dl 1.9 */
726 jsr166 1.62 private Node firstOfMode(boolean isData) {
727     for (Node p = head; p != null; p = succ(p)) {
728 dl 1.45 if (!p.isMatched())
729 jsr166 1.62 return (p.isData == isData) ? p : null;
730 dl 1.45 }
731     return null;
732     }
733    
734     /**
735     * Returns the item in the first unmatched node with isData; or
736 jsr166 1.54 * null if none. Used by peek.
737 dl 1.45 */
738 jsr166 1.54 private E firstDataItem() {
739 jsr166 1.62 for (Node p = head; p != null; p = succ(p)) {
740 dl 1.45 Object item = p.item;
741 jsr166 1.62 if (p.isData) {
742     if (item != null && item != p)
743     return this.<E>cast(item);
744     }
745     else if (item == null)
746     return null;
747 dl 1.45 }
748     return null;
749     }
750    
751     /**
752 jsr166 1.46 * Traverses and counts unmatched nodes of the given mode.
753     * Used by methods size and getWaitingConsumerCount.
754 dl 1.45 */
755     private int countOfMode(boolean data) {
756     int count = 0;
757 jsr166 1.61 for (Node p = head; p != null; ) {
758 dl 1.45 if (!p.isMatched()) {
759     if (p.isData != data)
760     return 0;
761     if (++count == Integer.MAX_VALUE) // saturated
762     break;
763 dl 1.9 }
764 jsr166 1.61 Node n = p.next;
765 dl 1.45 if (n != p)
766     p = n;
767     else {
768     count = 0;
769     p = head;
770 dl 1.9 }
771     }
772 dl 1.45 return count;
773 jsr166 1.10 }
774 dl 1.9
775 dl 1.45 final class Itr implements Iterator<E> {
776 jsr166 1.61 private Node nextNode; // next node to return item for
777     private E nextItem; // the corresponding item
778     private Node lastRet; // last returned node, to support remove
779     private Node lastPred; // predecessor to unlink lastRet
780 dl 1.45
781     /**
782     * Moves to next node after prev, or first node if prev null.
783     */
784 jsr166 1.61 private void advance(Node prev) {
785 dl 1.60 lastPred = lastRet;
786 dl 1.45 lastRet = prev;
787 jsr166 1.62 for (Node p = (prev == null) ? head : succ(prev);
788     p != null; p = succ(p)) {
789 dl 1.45 Object item = p.item;
790     if (p.isData) {
791     if (item != null && item != p) {
792 jsr166 1.54 nextItem = LinkedTransferQueue.this.<E>cast(item);
793 dl 1.45 nextNode = p;
794     return;
795     }
796     }
797     else if (item == null)
798     break;
799     }
800     nextNode = null;
801     }
802    
803     Itr() {
804     advance(null);
805     }
806    
807     public final boolean hasNext() {
808     return nextNode != null;
809     }
810    
811     public final E next() {
812 jsr166 1.61 Node p = nextNode;
813 dl 1.45 if (p == null) throw new NoSuchElementException();
814 jsr166 1.54 E e = nextItem;
815 dl 1.45 advance(p);
816 jsr166 1.54 return e;
817 dl 1.45 }
818    
819     public final void remove() {
820 jsr166 1.61 Node p = lastRet;
821 dl 1.45 if (p == null) throw new IllegalStateException();
822 dl 1.67 if (p.tryMatchData())
823     unsplice(lastPred, p);
824 dl 1.45 }
825     }
826    
827     /* -------------- Removal methods -------------- */
828    
829 dl 1.9 /**
830 dl 1.45 * Unsplices (now or later) the given deleted/cancelled node with
831     * the given predecessor.
832 jsr166 1.17 *
833 dl 1.67 * @param pred a node that was at one time known to be the
834     * predecessor of s, or null or s itself if s is/was at head
835 dl 1.45 * @param s the node to be unspliced
836 dl 1.1 */
837 dl 1.67 final void unsplice(Node pred, Node s) {
838     s.forgetContents(); // forget unneeded fields
839 dl 1.9 /*
840 dl 1.67 * See above for rationale. Briefly: if pred still points to
841     * s, try to unlink s. If s cannot be unlinked, because it is
842     * trailing node or pred might be unlinked, and neither pred
843     * nor s are head or offlist, add to sweepVotes, and if enough
844     * votes have accumulated, sweep.
845 dl 1.9 */
846 dl 1.67 if (pred != null && pred != s && pred.next == s) {
847     Node n = s.next;
848     if (n == null ||
849     (n != s && pred.casNext(s, n) && pred.isMatched())) {
850     for (;;) { // check if at, or could be, head
851     Node h = head;
852     if (h == pred || h == s || h == null)
853     return; // at head or list empty
854     if (!h.isMatched())
855     break;
856     Node hn = h.next;
857     if (hn == null)
858     return; // now empty
859     if (hn != h && casHead(h, hn))
860     h.forgetNext(); // advance head
861 dl 1.45 }
862 dl 1.67 if (pred.next != pred && s.next != s) { // recheck if offlist
863     for (;;) { // sweep now if enough votes
864     int v = sweepVotes;
865     if (v < SWEEP_THRESHOLD) {
866     if (casSweepVotes(v, v + 1))
867     break;
868     }
869     else if (casSweepVotes(v, 0)) {
870     sweep();
871     break;
872     }
873     }
874 jsr166 1.59 }
875 dl 1.9 }
876     }
877     }
878 jsr166 1.5
879 dl 1.9 /**
880 jsr166 1.77 * Unlinks matched (typically cancelled) nodes encountered in a
881     * traversal from head.
882 dl 1.9 */
883 dl 1.67 private void sweep() {
884 jsr166 1.71 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
885     if (p == s) // stale
886     p = head;
887     else if (!s.isMatched())
888     p = s;
889 dl 1.78 else if ((n = s.next) == null || s == n) // trailing node is pinned
890 jsr166 1.71 break;
891     else
892 dl 1.67 p.casNext(s, n);
893 dl 1.45 }
894     }
895    
896     /**
897     * Main implementation of remove(Object)
898     */
899     private boolean findAndRemove(Object e) {
900     if (e != null) {
901 jsr166 1.61 for (Node pred = null, p = head; p != null; ) {
902 dl 1.45 Object item = p.item;
903     if (p.isData) {
904     if (item != null && item != p && e.equals(item) &&
905     p.tryMatchData()) {
906     unsplice(pred, p);
907     return true;
908     }
909     }
910     else if (item == null)
911     break;
912     pred = p;
913 jsr166 1.58 if ((p = p.next) == pred) { // stale
914 dl 1.45 pred = null;
915     p = head;
916     }
917     }
918     }
919     return false;
920     }
921    
922    
923     /**
924 jsr166 1.11 * Creates an initially empty {@code LinkedTransferQueue}.
925 dl 1.1 */
926     public LinkedTransferQueue() {
927     }
928    
929     /**
930 jsr166 1.11 * Creates a {@code LinkedTransferQueue}
931 dl 1.1 * initially containing the elements of the given collection,
932     * added in traversal order of the collection's iterator.
933 jsr166 1.17 *
934 dl 1.1 * @param c the collection of elements to initially contain
935     * @throws NullPointerException if the specified collection or any
936     * of its elements are null
937     */
938     public LinkedTransferQueue(Collection<? extends E> c) {
939 dl 1.7 this();
940 dl 1.1 addAll(c);
941     }
942    
943 jsr166 1.29 /**
944 jsr166 1.35 * Inserts the specified element at the tail of this queue.
945     * As the queue is unbounded, this method will never block.
946     *
947     * @throws NullPointerException if the specified element is null
948 jsr166 1.29 */
949 jsr166 1.35 public void put(E e) {
950 dl 1.45 xfer(e, true, ASYNC, 0);
951 dl 1.1 }
952    
953 jsr166 1.29 /**
954 jsr166 1.35 * Inserts the specified element at the tail of this queue.
955     * As the queue is unbounded, this method will never block or
956     * return {@code false}.
957     *
958     * @return {@code true} (as specified by
959     * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
960     * @throws NullPointerException if the specified element is null
961 jsr166 1.29 */
962 jsr166 1.35 public boolean offer(E e, long timeout, TimeUnit unit) {
963 dl 1.45 xfer(e, true, ASYNC, 0);
964     return true;
965 dl 1.1 }
966    
967 jsr166 1.29 /**
968 jsr166 1.35 * Inserts the specified element at the tail of this queue.
969     * As the queue is unbounded, this method will never return {@code false}.
970     *
971     * @return {@code true} (as specified by
972     * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
973     * @throws NullPointerException if the specified element is null
974 jsr166 1.29 */
975 dl 1.1 public boolean offer(E e) {
976 dl 1.45 xfer(e, true, ASYNC, 0);
977 dl 1.1 return true;
978     }
979    
980 jsr166 1.29 /**
981 jsr166 1.35 * Inserts the specified element at the tail of this queue.
982 jsr166 1.37 * As the queue is unbounded, this method will never throw
983 jsr166 1.35 * {@link IllegalStateException} or return {@code false}.
984     *
985     * @return {@code true} (as specified by {@link Collection#add})
986     * @throws NullPointerException if the specified element is null
987 jsr166 1.29 */
988 dl 1.15 public boolean add(E e) {
989 dl 1.45 xfer(e, true, ASYNC, 0);
990     return true;
991 jsr166 1.35 }
992    
993     /**
994 jsr166 1.40 * Transfers the element to a waiting consumer immediately, if possible.
995     *
996     * <p>More precisely, transfers the specified element immediately
997     * if there exists a consumer already waiting to receive it (in
998     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
999     * otherwise returning {@code false} without enqueuing the element.
1000 jsr166 1.35 *
1001     * @throws NullPointerException if the specified element is null
1002     */
1003     public boolean tryTransfer(E e) {
1004 dl 1.45 return xfer(e, true, NOW, 0) == null;
1005 dl 1.15 }
1006    
1007 jsr166 1.29 /**
1008 jsr166 1.40 * Transfers the element to a consumer, waiting if necessary to do so.
1009     *
1010     * <p>More precisely, transfers the specified element immediately
1011     * if there exists a consumer already waiting to receive it (in
1012     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1013     * else inserts the specified element at the tail of this queue
1014     * and waits until the element is received by a consumer.
1015 jsr166 1.35 *
1016     * @throws NullPointerException if the specified element is null
1017 jsr166 1.29 */
1018 dl 1.1 public void transfer(E e) throws InterruptedException {
1019 dl 1.45 if (xfer(e, true, SYNC, 0) != null) {
1020     Thread.interrupted(); // failure possible only due to interrupt
1021 dl 1.1 throw new InterruptedException();
1022 jsr166 1.6 }
1023 dl 1.1 }
1024    
1025 jsr166 1.29 /**
1026 jsr166 1.40 * Transfers the element to a consumer if it is possible to do so
1027     * before the timeout elapses.
1028     *
1029     * <p>More precisely, transfers the specified element immediately
1030     * if there exists a consumer already waiting to receive it (in
1031     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1032     * else inserts the specified element at the tail of this queue
1033     * and waits until the element is received by a consumer,
1034     * returning {@code false} if the specified wait time elapses
1035     * before the element can be transferred.
1036 jsr166 1.35 *
1037     * @throws NullPointerException if the specified element is null
1038 jsr166 1.29 */
1039 dl 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1040     throws InterruptedException {
1041 jsr166 1.65 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1042 dl 1.1 return true;
1043     if (!Thread.interrupted())
1044     return false;
1045     throw new InterruptedException();
1046     }
1047    
1048     public E take() throws InterruptedException {
1049 jsr166 1.54 E e = xfer(null, false, SYNC, 0);
1050 dl 1.1 if (e != null)
1051 jsr166 1.54 return e;
1052 jsr166 1.6 Thread.interrupted();
1053 dl 1.1 throw new InterruptedException();
1054     }
1055    
1056     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1057 jsr166 1.65 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1058 dl 1.1 if (e != null || !Thread.interrupted())
1059 jsr166 1.54 return e;
1060 dl 1.1 throw new InterruptedException();
1061     }
1062    
1063     public E poll() {
1064 jsr166 1.54 return xfer(null, false, NOW, 0);
1065 dl 1.1 }
1066    
1067 jsr166 1.29 /**
1068 jsr166 1.30 * @throws NullPointerException {@inheritDoc}
1069     * @throws IllegalArgumentException {@inheritDoc}
1070 jsr166 1.29 */
1071 dl 1.1 public int drainTo(Collection<? super E> c) {
1072     if (c == null)
1073     throw new NullPointerException();
1074     if (c == this)
1075     throw new IllegalArgumentException();
1076     int n = 0;
1077     E e;
1078     while ( (e = poll()) != null) {
1079     c.add(e);
1080     ++n;
1081     }
1082     return n;
1083     }
1084    
1085 jsr166 1.29 /**
1086 jsr166 1.30 * @throws NullPointerException {@inheritDoc}
1087     * @throws IllegalArgumentException {@inheritDoc}
1088 jsr166 1.29 */
1089 dl 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1090     if (c == null)
1091     throw new NullPointerException();
1092     if (c == this)
1093     throw new IllegalArgumentException();
1094     int n = 0;
1095     E e;
1096     while (n < maxElements && (e = poll()) != null) {
1097     c.add(e);
1098     ++n;
1099     }
1100     return n;
1101     }
1102    
1103 jsr166 1.35 /**
1104     * Returns an iterator over the elements in this queue in proper
1105     * sequence, from head to tail.
1106     *
1107     * <p>The returned iterator is a "weakly consistent" iterator that
1108     * will never throw
1109     * {@link ConcurrentModificationException ConcurrentModificationException},
1110     * and guarantees to traverse elements as they existed upon
1111     * construction of the iterator, and may (but is not guaranteed
1112     * to) reflect any modifications subsequent to construction.
1113     *
1114     * @return an iterator over the elements in this queue in proper sequence
1115     */
1116 dl 1.1 public Iterator<E> iterator() {
1117     return new Itr();
1118     }
1119    
1120     public E peek() {
1121 jsr166 1.54 return firstDataItem();
1122 dl 1.1 }
1123    
1124 jsr166 1.41 /**
1125     * Returns {@code true} if this queue contains no elements.
1126     *
1127     * @return {@code true} if this queue contains no elements
1128     */
1129 dl 1.2 public boolean isEmpty() {
1130 dl 1.72 for (Node p = head; p != null; p = succ(p)) {
1131     if (!p.isMatched())
1132     return !p.isData;
1133     }
1134     return true;
1135 dl 1.2 }
1136    
1137 dl 1.1 public boolean hasWaitingConsumer() {
1138 dl 1.45 return firstOfMode(false) != null;
1139 dl 1.1 }
1140 jsr166 1.5
1141 dl 1.1 /**
1142     * Returns the number of elements in this queue. If this queue
1143 jsr166 1.11 * contains more than {@code Integer.MAX_VALUE} elements, returns
1144     * {@code Integer.MAX_VALUE}.
1145 dl 1.1 *
1146     * <p>Beware that, unlike in most collections, this method is
1147     * <em>NOT</em> a constant-time operation. Because of the
1148     * asynchronous nature of these queues, determining the current
1149     * number of elements requires an O(n) traversal.
1150     *
1151     * @return the number of elements in this queue
1152     */
1153     public int size() {
1154 dl 1.45 return countOfMode(true);
1155 dl 1.1 }
1156    
1157     public int getWaitingConsumerCount() {
1158 dl 1.45 return countOfMode(false);
1159 dl 1.1 }
1160    
1161 jsr166 1.42 /**
1162     * Removes a single instance of the specified element from this queue,
1163     * if it is present. More formally, removes an element {@code e} such
1164     * that {@code o.equals(e)}, if this queue contains one or more such
1165     * elements.
1166     * Returns {@code true} if this queue contained the specified element
1167     * (or equivalently, if this queue changed as a result of the call).
1168     *
1169     * @param o element to be removed from this queue, if present
1170     * @return {@code true} if this queue changed as a result of the call
1171     */
1172 dl 1.15 public boolean remove(Object o) {
1173 dl 1.45 return findAndRemove(o);
1174 dl 1.15 }
1175    
1176 jsr166 1.35 /**
1177     * Always returns {@code Integer.MAX_VALUE} because a
1178     * {@code LinkedTransferQueue} is not capacity constrained.
1179     *
1180     * @return {@code Integer.MAX_VALUE} (as specified by
1181     * {@link BlockingQueue#remainingCapacity()})
1182     */
1183 dl 1.33 public int remainingCapacity() {
1184     return Integer.MAX_VALUE;
1185     }
1186    
1187 dl 1.1 /**
1188 jsr166 1.46 * Saves the state to a stream (that is, serializes it).
1189 dl 1.1 *
1190 jsr166 1.11 * @serialData All of the elements (each an {@code E}) in
1191 dl 1.1 * the proper order, followed by a null
1192     * @param s the stream
1193     */
1194     private void writeObject(java.io.ObjectOutputStream s)
1195     throws java.io.IOException {
1196     s.defaultWriteObject();
1197 jsr166 1.16 for (E e : this)
1198     s.writeObject(e);
1199 dl 1.1 // Use trailing null as sentinel
1200     s.writeObject(null);
1201     }
1202    
1203     /**
1204 jsr166 1.46 * Reconstitutes the Queue instance from a stream (that is,
1205     * deserializes it).
1206 jsr166 1.19 *
1207 dl 1.1 * @param s the stream
1208     */
1209     private void readObject(java.io.ObjectInputStream s)
1210     throws java.io.IOException, ClassNotFoundException {
1211     s.defaultReadObject();
1212     for (;;) {
1213 jsr166 1.25 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1214 dl 1.1 if (item == null)
1215     break;
1216     else
1217     offer(item);
1218     }
1219     }
1220 dl 1.7
1221 jsr166 1.28 // Unsafe mechanics
1222    
1223     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1224     private static final long headOffset =
1225 jsr166 1.31 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1226 jsr166 1.28 private static final long tailOffset =
1227 jsr166 1.31 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1228 dl 1.67 private static final long sweepVotesOffset =
1229     objectFieldOffset(UNSAFE, "sweepVotes", LinkedTransferQueue.class);
1230 jsr166 1.31
1231     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1232     String field, Class<?> klazz) {
1233 jsr166 1.28 try {
1234     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1235     } catch (NoSuchFieldException e) {
1236     // Convert Exception to corresponding Error
1237     NoSuchFieldError error = new NoSuchFieldError(field);
1238     error.initCause(e);
1239     throw error;
1240     }
1241     }
1242    
1243 jsr166 1.53 /**
1244     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1245     * Replace with a simple call to Unsafe.getUnsafe when integrating
1246     * into a jdk.
1247     *
1248     * @return a sun.misc.Unsafe
1249     */
1250 jsr166 1.54 static sun.misc.Unsafe getUnsafe() {
1251 jsr166 1.13 try {
1252 jsr166 1.25 return sun.misc.Unsafe.getUnsafe();
1253 jsr166 1.13 } catch (SecurityException se) {
1254     try {
1255     return java.security.AccessController.doPrivileged
1256 jsr166 1.28 (new java.security
1257     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1258 jsr166 1.25 public sun.misc.Unsafe run() throws Exception {
1259 jsr166 1.28 java.lang.reflect.Field f = sun.misc
1260     .Unsafe.class.getDeclaredField("theUnsafe");
1261     f.setAccessible(true);
1262     return (sun.misc.Unsafe) f.get(null);
1263 jsr166 1.13 }});
1264     } catch (java.security.PrivilegedActionException e) {
1265 jsr166 1.25 throw new RuntimeException("Could not initialize intrinsics",
1266     e.getCause());
1267 jsr166 1.13 }
1268     }
1269     }
1270 dl 1.45
1271 dl 1.1 }