ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.87
Committed: Fri Jun 3 14:17:10 2011 UTC (12 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.86: +1 -1 lines
Log Message:
typo

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.83 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 jsr166 1.26
9     import java.util.AbstractQueue;
10     import java.util.Collection;
11     import java.util.Iterator;
12     import java.util.NoSuchElementException;
13 jsr166 1.35 import java.util.Queue;
14 dl 1.80 import java.util.concurrent.TimeUnit;
15 jsr166 1.26 import java.util.concurrent.locks.LockSupport;
16 dl 1.73
17 dl 1.1 /**
18 jsr166 1.43 * An unbounded {@link TransferQueue} based on linked nodes.
19 dl 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
20     * to any given producer. The <em>head</em> of the queue is that
21     * element that has been on the queue the longest time for some
22     * producer. The <em>tail</em> of the queue is that element that has
23     * been on the queue the shortest time for some producer.
24     *
25 jsr166 1.84 * <p>Beware that, unlike in most collections, the {@code size} method
26     * is <em>NOT</em> a constant-time operation. Because of the
27 dl 1.1 * asynchronous nature of these queues, determining the current number
28 jsr166 1.84 * of elements requires a traversal of the elements, and so may report
29     * inaccurate results if this collection is modified during traversal.
30     * Additionally, the bulk operations {@code addAll},
31     * {@code removeAll}, {@code retainAll}, {@code containsAll},
32     * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
33     * to be performed atomically. For example, an iterator operating
34     * concurrently with an {@code addAll} operation might view only some
35     * of the added elements.
36 dl 1.1 *
37     * <p>This class and its iterator implement all of the
38     * <em>optional</em> methods of the {@link Collection} and {@link
39     * Iterator} interfaces.
40     *
41     * <p>Memory consistency effects: As with other concurrent
42     * collections, actions in a thread prior to placing an object into a
43     * {@code LinkedTransferQueue}
44     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
45     * actions subsequent to the access or removal of that element from
46     * the {@code LinkedTransferQueue} in another thread.
47     *
48     * <p>This class is a member of the
49     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
50     * Java Collections Framework</a>.
51     *
52 dl 1.3 * @since 1.7
53 dl 1.1 * @author Doug Lea
54     * @param <E> the type of elements held in this collection
55     */
56     public class LinkedTransferQueue<E> extends AbstractQueue<E>
57     implements TransferQueue<E>, java.io.Serializable {
58     private static final long serialVersionUID = -3223113410248163686L;
59    
60     /*
61 dl 1.45 * *** Overview of Dual Queues with Slack ***
62 dl 1.1 *
63 dl 1.45 * Dual Queues, introduced by Scherer and Scott
64     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
65     * (linked) queues in which nodes may represent either data or
66     * requests. When a thread tries to enqueue a data node, but
67     * encounters a request node, it instead "matches" and removes it;
68     * and vice versa for enqueuing requests. Blocking Dual Queues
69     * arrange that threads enqueuing unmatched requests block until
70     * other threads provide the match. Dual Synchronous Queues (see
71     * Scherer, Lea, & Scott
72     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
73     * additionally arrange that threads enqueuing unmatched data also
74     * block. Dual Transfer Queues support all of these modes, as
75     * dictated by callers.
76     *
77     * A FIFO dual queue may be implemented using a variation of the
78     * Michael & Scott (M&S) lock-free queue algorithm
79     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
80     * It maintains two pointer fields, "head", pointing to a
81     * (matched) node that in turn points to the first actual
82     * (unmatched) queue node (or null if empty); and "tail" that
83     * points to the last node on the queue (or again null if
84     * empty). For example, here is a possible queue with four data
85     * elements:
86     *
87     * head tail
88     * | |
89     * v v
90     * M -> U -> U -> U -> U
91     *
92     * The M&S queue algorithm is known to be prone to scalability and
93     * overhead limitations when maintaining (via CAS) these head and
94     * tail pointers. This has led to the development of
95     * contention-reducing variants such as elimination arrays (see
96     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
97     * optimistic back pointers (see Ladan-Mozes & Shavit
98     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
99     * However, the nature of dual queues enables a simpler tactic for
100     * improving M&S-style implementations when dual-ness is needed.
101     *
102     * In a dual queue, each node must atomically maintain its match
103     * status. While there are other possible variants, we implement
104     * this here as: for a data-mode node, matching entails CASing an
105     * "item" field from a non-null data value to null upon match, and
106     * vice-versa for request nodes, CASing from null to a data
107     * value. (Note that the linearization properties of this style of
108     * queue are easy to verify -- elements are made available by
109     * linking, and unavailable by matching.) Compared to plain M&S
110     * queues, this property of dual queues requires one additional
111     * successful atomic operation per enq/deq pair. But it also
112     * enables lower cost variants of queue maintenance mechanics. (A
113     * variation of this idea applies even for non-dual queues that
114 dl 1.48 * support deletion of interior elements, such as
115 dl 1.45 * j.u.c.ConcurrentLinkedQueue.)
116     *
117 dl 1.48 * Once a node is matched, its match status can never again
118     * change. We may thus arrange that the linked list of them
119     * contain a prefix of zero or more matched nodes, followed by a
120     * suffix of zero or more unmatched nodes. (Note that we allow
121     * both the prefix and suffix to be zero length, which in turn
122     * means that we do not use a dummy header.) If we were not
123     * concerned with either time or space efficiency, we could
124     * correctly perform enqueue and dequeue operations by traversing
125     * from a pointer to the initial node; CASing the item of the
126     * first unmatched node on match and CASing the next field of the
127     * trailing node on appends. (Plus some special-casing when
128     * initially empty). While this would be a terrible idea in
129     * itself, it does have the benefit of not requiring ANY atomic
130     * updates on head/tail fields.
131 dl 1.45 *
132     * We introduce here an approach that lies between the extremes of
133 dl 1.48 * never versus always updating queue (head and tail) pointers.
134     * This offers a tradeoff between sometimes requiring extra
135     * traversal steps to locate the first and/or last unmatched
136     * nodes, versus the reduced overhead and contention of fewer
137     * updates to queue pointers. For example, a possible snapshot of
138     * a queue is:
139 dl 1.45 *
140     * head tail
141     * | |
142     * v v
143     * M -> M -> U -> U -> U -> U
144     *
145     * The best value for this "slack" (the targeted maximum distance
146     * between the value of "head" and the first unmatched node, and
147     * similarly for "tail") is an empirical matter. We have found
148     * that using very small constants in the range of 1-3 work best
149     * over a range of platforms. Larger values introduce increasing
150 dl 1.48 * costs of cache misses and risks of long traversal chains, while
151 jsr166 1.49 * smaller values increase CAS contention and overhead.
152 dl 1.45 *
153     * Dual queues with slack differ from plain M&S dual queues by
154     * virtue of only sometimes updating head or tail pointers when
155     * matching, appending, or even traversing nodes; in order to
156     * maintain a targeted slack. The idea of "sometimes" may be
157     * operationalized in several ways. The simplest is to use a
158     * per-operation counter incremented on each traversal step, and
159     * to try (via CAS) to update the associated queue pointer
160     * whenever the count exceeds a threshold. Another, that requires
161     * more overhead, is to use random number generators to update
162     * with a given probability per traversal step.
163     *
164     * In any strategy along these lines, because CASes updating
165     * fields may fail, the actual slack may exceed targeted
166     * slack. However, they may be retried at any time to maintain
167     * targets. Even when using very small slack values, this
168     * approach works well for dual queues because it allows all
169     * operations up to the point of matching or appending an item
170 dl 1.50 * (hence potentially allowing progress by another thread) to be
171     * read-only, thus not introducing any further contention. As
172     * described below, we implement this by performing slack
173     * maintenance retries only after these points.
174 dl 1.45 *
175     * As an accompaniment to such techniques, traversal overhead can
176     * be further reduced without increasing contention of head
177 dl 1.50 * pointer updates: Threads may sometimes shortcut the "next" link
178     * path from the current "head" node to be closer to the currently
179     * known first unmatched node, and similarly for tail. Again, this
180     * may be triggered with using thresholds or randomization.
181 dl 1.45 *
182     * These ideas must be further extended to avoid unbounded amounts
183     * of costly-to-reclaim garbage caused by the sequential "next"
184     * links of nodes starting at old forgotten head nodes: As first
185     * described in detail by Boehm
186     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
187     * delays noticing that any arbitrarily old node has become
188     * garbage, all newer dead nodes will also be unreclaimed.
189     * (Similar issues arise in non-GC environments.) To cope with
190     * this in our implementation, upon CASing to advance the head
191     * pointer, we set the "next" link of the previous head to point
192 jsr166 1.46 * only to itself; thus limiting the length of connected dead lists.
193 dl 1.45 * (We also take similar care to wipe out possibly garbage
194     * retaining values held in other Node fields.) However, doing so
195     * adds some further complexity to traversal: If any "next"
196     * pointer links to itself, it indicates that the current thread
197     * has lagged behind a head-update, and so the traversal must
198     * continue from the "head". Traversals trying to find the
199     * current tail starting from "tail" may also encounter
200     * self-links, in which case they also continue at "head".
201     *
202     * It is tempting in slack-based scheme to not even use CAS for
203     * updates (similarly to Ladan-Mozes & Shavit). However, this
204     * cannot be done for head updates under the above link-forgetting
205     * mechanics because an update may leave head at a detached node.
206     * And while direct writes are possible for tail updates, they
207     * increase the risk of long retraversals, and hence long garbage
208 dl 1.50 * chains, which can be much more costly than is worthwhile
209 dl 1.45 * considering that the cost difference of performing a CAS vs
210     * write is smaller when they are not triggered on each operation
211     * (especially considering that writes and CASes equally require
212     * additional GC bookkeeping ("write barriers") that are sometimes
213     * more costly than the writes themselves because of contention).
214     *
215     * *** Overview of implementation ***
216     *
217 dl 1.50 * We use a threshold-based approach to updates, with a slack
218     * threshold of two -- that is, we update head/tail when the
219     * current pointer appears to be two or more steps away from the
220     * first/last node. The slack value is hard-wired: a path greater
221 dl 1.45 * than one is naturally implemented by checking equality of
222     * traversal pointers except when the list has only one element,
223 dl 1.50 * in which case we keep slack threshold at one. Avoiding tracking
224 dl 1.48 * explicit counts across method calls slightly simplifies an
225 dl 1.45 * already-messy implementation. Using randomization would
226     * probably work better if there were a low-quality dirt-cheap
227     * per-thread one available, but even ThreadLocalRandom is too
228     * heavy for these purposes.
229     *
230 dl 1.67 * With such a small slack threshold value, it is not worthwhile
231     * to augment this with path short-circuiting (i.e., unsplicing
232     * interior nodes) except in the case of cancellation/removal (see
233     * below).
234 dl 1.48 *
235     * We allow both the head and tail fields to be null before any
236     * nodes are enqueued; initializing upon first append. This
237     * simplifies some other logic, as well as providing more
238     * efficient explicit control paths instead of letting JVMs insert
239     * implicit NullPointerExceptions when they are null. While not
240     * currently fully implemented, we also leave open the possibility
241 jsr166 1.49 * of re-nulling these fields when empty (which is complicated to
242     * arrange, for little benefit.)
243 dl 1.45 *
244     * All enqueue/dequeue operations are handled by the single method
245     * "xfer" with parameters indicating whether to act as some form
246     * of offer, put, poll, take, or transfer (each possibly with
247     * timeout). The relative complexity of using one monolithic
248     * method outweighs the code bulk and maintenance problems of
249 dl 1.50 * using separate methods for each case.
250 dl 1.45 *
251     * Operation consists of up to three phases. The first is
252     * implemented within method xfer, the second in tryAppend, and
253     * the third in method awaitMatch.
254     *
255     * 1. Try to match an existing node
256     *
257     * Starting at head, skip already-matched nodes until finding
258     * an unmatched node of opposite mode, if one exists, in which
259     * case matching it and returning, also if necessary updating
260     * head to one past the matched node (or the node itself if the
261     * list has no other unmatched nodes). If the CAS misses, then
262 dl 1.48 * a loop retries advancing head by two steps until either
263     * success or the slack is at most two. By requiring that each
264     * attempt advances head by two (if applicable), we ensure that
265     * the slack does not grow without bound. Traversals also check
266     * if the initial head is now off-list, in which case they
267     * start at the new head.
268 dl 1.45 *
269     * If no candidates are found and the call was untimed
270     * poll/offer, (argument "how" is NOW) return.
271     *
272     * 2. Try to append a new node (method tryAppend)
273     *
274 dl 1.50 * Starting at current tail pointer, find the actual last node
275     * and try to append a new node (or if head was null, establish
276     * the first node). Nodes can be appended only if their
277     * predecessors are either already matched or are of the same
278     * mode. If we detect otherwise, then a new node with opposite
279     * mode must have been appended during traversal, so we must
280     * restart at phase 1. The traversal and update steps are
281     * otherwise similar to phase 1: Retrying upon CAS misses and
282     * checking for staleness. In particular, if a self-link is
283     * encountered, then we can safely jump to a node on the list
284     * by continuing the traversal at current head.
285 dl 1.45 *
286 jsr166 1.46 * On successful append, if the call was ASYNC, return.
287 dl 1.45 *
288     * 3. Await match or cancellation (method awaitMatch)
289     *
290     * Wait for another thread to match node; instead cancelling if
291 dl 1.50 * the current thread was interrupted or the wait timed out. On
292 dl 1.45 * multiprocessors, we use front-of-queue spinning: If a node
293     * appears to be the first unmatched node in the queue, it
294     * spins a bit before blocking. In either case, before blocking
295     * it tries to unsplice any nodes between the current "head"
296     * and the first unmatched node.
297     *
298     * Front-of-queue spinning vastly improves performance of
299     * heavily contended queues. And so long as it is relatively
300     * brief and "quiet", spinning does not much impact performance
301     * of less-contended queues. During spins threads check their
302     * interrupt status and generate a thread-local random number
303     * to decide to occasionally perform a Thread.yield. While
304 jsr166 1.87 * yield has underdefined specs, we assume that it might help,
305 dl 1.45 * and will not hurt in limiting impact of spinning on busy
306 dl 1.50 * systems. We also use smaller (1/2) spins for nodes that are
307     * not known to be front but whose predecessors have not
308     * blocked -- these "chained" spins avoid artifacts of
309 dl 1.45 * front-of-queue rules which otherwise lead to alternating
310     * nodes spinning vs blocking. Further, front threads that
311     * represent phase changes (from data to request node or vice
312     * versa) compared to their predecessors receive additional
313 dl 1.50 * chained spins, reflecting longer paths typically required to
314     * unblock threads during phase changes.
315 dl 1.67 *
316     *
317     * ** Unlinking removed interior nodes **
318     *
319     * In addition to minimizing garbage retention via self-linking
320     * described above, we also unlink removed interior nodes. These
321     * may arise due to timed out or interrupted waits, or calls to
322     * remove(x) or Iterator.remove. Normally, given a node that was
323     * at one time known to be the predecessor of some node s that is
324     * to be removed, we can unsplice s by CASing the next field of
325     * its predecessor if it still points to s (otherwise s must
326     * already have been removed or is now offlist). But there are two
327     * situations in which we cannot guarantee to make node s
328     * unreachable in this way: (1) If s is the trailing node of list
329     * (i.e., with null next), then it is pinned as the target node
330 jsr166 1.74 * for appends, so can only be removed later after other nodes are
331 dl 1.67 * appended. (2) We cannot necessarily unlink s given a
332     * predecessor node that is matched (including the case of being
333 jsr166 1.68 * cancelled): the predecessor may already be unspliced, in which
334     * case some previous reachable node may still point to s.
335     * (For further explanation see Herlihy & Shavit "The Art of
336 dl 1.67 * Multiprocessor Programming" chapter 9). Although, in both
337     * cases, we can rule out the need for further action if either s
338     * or its predecessor are (or can be made to be) at, or fall off
339     * from, the head of list.
340     *
341     * Without taking these into account, it would be possible for an
342     * unbounded number of supposedly removed nodes to remain
343     * reachable. Situations leading to such buildup are uncommon but
344     * can occur in practice; for example when a series of short timed
345     * calls to poll repeatedly time out but never otherwise fall off
346     * the list because of an untimed call to take at the front of the
347     * queue.
348     *
349     * When these cases arise, rather than always retraversing the
350     * entire list to find an actual predecessor to unlink (which
351     * won't help for case (1) anyway), we record a conservative
352 jsr166 1.75 * estimate of possible unsplice failures (in "sweepVotes").
353     * We trigger a full sweep when the estimate exceeds a threshold
354     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
355     * removal failures to tolerate before sweeping through, unlinking
356     * cancelled nodes that were not unlinked upon initial removal.
357     * We perform sweeps by the thread hitting threshold (rather than
358     * background threads or by spreading work to other threads)
359     * because in the main contexts in which removal occurs, the
360     * caller is already timed-out, cancelled, or performing a
361     * potentially O(n) operation (e.g. remove(x)), none of which are
362     * time-critical enough to warrant the overhead that alternatives
363     * would impose on other threads.
364 dl 1.67 *
365     * Because the sweepVotes estimate is conservative, and because
366     * nodes become unlinked "naturally" as they fall off the head of
367     * the queue, and because we allow votes to accumulate even while
368 jsr166 1.68 * sweeps are in progress, there are typically significantly fewer
369 dl 1.67 * such nodes than estimated. Choice of a threshold value
370     * balances the likelihood of wasted effort and contention, versus
371     * providing a worst-case bound on retention of interior nodes in
372     * quiescent queues. The value defined below was chosen
373     * empirically to balance these under various timeout scenarios.
374     *
375     * Note that we cannot self-link unlinked interior nodes during
376     * sweeps. However, the associated garbage chains terminate when
377     * some successor ultimately falls off the head of the list and is
378     * self-linked.
379 dl 1.45 */
380    
381     /** True if on multiprocessor */
382     private static final boolean MP =
383     Runtime.getRuntime().availableProcessors() > 1;
384    
385     /**
386 dl 1.50 * The number of times to spin (with randomly interspersed calls
387     * to Thread.yield) on multiprocessor before blocking when a node
388     * is apparently the first waiter in the queue. See above for
389     * explanation. Must be a power of two. The value is empirically
390     * derived -- it works pretty well across a variety of processors,
391     * numbers of CPUs, and OSes.
392 dl 1.45 */
393     private static final int FRONT_SPINS = 1 << 7;
394    
395     /**
396     * The number of times to spin before blocking when a node is
397 dl 1.50 * preceded by another node that is apparently spinning. Also
398     * serves as an increment to FRONT_SPINS on phase changes, and as
399     * base average frequency for yielding during spins. Must be a
400     * power of two.
401 dl 1.45 */
402 dl 1.50 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
403 dl 1.45
404     /**
405 dl 1.67 * The maximum number of estimated removal failures (sweepVotes)
406     * to tolerate before sweeping through the queue unlinking
407     * cancelled nodes that were not unlinked upon initial
408     * removal. See above for explanation. The value must be at least
409     * two to avoid useless sweeps when removing trailing nodes.
410     */
411     static final int SWEEP_THRESHOLD = 32;
412    
413     /**
414 jsr166 1.46 * Queue nodes. Uses Object, not E, for items to allow forgetting
415 dl 1.45 * them after use. Relies heavily on Unsafe mechanics to minimize
416 dl 1.67 * unnecessary ordering constraints: Writes that are intrinsically
417     * ordered wrt other accesses or CASes use simple relaxed forms.
418 dl 1.45 */
419 jsr166 1.61 static final class Node {
420 dl 1.45 final boolean isData; // false if this is a request node
421 jsr166 1.46 volatile Object item; // initially non-null if isData; CASed to match
422 jsr166 1.61 volatile Node next;
423 dl 1.45 volatile Thread waiter; // null until waiting
424 dl 1.1
425 dl 1.45 // CAS methods for fields
426 jsr166 1.61 final boolean casNext(Node cmp, Node val) {
427 dl 1.45 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
428     }
429 dl 1.1
430 dl 1.45 final boolean casItem(Object cmp, Object val) {
431 dl 1.80 // assert cmp == null || cmp.getClass() != Node.class;
432 dl 1.45 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
433     }
434 dl 1.1
435 dl 1.45 /**
436 jsr166 1.76 * Constructs a new node. Uses relaxed write because item can
437     * only be seen after publication via casNext.
438 dl 1.45 */
439 jsr166 1.61 Node(Object item, boolean isData) {
440 dl 1.45 UNSAFE.putObject(this, itemOffset, item); // relaxed write
441 dl 1.1 this.isData = isData;
442     }
443    
444 dl 1.45 /**
445     * Links node to itself to avoid garbage retention. Called
446     * only after CASing head field, so uses relaxed write.
447     */
448     final void forgetNext() {
449     UNSAFE.putObject(this, nextOffset, this);
450     }
451 jsr166 1.32
452 dl 1.45 /**
453 dl 1.67 * Sets item to self and waiter to null, to avoid garbage
454     * retention after matching or cancelling. Uses relaxed writes
455 dl 1.73 * because order is already constrained in the only calling
456 dl 1.67 * contexts: item is forgotten only after volatile/atomic
457     * mechanics that extract items. Similarly, clearing waiter
458     * follows either CAS or return from park (if ever parked;
459     * else we don't care).
460 dl 1.45 */
461     final void forgetContents() {
462 dl 1.67 UNSAFE.putObject(this, itemOffset, this);
463     UNSAFE.putObject(this, waiterOffset, null);
464 dl 1.45 }
465 jsr166 1.32
466 dl 1.45 /**
467     * Returns true if this node has been matched, including the
468     * case of artificial matches due to cancellation.
469     */
470     final boolean isMatched() {
471     Object x = item;
472 jsr166 1.57 return (x == this) || ((x == null) == isData);
473 dl 1.1 }
474 dl 1.15
475 dl 1.45 /**
476 jsr166 1.58 * Returns true if this is an unmatched request node.
477     */
478     final boolean isUnmatchedRequest() {
479     return !isData && item == null;
480     }
481    
482     /**
483 dl 1.45 * Returns true if a node with the given mode cannot be
484     * appended to this node because this node is unmatched and
485     * has opposite data mode.
486     */
487     final boolean cannotPrecede(boolean haveData) {
488     boolean d = isData;
489     Object x;
490     return d != haveData && (x = item) != this && (x != null) == d;
491 jsr166 1.31 }
492    
493     /**
494 jsr166 1.46 * Tries to artificially match a data node -- used by remove.
495 jsr166 1.31 */
496 dl 1.45 final boolean tryMatchData() {
497 dl 1.80 // assert isData;
498 dl 1.45 Object x = item;
499     if (x != null && x != this && casItem(x, null)) {
500     LockSupport.unpark(waiter);
501     return true;
502 jsr166 1.31 }
503 dl 1.45 return false;
504 dl 1.15 }
505    
506 jsr166 1.84 private static final long serialVersionUID = -3375979862319811754L;
507    
508 dl 1.45 // Unsafe mechanics
509 jsr166 1.84 private static final sun.misc.Unsafe UNSAFE;
510     private static final long itemOffset;
511     private static final long nextOffset;
512     private static final long waiterOffset;
513     static {
514     try {
515     UNSAFE = getUnsafe();
516 jsr166 1.86 Class<?> k = Node.class;
517 jsr166 1.84 itemOffset = UNSAFE.objectFieldOffset
518     (k.getDeclaredField("item"));
519     nextOffset = UNSAFE.objectFieldOffset
520     (k.getDeclaredField("next"));
521     waiterOffset = UNSAFE.objectFieldOffset
522     (k.getDeclaredField("waiter"));
523     } catch (Exception e) {
524     throw new Error(e);
525     }
526     }
527 dl 1.1 }
528    
529 dl 1.45 /** head of the queue; null until first enqueue */
530 jsr166 1.61 transient volatile Node head;
531 dl 1.45
532     /** tail of the queue; null until first append */
533 jsr166 1.61 private transient volatile Node tail;
534 dl 1.1
535 dl 1.67 /** The number of apparent failures to unsplice removed nodes */
536     private transient volatile int sweepVotes;
537    
538 dl 1.45 // CAS methods for fields
539 jsr166 1.61 private boolean casTail(Node cmp, Node val) {
540 dl 1.45 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
541     }
542 jsr166 1.23
543 jsr166 1.61 private boolean casHead(Node cmp, Node val) {
544 dl 1.45 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
545     }
546 dl 1.1
547 dl 1.67 private boolean casSweepVotes(int cmp, int val) {
548     return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
549 dl 1.45 }
550 dl 1.1
551 dl 1.45 /*
552 jsr166 1.64 * Possible values for "how" argument in xfer method.
553 dl 1.1 */
554 jsr166 1.65 private static final int NOW = 0; // for untimed poll, tryTransfer
555     private static final int ASYNC = 1; // for offer, put, add
556     private static final int SYNC = 2; // for transfer, take
557     private static final int TIMED = 3; // for timed poll, tryTransfer
558 jsr166 1.5
559 jsr166 1.56 @SuppressWarnings("unchecked")
560     static <E> E cast(Object item) {
561 dl 1.80 // assert item == null || item.getClass() != Node.class;
562 jsr166 1.56 return (E) item;
563     }
564    
565 dl 1.1 /**
566 dl 1.45 * Implements all queuing methods. See above for explanation.
567 jsr166 1.17 *
568 dl 1.45 * @param e the item or null for take
569 jsr166 1.46 * @param haveData true if this is a put, else a take
570 jsr166 1.65 * @param how NOW, ASYNC, SYNC, or TIMED
571     * @param nanos timeout in nanosecs, used only if mode is TIMED
572 jsr166 1.46 * @return an item if matched, else e
573 dl 1.45 * @throws NullPointerException if haveData mode but e is null
574 dl 1.1 */
575 jsr166 1.54 private E xfer(E e, boolean haveData, int how, long nanos) {
576 dl 1.45 if (haveData && (e == null))
577     throw new NullPointerException();
578 jsr166 1.61 Node s = null; // the node to append, if needed
579 dl 1.1
580 dl 1.80 retry:
581     for (;;) { // restart on append race
582 dl 1.1
583 jsr166 1.61 for (Node h = head, p = h; p != null;) { // find & match first node
584 dl 1.45 boolean isData = p.isData;
585     Object item = p.item;
586     if (item != p && (item != null) == isData) { // unmatched
587     if (isData == haveData) // can't match
588     break;
589     if (p.casItem(item, e)) { // match
590 jsr166 1.61 for (Node q = p; q != h;) {
591 dl 1.67 Node n = q.next; // update by 2 unless singleton
592 jsr166 1.82 if (head == h && casHead(h, n == null ? q : n)) {
593 dl 1.45 h.forgetNext();
594     break;
595     } // advance and retry
596     if ((h = head) == null ||
597 dl 1.52 (q = h.next) == null || !q.isMatched())
598 dl 1.45 break; // unless slack < 2
599     }
600 dl 1.52 LockSupport.unpark(p.waiter);
601 jsr166 1.54 return this.<E>cast(item);
602 dl 1.1 }
603     }
604 jsr166 1.61 Node n = p.next;
605 jsr166 1.47 p = (p != n) ? n : (h = head); // Use head if p offlist
606 dl 1.45 }
607    
608 jsr166 1.64 if (how != NOW) { // No matches available
609 dl 1.45 if (s == null)
610 jsr166 1.61 s = new Node(e, haveData);
611     Node pred = tryAppend(s, haveData);
612 dl 1.45 if (pred == null)
613     continue retry; // lost race vs opposite mode
614 jsr166 1.64 if (how != ASYNC)
615 jsr166 1.65 return awaitMatch(s, pred, e, (how == TIMED), nanos);
616 dl 1.1 }
617 dl 1.45 return e; // not waiting
618 dl 1.1 }
619     }
620    
621     /**
622 jsr166 1.46 * Tries to append node s as tail.
623     *
624 dl 1.48 * @param s the node to append
625 dl 1.45 * @param haveData true if appending in data mode
626     * @return null on failure due to losing race with append in
627     * different mode, else s's predecessor, or s itself if no
628     * predecessor
629 dl 1.1 */
630 jsr166 1.61 private Node tryAppend(Node s, boolean haveData) {
631     for (Node t = tail, p = t;;) { // move p to last node and append
632     Node n, u; // temps for reads of next & tail
633 dl 1.45 if (p == null && (p = head) == null) {
634     if (casHead(null, s))
635     return s; // initialize
636     }
637     else if (p.cannotPrecede(haveData))
638     return null; // lost race vs opposite mode
639 dl 1.48 else if ((n = p.next) != null) // not last; keep traversing
640 dl 1.45 p = p != t && t != (u = tail) ? (t = u) : // stale tail
641 jsr166 1.47 (p != n) ? n : null; // restart if off list
642 dl 1.45 else if (!p.casNext(null, s))
643     p = p.next; // re-read on CAS failure
644     else {
645 dl 1.48 if (p != t) { // update if slack now >= 2
646 dl 1.45 while ((tail != t || !casTail(t, s)) &&
647     (t = tail) != null &&
648     (s = t.next) != null && // advance and retry
649     (s = s.next) != null && s != t);
650 dl 1.1 }
651 dl 1.45 return p;
652 dl 1.1 }
653     }
654     }
655    
656     /**
657 dl 1.45 * Spins/yields/blocks until node s is matched or caller gives up.
658 dl 1.1 *
659     * @param s the waiting node
660 dl 1.50 * @param pred the predecessor of s, or s itself if it has no
661     * predecessor, or null if unknown (the null case does not occur
662     * in any current calls but may in possible future extensions)
663 dl 1.1 * @param e the comparison value for checking match
664 jsr166 1.64 * @param timed if true, wait only until timeout elapses
665 jsr166 1.65 * @param nanos timeout in nanosecs, used only if timed is true
666 dl 1.45 * @return matched item, or e if unmatched on interrupt or timeout
667 dl 1.1 */
668 jsr166 1.64 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
669     long lastTime = timed ? System.nanoTime() : 0L;
670 dl 1.45 Thread w = Thread.currentThread();
671     int spins = -1; // initialized after first item and cancel checks
672     ThreadLocalRandom randomYields = null; // bound if needed
673 dl 1.1
674     for (;;) {
675 dl 1.45 Object item = s.item;
676     if (item != e) { // matched
677 dl 1.80 // assert item != s;
678 dl 1.45 s.forgetContents(); // avoid garbage
679 jsr166 1.54 return this.<E>cast(item);
680 dl 1.45 }
681 jsr166 1.64 if ((w.isInterrupted() || (timed && nanos <= 0)) &&
682 dl 1.67 s.casItem(e, s)) { // cancel
683 dl 1.45 unsplice(pred, s);
684     return e;
685     }
686    
687     if (spins < 0) { // establish spins at/near front
688     if ((spins = spinsFor(pred, s.isData)) > 0)
689     randomYields = ThreadLocalRandom.current();
690     }
691 dl 1.50 else if (spins > 0) { // spin
692 dl 1.67 --spins;
693     if (randomYields.nextInt(CHAINED_SPINS) == 0)
694 dl 1.50 Thread.yield(); // occasionally yield
695 dl 1.45 }
696     else if (s.waiter == null) {
697 dl 1.51 s.waiter = w; // request unpark then recheck
698 dl 1.1 }
699 jsr166 1.64 else if (timed) {
700 dl 1.1 long now = System.nanoTime();
701 dl 1.45 if ((nanos -= now - lastTime) > 0)
702     LockSupport.parkNanos(this, nanos);
703 dl 1.1 lastTime = now;
704     }
705 dl 1.45 else {
706 dl 1.12 LockSupport.park(this);
707 dl 1.1 }
708 dl 1.45 }
709     }
710    
711     /**
712 jsr166 1.46 * Returns spin/yield value for a node with given predecessor and
713 dl 1.45 * data mode. See above for explanation.
714     */
715 jsr166 1.61 private static int spinsFor(Node pred, boolean haveData) {
716 dl 1.45 if (MP && pred != null) {
717 dl 1.50 if (pred.isData != haveData) // phase change
718     return FRONT_SPINS + CHAINED_SPINS;
719     if (pred.isMatched()) // probably at front
720 dl 1.45 return FRONT_SPINS;
721     if (pred.waiter == null) // pred apparently spinning
722     return CHAINED_SPINS;
723     }
724     return 0;
725     }
726    
727     /* -------------- Traversal methods -------------- */
728    
729 dl 1.1 /**
730 jsr166 1.62 * Returns the successor of p, or the head node if p.next has been
731     * linked to self, which will only be true if traversing with a
732     * stale pointer that is now off the list.
733     */
734     final Node succ(Node p) {
735     Node next = p.next;
736     return (p == next) ? head : next;
737     }
738    
739     /**
740 jsr166 1.46 * Returns the first unmatched node of the given mode, or null if
741 dl 1.45 * none. Used by methods isEmpty, hasWaitingConsumer.
742 dl 1.9 */
743 jsr166 1.62 private Node firstOfMode(boolean isData) {
744     for (Node p = head; p != null; p = succ(p)) {
745 dl 1.45 if (!p.isMatched())
746 jsr166 1.62 return (p.isData == isData) ? p : null;
747 dl 1.45 }
748     return null;
749     }
750    
751     /**
752     * Returns the item in the first unmatched node with isData; or
753 jsr166 1.54 * null if none. Used by peek.
754 dl 1.45 */
755 jsr166 1.54 private E firstDataItem() {
756 jsr166 1.62 for (Node p = head; p != null; p = succ(p)) {
757 dl 1.45 Object item = p.item;
758 jsr166 1.62 if (p.isData) {
759     if (item != null && item != p)
760     return this.<E>cast(item);
761     }
762     else if (item == null)
763     return null;
764 dl 1.45 }
765     return null;
766     }
767    
768     /**
769 jsr166 1.46 * Traverses and counts unmatched nodes of the given mode.
770     * Used by methods size and getWaitingConsumerCount.
771 dl 1.45 */
772     private int countOfMode(boolean data) {
773     int count = 0;
774 jsr166 1.61 for (Node p = head; p != null; ) {
775 dl 1.45 if (!p.isMatched()) {
776     if (p.isData != data)
777     return 0;
778     if (++count == Integer.MAX_VALUE) // saturated
779     break;
780 dl 1.9 }
781 jsr166 1.61 Node n = p.next;
782 dl 1.45 if (n != p)
783     p = n;
784     else {
785     count = 0;
786     p = head;
787 dl 1.9 }
788     }
789 dl 1.45 return count;
790 jsr166 1.10 }
791 dl 1.9
792 dl 1.45 final class Itr implements Iterator<E> {
793 jsr166 1.61 private Node nextNode; // next node to return item for
794     private E nextItem; // the corresponding item
795     private Node lastRet; // last returned node, to support remove
796     private Node lastPred; // predecessor to unlink lastRet
797 dl 1.45
798     /**
799     * Moves to next node after prev, or first node if prev null.
800     */
801 jsr166 1.61 private void advance(Node prev) {
802 dl 1.80 /*
803     * To track and avoid buildup of deleted nodes in the face
804     * of calls to both Queue.remove and Itr.remove, we must
805     * include variants of unsplice and sweep upon each
806     * advance: Upon Itr.remove, we may need to catch up links
807     * from lastPred, and upon other removes, we might need to
808     * skip ahead from stale nodes and unsplice deleted ones
809     * found while advancing.
810     */
811    
812     Node r, b; // reset lastPred upon possible deletion of lastRet
813     if ((r = lastRet) != null && !r.isMatched())
814     lastPred = r; // next lastPred is old lastRet
815     else if ((b = lastPred) == null || b.isMatched())
816     lastPred = null; // at start of list
817 jsr166 1.81 else {
818 dl 1.80 Node s, n; // help with removal of lastPred.next
819     while ((s = b.next) != null &&
820     s != b && s.isMatched() &&
821     (n = s.next) != null && n != s)
822     b.casNext(s, n);
823     }
824    
825     this.lastRet = prev;
826 jsr166 1.84
827 dl 1.80 for (Node p = prev, s, n;;) {
828     s = (p == null) ? head : p.next;
829     if (s == null)
830     break;
831     else if (s == p) {
832     p = null;
833     continue;
834     }
835     Object item = s.item;
836     if (s.isData) {
837     if (item != null && item != s) {
838     nextItem = LinkedTransferQueue.<E>cast(item);
839     nextNode = s;
840 dl 1.45 return;
841     }
842 jsr166 1.81 }
843 dl 1.45 else if (item == null)
844     break;
845 dl 1.80 // assert s.isMatched();
846     if (p == null)
847     p = s;
848     else if ((n = s.next) == null)
849     break;
850     else if (s == n)
851     p = null;
852     else
853     p.casNext(s, n);
854 dl 1.45 }
855     nextNode = null;
856 dl 1.80 nextItem = null;
857 dl 1.45 }
858    
859     Itr() {
860     advance(null);
861     }
862    
863     public final boolean hasNext() {
864     return nextNode != null;
865     }
866    
867     public final E next() {
868 jsr166 1.61 Node p = nextNode;
869 dl 1.45 if (p == null) throw new NoSuchElementException();
870 jsr166 1.54 E e = nextItem;
871 dl 1.45 advance(p);
872 jsr166 1.54 return e;
873 dl 1.45 }
874    
875     public final void remove() {
876 dl 1.80 final Node lastRet = this.lastRet;
877     if (lastRet == null)
878     throw new IllegalStateException();
879     this.lastRet = null;
880     if (lastRet.tryMatchData())
881     unsplice(lastPred, lastRet);
882 dl 1.45 }
883     }
884    
885     /* -------------- Removal methods -------------- */
886    
887 dl 1.9 /**
888 dl 1.45 * Unsplices (now or later) the given deleted/cancelled node with
889     * the given predecessor.
890 jsr166 1.17 *
891 dl 1.67 * @param pred a node that was at one time known to be the
892     * predecessor of s, or null or s itself if s is/was at head
893 dl 1.45 * @param s the node to be unspliced
894 dl 1.1 */
895 dl 1.67 final void unsplice(Node pred, Node s) {
896     s.forgetContents(); // forget unneeded fields
897 dl 1.9 /*
898 dl 1.67 * See above for rationale. Briefly: if pred still points to
899     * s, try to unlink s. If s cannot be unlinked, because it is
900     * trailing node or pred might be unlinked, and neither pred
901     * nor s are head or offlist, add to sweepVotes, and if enough
902     * votes have accumulated, sweep.
903 dl 1.9 */
904 dl 1.67 if (pred != null && pred != s && pred.next == s) {
905     Node n = s.next;
906     if (n == null ||
907     (n != s && pred.casNext(s, n) && pred.isMatched())) {
908     for (;;) { // check if at, or could be, head
909     Node h = head;
910     if (h == pred || h == s || h == null)
911     return; // at head or list empty
912     if (!h.isMatched())
913     break;
914     Node hn = h.next;
915     if (hn == null)
916     return; // now empty
917     if (hn != h && casHead(h, hn))
918     h.forgetNext(); // advance head
919 dl 1.45 }
920 dl 1.67 if (pred.next != pred && s.next != s) { // recheck if offlist
921     for (;;) { // sweep now if enough votes
922     int v = sweepVotes;
923     if (v < SWEEP_THRESHOLD) {
924     if (casSweepVotes(v, v + 1))
925     break;
926     }
927     else if (casSweepVotes(v, 0)) {
928     sweep();
929     break;
930     }
931     }
932 jsr166 1.59 }
933 dl 1.9 }
934     }
935     }
936 jsr166 1.5
937 dl 1.9 /**
938 jsr166 1.77 * Unlinks matched (typically cancelled) nodes encountered in a
939     * traversal from head.
940 dl 1.9 */
941 dl 1.67 private void sweep() {
942 jsr166 1.71 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
943 dl 1.79 if (!s.isMatched())
944     // Unmatched nodes are never self-linked
945 jsr166 1.71 p = s;
946 dl 1.79 else if ((n = s.next) == null) // trailing node is pinned
947 jsr166 1.71 break;
948 dl 1.79 else if (s == n) // stale
949     // No need to also check for p == s, since that implies s == n
950     p = head;
951 jsr166 1.71 else
952 dl 1.67 p.casNext(s, n);
953 dl 1.45 }
954     }
955    
956     /**
957     * Main implementation of remove(Object)
958     */
959     private boolean findAndRemove(Object e) {
960     if (e != null) {
961 jsr166 1.61 for (Node pred = null, p = head; p != null; ) {
962 dl 1.45 Object item = p.item;
963     if (p.isData) {
964     if (item != null && item != p && e.equals(item) &&
965     p.tryMatchData()) {
966     unsplice(pred, p);
967     return true;
968     }
969     }
970     else if (item == null)
971     break;
972     pred = p;
973 jsr166 1.58 if ((p = p.next) == pred) { // stale
974 dl 1.45 pred = null;
975     p = head;
976     }
977     }
978     }
979     return false;
980     }
981    
982    
983     /**
984 jsr166 1.11 * Creates an initially empty {@code LinkedTransferQueue}.
985 dl 1.1 */
986     public LinkedTransferQueue() {
987     }
988    
989     /**
990 jsr166 1.11 * Creates a {@code LinkedTransferQueue}
991 dl 1.1 * initially containing the elements of the given collection,
992     * added in traversal order of the collection's iterator.
993 jsr166 1.17 *
994 dl 1.1 * @param c the collection of elements to initially contain
995     * @throws NullPointerException if the specified collection or any
996     * of its elements are null
997     */
998     public LinkedTransferQueue(Collection<? extends E> c) {
999 dl 1.7 this();
1000 dl 1.1 addAll(c);
1001     }
1002    
1003 jsr166 1.29 /**
1004 jsr166 1.35 * Inserts the specified element at the tail of this queue.
1005     * As the queue is unbounded, this method will never block.
1006     *
1007     * @throws NullPointerException if the specified element is null
1008 jsr166 1.29 */
1009 jsr166 1.35 public void put(E e) {
1010 dl 1.45 xfer(e, true, ASYNC, 0);
1011 dl 1.1 }
1012    
1013 jsr166 1.29 /**
1014 jsr166 1.35 * Inserts the specified element at the tail of this queue.
1015     * As the queue is unbounded, this method will never block or
1016     * return {@code false}.
1017     *
1018     * @return {@code true} (as specified by
1019 jsr166 1.85 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1020     * BlockingQueue.offer})
1021 jsr166 1.35 * @throws NullPointerException if the specified element is null
1022 jsr166 1.29 */
1023 jsr166 1.35 public boolean offer(E e, long timeout, TimeUnit unit) {
1024 dl 1.45 xfer(e, true, ASYNC, 0);
1025     return true;
1026 dl 1.1 }
1027    
1028 jsr166 1.29 /**
1029 jsr166 1.35 * Inserts the specified element at the tail of this queue.
1030     * As the queue is unbounded, this method will never return {@code false}.
1031     *
1032 dl 1.80 * @return {@code true} (as specified by {@link Queue#offer})
1033 jsr166 1.35 * @throws NullPointerException if the specified element is null
1034 jsr166 1.29 */
1035 dl 1.1 public boolean offer(E e) {
1036 dl 1.45 xfer(e, true, ASYNC, 0);
1037 dl 1.1 return true;
1038     }
1039    
1040 jsr166 1.29 /**
1041 jsr166 1.35 * Inserts the specified element at the tail of this queue.
1042 jsr166 1.37 * As the queue is unbounded, this method will never throw
1043 jsr166 1.35 * {@link IllegalStateException} or return {@code false}.
1044     *
1045     * @return {@code true} (as specified by {@link Collection#add})
1046     * @throws NullPointerException if the specified element is null
1047 jsr166 1.29 */
1048 dl 1.15 public boolean add(E e) {
1049 dl 1.45 xfer(e, true, ASYNC, 0);
1050     return true;
1051 jsr166 1.35 }
1052    
1053     /**
1054 jsr166 1.40 * Transfers the element to a waiting consumer immediately, if possible.
1055     *
1056     * <p>More precisely, transfers the specified element immediately
1057     * if there exists a consumer already waiting to receive it (in
1058     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1059     * otherwise returning {@code false} without enqueuing the element.
1060 jsr166 1.35 *
1061     * @throws NullPointerException if the specified element is null
1062     */
1063     public boolean tryTransfer(E e) {
1064 dl 1.45 return xfer(e, true, NOW, 0) == null;
1065 dl 1.15 }
1066    
1067 jsr166 1.29 /**
1068 jsr166 1.40 * Transfers the element to a consumer, waiting if necessary to do so.
1069     *
1070     * <p>More precisely, transfers the specified element immediately
1071     * if there exists a consumer already waiting to receive it (in
1072     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1073     * else inserts the specified element at the tail of this queue
1074     * and waits until the element is received by a consumer.
1075 jsr166 1.35 *
1076     * @throws NullPointerException if the specified element is null
1077 jsr166 1.29 */
1078 dl 1.1 public void transfer(E e) throws InterruptedException {
1079 dl 1.45 if (xfer(e, true, SYNC, 0) != null) {
1080     Thread.interrupted(); // failure possible only due to interrupt
1081 dl 1.1 throw new InterruptedException();
1082 jsr166 1.6 }
1083 dl 1.1 }
1084    
1085 jsr166 1.29 /**
1086 jsr166 1.40 * Transfers the element to a consumer if it is possible to do so
1087     * before the timeout elapses.
1088     *
1089     * <p>More precisely, transfers the specified element immediately
1090     * if there exists a consumer already waiting to receive it (in
1091     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1092     * else inserts the specified element at the tail of this queue
1093     * and waits until the element is received by a consumer,
1094     * returning {@code false} if the specified wait time elapses
1095     * before the element can be transferred.
1096 jsr166 1.35 *
1097     * @throws NullPointerException if the specified element is null
1098 jsr166 1.29 */
1099 dl 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1100     throws InterruptedException {
1101 jsr166 1.65 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1102 dl 1.1 return true;
1103     if (!Thread.interrupted())
1104     return false;
1105     throw new InterruptedException();
1106     }
1107    
1108     public E take() throws InterruptedException {
1109 jsr166 1.54 E e = xfer(null, false, SYNC, 0);
1110 dl 1.1 if (e != null)
1111 jsr166 1.54 return e;
1112 jsr166 1.6 Thread.interrupted();
1113 dl 1.1 throw new InterruptedException();
1114     }
1115    
1116     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1117 jsr166 1.65 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1118 dl 1.1 if (e != null || !Thread.interrupted())
1119 jsr166 1.54 return e;
1120 dl 1.1 throw new InterruptedException();
1121     }
1122    
1123     public E poll() {
1124 jsr166 1.54 return xfer(null, false, NOW, 0);
1125 dl 1.1 }
1126    
1127 jsr166 1.29 /**
1128 jsr166 1.30 * @throws NullPointerException {@inheritDoc}
1129     * @throws IllegalArgumentException {@inheritDoc}
1130 jsr166 1.29 */
1131 dl 1.1 public int drainTo(Collection<? super E> c) {
1132     if (c == null)
1133     throw new NullPointerException();
1134     if (c == this)
1135     throw new IllegalArgumentException();
1136     int n = 0;
1137     E e;
1138     while ( (e = poll()) != null) {
1139     c.add(e);
1140     ++n;
1141     }
1142     return n;
1143     }
1144    
1145 jsr166 1.29 /**
1146 jsr166 1.30 * @throws NullPointerException {@inheritDoc}
1147     * @throws IllegalArgumentException {@inheritDoc}
1148 jsr166 1.29 */
1149 dl 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1150     if (c == null)
1151     throw new NullPointerException();
1152     if (c == this)
1153     throw new IllegalArgumentException();
1154     int n = 0;
1155     E e;
1156     while (n < maxElements && (e = poll()) != null) {
1157     c.add(e);
1158     ++n;
1159     }
1160     return n;
1161     }
1162    
1163 jsr166 1.35 /**
1164 jsr166 1.84 * Returns an iterator over the elements in this queue in proper sequence.
1165     * The elements will be returned in order from first (head) to last (tail).
1166 jsr166 1.35 *
1167     * <p>The returned iterator is a "weakly consistent" iterator that
1168 jsr166 1.84 * will never throw {@link java.util.ConcurrentModificationException
1169     * ConcurrentModificationException}, and guarantees to traverse
1170     * elements as they existed upon construction of the iterator, and
1171     * may (but is not guaranteed to) reflect any modifications
1172     * subsequent to construction.
1173 jsr166 1.35 *
1174     * @return an iterator over the elements in this queue in proper sequence
1175     */
1176 dl 1.1 public Iterator<E> iterator() {
1177     return new Itr();
1178     }
1179    
1180     public E peek() {
1181 jsr166 1.54 return firstDataItem();
1182 dl 1.1 }
1183    
1184 jsr166 1.41 /**
1185     * Returns {@code true} if this queue contains no elements.
1186     *
1187     * @return {@code true} if this queue contains no elements
1188     */
1189 dl 1.2 public boolean isEmpty() {
1190 dl 1.72 for (Node p = head; p != null; p = succ(p)) {
1191     if (!p.isMatched())
1192     return !p.isData;
1193     }
1194     return true;
1195 dl 1.2 }
1196    
1197 dl 1.1 public boolean hasWaitingConsumer() {
1198 dl 1.45 return firstOfMode(false) != null;
1199 dl 1.1 }
1200 jsr166 1.5
1201 dl 1.1 /**
1202     * Returns the number of elements in this queue. If this queue
1203 jsr166 1.11 * contains more than {@code Integer.MAX_VALUE} elements, returns
1204     * {@code Integer.MAX_VALUE}.
1205 dl 1.1 *
1206     * <p>Beware that, unlike in most collections, this method is
1207     * <em>NOT</em> a constant-time operation. Because of the
1208     * asynchronous nature of these queues, determining the current
1209     * number of elements requires an O(n) traversal.
1210     *
1211     * @return the number of elements in this queue
1212     */
1213     public int size() {
1214 dl 1.45 return countOfMode(true);
1215 dl 1.1 }
1216    
1217     public int getWaitingConsumerCount() {
1218 dl 1.45 return countOfMode(false);
1219 dl 1.1 }
1220    
1221 jsr166 1.42 /**
1222     * Removes a single instance of the specified element from this queue,
1223     * if it is present. More formally, removes an element {@code e} such
1224     * that {@code o.equals(e)}, if this queue contains one or more such
1225     * elements.
1226     * Returns {@code true} if this queue contained the specified element
1227     * (or equivalently, if this queue changed as a result of the call).
1228     *
1229     * @param o element to be removed from this queue, if present
1230     * @return {@code true} if this queue changed as a result of the call
1231     */
1232 dl 1.15 public boolean remove(Object o) {
1233 dl 1.45 return findAndRemove(o);
1234 dl 1.15 }
1235    
1236 jsr166 1.35 /**
1237 dl 1.80 * Returns {@code true} if this queue contains the specified element.
1238     * More formally, returns {@code true} if and only if this queue contains
1239     * at least one element {@code e} such that {@code o.equals(e)}.
1240     *
1241     * @param o object to be checked for containment in this queue
1242     * @return {@code true} if this queue contains the specified element
1243     */
1244     public boolean contains(Object o) {
1245     if (o == null) return false;
1246     for (Node p = head; p != null; p = succ(p)) {
1247     Object item = p.item;
1248     if (p.isData) {
1249     if (item != null && item != p && o.equals(item))
1250     return true;
1251     }
1252     else if (item == null)
1253     break;
1254     }
1255     return false;
1256     }
1257    
1258     /**
1259 jsr166 1.35 * Always returns {@code Integer.MAX_VALUE} because a
1260     * {@code LinkedTransferQueue} is not capacity constrained.
1261     *
1262     * @return {@code Integer.MAX_VALUE} (as specified by
1263 jsr166 1.85 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1264     * BlockingQueue.remainingCapacity})
1265 jsr166 1.35 */
1266 dl 1.33 public int remainingCapacity() {
1267     return Integer.MAX_VALUE;
1268     }
1269    
1270 dl 1.1 /**
1271 jsr166 1.46 * Saves the state to a stream (that is, serializes it).
1272 dl 1.1 *
1273 jsr166 1.11 * @serialData All of the elements (each an {@code E}) in
1274 dl 1.1 * the proper order, followed by a null
1275     * @param s the stream
1276     */
1277     private void writeObject(java.io.ObjectOutputStream s)
1278     throws java.io.IOException {
1279     s.defaultWriteObject();
1280 jsr166 1.16 for (E e : this)
1281     s.writeObject(e);
1282 dl 1.1 // Use trailing null as sentinel
1283     s.writeObject(null);
1284     }
1285    
1286     /**
1287 jsr166 1.46 * Reconstitutes the Queue instance from a stream (that is,
1288     * deserializes it).
1289 jsr166 1.19 *
1290 dl 1.1 * @param s the stream
1291     */
1292     private void readObject(java.io.ObjectInputStream s)
1293     throws java.io.IOException, ClassNotFoundException {
1294     s.defaultReadObject();
1295     for (;;) {
1296 jsr166 1.25 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1297 dl 1.1 if (item == null)
1298     break;
1299     else
1300     offer(item);
1301     }
1302     }
1303 dl 1.7
1304 jsr166 1.28 // Unsafe mechanics
1305    
1306 jsr166 1.84 private static final sun.misc.Unsafe UNSAFE;
1307     private static final long headOffset;
1308     private static final long tailOffset;
1309     private static final long sweepVotesOffset;
1310     static {
1311 jsr166 1.28 try {
1312 jsr166 1.84 UNSAFE = getUnsafe();
1313 jsr166 1.86 Class<?> k = LinkedTransferQueue.class;
1314 jsr166 1.84 headOffset = UNSAFE.objectFieldOffset
1315     (k.getDeclaredField("head"));
1316     tailOffset = UNSAFE.objectFieldOffset
1317     (k.getDeclaredField("tail"));
1318     sweepVotesOffset = UNSAFE.objectFieldOffset
1319     (k.getDeclaredField("sweepVotes"));
1320     } catch (Exception e) {
1321     throw new Error(e);
1322 jsr166 1.28 }
1323     }
1324    
1325 jsr166 1.53 /**
1326     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1327     * Replace with a simple call to Unsafe.getUnsafe when integrating
1328     * into a jdk.
1329     *
1330     * @return a sun.misc.Unsafe
1331     */
1332 jsr166 1.54 static sun.misc.Unsafe getUnsafe() {
1333 jsr166 1.13 try {
1334 jsr166 1.25 return sun.misc.Unsafe.getUnsafe();
1335 jsr166 1.13 } catch (SecurityException se) {
1336     try {
1337     return java.security.AccessController.doPrivileged
1338 jsr166 1.28 (new java.security
1339     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1340 jsr166 1.25 public sun.misc.Unsafe run() throws Exception {
1341 jsr166 1.28 java.lang.reflect.Field f = sun.misc
1342     .Unsafe.class.getDeclaredField("theUnsafe");
1343     f.setAccessible(true);
1344     return (sun.misc.Unsafe) f.get(null);
1345 jsr166 1.13 }});
1346     } catch (java.security.PrivilegedActionException e) {
1347 jsr166 1.25 throw new RuntimeException("Could not initialize intrinsics",
1348     e.getCause());
1349 jsr166 1.13 }
1350     }
1351     }
1352 dl 1.45
1353 dl 1.1 }