ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.15 by dl, Wed Mar 25 13:43:42 2009 UTC vs.
Revision 1.61 by jsr166, Mon Nov 2 00:28:28 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.concurrent.*;
9 import java.util.concurrent.locks.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.*;
12 import java.io.*;
13 import sun.misc.Unsafe;
14 import java.lang.reflect.*;
10  
11 + import java.util.AbstractQueue;
12 + import java.util.Collection;
13 + import java.util.ConcurrentModificationException;
14 + import java.util.Iterator;
15 + import java.util.NoSuchElementException;
16 + import java.util.Queue;
17 + import java.util.concurrent.locks.LockSupport;
18   /**
19 < * An unbounded {@linkplain TransferQueue} based on linked nodes.
19 > * An unbounded {@link TransferQueue} based on linked nodes.
20   * This queue orders elements FIFO (first-in-first-out) with respect
21   * to any given producer.  The <em>head</em> of the queue is that
22   * element that has been on the queue the longest time for some
# Line 44 | Line 46 | import java.lang.reflect.*;
46   * @since 1.7
47   * @author Doug Lea
48   * @param <E> the type of elements held in this collection
47 *
49   */
50   public class LinkedTransferQueue<E> extends AbstractQueue<E>
51      implements TransferQueue<E>, java.io.Serializable {
52      private static final long serialVersionUID = -3223113410248163686L;
53  
54      /*
55 <     * This class extends the approach used in FIFO-mode
55 <     * SynchronousQueues. See the internal documentation, as well as
56 <     * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
57 <     * Lea & Scott
58 <     * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
55 >     * *** Overview of Dual Queues with Slack ***
56       *
57 <     * The main extension is to provide different Wait modes for the
58 <     * main "xfer" method that puts or takes items.  These don't
59 <     * impact the basic dual-queue logic, but instead control whether
60 <     * or how threads block upon insertion of request or data nodes
61 <     * into the dual queue. It also uses slightly different
62 <     * conventions for tracking whether nodes are off-list or
63 <     * cancelled.
64 <     */
65 <
66 <    // Wait modes for xfer method
67 <    static final int NOWAIT  = 0;
68 <    static final int TIMEOUT = 1;
69 <    static final int WAIT    = 2;
70 <
71 <    /** The number of CPUs, for spin control */
72 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
57 >     * Dual Queues, introduced by Scherer and Scott
58 >     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 >     * (linked) queues in which nodes may represent either data or
60 >     * requests.  When a thread tries to enqueue a data node, but
61 >     * encounters a request node, it instead "matches" and removes it;
62 >     * and vice versa for enqueuing requests. Blocking Dual Queues
63 >     * arrange that threads enqueuing unmatched requests block until
64 >     * other threads provide the match. Dual Synchronous Queues (see
65 >     * Scherer, Lea, & Scott
66 >     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 >     * additionally arrange that threads enqueuing unmatched data also
68 >     * block.  Dual Transfer Queues support all of these modes, as
69 >     * dictated by callers.
70 >     *
71 >     * A FIFO dual queue may be implemented using a variation of the
72 >     * Michael & Scott (M&S) lock-free queue algorithm
73 >     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 >     * It maintains two pointer fields, "head", pointing to a
75 >     * (matched) node that in turn points to the first actual
76 >     * (unmatched) queue node (or null if empty); and "tail" that
77 >     * points to the last node on the queue (or again null if
78 >     * empty). For example, here is a possible queue with four data
79 >     * elements:
80 >     *
81 >     *  head                tail
82 >     *    |                   |
83 >     *    v                   v
84 >     *    M -> U -> U -> U -> U
85 >     *
86 >     * The M&S queue algorithm is known to be prone to scalability and
87 >     * overhead limitations when maintaining (via CAS) these head and
88 >     * tail pointers. This has led to the development of
89 >     * contention-reducing variants such as elimination arrays (see
90 >     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 >     * optimistic back pointers (see Ladan-Mozes & Shavit
92 >     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 >     * However, the nature of dual queues enables a simpler tactic for
94 >     * improving M&S-style implementations when dual-ness is needed.
95 >     *
96 >     * In a dual queue, each node must atomically maintain its match
97 >     * status. While there are other possible variants, we implement
98 >     * this here as: for a data-mode node, matching entails CASing an
99 >     * "item" field from a non-null data value to null upon match, and
100 >     * vice-versa for request nodes, CASing from null to a data
101 >     * value. (Note that the linearization properties of this style of
102 >     * queue are easy to verify -- elements are made available by
103 >     * linking, and unavailable by matching.) Compared to plain M&S
104 >     * queues, this property of dual queues requires one additional
105 >     * successful atomic operation per enq/deq pair. But it also
106 >     * enables lower cost variants of queue maintenance mechanics. (A
107 >     * variation of this idea applies even for non-dual queues that
108 >     * support deletion of interior elements, such as
109 >     * j.u.c.ConcurrentLinkedQueue.)
110 >     *
111 >     * Once a node is matched, its match status can never again
112 >     * change.  We may thus arrange that the linked list of them
113 >     * contain a prefix of zero or more matched nodes, followed by a
114 >     * suffix of zero or more unmatched nodes. (Note that we allow
115 >     * both the prefix and suffix to be zero length, which in turn
116 >     * means that we do not use a dummy header.)  If we were not
117 >     * concerned with either time or space efficiency, we could
118 >     * correctly perform enqueue and dequeue operations by traversing
119 >     * from a pointer to the initial node; CASing the item of the
120 >     * first unmatched node on match and CASing the next field of the
121 >     * trailing node on appends. (Plus some special-casing when
122 >     * initially empty).  While this would be a terrible idea in
123 >     * itself, it does have the benefit of not requiring ANY atomic
124 >     * updates on head/tail fields.
125 >     *
126 >     * We introduce here an approach that lies between the extremes of
127 >     * never versus always updating queue (head and tail) pointers.
128 >     * This offers a tradeoff between sometimes requiring extra
129 >     * traversal steps to locate the first and/or last unmatched
130 >     * nodes, versus the reduced overhead and contention of fewer
131 >     * updates to queue pointers. For example, a possible snapshot of
132 >     * a queue is:
133 >     *
134 >     *  head           tail
135 >     *    |              |
136 >     *    v              v
137 >     *    M -> M -> U -> U -> U -> U
138 >     *
139 >     * The best value for this "slack" (the targeted maximum distance
140 >     * between the value of "head" and the first unmatched node, and
141 >     * similarly for "tail") is an empirical matter. We have found
142 >     * that using very small constants in the range of 1-3 work best
143 >     * over a range of platforms. Larger values introduce increasing
144 >     * costs of cache misses and risks of long traversal chains, while
145 >     * smaller values increase CAS contention and overhead.
146 >     *
147 >     * Dual queues with slack differ from plain M&S dual queues by
148 >     * virtue of only sometimes updating head or tail pointers when
149 >     * matching, appending, or even traversing nodes; in order to
150 >     * maintain a targeted slack.  The idea of "sometimes" may be
151 >     * operationalized in several ways. The simplest is to use a
152 >     * per-operation counter incremented on each traversal step, and
153 >     * to try (via CAS) to update the associated queue pointer
154 >     * whenever the count exceeds a threshold. Another, that requires
155 >     * more overhead, is to use random number generators to update
156 >     * with a given probability per traversal step.
157 >     *
158 >     * In any strategy along these lines, because CASes updating
159 >     * fields may fail, the actual slack may exceed targeted
160 >     * slack. However, they may be retried at any time to maintain
161 >     * targets.  Even when using very small slack values, this
162 >     * approach works well for dual queues because it allows all
163 >     * operations up to the point of matching or appending an item
164 >     * (hence potentially allowing progress by another thread) to be
165 >     * read-only, thus not introducing any further contention. As
166 >     * described below, we implement this by performing slack
167 >     * maintenance retries only after these points.
168 >     *
169 >     * As an accompaniment to such techniques, traversal overhead can
170 >     * be further reduced without increasing contention of head
171 >     * pointer updates: Threads may sometimes shortcut the "next" link
172 >     * path from the current "head" node to be closer to the currently
173 >     * known first unmatched node, and similarly for tail. Again, this
174 >     * may be triggered with using thresholds or randomization.
175 >     *
176 >     * These ideas must be further extended to avoid unbounded amounts
177 >     * of costly-to-reclaim garbage caused by the sequential "next"
178 >     * links of nodes starting at old forgotten head nodes: As first
179 >     * described in detail by Boehm
180 >     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181 >     * delays noticing that any arbitrarily old node has become
182 >     * garbage, all newer dead nodes will also be unreclaimed.
183 >     * (Similar issues arise in non-GC environments.)  To cope with
184 >     * this in our implementation, upon CASing to advance the head
185 >     * pointer, we set the "next" link of the previous head to point
186 >     * only to itself; thus limiting the length of connected dead lists.
187 >     * (We also take similar care to wipe out possibly garbage
188 >     * retaining values held in other Node fields.)  However, doing so
189 >     * adds some further complexity to traversal: If any "next"
190 >     * pointer links to itself, it indicates that the current thread
191 >     * has lagged behind a head-update, and so the traversal must
192 >     * continue from the "head".  Traversals trying to find the
193 >     * current tail starting from "tail" may also encounter
194 >     * self-links, in which case they also continue at "head".
195 >     *
196 >     * It is tempting in slack-based scheme to not even use CAS for
197 >     * updates (similarly to Ladan-Mozes & Shavit). However, this
198 >     * cannot be done for head updates under the above link-forgetting
199 >     * mechanics because an update may leave head at a detached node.
200 >     * And while direct writes are possible for tail updates, they
201 >     * increase the risk of long retraversals, and hence long garbage
202 >     * chains, which can be much more costly than is worthwhile
203 >     * considering that the cost difference of performing a CAS vs
204 >     * write is smaller when they are not triggered on each operation
205 >     * (especially considering that writes and CASes equally require
206 >     * additional GC bookkeeping ("write barriers") that are sometimes
207 >     * more costly than the writes themselves because of contention).
208 >     *
209 >     * Removal of interior nodes (due to timed out or interrupted
210 >     * waits, or calls to remove(x) or Iterator.remove) can use a
211 >     * scheme roughly similar to that described in Scherer, Lea, and
212 >     * Scott's SynchronousQueue. Given a predecessor, we can unsplice
213 >     * any node except the (actual) tail of the queue. To avoid
214 >     * build-up of cancelled trailing nodes, upon a request to remove
215 >     * a trailing node, it is placed in field "cleanMe" to be
216 >     * unspliced upon the next call to unsplice any other node.
217 >     * Situations needing such mechanics are not common but do occur
218 >     * in practice; for example when an unbounded series of short
219 >     * timed calls to poll repeatedly time out but never otherwise
220 >     * fall off the list because of an untimed call to take at the
221 >     * front of the queue. Note that maintaining field cleanMe does
222 >     * not otherwise much impact garbage retention even if never
223 >     * cleared by some other call because the held node will
224 >     * eventually either directly or indirectly lead to a self-link
225 >     * once off the list.
226 >     *
227 >     * *** Overview of implementation ***
228 >     *
229 >     * We use a threshold-based approach to updates, with a slack
230 >     * threshold of two -- that is, we update head/tail when the
231 >     * current pointer appears to be two or more steps away from the
232 >     * first/last node. The slack value is hard-wired: a path greater
233 >     * than one is naturally implemented by checking equality of
234 >     * traversal pointers except when the list has only one element,
235 >     * in which case we keep slack threshold at one. Avoiding tracking
236 >     * explicit counts across method calls slightly simplifies an
237 >     * already-messy implementation. Using randomization would
238 >     * probably work better if there were a low-quality dirt-cheap
239 >     * per-thread one available, but even ThreadLocalRandom is too
240 >     * heavy for these purposes.
241 >     *
242 >     * With such a small slack threshold value, it is rarely
243 >     * worthwhile to augment this with path short-circuiting; i.e.,
244 >     * unsplicing nodes between head and the first unmatched node, or
245 >     * similarly for tail, rather than advancing head or tail
246 >     * proper. However, it is used (in awaitMatch) immediately before
247 >     * a waiting thread starts to block, as a final bit of helping at
248 >     * a point when contention with others is extremely unlikely
249 >     * (since if other threads that could release it are operating,
250 >     * then the current thread wouldn't be blocking).
251 >     *
252 >     * We allow both the head and tail fields to be null before any
253 >     * nodes are enqueued; initializing upon first append.  This
254 >     * simplifies some other logic, as well as providing more
255 >     * efficient explicit control paths instead of letting JVMs insert
256 >     * implicit NullPointerExceptions when they are null.  While not
257 >     * currently fully implemented, we also leave open the possibility
258 >     * of re-nulling these fields when empty (which is complicated to
259 >     * arrange, for little benefit.)
260 >     *
261 >     * All enqueue/dequeue operations are handled by the single method
262 >     * "xfer" with parameters indicating whether to act as some form
263 >     * of offer, put, poll, take, or transfer (each possibly with
264 >     * timeout). The relative complexity of using one monolithic
265 >     * method outweighs the code bulk and maintenance problems of
266 >     * using separate methods for each case.
267 >     *
268 >     * Operation consists of up to three phases. The first is
269 >     * implemented within method xfer, the second in tryAppend, and
270 >     * the third in method awaitMatch.
271 >     *
272 >     * 1. Try to match an existing node
273 >     *
274 >     *    Starting at head, skip already-matched nodes until finding
275 >     *    an unmatched node of opposite mode, if one exists, in which
276 >     *    case matching it and returning, also if necessary updating
277 >     *    head to one past the matched node (or the node itself if the
278 >     *    list has no other unmatched nodes). If the CAS misses, then
279 >     *    a loop retries advancing head by two steps until either
280 >     *    success or the slack is at most two. By requiring that each
281 >     *    attempt advances head by two (if applicable), we ensure that
282 >     *    the slack does not grow without bound. Traversals also check
283 >     *    if the initial head is now off-list, in which case they
284 >     *    start at the new head.
285 >     *
286 >     *    If no candidates are found and the call was untimed
287 >     *    poll/offer, (argument "how" is NOW) return.
288 >     *
289 >     * 2. Try to append a new node (method tryAppend)
290 >     *
291 >     *    Starting at current tail pointer, find the actual last node
292 >     *    and try to append a new node (or if head was null, establish
293 >     *    the first node). Nodes can be appended only if their
294 >     *    predecessors are either already matched or are of the same
295 >     *    mode. If we detect otherwise, then a new node with opposite
296 >     *    mode must have been appended during traversal, so we must
297 >     *    restart at phase 1. The traversal and update steps are
298 >     *    otherwise similar to phase 1: Retrying upon CAS misses and
299 >     *    checking for staleness.  In particular, if a self-link is
300 >     *    encountered, then we can safely jump to a node on the list
301 >     *    by continuing the traversal at current head.
302 >     *
303 >     *    On successful append, if the call was ASYNC, return.
304 >     *
305 >     * 3. Await match or cancellation (method awaitMatch)
306 >     *
307 >     *    Wait for another thread to match node; instead cancelling if
308 >     *    the current thread was interrupted or the wait timed out. On
309 >     *    multiprocessors, we use front-of-queue spinning: If a node
310 >     *    appears to be the first unmatched node in the queue, it
311 >     *    spins a bit before blocking. In either case, before blocking
312 >     *    it tries to unsplice any nodes between the current "head"
313 >     *    and the first unmatched node.
314 >     *
315 >     *    Front-of-queue spinning vastly improves performance of
316 >     *    heavily contended queues. And so long as it is relatively
317 >     *    brief and "quiet", spinning does not much impact performance
318 >     *    of less-contended queues.  During spins threads check their
319 >     *    interrupt status and generate a thread-local random number
320 >     *    to decide to occasionally perform a Thread.yield. While
321 >     *    yield has underdefined specs, we assume that might it help,
322 >     *    and will not hurt in limiting impact of spinning on busy
323 >     *    systems.  We also use smaller (1/2) spins for nodes that are
324 >     *    not known to be front but whose predecessors have not
325 >     *    blocked -- these "chained" spins avoid artifacts of
326 >     *    front-of-queue rules which otherwise lead to alternating
327 >     *    nodes spinning vs blocking. Further, front threads that
328 >     *    represent phase changes (from data to request node or vice
329 >     *    versa) compared to their predecessors receive additional
330 >     *    chained spins, reflecting longer paths typically required to
331 >     *    unblock threads during phase changes.
332 >     */
333 >
334 >    /** True if on multiprocessor */
335 >    private static final boolean MP =
336 >        Runtime.getRuntime().availableProcessors() > 1;
337  
338      /**
339 <     * The number of times to spin before blocking in timed waits.
340 <     * The value is empirically derived -- it works well across a
341 <     * variety of processors and OSes. Empirically, the best value
342 <     * seems not to vary with number of CPUs (beyond 2) so is just
343 <     * a constant.
339 >     * The number of times to spin (with randomly interspersed calls
340 >     * to Thread.yield) on multiprocessor before blocking when a node
341 >     * is apparently the first waiter in the queue.  See above for
342 >     * explanation. Must be a power of two. The value is empirically
343 >     * derived -- it works pretty well across a variety of processors,
344 >     * numbers of CPUs, and OSes.
345       */
346 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
346 >    private static final int FRONT_SPINS   = 1 << 7;
347  
348      /**
349 <     * The number of times to spin before blocking in untimed waits.
350 <     * This is greater than timed value because untimed waits spin
351 <     * faster since they don't need to check times on each spin.
349 >     * The number of times to spin before blocking when a node is
350 >     * preceded by another node that is apparently spinning.  Also
351 >     * serves as an increment to FRONT_SPINS on phase changes, and as
352 >     * base average frequency for yielding during spins. Must be a
353 >     * power of two.
354       */
355 <    static final int maxUntimedSpins = maxTimedSpins * 16;
355 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
356  
357      /**
358 <     * The number of nanoseconds for which it is faster to spin
359 <     * rather than to use timed park. A rough estimate suffices.
360 <     */
361 <    static final long spinForTimeoutThreshold = 1000L;
358 >     * Queue nodes. Uses Object, not E, for items to allow forgetting
359 >     * them after use.  Relies heavily on Unsafe mechanics to minimize
360 >     * unnecessary ordering constraints: Writes that intrinsically
361 >     * precede or follow CASes use simple relaxed forms.  Other
362 >     * cleanups use releasing/lazy writes.
363 >     */
364 >    static final class Node {
365 >        final boolean isData;   // false if this is a request node
366 >        volatile Object item;   // initially non-null if isData; CASed to match
367 >        volatile Node next;
368 >        volatile Thread waiter; // null until waiting
369 >
370 >        // CAS methods for fields
371 >        final boolean casNext(Node cmp, Node val) {
372 >            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
373 >        }
374 >
375 >        final boolean casItem(Object cmp, Object val) {
376 >            assert cmp == null || cmp.getClass() != Node.class;
377 >            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
378 >        }
379  
380 <    /**
381 <     * Node class for LinkedTransferQueue. Opportunistically
382 <     * subclasses from AtomicReference to represent item. Uses Object,
383 <     * not E, to allow setting item to "this" after use, to avoid
384 <     * garbage retention. Similarly, setting the next field to this is
385 <     * used as sentinel that node is off list.
105 <     */
106 <    static final class QNode extends AtomicReference<Object> {
107 <        volatile QNode next;
108 <        volatile Thread waiter;       // to control park/unpark
109 <        final boolean isData;
110 <        QNode(Object item, boolean isData) {
111 <            super(item);
380 >        /**
381 >         * Creates a new node. Uses relaxed write because item can only
382 >         * be seen if followed by CAS.
383 >         */
384 >        Node(Object item, boolean isData) {
385 >            UNSAFE.putObject(this, itemOffset, item); // relaxed write
386              this.isData = isData;
387          }
388  
389 <        static final AtomicReferenceFieldUpdater<QNode, QNode>
390 <            nextUpdater = AtomicReferenceFieldUpdater.newUpdater
391 <            (QNode.class, QNode.class, "next");
389 >        /**
390 >         * Links node to itself to avoid garbage retention.  Called
391 >         * only after CASing head field, so uses relaxed write.
392 >         */
393 >        final void forgetNext() {
394 >            UNSAFE.putObject(this, nextOffset, this);
395 >        }
396  
397 <        final boolean casNext(QNode cmp, QNode val) {
398 <            return nextUpdater.compareAndSet(this, cmp, val);
397 >        /**
398 >         * Sets item to self (using a releasing/lazy write) and waiter
399 >         * to null, to avoid garbage retention after extracting or
400 >         * cancelling.
401 >         */
402 >        final void forgetContents() {
403 >            UNSAFE.putOrderedObject(this, itemOffset, this);
404 >            UNSAFE.putOrderedObject(this, waiterOffset, null);
405          }
406  
407 <        final void clearNext() {
408 <            nextUpdater.lazySet(this, this);
407 >        /**
408 >         * Returns true if this node has been matched, including the
409 >         * case of artificial matches due to cancellation.
410 >         */
411 >        final boolean isMatched() {
412 >            Object x = item;
413 >            return (x == this) || ((x == null) == isData);
414          }
415  
416 <    }
416 >        /**
417 >         * Returns true if this is an unmatched request node.
418 >         */
419 >        final boolean isUnmatchedRequest() {
420 >            return !isData && item == null;
421 >        }
422  
423 <    /**
424 <     * Padded version of AtomicReference used for head, tail and
425 <     * cleanMe, to alleviate contention across threads CASing one vs
426 <     * the other.
427 <     */
428 <    static final class PaddedAtomicReference<T> extends AtomicReference<T> {
429 <        // enough padding for 64bytes with 4byte refs
430 <        Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
431 <        PaddedAtomicReference(T r) { super(r); }
423 >        /**
424 >         * Returns true if a node with the given mode cannot be
425 >         * appended to this node because this node is unmatched and
426 >         * has opposite data mode.
427 >         */
428 >        final boolean cannotPrecede(boolean haveData) {
429 >            boolean d = isData;
430 >            Object x;
431 >            return d != haveData && (x = item) != this && (x != null) == d;
432 >        }
433 >
434 >        /**
435 >         * Tries to artificially match a data node -- used by remove.
436 >         */
437 >        final boolean tryMatchData() {
438 >            assert isData;
439 >            Object x = item;
440 >            if (x != null && x != this && casItem(x, null)) {
441 >                LockSupport.unpark(waiter);
442 >                return true;
443 >            }
444 >            return false;
445 >        }
446 >
447 >        // Unsafe mechanics
448 >        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
449 >        private static final long nextOffset =
450 >            objectFieldOffset(UNSAFE, "next", Node.class);
451 >        private static final long itemOffset =
452 >            objectFieldOffset(UNSAFE, "item", Node.class);
453 >        private static final long waiterOffset =
454 >            objectFieldOffset(UNSAFE, "waiter", Node.class);
455 >
456 >        private static final long serialVersionUID = -3375979862319811754L;
457      }
458  
459 +    /** head of the queue; null until first enqueue */
460 +    transient volatile Node head;
461  
462 <    /** head of the queue */
463 <    private transient final PaddedAtomicReference<QNode> head;
143 <    /** tail of the queue */
144 <    private transient final PaddedAtomicReference<QNode> tail;
462 >    /** predecessor of dangling unspliceable node */
463 >    private transient volatile Node cleanMe; // decl here reduces contention
464  
465 <    /**
466 <     * Reference to a cancelled node that might not yet have been
148 <     * unlinked from queue because it was the last inserted node
149 <     * when it cancelled.
150 <     */
151 <    private transient final PaddedAtomicReference<QNode> cleanMe;
465 >    /** tail of the queue; null until first append */
466 >    private transient volatile Node tail;
467  
468 <    /**
469 <     * Tries to cas nh as new head; if successful, unlink
470 <     * old head's next node to avoid garbage retention.
468 >    // CAS methods for fields
469 >    private boolean casTail(Node cmp, Node val) {
470 >        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
471 >    }
472 >
473 >    private boolean casHead(Node cmp, Node val) {
474 >        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
475 >    }
476 >
477 >    private boolean casCleanMe(Node cmp, Node val) {
478 >        return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
479 >    }
480 >
481 >    /*
482 >     * Possible values for "how" argument in xfer method. Beware that
483 >     * the order of assigned numerical values matters.
484       */
485 <    private boolean advanceHead(QNode h, QNode nh) {
486 <        if (h == head.get() && head.compareAndSet(h, nh)) {
487 <            h.clearNext(); // forget old next
488 <            return true;
489 <        }
490 <        return false;
485 >    private static final int NOW     = 0; // for untimed poll, tryTransfer
486 >    private static final int ASYNC   = 1; // for offer, put, add
487 >    private static final int SYNC    = 2; // for transfer, take
488 >    private static final int TIMEOUT = 3; // for timed poll, tryTransfer
489 >
490 >    @SuppressWarnings("unchecked")
491 >    static <E> E cast(Object item) {
492 >        assert item == null || item.getClass() != Node.class;
493 >        return (E) item;
494      }
495  
496      /**
497 <     * Puts or takes an item. Used for most queue operations (except
498 <     * poll() and tryTransfer()). See the similar code in
499 <     * SynchronousQueue for detailed explanation.
500 <     * @param e the item or if null, signifies that this is a take
501 <     * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
497 >     * Implements all queuing methods. See above for explanation.
498 >     *
499 >     * @param e the item or null for take
500 >     * @param haveData true if this is a put, else a take
501 >     * @param how NOW, ASYNC, SYNC, or TIMEOUT
502       * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
503 <     * @return an item, or null on failure
503 >     * @return an item if matched, else e
504 >     * @throws NullPointerException if haveData mode but e is null
505       */
506 <    private Object xfer(Object e, int mode, long nanos) {
507 <        boolean isData = (e != null);
508 <        QNode s = null;
509 <        final PaddedAtomicReference<QNode> head = this.head;
178 <        final PaddedAtomicReference<QNode> tail = this.tail;
506 >    private E xfer(E e, boolean haveData, int how, long nanos) {
507 >        if (haveData && (e == null))
508 >            throw new NullPointerException();
509 >        Node s = null;                        // the node to append, if needed
510  
511 <        for (;;) {
181 <            QNode t = tail.get();
182 <            QNode h = head.get();
511 >        retry: for (;;) {                     // restart on append race
512  
513 <            if (t != null && (t == h || t.isData == isData)) {
514 <                if (s == null)
515 <                    s = new QNode(e, isData);
516 <                QNode last = t.next;
517 <                if (last != null) {
518 <                    if (t == tail.get())
519 <                        tail.compareAndSet(t, last);
520 <                }
521 <                else if (t.casNext(null, s)) {
522 <                    tail.compareAndSet(t, s);
523 <                    return awaitFulfill(t, s, e, mode, nanos);
513 >            for (Node h = head, p = h; p != null;) { // find & match first node
514 >                boolean isData = p.isData;
515 >                Object item = p.item;
516 >                if (item != p && (item != null) == isData) { // unmatched
517 >                    if (isData == haveData)   // can't match
518 >                        break;
519 >                    if (p.casItem(item, e)) { // match
520 >                        for (Node q = p; q != h;) {
521 >                            Node n = q.next;  // update head by 2
522 >                            if (n != null)    // unless singleton
523 >                                q = n;
524 >                            if (head == h && casHead(h, q)) {
525 >                                h.forgetNext();
526 >                                break;
527 >                            }                 // advance and retry
528 >                            if ((h = head)   == null ||
529 >                                (q = h.next) == null || !q.isMatched())
530 >                                break;        // unless slack < 2
531 >                        }
532 >                        LockSupport.unpark(p.waiter);
533 >                        return this.<E>cast(item);
534 >                    }
535                  }
536 +                Node n = p.next;
537 +                p = (p != n) ? n : (h = head); // Use head if p offlist
538              }
539  
540 <            else if (h != null) {
541 <                QNode first = h.next;
542 <                if (t == tail.get() && first != null &&
543 <                    advanceHead(h, first)) {
544 <                    Object x = first.get();
545 <                    if (x != first && first.compareAndSet(x, e)) {
546 <                        LockSupport.unpark(first.waiter);
547 <                        return isData? e : x;
206 <                    }
207 <                }
540 >            if (how >= ASYNC) {               // No matches available
541 >                if (s == null)
542 >                    s = new Node(e, haveData);
543 >                Node pred = tryAppend(s, haveData);
544 >                if (pred == null)
545 >                    continue retry;           // lost race vs opposite mode
546 >                if (how >= SYNC)
547 >                    return awaitMatch(s, pred, e, how, nanos);
548              }
549 +            return e; // not waiting
550          }
551      }
552  
212
553      /**
554 <     * Version of xfer for poll() and tryTransfer, which
555 <     * simplifies control paths both here and in xfer
556 <     */
557 <    private Object fulfill(Object e) {
558 <        boolean isData = (e != null);
559 <        final PaddedAtomicReference<QNode> head = this.head;
560 <        final PaddedAtomicReference<QNode> tail = this.tail;
561 <
562 <        for (;;) {
563 <            QNode t = tail.get();
564 <            QNode h = head.get();
565 <
566 <            if (t != null && (t == h || t.isData == isData)) {
567 <                QNode last = t.next;
568 <                if (t == tail.get()) {
569 <                    if (last != null)
570 <                        tail.compareAndSet(t, last);
571 <                    else
572 <                        return null;
573 <                }
574 <            }
575 <            else if (h != null) {
576 <                QNode first = h.next;
577 <                if (t == tail.get() &&
578 <                    first != null &&
579 <                    advanceHead(h, first)) {
580 <                    Object x = first.get();
581 <                    if (x != first && first.compareAndSet(x, e)) {
242 <                        LockSupport.unpark(first.waiter);
243 <                        return isData? e : x;
244 <                    }
554 >     * Tries to append node s as tail.
555 >     *
556 >     * @param s the node to append
557 >     * @param haveData true if appending in data mode
558 >     * @return null on failure due to losing race with append in
559 >     * different mode, else s's predecessor, or s itself if no
560 >     * predecessor
561 >     */
562 >    private Node tryAppend(Node s, boolean haveData) {
563 >        for (Node t = tail, p = t;;) {        // move p to last node and append
564 >            Node n, u;                        // temps for reads of next & tail
565 >            if (p == null && (p = head) == null) {
566 >                if (casHead(null, s))
567 >                    return s;                 // initialize
568 >            }
569 >            else if (p.cannotPrecede(haveData))
570 >                return null;                  // lost race vs opposite mode
571 >            else if ((n = p.next) != null)    // not last; keep traversing
572 >                p = p != t && t != (u = tail) ? (t = u) : // stale tail
573 >                    (p != n) ? n : null;      // restart if off list
574 >            else if (!p.casNext(null, s))
575 >                p = p.next;                   // re-read on CAS failure
576 >            else {
577 >                if (p != t) {                 // update if slack now >= 2
578 >                    while ((tail != t || !casTail(t, s)) &&
579 >                           (t = tail)   != null &&
580 >                           (s = t.next) != null && // advance and retry
581 >                           (s = s.next) != null && s != t);
582                  }
583 +                return p;
584              }
585          }
586      }
587  
588      /**
589 <     * Spins/blocks until node s is fulfilled or caller gives up,
252 <     * depending on wait mode.
589 >     * Spins/yields/blocks until node s is matched or caller gives up.
590       *
254     * @param pred the predecessor of waiting node
591       * @param s the waiting node
592 +     * @param pred the predecessor of s, or s itself if it has no
593 +     * predecessor, or null if unknown (the null case does not occur
594 +     * in any current calls but may in possible future extensions)
595       * @param e the comparison value for checking match
596 <     * @param mode mode
596 >     * @param how either SYNC or TIMEOUT
597       * @param nanos timeout value
598 <     * @return matched item, or s if cancelled
598 >     * @return matched item, or e if unmatched on interrupt or timeout
599       */
600 <    private Object awaitFulfill(QNode pred, QNode s, Object e,
601 <                                int mode, long nanos) {
263 <        if (mode == NOWAIT)
264 <            return null;
265 <
266 <        long lastTime = (mode == TIMEOUT)? System.nanoTime() : 0;
600 >    private E awaitMatch(Node s, Node pred, E e, int how, long nanos) {
601 >        long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
602          Thread w = Thread.currentThread();
603 <        int spins = -1; // set to desired spin count below
603 >        int spins = -1; // initialized after first item and cancel checks
604 >        ThreadLocalRandom randomYields = null; // bound if needed
605 >
606          for (;;) {
607 <            if (w.isInterrupted())
608 <                s.compareAndSet(e, s);
609 <            Object x = s.get();
610 <            if (x != e) {                 // Node was matched or cancelled
611 <                advanceHead(pred, s);     // unlink if head
612 <                if (x == s) {              // was cancelled
613 <                    clean(pred, s);
614 <                    return null;
615 <                }
616 <                else if (x != null) {
617 <                    s.set(s);             // avoid garbage retention
618 <                    return x;
619 <                }
620 <                else
621 <                    return e;
607 >            Object item = s.item;
608 >            if (item != e) {                  // matched
609 >                assert item != s;
610 >                s.forgetContents();           // avoid garbage
611 >                return this.<E>cast(item);
612 >            }
613 >            if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
614 >                    s.casItem(e, s)) {       // cancel
615 >                unsplice(pred, s);
616 >                return e;
617 >            }
618 >
619 >            if (spins < 0) {                  // establish spins at/near front
620 >                if ((spins = spinsFor(pred, s.isData)) > 0)
621 >                    randomYields = ThreadLocalRandom.current();
622 >            }
623 >            else if (spins > 0) {             // spin
624 >                if (--spins == 0)
625 >                    shortenHeadPath();        // reduce slack before blocking
626 >                else if (randomYields.nextInt(CHAINED_SPINS) == 0)
627 >                    Thread.yield();           // occasionally yield
628              }
629 <            if (mode == TIMEOUT) {
629 >            else if (s.waiter == null) {
630 >                s.waiter = w;                 // request unpark then recheck
631 >            }
632 >            else if (how == TIMEOUT) {
633                  long now = System.nanoTime();
634 <                nanos -= now - lastTime;
634 >                if ((nanos -= now - lastTime) > 0)
635 >                    LockSupport.parkNanos(this, nanos);
636                  lastTime = now;
290                if (nanos <= 0) {
291                    s.compareAndSet(e, s); // try to cancel
292                    continue;
293                }
637              }
638 <            if (spins < 0) {
296 <                QNode h = head.get(); // only spin if at head
297 <                spins = ((h != null && h.next == s) ?
298 <                         (mode == TIMEOUT?
299 <                          maxTimedSpins : maxUntimedSpins) : 0);
300 <            }
301 <            if (spins > 0)
302 <                --spins;
303 <            else if (s.waiter == null)
304 <                s.waiter = w;
305 <            else if (mode != TIMEOUT) {
638 >            else {
639                  LockSupport.park(this);
640                  s.waiter = null;
641 <                spins = -1;
309 <            }
310 <            else if (nanos > spinForTimeoutThreshold) {
311 <                LockSupport.parkNanos(this, nanos);
312 <                s.waiter = null;
313 <                spins = -1;
641 >                spins = -1;                   // spin if front upon wakeup
642              }
643          }
644      }
645  
646      /**
647 <     * Returns validated tail for use in cleaning methods
647 >     * Returns spin/yield value for a node with given predecessor and
648 >     * data mode. See above for explanation.
649       */
650 <    private QNode getValidatedTail() {
651 <        for (;;) {
652 <            QNode h = head.get();
653 <            QNode first = h.next;
654 <            if (first != null && first.next == first) { // help advance
655 <                advanceHead(h, first);
656 <                continue;
657 <            }
658 <            QNode t = tail.get();
659 <            QNode last = t.next;
660 <            if (t == tail.get()) {
661 <                if (last != null)
662 <                    tail.compareAndSet(t, last); // help advance
663 <                else
664 <                    return t;
650 >    private static int spinsFor(Node pred, boolean haveData) {
651 >        if (MP && pred != null) {
652 >            if (pred.isData != haveData)      // phase change
653 >                return FRONT_SPINS + CHAINED_SPINS;
654 >            if (pred.isMatched())             // probably at front
655 >                return FRONT_SPINS;
656 >            if (pred.waiter == null)          // pred apparently spinning
657 >                return CHAINED_SPINS;
658 >        }
659 >        return 0;
660 >    }
661 >
662 >    /**
663 >     * Tries (once) to unsplice nodes between head and first unmatched
664 >     * or trailing node; failing on contention.
665 >     */
666 >    private void shortenHeadPath() {
667 >        Node h, hn, p, q;
668 >        if ((p = h = head) != null && h.isMatched() &&
669 >            (q = hn = h.next) != null) {
670 >            Node n;
671 >            while ((n = q.next) != q) {
672 >                if (n == null || !q.isMatched()) {
673 >                    if (hn != q && h.next == hn)
674 >                        h.casNext(hn, q);
675 >                    break;
676 >                }
677 >                p = q;
678 >                q = n;
679              }
680          }
681      }
682  
683 +    /* -------------- Traversal methods -------------- */
684 +
685      /**
686 <     * Gets rid of cancelled node s with original predecessor pred.
687 <     * @param pred predecessor of cancelled node
343 <     * @param s the cancelled node
686 >     * Returns the first unmatched node of the given mode, or null if
687 >     * none.  Used by methods isEmpty, hasWaitingConsumer.
688       */
689 <    private void clean(QNode pred, QNode s) {
690 <        Thread w = s.waiter;
691 <        if (w != null) {             // Wake up thread
692 <            s.waiter = null;
693 <            if (w != Thread.currentThread())
694 <                LockSupport.unpark(w);
689 >    private Node firstOfMode(boolean data) {
690 >        for (Node p = head; p != null; ) {
691 >            if (!p.isMatched())
692 >                return (p.isData == data) ? p : null;
693 >            Node n = p.next;
694 >            p = (n != p) ? n : head;
695          }
696 +        return null;
697 +    }
698  
699 <        if (pred == null)
700 <            return;
699 >    /**
700 >     * Returns the item in the first unmatched node with isData; or
701 >     * null if none.  Used by peek.
702 >     */
703 >    private E firstDataItem() {
704 >        for (Node p = head; p != null; ) {
705 >            boolean isData = p.isData;
706 >            Object item = p.item;
707 >            if (item != p && (item != null) == isData)
708 >                return isData ? this.<E>cast(item) : null;
709 >            Node n = p.next;
710 >            p = (n != p) ? n : head;
711 >        }
712 >        return null;
713 >    }
714  
715 +    /**
716 +     * Traverses and counts unmatched nodes of the given mode.
717 +     * Used by methods size and getWaitingConsumerCount.
718 +     */
719 +    private int countOfMode(boolean data) {
720 +        int count = 0;
721 +        for (Node p = head; p != null; ) {
722 +            if (!p.isMatched()) {
723 +                if (p.isData != data)
724 +                    return 0;
725 +                if (++count == Integer.MAX_VALUE) // saturated
726 +                    break;
727 +            }
728 +            Node n = p.next;
729 +            if (n != p)
730 +                p = n;
731 +            else {
732 +                count = 0;
733 +                p = head;
734 +            }
735 +        }
736 +        return count;
737 +    }
738 +
739 +    final class Itr implements Iterator<E> {
740 +        private Node nextNode;   // next node to return item for
741 +        private E nextItem;      // the corresponding item
742 +        private Node lastRet;    // last returned node, to support remove
743 +        private Node lastPred;   // predecessor to unlink lastRet
744 +
745 +        /**
746 +         * Moves to next node after prev, or first node if prev null.
747 +         */
748 +        private void advance(Node prev) {
749 +            lastPred = lastRet;
750 +            lastRet = prev;
751 +            Node p;
752 +            if (prev == null || (p = prev.next) == prev)
753 +                p = head;
754 +            while (p != null) {
755 +                Object item = p.item;
756 +                if (p.isData) {
757 +                    if (item != null && item != p) {
758 +                        nextItem = LinkedTransferQueue.this.<E>cast(item);
759 +                        nextNode = p;
760 +                        return;
761 +                    }
762 +                }
763 +                else if (item == null)
764 +                    break;
765 +                Node n = p.next;
766 +                p = (n != p) ? n : head;
767 +            }
768 +            nextNode = null;
769 +        }
770 +
771 +        Itr() {
772 +            advance(null);
773 +        }
774 +
775 +        public final boolean hasNext() {
776 +            return nextNode != null;
777 +        }
778 +
779 +        public final E next() {
780 +            Node p = nextNode;
781 +            if (p == null) throw new NoSuchElementException();
782 +            E e = nextItem;
783 +            advance(p);
784 +            return e;
785 +        }
786 +
787 +        public final void remove() {
788 +            Node p = lastRet;
789 +            if (p == null) throw new IllegalStateException();
790 +            findAndRemoveDataNode(lastPred, p);
791 +        }
792 +    }
793 +
794 +    /* -------------- Removal methods -------------- */
795 +
796 +    /**
797 +     * Unsplices (now or later) the given deleted/cancelled node with
798 +     * the given predecessor.
799 +     *
800 +     * @param pred predecessor of node to be unspliced
801 +     * @param s the node to be unspliced
802 +     */
803 +    private void unsplice(Node pred, Node s) {
804 +        s.forgetContents(); // clear unneeded fields
805          /*
806           * At any given time, exactly one node on list cannot be
807 <         * deleted -- the last inserted node. To accommodate this, if
808 <         * we cannot delete s, we save its predecessor as "cleanMe",
809 <         * processing the previously saved version first. At least one
810 <         * of node s or the node previously saved can always be
807 >         * unlinked -- the last inserted node. To accommodate this, if
808 >         * we cannot unlink s, we save its predecessor as "cleanMe",
809 >         * processing the previously saved version first. Because only
810 >         * one node in the list can have a null next, at least one of
811 >         * node s or the node previously saved can always be
812           * processed, so this always terminates.
813           */
814 <        while (pred.next == s) {
815 <            QNode oldpred = reclean();  // First, help get rid of cleanMe
816 <            QNode t = getValidatedTail();
817 <            if (s != t) {               // If not tail, try to unsplice
818 <                QNode sn = s.next;      // s.next == s means s already off list
819 <                if (sn == s || pred.casNext(s, sn))
814 >        if (pred != null && pred != s) {
815 >            while (pred.next == s) {
816 >                Node oldpred = (cleanMe == null) ? null : reclean();
817 >                Node n = s.next;
818 >                if (n != null) {
819 >                    if (n != s)
820 >                        pred.casNext(s, n);
821                      break;
822 +                }
823 +                if (oldpred == pred ||      // Already saved
824 +                    ((oldpred == null || oldpred.next == s) &&
825 +                     casCleanMe(oldpred, pred))) {
826 +                    break;
827 +                }
828              }
372            else if (oldpred == pred || // Already saved
373                     (oldpred == null && cleanMe.compareAndSet(null, pred)))
374                break;                  // Postpone cleaning
829          }
830      }
831  
832      /**
833 <     * Tries to unsplice the cancelled node held in cleanMe that was
834 <     * previously uncleanable because it was at tail.
833 >     * Tries to unsplice the deleted/cancelled node held in cleanMe
834 >     * that was previously uncleanable because it was at tail.
835 >     *
836       * @return current cleanMe node (or null)
837       */
838 <    private QNode reclean() {
838 >    private Node reclean() {
839          /*
840 <         * cleanMe is, or at one time was, predecessor of cancelled
841 <         * node s that was the tail so could not be unspliced.  If s
840 >         * cleanMe is, or at one time was, predecessor of a cancelled
841 >         * node s that was the tail so could not be unspliced.  If it
842           * is no longer the tail, try to unsplice if necessary and
843           * make cleanMe slot available.  This differs from similar
844 <         * code in clean() because we must check that pred still
845 <         * points to a cancelled node that must be unspliced -- if
846 <         * not, we can (must) clear cleanMe without unsplicing.
847 <         * This can loop only due to contention on casNext or
393 <         * clearing cleanMe.
844 >         * code in unsplice() because we must check that pred still
845 >         * points to a matched node that can be unspliced -- if not,
846 >         * we can (must) clear cleanMe without unsplicing.  This can
847 >         * loop only due to contention.
848           */
849 <        QNode pred;
850 <        while ((pred = cleanMe.get()) != null) {
851 <            QNode t = getValidatedTail();
852 <            QNode s = pred.next;
853 <            if (s != t) {
854 <                QNode sn;
855 <                if (s == null || s == pred || s.get() != s ||
856 <                    (sn = s.next) == s || pred.casNext(s, sn))
857 <                    cleanMe.compareAndSet(pred, null);
849 >        Node pred;
850 >        while ((pred = cleanMe) != null) {
851 >            Node s = pred.next;
852 >            Node n;
853 >            if (s == null || s == pred || !s.isMatched())
854 >                casCleanMe(pred, null); // already gone
855 >            else if ((n = s.next) != null) {
856 >                if (n != s)
857 >                    pred.casNext(s, n);
858 >                casCleanMe(pred, null);
859              }
860 <            else // s is still tail; cannot clean
860 >            else
861                  break;
862          }
863          return pred;
864      }
865  
866      /**
867 +     * Main implementation of Iterator.remove(). Find
868 +     * and unsplice the given data node.
869 +     * @param possiblePred possible predecessor of s
870 +     * @param s the node to remove
871 +     */
872 +    final void findAndRemoveDataNode(Node possiblePred, Node s) {
873 +        assert s.isData;
874 +        if (s.tryMatchData()) {
875 +            if (possiblePred != null && possiblePred.next == s)
876 +                unsplice(possiblePred, s); // was actual predecessor
877 +            else {
878 +                for (Node pred = null, p = head; p != null; ) {
879 +                    if (p == s) {
880 +                        unsplice(pred, p);
881 +                        break;
882 +                    }
883 +                    if (p.isUnmatchedRequest())
884 +                        break;
885 +                    pred = p;
886 +                    if ((p = p.next) == pred) { // stale
887 +                        pred = null;
888 +                        p = head;
889 +                    }
890 +                }
891 +            }
892 +        }
893 +    }
894 +
895 +    /**
896 +     * Main implementation of remove(Object)
897 +     */
898 +    private boolean findAndRemove(Object e) {
899 +        if (e != null) {
900 +            for (Node pred = null, p = head; p != null; ) {
901 +                Object item = p.item;
902 +                if (p.isData) {
903 +                    if (item != null && item != p && e.equals(item) &&
904 +                        p.tryMatchData()) {
905 +                        unsplice(pred, p);
906 +                        return true;
907 +                    }
908 +                }
909 +                else if (item == null)
910 +                    break;
911 +                pred = p;
912 +                if ((p = p.next) == pred) { // stale
913 +                    pred = null;
914 +                    p = head;
915 +                }
916 +            }
917 +        }
918 +        return false;
919 +    }
920 +
921 +
922 +    /**
923       * Creates an initially empty {@code LinkedTransferQueue}.
924       */
925      public LinkedTransferQueue() {
415        QNode dummy = new QNode(null, false);
416        head = new PaddedAtomicReference<QNode>(dummy);
417        tail = new PaddedAtomicReference<QNode>(dummy);
418        cleanMe = new PaddedAtomicReference<QNode>(null);
926      }
927  
928      /**
929       * Creates a {@code LinkedTransferQueue}
930       * initially containing the elements of the given collection,
931       * added in traversal order of the collection's iterator.
932 +     *
933       * @param c the collection of elements to initially contain
934       * @throws NullPointerException if the specified collection or any
935       *         of its elements are null
# Line 431 | Line 939 | public class LinkedTransferQueue<E> exte
939          addAll(c);
940      }
941  
942 <    public void put(E e) throws InterruptedException {
943 <        if (e == null) throw new NullPointerException();
944 <        if (Thread.interrupted()) throw new InterruptedException();
945 <        xfer(e, NOWAIT, 0);
942 >    /**
943 >     * Inserts the specified element at the tail of this queue.
944 >     * As the queue is unbounded, this method will never block.
945 >     *
946 >     * @throws NullPointerException if the specified element is null
947 >     */
948 >    public void put(E e) {
949 >        xfer(e, true, ASYNC, 0);
950      }
951  
952 <    public boolean offer(E e, long timeout, TimeUnit unit)
953 <        throws InterruptedException {
954 <        if (e == null) throw new NullPointerException();
955 <        if (Thread.interrupted()) throw new InterruptedException();
956 <        xfer(e, NOWAIT, 0);
952 >    /**
953 >     * Inserts the specified element at the tail of this queue.
954 >     * As the queue is unbounded, this method will never block or
955 >     * return {@code false}.
956 >     *
957 >     * @return {@code true} (as specified by
958 >     *  {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
959 >     * @throws NullPointerException if the specified element is null
960 >     */
961 >    public boolean offer(E e, long timeout, TimeUnit unit) {
962 >        xfer(e, true, ASYNC, 0);
963          return true;
964      }
965  
966 +    /**
967 +     * Inserts the specified element at the tail of this queue.
968 +     * As the queue is unbounded, this method will never return {@code false}.
969 +     *
970 +     * @return {@code true} (as specified by
971 +     *         {@link BlockingQueue#offer(Object) BlockingQueue.offer})
972 +     * @throws NullPointerException if the specified element is null
973 +     */
974      public boolean offer(E e) {
975 <        if (e == null) throw new NullPointerException();
450 <        xfer(e, NOWAIT, 0);
975 >        xfer(e, true, ASYNC, 0);
976          return true;
977      }
978  
979 +    /**
980 +     * Inserts the specified element at the tail of this queue.
981 +     * As the queue is unbounded, this method will never throw
982 +     * {@link IllegalStateException} or return {@code false}.
983 +     *
984 +     * @return {@code true} (as specified by {@link Collection#add})
985 +     * @throws NullPointerException if the specified element is null
986 +     */
987      public boolean add(E e) {
988 <        if (e == null) throw new NullPointerException();
456 <        xfer(e, NOWAIT, 0);
988 >        xfer(e, true, ASYNC, 0);
989          return true;
990      }
991  
992 +    /**
993 +     * Transfers the element to a waiting consumer immediately, if possible.
994 +     *
995 +     * <p>More precisely, transfers the specified element immediately
996 +     * if there exists a consumer already waiting to receive it (in
997 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
998 +     * otherwise returning {@code false} without enqueuing the element.
999 +     *
1000 +     * @throws NullPointerException if the specified element is null
1001 +     */
1002 +    public boolean tryTransfer(E e) {
1003 +        return xfer(e, true, NOW, 0) == null;
1004 +    }
1005 +
1006 +    /**
1007 +     * Transfers the element to a consumer, waiting if necessary to do so.
1008 +     *
1009 +     * <p>More precisely, transfers the specified element immediately
1010 +     * if there exists a consumer already waiting to receive it (in
1011 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1012 +     * else inserts the specified element at the tail of this queue
1013 +     * and waits until the element is received by a consumer.
1014 +     *
1015 +     * @throws NullPointerException if the specified element is null
1016 +     */
1017      public void transfer(E e) throws InterruptedException {
1018 <        if (e == null) throw new NullPointerException();
1019 <        if (xfer(e, WAIT, 0) == null) {
463 <            Thread.interrupted();
1018 >        if (xfer(e, true, SYNC, 0) != null) {
1019 >            Thread.interrupted(); // failure possible only due to interrupt
1020              throw new InterruptedException();
1021          }
1022      }
1023  
1024 +    /**
1025 +     * Transfers the element to a consumer if it is possible to do so
1026 +     * before the timeout elapses.
1027 +     *
1028 +     * <p>More precisely, transfers the specified element immediately
1029 +     * if there exists a consumer already waiting to receive it (in
1030 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1031 +     * else inserts the specified element at the tail of this queue
1032 +     * and waits until the element is received by a consumer,
1033 +     * returning {@code false} if the specified wait time elapses
1034 +     * before the element can be transferred.
1035 +     *
1036 +     * @throws NullPointerException if the specified element is null
1037 +     */
1038      public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1039          throws InterruptedException {
1040 <        if (e == null) throw new NullPointerException();
471 <        if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
1040 >        if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1041              return true;
1042          if (!Thread.interrupted())
1043              return false;
1044          throw new InterruptedException();
1045      }
1046  
478    public boolean tryTransfer(E e) {
479        if (e == null) throw new NullPointerException();
480        return fulfill(e) != null;
481    }
482
1047      public E take() throws InterruptedException {
1048 <        Object e = xfer(null, WAIT, 0);
1048 >        E e = xfer(null, false, SYNC, 0);
1049          if (e != null)
1050 <            return (E)e;
1050 >            return e;
1051          Thread.interrupted();
1052          throw new InterruptedException();
1053      }
1054  
1055      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1056 <        Object e = xfer(null, TIMEOUT, unit.toNanos(timeout));
1056 >        E e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1057          if (e != null || !Thread.interrupted())
1058 <            return (E)e;
1058 >            return e;
1059          throw new InterruptedException();
1060      }
1061  
1062      public E poll() {
1063 <        return (E)fulfill(null);
1063 >        return xfer(null, false, NOW, 0);
1064      }
1065  
1066 +    /**
1067 +     * @throws NullPointerException     {@inheritDoc}
1068 +     * @throws IllegalArgumentException {@inheritDoc}
1069 +     */
1070      public int drainTo(Collection<? super E> c) {
1071          if (c == null)
1072              throw new NullPointerException();
# Line 513 | Line 1081 | public class LinkedTransferQueue<E> exte
1081          return n;
1082      }
1083  
1084 +    /**
1085 +     * @throws NullPointerException     {@inheritDoc}
1086 +     * @throws IllegalArgumentException {@inheritDoc}
1087 +     */
1088      public int drainTo(Collection<? super E> c, int maxElements) {
1089          if (c == null)
1090              throw new NullPointerException();
# Line 527 | Line 1099 | public class LinkedTransferQueue<E> exte
1099          return n;
1100      }
1101  
530    // Traversal-based methods
531
1102      /**
1103 <     * Return head after performing any outstanding helping steps
1103 >     * Returns an iterator over the elements in this queue in proper
1104 >     * sequence, from head to tail.
1105 >     *
1106 >     * <p>The returned iterator is a "weakly consistent" iterator that
1107 >     * will never throw
1108 >     * {@link ConcurrentModificationException ConcurrentModificationException},
1109 >     * and guarantees to traverse elements as they existed upon
1110 >     * construction of the iterator, and may (but is not guaranteed
1111 >     * to) reflect any modifications subsequent to construction.
1112 >     *
1113 >     * @return an iterator over the elements in this queue in proper sequence
1114       */
535    private QNode traversalHead() {
536        for (;;) {
537            QNode t = tail.get();
538            QNode h = head.get();
539            if (h != null && t != null) {
540                QNode last = t.next;
541                QNode first = h.next;
542                if (t == tail.get()) {
543                    if (last != null)
544                        tail.compareAndSet(t, last);
545                    else if (first != null) {
546                        Object x = first.get();
547                        if (x == first)
548                            advanceHead(h, first);
549                        else
550                            return h;
551                    }
552                    else
553                        return h;
554                }
555            }
556            reclean();
557        }
558    }
559
560
1115      public Iterator<E> iterator() {
1116          return new Itr();
1117      }
1118  
565    /**
566     * Iterators. Basic strategy is to traverse list, treating
567     * non-data (i.e., request) nodes as terminating list.
568     * Once a valid data node is found, the item is cached
569     * so that the next call to next() will return it even
570     * if subsequently removed.
571     */
572    class Itr implements Iterator<E> {
573        QNode next;        // node to return next
574        QNode pnext;       // predecessor of next
575        QNode snext;       // successor of next
576        QNode curr;        // last returned node, for remove()
577        QNode pcurr;       // predecessor of curr, for remove()
578        E nextItem;        // Cache of next item, once commited to in next
579
580        Itr() {
581            findNext();
582        }
583
584        /**
585         * Ensure next points to next valid node, or null if none.
586         */
587        void findNext() {
588            for (;;) {
589                QNode pred = pnext;
590                QNode q = next;
591                if (pred == null || pred == q) {
592                    pred = traversalHead();
593                    q = pred.next;
594                }
595                if (q == null || !q.isData) {
596                    next = null;
597                    return;
598                }
599                Object x = q.get();
600                QNode s = q.next;
601                if (x != null && q != x && q != s) {
602                    nextItem = (E)x;
603                    snext = s;
604                    pnext = pred;
605                    next = q;
606                    return;
607                }
608                pnext = q;
609                next = s;
610            }
611        }
612
613        public boolean hasNext() {
614            return next != null;
615        }
616
617        public E next() {
618            if (next == null) throw new NoSuchElementException();
619            pcurr = pnext;
620            curr = next;
621            pnext = next;
622            next = snext;
623            E x = nextItem;
624            findNext();
625            return x;
626        }
627
628        public void remove() {
629            QNode p = curr;
630            if (p == null)
631                throw new IllegalStateException();
632            Object x = p.get();
633            if (x != null && x != p && p.compareAndSet(x, p))
634                clean(pcurr, p);
635        }
636    }
637
1119      public E peek() {
1120 <        for (;;) {
640 <            QNode h = traversalHead();
641 <            QNode p = h.next;
642 <            if (p == null)
643 <                return null;
644 <            Object x = p.get();
645 <            if (p != x) {
646 <                if (!p.isData)
647 <                    return null;
648 <                if (x != null)
649 <                    return (E)x;
650 <            }
651 <        }
1120 >        return firstDataItem();
1121      }
1122  
1123 +    /**
1124 +     * Returns {@code true} if this queue contains no elements.
1125 +     *
1126 +     * @return {@code true} if this queue contains no elements
1127 +     */
1128      public boolean isEmpty() {
1129 <        for (;;) {
656 <            QNode h = traversalHead();
657 <            QNode p = h.next;
658 <            if (p == null)
659 <                return true;
660 <            Object x = p.get();
661 <            if (p != x) {
662 <                if (!p.isData)
663 <                    return true;
664 <                if (x != null)
665 <                    return false;
666 <            }
667 <        }
1129 >        return firstOfMode(true) == null;
1130      }
1131  
1132      public boolean hasWaitingConsumer() {
1133 <        for (;;) {
672 <            QNode h = traversalHead();
673 <            QNode p = h.next;
674 <            if (p == null)
675 <                return false;
676 <            Object x = p.get();
677 <            if (p != x)
678 <                return !p.isData;
679 <        }
1133 >        return firstOfMode(false) != null;
1134      }
1135  
1136      /**
# Line 692 | Line 1146 | public class LinkedTransferQueue<E> exte
1146       * @return the number of elements in this queue
1147       */
1148      public int size() {
1149 <        int count = 0;
696 <        QNode h = traversalHead();
697 <        for (QNode p = h.next; p != null && p.isData; p = p.next) {
698 <            Object x = p.get();
699 <            if (x != null && x != p) {
700 <                if (++count == Integer.MAX_VALUE) // saturated
701 <                    break;
702 <            }
703 <        }
704 <        return count;
1149 >        return countOfMode(true);
1150      }
1151  
1152      public int getWaitingConsumerCount() {
1153 <        int count = 0;
709 <        QNode h = traversalHead();
710 <        for (QNode p = h.next; p != null && !p.isData; p = p.next) {
711 <            if (p.get() == null) {
712 <                if (++count == Integer.MAX_VALUE)
713 <                    break;
714 <            }
715 <        }
716 <        return count;
1153 >        return countOfMode(false);
1154      }
1155  
1156 <    public int remainingCapacity() {
1157 <        return Integer.MAX_VALUE;
1156 >    /**
1157 >     * Removes a single instance of the specified element from this queue,
1158 >     * if it is present.  More formally, removes an element {@code e} such
1159 >     * that {@code o.equals(e)}, if this queue contains one or more such
1160 >     * elements.
1161 >     * Returns {@code true} if this queue contained the specified element
1162 >     * (or equivalently, if this queue changed as a result of the call).
1163 >     *
1164 >     * @param o element to be removed from this queue, if present
1165 >     * @return {@code true} if this queue changed as a result of the call
1166 >     */
1167 >    public boolean remove(Object o) {
1168 >        return findAndRemove(o);
1169      }
1170  
1171 <    public boolean remove(Object o) {
1172 <        if (o == null)
1173 <            return false;
1174 <        for (;;) {
1175 <            QNode pred = traversalHead();
1176 <            for (;;) {
1177 <                QNode q = pred.next;
1178 <                if (q == null || !q.isData)
1179 <                    return false;
732 <                if (q == pred) // restart
733 <                    break;
734 <                Object x = q.get();
735 <                if (x != null && x != q && o.equals(x) &&
736 <                    q.compareAndSet(x, q)) {
737 <                    clean(pred, q);
738 <                    return true;
739 <                }
740 <                pred = q;
741 <            }
742 <        }
1171 >    /**
1172 >     * Always returns {@code Integer.MAX_VALUE} because a
1173 >     * {@code LinkedTransferQueue} is not capacity constrained.
1174 >     *
1175 >     * @return {@code Integer.MAX_VALUE} (as specified by
1176 >     *         {@link BlockingQueue#remainingCapacity()})
1177 >     */
1178 >    public int remainingCapacity() {
1179 >        return Integer.MAX_VALUE;
1180      }
1181  
1182      /**
1183 <     * Save the state to a stream (that is, serialize it).
1183 >     * Saves the state to a stream (that is, serializes it).
1184       *
1185       * @serialData All of the elements (each an {@code E}) in
1186       * the proper order, followed by a null
# Line 752 | Line 1189 | public class LinkedTransferQueue<E> exte
1189      private void writeObject(java.io.ObjectOutputStream s)
1190          throws java.io.IOException {
1191          s.defaultWriteObject();
1192 <        for (Iterator<E> it = iterator(); it.hasNext(); )
1193 <            s.writeObject(it.next());
1192 >        for (E e : this)
1193 >            s.writeObject(e);
1194          // Use trailing null as sentinel
1195          s.writeObject(null);
1196      }
1197  
1198      /**
1199 <     * Reconstitute the Queue instance from a stream (that is,
1200 <     * deserialize it).
1199 >     * Reconstitutes the Queue instance from a stream (that is,
1200 >     * deserializes it).
1201 >     *
1202       * @param s the stream
1203       */
1204      private void readObject(java.io.ObjectInputStream s)
1205          throws java.io.IOException, ClassNotFoundException {
1206          s.defaultReadObject();
769        resetHeadAndTail();
1207          for (;;) {
1208 <            E item = (E)s.readObject();
1208 >            @SuppressWarnings("unchecked") E item = (E) s.readObject();
1209              if (item == null)
1210                  break;
1211              else
# Line 776 | Line 1213 | public class LinkedTransferQueue<E> exte
1213          }
1214      }
1215  
1216 +    // Unsafe mechanics
1217 +
1218 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1219 +    private static final long headOffset =
1220 +        objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1221 +    private static final long tailOffset =
1222 +        objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1223 +    private static final long cleanMeOffset =
1224 +        objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1225  
1226 <    // Support for resetting head/tail while deserializing
1227 <    private void resetHeadAndTail() {
1228 <        QNode dummy = new QNode(null, false);
1229 <        _unsafe.putObjectVolatile(this, headOffset,
1230 <                                  new PaddedAtomicReference<QNode>(dummy));
1231 <        _unsafe.putObjectVolatile(this, tailOffset,
1232 <                                  new PaddedAtomicReference<QNode>(dummy));
1233 <        _unsafe.putObjectVolatile(this, cleanMeOffset,
1234 <                                  new PaddedAtomicReference<QNode>(null));
1226 >    static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1227 >                                  String field, Class<?> klazz) {
1228 >        try {
1229 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1230 >        } catch (NoSuchFieldException e) {
1231 >            // Convert Exception to corresponding Error
1232 >            NoSuchFieldError error = new NoSuchFieldError(field);
1233 >            error.initCause(e);
1234 >            throw error;
1235 >        }
1236      }
1237  
1238 <    // Temporary Unsafe mechanics for preliminary release
1239 <    private static Unsafe getUnsafe() throws Throwable {
1238 >    /**
1239 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1240 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1241 >     * into a jdk.
1242 >     *
1243 >     * @return a sun.misc.Unsafe
1244 >     */
1245 >    static sun.misc.Unsafe getUnsafe() {
1246          try {
1247 <            return Unsafe.getUnsafe();
1247 >            return sun.misc.Unsafe.getUnsafe();
1248          } catch (SecurityException se) {
1249              try {
1250                  return java.security.AccessController.doPrivileged
1251 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
1252 <                        public Unsafe run() throws Exception {
1253 <                            return getUnsafePrivileged();
1251 >                    (new java.security
1252 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1253 >                        public sun.misc.Unsafe run() throws Exception {
1254 >                            java.lang.reflect.Field f = sun.misc
1255 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1256 >                            f.setAccessible(true);
1257 >                            return (sun.misc.Unsafe) f.get(null);
1258                          }});
1259              } catch (java.security.PrivilegedActionException e) {
1260 <                throw e.getCause();
1260 >                throw new RuntimeException("Could not initialize intrinsics",
1261 >                                           e.getCause());
1262              }
1263          }
1264      }
1265  
808    private static Unsafe getUnsafePrivileged()
809            throws NoSuchFieldException, IllegalAccessException {
810        Field f = Unsafe.class.getDeclaredField("theUnsafe");
811        f.setAccessible(true);
812        return (Unsafe) f.get(null);
813    }
814
815    private static long fieldOffset(String fieldName)
816            throws NoSuchFieldException {
817        return _unsafe.objectFieldOffset
818            (LinkedTransferQueue.class.getDeclaredField(fieldName));
819    }
820
821    private static final Unsafe _unsafe;
822    private static final long headOffset;
823    private static final long tailOffset;
824    private static final long cleanMeOffset;
825    static {
826        try {
827            _unsafe = getUnsafe();
828            headOffset = fieldOffset("head");
829            tailOffset = fieldOffset("tail");
830            cleanMeOffset = fieldOffset("cleanMe");
831        } catch (Throwable e) {
832            throw new RuntimeException("Could not initialize intrinsics", e);
833        }
834    }
835
1266   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines