ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.22 by jsr166, Thu Jul 23 19:25:45 2009 UTC vs.
Revision 1.72 by dl, Mon Apr 5 15:50:51 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.concurrent.*;
9 import java.util.concurrent.locks.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.*;
12 import java.io.*;
13 import sun.misc.Unsafe;
14 import java.lang.reflect.*;
10  
11 + import java.util.AbstractQueue;
12 + import java.util.Collection;
13 + import java.util.ConcurrentModificationException;
14 + import java.util.Iterator;
15 + import java.util.NoSuchElementException;
16 + import java.util.Queue;
17 + import java.util.concurrent.locks.LockSupport;
18   /**
19 < * An unbounded {@linkplain TransferQueue} based on linked nodes.
19 > * An unbounded {@link TransferQueue} based on linked nodes.
20   * This queue orders elements FIFO (first-in-first-out) with respect
21   * to any given producer.  The <em>head</em> of the queue is that
22   * element that has been on the queue the longest time for some
# Line 50 | Line 52 | public class LinkedTransferQueue<E> exte
52      private static final long serialVersionUID = -3223113410248163686L;
53  
54      /*
55 <     * This class extends the approach used in FIFO-mode
56 <     * SynchronousQueues. See the internal documentation, as well as
57 <     * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
58 <     * Lea & Scott
59 <     * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
55 >     * *** Overview of Dual Queues with Slack ***
56 >     *
57 >     * Dual Queues, introduced by Scherer and Scott
58 >     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 >     * (linked) queues in which nodes may represent either data or
60 >     * requests.  When a thread tries to enqueue a data node, but
61 >     * encounters a request node, it instead "matches" and removes it;
62 >     * and vice versa for enqueuing requests. Blocking Dual Queues
63 >     * arrange that threads enqueuing unmatched requests block until
64 >     * other threads provide the match. Dual Synchronous Queues (see
65 >     * Scherer, Lea, & Scott
66 >     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 >     * additionally arrange that threads enqueuing unmatched data also
68 >     * block.  Dual Transfer Queues support all of these modes, as
69 >     * dictated by callers.
70 >     *
71 >     * A FIFO dual queue may be implemented using a variation of the
72 >     * Michael & Scott (M&S) lock-free queue algorithm
73 >     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 >     * It maintains two pointer fields, "head", pointing to a
75 >     * (matched) node that in turn points to the first actual
76 >     * (unmatched) queue node (or null if empty); and "tail" that
77 >     * points to the last node on the queue (or again null if
78 >     * empty). For example, here is a possible queue with four data
79 >     * elements:
80 >     *
81 >     *  head                tail
82 >     *    |                   |
83 >     *    v                   v
84 >     *    M -> U -> U -> U -> U
85 >     *
86 >     * The M&S queue algorithm is known to be prone to scalability and
87 >     * overhead limitations when maintaining (via CAS) these head and
88 >     * tail pointers. This has led to the development of
89 >     * contention-reducing variants such as elimination arrays (see
90 >     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 >     * optimistic back pointers (see Ladan-Mozes & Shavit
92 >     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 >     * However, the nature of dual queues enables a simpler tactic for
94 >     * improving M&S-style implementations when dual-ness is needed.
95 >     *
96 >     * In a dual queue, each node must atomically maintain its match
97 >     * status. While there are other possible variants, we implement
98 >     * this here as: for a data-mode node, matching entails CASing an
99 >     * "item" field from a non-null data value to null upon match, and
100 >     * vice-versa for request nodes, CASing from null to a data
101 >     * value. (Note that the linearization properties of this style of
102 >     * queue are easy to verify -- elements are made available by
103 >     * linking, and unavailable by matching.) Compared to plain M&S
104 >     * queues, this property of dual queues requires one additional
105 >     * successful atomic operation per enq/deq pair. But it also
106 >     * enables lower cost variants of queue maintenance mechanics. (A
107 >     * variation of this idea applies even for non-dual queues that
108 >     * support deletion of interior elements, such as
109 >     * j.u.c.ConcurrentLinkedQueue.)
110 >     *
111 >     * Once a node is matched, its match status can never again
112 >     * change.  We may thus arrange that the linked list of them
113 >     * contain a prefix of zero or more matched nodes, followed by a
114 >     * suffix of zero or more unmatched nodes. (Note that we allow
115 >     * both the prefix and suffix to be zero length, which in turn
116 >     * means that we do not use a dummy header.)  If we were not
117 >     * concerned with either time or space efficiency, we could
118 >     * correctly perform enqueue and dequeue operations by traversing
119 >     * from a pointer to the initial node; CASing the item of the
120 >     * first unmatched node on match and CASing the next field of the
121 >     * trailing node on appends. (Plus some special-casing when
122 >     * initially empty).  While this would be a terrible idea in
123 >     * itself, it does have the benefit of not requiring ANY atomic
124 >     * updates on head/tail fields.
125 >     *
126 >     * We introduce here an approach that lies between the extremes of
127 >     * never versus always updating queue (head and tail) pointers.
128 >     * This offers a tradeoff between sometimes requiring extra
129 >     * traversal steps to locate the first and/or last unmatched
130 >     * nodes, versus the reduced overhead and contention of fewer
131 >     * updates to queue pointers. For example, a possible snapshot of
132 >     * a queue is:
133 >     *
134 >     *  head           tail
135 >     *    |              |
136 >     *    v              v
137 >     *    M -> M -> U -> U -> U -> U
138 >     *
139 >     * The best value for this "slack" (the targeted maximum distance
140 >     * between the value of "head" and the first unmatched node, and
141 >     * similarly for "tail") is an empirical matter. We have found
142 >     * that using very small constants in the range of 1-3 work best
143 >     * over a range of platforms. Larger values introduce increasing
144 >     * costs of cache misses and risks of long traversal chains, while
145 >     * smaller values increase CAS contention and overhead.
146 >     *
147 >     * Dual queues with slack differ from plain M&S dual queues by
148 >     * virtue of only sometimes updating head or tail pointers when
149 >     * matching, appending, or even traversing nodes; in order to
150 >     * maintain a targeted slack.  The idea of "sometimes" may be
151 >     * operationalized in several ways. The simplest is to use a
152 >     * per-operation counter incremented on each traversal step, and
153 >     * to try (via CAS) to update the associated queue pointer
154 >     * whenever the count exceeds a threshold. Another, that requires
155 >     * more overhead, is to use random number generators to update
156 >     * with a given probability per traversal step.
157 >     *
158 >     * In any strategy along these lines, because CASes updating
159 >     * fields may fail, the actual slack may exceed targeted
160 >     * slack. However, they may be retried at any time to maintain
161 >     * targets.  Even when using very small slack values, this
162 >     * approach works well for dual queues because it allows all
163 >     * operations up to the point of matching or appending an item
164 >     * (hence potentially allowing progress by another thread) to be
165 >     * read-only, thus not introducing any further contention. As
166 >     * described below, we implement this by performing slack
167 >     * maintenance retries only after these points.
168 >     *
169 >     * As an accompaniment to such techniques, traversal overhead can
170 >     * be further reduced without increasing contention of head
171 >     * pointer updates: Threads may sometimes shortcut the "next" link
172 >     * path from the current "head" node to be closer to the currently
173 >     * known first unmatched node, and similarly for tail. Again, this
174 >     * may be triggered with using thresholds or randomization.
175 >     *
176 >     * These ideas must be further extended to avoid unbounded amounts
177 >     * of costly-to-reclaim garbage caused by the sequential "next"
178 >     * links of nodes starting at old forgotten head nodes: As first
179 >     * described in detail by Boehm
180 >     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181 >     * delays noticing that any arbitrarily old node has become
182 >     * garbage, all newer dead nodes will also be unreclaimed.
183 >     * (Similar issues arise in non-GC environments.)  To cope with
184 >     * this in our implementation, upon CASing to advance the head
185 >     * pointer, we set the "next" link of the previous head to point
186 >     * only to itself; thus limiting the length of connected dead lists.
187 >     * (We also take similar care to wipe out possibly garbage
188 >     * retaining values held in other Node fields.)  However, doing so
189 >     * adds some further complexity to traversal: If any "next"
190 >     * pointer links to itself, it indicates that the current thread
191 >     * has lagged behind a head-update, and so the traversal must
192 >     * continue from the "head".  Traversals trying to find the
193 >     * current tail starting from "tail" may also encounter
194 >     * self-links, in which case they also continue at "head".
195 >     *
196 >     * It is tempting in slack-based scheme to not even use CAS for
197 >     * updates (similarly to Ladan-Mozes & Shavit). However, this
198 >     * cannot be done for head updates under the above link-forgetting
199 >     * mechanics because an update may leave head at a detached node.
200 >     * And while direct writes are possible for tail updates, they
201 >     * increase the risk of long retraversals, and hence long garbage
202 >     * chains, which can be much more costly than is worthwhile
203 >     * considering that the cost difference of performing a CAS vs
204 >     * write is smaller when they are not triggered on each operation
205 >     * (especially considering that writes and CASes equally require
206 >     * additional GC bookkeeping ("write barriers") that are sometimes
207 >     * more costly than the writes themselves because of contention).
208 >     *
209 >     * *** Overview of implementation ***
210 >     *
211 >     * We use a threshold-based approach to updates, with a slack
212 >     * threshold of two -- that is, we update head/tail when the
213 >     * current pointer appears to be two or more steps away from the
214 >     * first/last node. The slack value is hard-wired: a path greater
215 >     * than one is naturally implemented by checking equality of
216 >     * traversal pointers except when the list has only one element,
217 >     * in which case we keep slack threshold at one. Avoiding tracking
218 >     * explicit counts across method calls slightly simplifies an
219 >     * already-messy implementation. Using randomization would
220 >     * probably work better if there were a low-quality dirt-cheap
221 >     * per-thread one available, but even ThreadLocalRandom is too
222 >     * heavy for these purposes.
223 >     *
224 >     * With such a small slack threshold value, it is not worthwhile
225 >     * to augment this with path short-circuiting (i.e., unsplicing
226 >     * interior nodes) except in the case of cancellation/removal (see
227 >     * below).
228 >     *
229 >     * We allow both the head and tail fields to be null before any
230 >     * nodes are enqueued; initializing upon first append.  This
231 >     * simplifies some other logic, as well as providing more
232 >     * efficient explicit control paths instead of letting JVMs insert
233 >     * implicit NullPointerExceptions when they are null.  While not
234 >     * currently fully implemented, we also leave open the possibility
235 >     * of re-nulling these fields when empty (which is complicated to
236 >     * arrange, for little benefit.)
237       *
238 <     * The main extension is to provide different Wait modes for the
239 <     * main "xfer" method that puts or takes items.  These don't
240 <     * impact the basic dual-queue logic, but instead control whether
241 <     * or how threads block upon insertion of request or data nodes
242 <     * into the dual queue. It also uses slightly different
243 <     * conventions for tracking whether nodes are off-list or
244 <     * cancelled.
238 >     * All enqueue/dequeue operations are handled by the single method
239 >     * "xfer" with parameters indicating whether to act as some form
240 >     * of offer, put, poll, take, or transfer (each possibly with
241 >     * timeout). The relative complexity of using one monolithic
242 >     * method outweighs the code bulk and maintenance problems of
243 >     * using separate methods for each case.
244 >     *
245 >     * Operation consists of up to three phases. The first is
246 >     * implemented within method xfer, the second in tryAppend, and
247 >     * the third in method awaitMatch.
248 >     *
249 >     * 1. Try to match an existing node
250 >     *
251 >     *    Starting at head, skip already-matched nodes until finding
252 >     *    an unmatched node of opposite mode, if one exists, in which
253 >     *    case matching it and returning, also if necessary updating
254 >     *    head to one past the matched node (or the node itself if the
255 >     *    list has no other unmatched nodes). If the CAS misses, then
256 >     *    a loop retries advancing head by two steps until either
257 >     *    success or the slack is at most two. By requiring that each
258 >     *    attempt advances head by two (if applicable), we ensure that
259 >     *    the slack does not grow without bound. Traversals also check
260 >     *    if the initial head is now off-list, in which case they
261 >     *    start at the new head.
262 >     *
263 >     *    If no candidates are found and the call was untimed
264 >     *    poll/offer, (argument "how" is NOW) return.
265 >     *
266 >     * 2. Try to append a new node (method tryAppend)
267 >     *
268 >     *    Starting at current tail pointer, find the actual last node
269 >     *    and try to append a new node (or if head was null, establish
270 >     *    the first node). Nodes can be appended only if their
271 >     *    predecessors are either already matched or are of the same
272 >     *    mode. If we detect otherwise, then a new node with opposite
273 >     *    mode must have been appended during traversal, so we must
274 >     *    restart at phase 1. The traversal and update steps are
275 >     *    otherwise similar to phase 1: Retrying upon CAS misses and
276 >     *    checking for staleness.  In particular, if a self-link is
277 >     *    encountered, then we can safely jump to a node on the list
278 >     *    by continuing the traversal at current head.
279 >     *
280 >     *    On successful append, if the call was ASYNC, return.
281 >     *
282 >     * 3. Await match or cancellation (method awaitMatch)
283 >     *
284 >     *    Wait for another thread to match node; instead cancelling if
285 >     *    the current thread was interrupted or the wait timed out. On
286 >     *    multiprocessors, we use front-of-queue spinning: If a node
287 >     *    appears to be the first unmatched node in the queue, it
288 >     *    spins a bit before blocking. In either case, before blocking
289 >     *    it tries to unsplice any nodes between the current "head"
290 >     *    and the first unmatched node.
291 >     *
292 >     *    Front-of-queue spinning vastly improves performance of
293 >     *    heavily contended queues. And so long as it is relatively
294 >     *    brief and "quiet", spinning does not much impact performance
295 >     *    of less-contended queues.  During spins threads check their
296 >     *    interrupt status and generate a thread-local random number
297 >     *    to decide to occasionally perform a Thread.yield. While
298 >     *    yield has underdefined specs, we assume that might it help,
299 >     *    and will not hurt in limiting impact of spinning on busy
300 >     *    systems.  We also use smaller (1/2) spins for nodes that are
301 >     *    not known to be front but whose predecessors have not
302 >     *    blocked -- these "chained" spins avoid artifacts of
303 >     *    front-of-queue rules which otherwise lead to alternating
304 >     *    nodes spinning vs blocking. Further, front threads that
305 >     *    represent phase changes (from data to request node or vice
306 >     *    versa) compared to their predecessors receive additional
307 >     *    chained spins, reflecting longer paths typically required to
308 >     *    unblock threads during phase changes.
309 >     *
310 >     *
311 >     * ** Unlinking removed interior nodes **
312 >     *
313 >     * In addition to minimizing garbage retention via self-linking
314 >     * described above, we also unlink removed interior nodes. These
315 >     * may arise due to timed out or interrupted waits, or calls to
316 >     * remove(x) or Iterator.remove.  Normally, given a node that was
317 >     * at one time known to be the predecessor of some node s that is
318 >     * to be removed, we can unsplice s by CASing the next field of
319 >     * its predecessor if it still points to s (otherwise s must
320 >     * already have been removed or is now offlist). But there are two
321 >     * situations in which we cannot guarantee to make node s
322 >     * unreachable in this way: (1) If s is the trailing node of list
323 >     * (i.e., with null next), then it is pinned as the target node
324 >     * for appends, so can only be removed later when other nodes are
325 >     * appended. (2) We cannot necessarily unlink s given a
326 >     * predecessor node that is matched (including the case of being
327 >     * cancelled): the predecessor may already be unspliced, in which
328 >     * case some previous reachable node may still point to s.
329 >     * (For further explanation see Herlihy & Shavit "The Art of
330 >     * Multiprocessor Programming" chapter 9).  Although, in both
331 >     * cases, we can rule out the need for further action if either s
332 >     * or its predecessor are (or can be made to be) at, or fall off
333 >     * from, the head of list.
334 >     *
335 >     * Without taking these into account, it would be possible for an
336 >     * unbounded number of supposedly removed nodes to remain
337 >     * reachable.  Situations leading to such buildup are uncommon but
338 >     * can occur in practice; for example when a series of short timed
339 >     * calls to poll repeatedly time out but never otherwise fall off
340 >     * the list because of an untimed call to take at the front of the
341 >     * queue.
342 >     *
343 >     * When these cases arise, rather than always retraversing the
344 >     * entire list to find an actual predecessor to unlink (which
345 >     * won't help for case (1) anyway), we record a conservative
346 >     * estimate of possible unsplice failures (in "sweepVotes").  We
347 >     * trigger a full sweep when the estimate exceeds a threshold
348 >     * indicating the maximum number of estimated removal failures to
349 >     * tolerate before sweeping through, unlinking cancelled nodes
350 >     * that were not unlinked upon initial removal. We perform sweeps
351 >     * by the thread hitting threshold (rather than background threads
352 >     * or by spreading work to other threads) because in the main
353 >     * contexts in which removal occurs, the caller is already
354 >     * timed-out, cancelled, or performing a potentially O(n)
355 >     * operation (i.e., remove(x)), none of which are time-critical
356 >     * enough to warrant the overhead that alternatives would impose
357 >     * on other threads.
358 >     *
359 >     * Because the sweepVotes estimate is conservative, and because
360 >     * nodes become unlinked "naturally" as they fall off the head of
361 >     * the queue, and because we allow votes to accumulate even while
362 >     * sweeps are in progress, there are typically significantly fewer
363 >     * such nodes than estimated.  Choice of a threshold value
364 >     * balances the likelihood of wasted effort and contention, versus
365 >     * providing a worst-case bound on retention of interior nodes in
366 >     * quiescent queues. The value defined below was chosen
367 >     * empirically to balance these under various timeout scenarios.
368 >     *
369 >     * Note that we cannot self-link unlinked interior nodes during
370 >     * sweeps. However, the associated garbage chains terminate when
371 >     * some successor ultimately falls off the head of the list and is
372 >     * self-linked.
373       */
374  
375 <    // Wait modes for xfer method
376 <    static final int NOWAIT  = 0;
377 <    static final int TIMEOUT = 1;
71 <    static final int WAIT    = 2;
72 <
73 <    /** The number of CPUs, for spin control */
74 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
375 >    /** True if on multiprocessor */
376 >    private static final boolean MP =
377 >        Runtime.getRuntime().availableProcessors() > 1;
378  
379      /**
380 <     * The number of times to spin before blocking in timed waits.
381 <     * The value is empirically derived -- it works well across a
382 <     * variety of processors and OSes. Empirically, the best value
383 <     * seems not to vary with number of CPUs (beyond 2) so is just
384 <     * a constant.
380 >     * The number of times to spin (with randomly interspersed calls
381 >     * to Thread.yield) on multiprocessor before blocking when a node
382 >     * is apparently the first waiter in the queue.  See above for
383 >     * explanation. Must be a power of two. The value is empirically
384 >     * derived -- it works pretty well across a variety of processors,
385 >     * numbers of CPUs, and OSes.
386       */
387 <    static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
387 >    private static final int FRONT_SPINS   = 1 << 7;
388  
389      /**
390 <     * The number of times to spin before blocking in untimed waits.
391 <     * This is greater than timed value because untimed waits spin
392 <     * faster since they don't need to check times on each spin.
390 >     * The number of times to spin before blocking when a node is
391 >     * preceded by another node that is apparently spinning.  Also
392 >     * serves as an increment to FRONT_SPINS on phase changes, and as
393 >     * base average frequency for yielding during spins. Must be a
394 >     * power of two.
395       */
396 <    static final int maxUntimedSpins = maxTimedSpins * 16;
396 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
397  
398      /**
399 <     * The number of nanoseconds for which it is faster to spin
400 <     * rather than to use timed park. A rough estimate suffices.
399 >     * The maximum number of estimated removal failures (sweepVotes)
400 >     * to tolerate before sweeping through the queue unlinking
401 >     * cancelled nodes that were not unlinked upon initial
402 >     * removal. See above for explanation. The value must be at least
403 >     * two to avoid useless sweeps when removing trailing nodes.
404       */
405 <    static final long spinForTimeoutThreshold = 1000L;
405 >    static final int SWEEP_THRESHOLD = 32;
406  
407      /**
408 <     * Node class for LinkedTransferQueue. Opportunistically
409 <     * subclasses from AtomicReference to represent item. Uses Object,
410 <     * not E, to allow setting item to "this" after use, to avoid
411 <     * garbage retention. Similarly, setting the next field to this is
412 <     * used as sentinel that node is off list.
413 <     */
414 <    static final class QNode extends AtomicReference<Object> {
415 <        volatile QNode next;
416 <        volatile Thread waiter;       // to control park/unpark
417 <        final boolean isData;
418 <        QNode(Object item, boolean isData) {
419 <            super(item);
408 >     * Queue nodes. Uses Object, not E, for items to allow forgetting
409 >     * them after use.  Relies heavily on Unsafe mechanics to minimize
410 >     * unnecessary ordering constraints: Writes that are intrinsically
411 >     * ordered wrt other accesses or CASes use simple relaxed forms.
412 >     */
413 >    static final class Node {
414 >        final boolean isData;   // false if this is a request node
415 >        volatile Object item;   // initially non-null if isData; CASed to match
416 >        volatile Node next;
417 >        volatile Thread waiter; // null until waiting
418 >
419 >        // CAS methods for fields
420 >        final boolean casNext(Node cmp, Node val) {
421 >            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
422 >        }
423 >
424 >        final boolean casItem(Object cmp, Object val) {
425 >            assert cmp == null || cmp.getClass() != Node.class;
426 >            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
427 >        }
428 >
429 >        /**
430 >         * Creates a new node. Uses relaxed write because item can only
431 >         * be seen if followed by CAS.
432 >         */
433 >        Node(Object item, boolean isData) {
434 >            UNSAFE.putObject(this, itemOffset, item); // relaxed write
435              this.isData = isData;
436          }
437  
438 <        static final AtomicReferenceFieldUpdater<QNode, QNode>
439 <            nextUpdater = AtomicReferenceFieldUpdater.newUpdater
440 <            (QNode.class, QNode.class, "next");
438 >        /**
439 >         * Links node to itself to avoid garbage retention.  Called
440 >         * only after CASing head field, so uses relaxed write.
441 >         */
442 >        final void forgetNext() {
443 >            UNSAFE.putObject(this, nextOffset, this);
444 >        }
445  
446 <        final boolean casNext(QNode cmp, QNode val) {
447 <            return nextUpdater.compareAndSet(this, cmp, val);
446 >        /**
447 >         * Sets item to self and waiter to null, to avoid garbage
448 >         * retention after matching or cancelling. Uses relaxed writes
449 >         * bacause order is already constrained in the only calling
450 >         * contexts: item is forgotten only after volatile/atomic
451 >         * mechanics that extract items.  Similarly, clearing waiter
452 >         * follows either CAS or return from park (if ever parked;
453 >         * else we don't care).
454 >         */
455 >        final void forgetContents() {
456 >            UNSAFE.putObject(this, itemOffset, this);
457 >            UNSAFE.putObject(this, waiterOffset, null);
458          }
459  
460 <        final void clearNext() {
461 <            nextUpdater.lazySet(this, this);
460 >        /**
461 >         * Returns true if this node has been matched, including the
462 >         * case of artificial matches due to cancellation.
463 >         */
464 >        final boolean isMatched() {
465 >            Object x = item;
466 >            return (x == this) || ((x == null) == isData);
467          }
468  
469 <    }
469 >        /**
470 >         * Returns true if this is an unmatched request node.
471 >         */
472 >        final boolean isUnmatchedRequest() {
473 >            return !isData && item == null;
474 >        }
475  
476 <    /**
477 <     * Padded version of AtomicReference used for head, tail and
478 <     * cleanMe, to alleviate contention across threads CASing one vs
479 <     * the other.
480 <     */
481 <    static final class PaddedAtomicReference<T> extends AtomicReference<T> {
482 <        // enough padding for 64bytes with 4byte refs
483 <        Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
484 <        PaddedAtomicReference(T r) { super(r); }
476 >        /**
477 >         * Returns true if a node with the given mode cannot be
478 >         * appended to this node because this node is unmatched and
479 >         * has opposite data mode.
480 >         */
481 >        final boolean cannotPrecede(boolean haveData) {
482 >            boolean d = isData;
483 >            Object x;
484 >            return d != haveData && (x = item) != this && (x != null) == d;
485 >        }
486 >
487 >        /**
488 >         * Tries to artificially match a data node -- used by remove.
489 >         */
490 >        final boolean tryMatchData() {
491 >            assert isData;
492 >            Object x = item;
493 >            if (x != null && x != this && casItem(x, null)) {
494 >                LockSupport.unpark(waiter);
495 >                return true;
496 >            }
497 >            return false;
498 >        }
499 >
500 >        // Unsafe mechanics
501 >        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
502 >        private static final long nextOffset =
503 >            objectFieldOffset(UNSAFE, "next", Node.class);
504 >        private static final long itemOffset =
505 >            objectFieldOffset(UNSAFE, "item", Node.class);
506 >        private static final long waiterOffset =
507 >            objectFieldOffset(UNSAFE, "waiter", Node.class);
508 >
509 >        private static final long serialVersionUID = -3375979862319811754L;
510      }
511  
512 +    /** head of the queue; null until first enqueue */
513 +    transient volatile Node head;
514  
515 <    /** head of the queue */
516 <    private transient final PaddedAtomicReference<QNode> head;
142 <    /** tail of the queue */
143 <    private transient final PaddedAtomicReference<QNode> tail;
515 >    /** tail of the queue; null until first append */
516 >    private transient volatile Node tail;
517  
518 <    /**
519 <     * Reference to a cancelled node that might not yet have been
147 <     * unlinked from queue because it was the last inserted node
148 <     * when it cancelled.
149 <     */
150 <    private transient final PaddedAtomicReference<QNode> cleanMe;
518 >    /** The number of apparent failures to unsplice removed nodes */
519 >    private transient volatile int sweepVotes;
520  
521 <    /**
522 <     * Tries to cas nh as new head; if successful, unlink
523 <     * old head's next node to avoid garbage retention.
521 >    // CAS methods for fields
522 >    private boolean casTail(Node cmp, Node val) {
523 >        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
524 >    }
525 >
526 >    private boolean casHead(Node cmp, Node val) {
527 >        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
528 >    }
529 >
530 >    private boolean casSweepVotes(int cmp, int val) {
531 >        return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
532 >    }
533 >
534 >    /*
535 >     * Possible values for "how" argument in xfer method.
536       */
537 <    private boolean advanceHead(QNode h, QNode nh) {
538 <        if (h == head.get() && head.compareAndSet(h, nh)) {
539 <            h.clearNext(); // forget old next
540 <            return true;
541 <        }
542 <        return false;
537 >    private static final int NOW   = 0; // for untimed poll, tryTransfer
538 >    private static final int ASYNC = 1; // for offer, put, add
539 >    private static final int SYNC  = 2; // for transfer, take
540 >    private static final int TIMED = 3; // for timed poll, tryTransfer
541 >
542 >    @SuppressWarnings("unchecked")
543 >    static <E> E cast(Object item) {
544 >        assert item == null || item.getClass() != Node.class;
545 >        return (E) item;
546      }
547  
548      /**
549 <     * Puts or takes an item. Used for most queue operations (except
550 <     * poll() and tryTransfer()). See the similar code in
551 <     * SynchronousQueue for detailed explanation.
552 <     *
553 <     * @param e the item or if null, signifies that this is a take
554 <     * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
555 <     * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
556 <     * @return an item, or null on failure
557 <     */
558 <    private Object xfer(Object e, int mode, long nanos) {
559 <        boolean isData = (e != null);
560 <        QNode s = null;
561 <        final PaddedAtomicReference<QNode> head = this.head;
178 <        final PaddedAtomicReference<QNode> tail = this.tail;
549 >     * Implements all queuing methods. See above for explanation.
550 >     *
551 >     * @param e the item or null for take
552 >     * @param haveData true if this is a put, else a take
553 >     * @param how NOW, ASYNC, SYNC, or TIMED
554 >     * @param nanos timeout in nanosecs, used only if mode is TIMED
555 >     * @return an item if matched, else e
556 >     * @throws NullPointerException if haveData mode but e is null
557 >     */
558 >    private E xfer(E e, boolean haveData, int how, long nanos) {
559 >        if (haveData && (e == null))
560 >            throw new NullPointerException();
561 >        Node s = null;                        // the node to append, if needed
562  
563 <        for (;;) {
181 <            QNode t = tail.get();
182 <            QNode h = head.get();
563 >        retry: for (;;) {                     // restart on append race
564  
565 <            if (t != null && (t == h || t.isData == isData)) {
566 <                if (s == null)
567 <                    s = new QNode(e, isData);
568 <                QNode last = t.next;
569 <                if (last != null) {
570 <                    if (t == tail.get())
571 <                        tail.compareAndSet(t, last);
572 <                }
573 <                else if (t.casNext(null, s)) {
574 <                    tail.compareAndSet(t, s);
575 <                    return awaitFulfill(t, s, e, mode, nanos);
565 >            for (Node h = head, p = h; p != null;) { // find & match first node
566 >                boolean isData = p.isData;
567 >                Object item = p.item;
568 >                if (item != p && (item != null) == isData) { // unmatched
569 >                    if (isData == haveData)   // can't match
570 >                        break;
571 >                    if (p.casItem(item, e)) { // match
572 >                        for (Node q = p; q != h;) {
573 >                            Node n = q.next;  // update by 2 unless singleton
574 >                            if (head == h && casHead(h, n == null? q : n)) {
575 >                                h.forgetNext();
576 >                                break;
577 >                            }                 // advance and retry
578 >                            if ((h = head)   == null ||
579 >                                (q = h.next) == null || !q.isMatched())
580 >                                break;        // unless slack < 2
581 >                        }
582 >                        LockSupport.unpark(p.waiter);
583 >                        return this.<E>cast(item);
584 >                    }
585                  }
586 +                Node n = p.next;
587 +                p = (p != n) ? n : (h = head); // Use head if p offlist
588              }
589  
590 <            else if (h != null) {
591 <                QNode first = h.next;
592 <                if (t == tail.get() && first != null &&
593 <                    advanceHead(h, first)) {
594 <                    Object x = first.get();
595 <                    if (x != first && first.compareAndSet(x, e)) {
596 <                        LockSupport.unpark(first.waiter);
597 <                        return isData ? e : x;
206 <                    }
207 <                }
590 >            if (how != NOW) {                 // No matches available
591 >                if (s == null)
592 >                    s = new Node(e, haveData);
593 >                Node pred = tryAppend(s, haveData);
594 >                if (pred == null)
595 >                    continue retry;           // lost race vs opposite mode
596 >                if (how != ASYNC)
597 >                    return awaitMatch(s, pred, e, (how == TIMED), nanos);
598              }
599 +            return e; // not waiting
600          }
601      }
602  
212
603      /**
604 <     * Version of xfer for poll() and tryTransfer, which
605 <     * simplifies control paths both here and in xfer.
606 <     */
607 <    private Object fulfill(Object e) {
608 <        boolean isData = (e != null);
609 <        final PaddedAtomicReference<QNode> head = this.head;
610 <        final PaddedAtomicReference<QNode> tail = this.tail;
611 <
612 <        for (;;) {
613 <            QNode t = tail.get();
614 <            QNode h = head.get();
615 <
616 <            if (t != null && (t == h || t.isData == isData)) {
617 <                QNode last = t.next;
618 <                if (t == tail.get()) {
619 <                    if (last != null)
620 <                        tail.compareAndSet(t, last);
621 <                    else
622 <                        return null;
623 <                }
624 <            }
625 <            else if (h != null) {
626 <                QNode first = h.next;
627 <                if (t == tail.get() &&
628 <                    first != null &&
629 <                    advanceHead(h, first)) {
630 <                    Object x = first.get();
631 <                    if (x != first && first.compareAndSet(x, e)) {
242 <                        LockSupport.unpark(first.waiter);
243 <                        return isData ? e : x;
244 <                    }
604 >     * Tries to append node s as tail.
605 >     *
606 >     * @param s the node to append
607 >     * @param haveData true if appending in data mode
608 >     * @return null on failure due to losing race with append in
609 >     * different mode, else s's predecessor, or s itself if no
610 >     * predecessor
611 >     */
612 >    private Node tryAppend(Node s, boolean haveData) {
613 >        for (Node t = tail, p = t;;) {        // move p to last node and append
614 >            Node n, u;                        // temps for reads of next & tail
615 >            if (p == null && (p = head) == null) {
616 >                if (casHead(null, s))
617 >                    return s;                 // initialize
618 >            }
619 >            else if (p.cannotPrecede(haveData))
620 >                return null;                  // lost race vs opposite mode
621 >            else if ((n = p.next) != null)    // not last; keep traversing
622 >                p = p != t && t != (u = tail) ? (t = u) : // stale tail
623 >                    (p != n) ? n : null;      // restart if off list
624 >            else if (!p.casNext(null, s))
625 >                p = p.next;                   // re-read on CAS failure
626 >            else {
627 >                if (p != t) {                 // update if slack now >= 2
628 >                    while ((tail != t || !casTail(t, s)) &&
629 >                           (t = tail)   != null &&
630 >                           (s = t.next) != null && // advance and retry
631 >                           (s = s.next) != null && s != t);
632                  }
633 +                return p;
634              }
635          }
636      }
637  
638      /**
639 <     * Spins/blocks until node s is fulfilled or caller gives up,
252 <     * depending on wait mode.
639 >     * Spins/yields/blocks until node s is matched or caller gives up.
640       *
254     * @param pred the predecessor of waiting node
641       * @param s the waiting node
642 +     * @param pred the predecessor of s, or s itself if it has no
643 +     * predecessor, or null if unknown (the null case does not occur
644 +     * in any current calls but may in possible future extensions)
645       * @param e the comparison value for checking match
646 <     * @param mode mode
647 <     * @param nanos timeout value
648 <     * @return matched item, or s if cancelled
649 <     */
650 <    private Object awaitFulfill(QNode pred, QNode s, Object e,
651 <                                int mode, long nanos) {
263 <        if (mode == NOWAIT)
264 <            return null;
265 <
266 <        long lastTime = (mode == TIMEOUT) ? System.nanoTime() : 0;
646 >     * @param timed if true, wait only until timeout elapses
647 >     * @param nanos timeout in nanosecs, used only if timed is true
648 >     * @return matched item, or e if unmatched on interrupt or timeout
649 >     */
650 >    private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
651 >        long lastTime = timed ? System.nanoTime() : 0L;
652          Thread w = Thread.currentThread();
653 <        int spins = -1; // set to desired spin count below
653 >        int spins = -1; // initialized after first item and cancel checks
654 >        ThreadLocalRandom randomYields = null; // bound if needed
655 >
656          for (;;) {
657 <            if (w.isInterrupted())
658 <                s.compareAndSet(e, s);
659 <            Object x = s.get();
660 <            if (x != e) {                 // Node was matched or cancelled
661 <                advanceHead(pred, s);     // unlink if head
662 <                if (x == s) {             // was cancelled
663 <                    clean(pred, s);
664 <                    return null;
665 <                }
666 <                else if (x != null) {
667 <                    s.set(s);             // avoid garbage retention
668 <                    return x;
669 <                }
670 <                else
671 <                    return e;
657 >            Object item = s.item;
658 >            if (item != e) {                  // matched
659 >                assert item != s;
660 >                s.forgetContents();           // avoid garbage
661 >                return this.<E>cast(item);
662 >            }
663 >            if ((w.isInterrupted() || (timed && nanos <= 0)) &&
664 >                    s.casItem(e, s)) {        // cancel
665 >                unsplice(pred, s);
666 >                return e;
667 >            }
668 >
669 >            if (spins < 0) {                  // establish spins at/near front
670 >                if ((spins = spinsFor(pred, s.isData)) > 0)
671 >                    randomYields = ThreadLocalRandom.current();
672 >            }
673 >            else if (spins > 0) {             // spin
674 >                --spins;
675 >                if (randomYields.nextInt(CHAINED_SPINS) == 0)
676 >                    Thread.yield();           // occasionally yield
677 >            }
678 >            else if (s.waiter == null) {
679 >                s.waiter = w;                 // request unpark then recheck
680              }
681 <            if (mode == TIMEOUT) {
681 >            else if (timed) {
682                  long now = System.nanoTime();
683 <                nanos -= now - lastTime;
683 >                if ((nanos -= now - lastTime) > 0)
684 >                    LockSupport.parkNanos(this, nanos);
685                  lastTime = now;
290                if (nanos <= 0) {
291                    s.compareAndSet(e, s); // try to cancel
292                    continue;
293                }
294            }
295            if (spins < 0) {
296                QNode h = head.get(); // only spin if at head
297                spins = ((h != null && h.next == s) ?
298                         ((mode == TIMEOUT) ?
299                          maxTimedSpins : maxUntimedSpins) : 0);
686              }
687 <            if (spins > 0)
302 <                --spins;
303 <            else if (s.waiter == null)
304 <                s.waiter = w;
305 <            else if (mode != TIMEOUT) {
687 >            else {
688                  LockSupport.park(this);
307                s.waiter = null;
308                spins = -1;
309            }
310            else if (nanos > spinForTimeoutThreshold) {
311                LockSupport.parkNanos(this, nanos);
312                s.waiter = null;
313                spins = -1;
689              }
690          }
691      }
692  
693      /**
694 <     * Returns validated tail for use in cleaning methods.
694 >     * Returns spin/yield value for a node with given predecessor and
695 >     * data mode. See above for explanation.
696       */
697 <    private QNode getValidatedTail() {
698 <        for (;;) {
699 <            QNode h = head.get();
700 <            QNode first = h.next;
701 <            if (first != null && first.next == first) { // help advance
702 <                advanceHead(h, first);
703 <                continue;
704 <            }
705 <            QNode t = tail.get();
706 <            QNode last = t.next;
707 <            if (t == tail.get()) {
708 <                if (last != null)
709 <                    tail.compareAndSet(t, last); // help advance
710 <                else
711 <                    return t;
697 >    private static int spinsFor(Node pred, boolean haveData) {
698 >        if (MP && pred != null) {
699 >            if (pred.isData != haveData)      // phase change
700 >                return FRONT_SPINS + CHAINED_SPINS;
701 >            if (pred.isMatched())             // probably at front
702 >                return FRONT_SPINS;
703 >            if (pred.waiter == null)          // pred apparently spinning
704 >                return CHAINED_SPINS;
705 >        }
706 >        return 0;
707 >    }
708 >
709 >    /* -------------- Traversal methods -------------- */
710 >
711 >    /**
712 >     * Returns the successor of p, or the head node if p.next has been
713 >     * linked to self, which will only be true if traversing with a
714 >     * stale pointer that is now off the list.
715 >     */
716 >    final Node succ(Node p) {
717 >        Node next = p.next;
718 >        return (p == next) ? head : next;
719 >    }
720 >
721 >    /**
722 >     * Returns the first unmatched node of the given mode, or null if
723 >     * none.  Used by methods isEmpty, hasWaitingConsumer.
724 >     */
725 >    private Node firstOfMode(boolean isData) {
726 >        for (Node p = head; p != null; p = succ(p)) {
727 >            if (!p.isMatched())
728 >                return (p.isData == isData) ? p : null;
729 >        }
730 >        return null;
731 >    }
732 >
733 >    /**
734 >     * Returns the item in the first unmatched node with isData; or
735 >     * null if none.  Used by peek.
736 >     */
737 >    private E firstDataItem() {
738 >        for (Node p = head; p != null; p = succ(p)) {
739 >            Object item = p.item;
740 >            if (p.isData) {
741 >                if (item != null && item != p)
742 >                    return this.<E>cast(item);
743              }
744 +            else if (item == null)
745 +                return null;
746          }
747 +        return null;
748      }
749  
750      /**
751 <     * Gets rid of cancelled node s with original predecessor pred.
752 <     *
343 <     * @param pred predecessor of cancelled node
344 <     * @param s the cancelled node
751 >     * Traverses and counts unmatched nodes of the given mode.
752 >     * Used by methods size and getWaitingConsumerCount.
753       */
754 <    private void clean(QNode pred, QNode s) {
755 <        Thread w = s.waiter;
756 <        if (w != null) {             // Wake up thread
757 <            s.waiter = null;
758 <            if (w != Thread.currentThread())
759 <                LockSupport.unpark(w);
754 >    private int countOfMode(boolean data) {
755 >        int count = 0;
756 >        for (Node p = head; p != null; ) {
757 >            if (!p.isMatched()) {
758 >                if (p.isData != data)
759 >                    return 0;
760 >                if (++count == Integer.MAX_VALUE) // saturated
761 >                    break;
762 >            }
763 >            Node n = p.next;
764 >            if (n != p)
765 >                p = n;
766 >            else {
767 >                count = 0;
768 >                p = head;
769 >            }
770          }
771 +        return count;
772 +    }
773  
774 <        if (pred == null)
775 <            return;
774 >    final class Itr implements Iterator<E> {
775 >        private Node nextNode;   // next node to return item for
776 >        private E nextItem;      // the corresponding item
777 >        private Node lastRet;    // last returned node, to support remove
778 >        private Node lastPred;   // predecessor to unlink lastRet
779  
780 <        /*
781 <         * At any given time, exactly one node on list cannot be
359 <         * deleted -- the last inserted node. To accommodate this, if
360 <         * we cannot delete s, we save its predecessor as "cleanMe",
361 <         * processing the previously saved version first. At least one
362 <         * of node s or the node previously saved can always be
363 <         * processed, so this always terminates.
780 >        /**
781 >         * Moves to next node after prev, or first node if prev null.
782           */
783 <        while (pred.next == s) {
784 <            QNode oldpred = reclean();  // First, help get rid of cleanMe
785 <            QNode t = getValidatedTail();
786 <            if (s != t) {               // If not tail, try to unsplice
787 <                QNode sn = s.next;      // s.next == s means s already off list
788 <                if (sn == s || pred.casNext(s, sn))
783 >        private void advance(Node prev) {
784 >            lastPred = lastRet;
785 >            lastRet = prev;
786 >            for (Node p = (prev == null) ? head : succ(prev);
787 >                 p != null; p = succ(p)) {
788 >                Object item = p.item;
789 >                if (p.isData) {
790 >                    if (item != null && item != p) {
791 >                        nextItem = LinkedTransferQueue.this.<E>cast(item);
792 >                        nextNode = p;
793 >                        return;
794 >                    }
795 >                }
796 >                else if (item == null)
797                      break;
798              }
799 <            else if (oldpred == pred || // Already saved
800 <                     (oldpred == null && cleanMe.compareAndSet(null, pred)))
801 <                break;                  // Postpone cleaning
799 >            nextNode = null;
800 >        }
801 >
802 >        Itr() {
803 >            advance(null);
804 >        }
805 >
806 >        public final boolean hasNext() {
807 >            return nextNode != null;
808 >        }
809 >
810 >        public final E next() {
811 >            Node p = nextNode;
812 >            if (p == null) throw new NoSuchElementException();
813 >            E e = nextItem;
814 >            advance(p);
815 >            return e;
816 >        }
817 >
818 >        public final void remove() {
819 >            Node p = lastRet;
820 >            if (p == null) throw new IllegalStateException();
821 >            if (p.tryMatchData())
822 >                unsplice(lastPred, p);
823          }
824      }
825  
826 +    /* -------------- Removal methods -------------- */
827 +
828      /**
829 <     * Tries to unsplice the cancelled node held in cleanMe that was
830 <     * previously uncleanable because it was at tail.
829 >     * Unsplices (now or later) the given deleted/cancelled node with
830 >     * the given predecessor.
831       *
832 <     * @return current cleanMe node (or null)
832 >     * @param pred a node that was at one time known to be the
833 >     * predecessor of s, or null or s itself if s is/was at head
834 >     * @param s the node to be unspliced
835       */
836 <    private QNode reclean() {
836 >    final void unsplice(Node pred, Node s) {
837 >        s.forgetContents(); // forget unneeded fields
838          /*
839 <         * cleanMe is, or at one time was, predecessor of cancelled
840 <         * node s that was the tail so could not be unspliced.  If s
841 <         * is no longer the tail, try to unsplice if necessary and
842 <         * make cleanMe slot available.  This differs from similar
843 <         * code in clean() because we must check that pred still
392 <         * points to a cancelled node that must be unspliced -- if
393 <         * not, we can (must) clear cleanMe without unsplicing.
394 <         * This can loop only due to contention on casNext or
395 <         * clearing cleanMe.
839 >         * See above for rationale. Briefly: if pred still points to
840 >         * s, try to unlink s.  If s cannot be unlinked, because it is
841 >         * trailing node or pred might be unlinked, and neither pred
842 >         * nor s are head or offlist, add to sweepVotes, and if enough
843 >         * votes have accumulated, sweep.
844           */
845 <        QNode pred;
846 <        while ((pred = cleanMe.get()) != null) {
847 <            QNode t = getValidatedTail();
848 <            QNode s = pred.next;
849 <            if (s != t) {
850 <                QNode sn;
851 <                if (s == null || s == pred || s.get() != s ||
852 <                    (sn = s.next) == s || pred.casNext(s, sn))
853 <                    cleanMe.compareAndSet(pred, null);
845 >        if (pred != null && pred != s && pred.next == s) {
846 >            Node n = s.next;
847 >            if (n == null ||
848 >                (n != s && pred.casNext(s, n) && pred.isMatched())) {
849 >                for (;;) {               // check if at, or could be, head
850 >                    Node h = head;
851 >                    if (h == pred || h == s || h == null)
852 >                        return;          // at head or list empty
853 >                    if (!h.isMatched())
854 >                        break;
855 >                    Node hn = h.next;
856 >                    if (hn == null)
857 >                        return;          // now empty
858 >                    if (hn != h && casHead(h, hn))
859 >                        h.forgetNext();  // advance head
860 >                }
861 >                if (pred.next != pred && s.next != s) { // recheck if offlist
862 >                    for (;;) {           // sweep now if enough votes
863 >                        int v = sweepVotes;
864 >                        if (v < SWEEP_THRESHOLD) {
865 >                            if (casSweepVotes(v, v + 1))
866 >                                break;
867 >                        }
868 >                        else if (casSweepVotes(v, 0)) {
869 >                            sweep();
870 >                            break;
871 >                        }
872 >                    }
873 >                }
874              }
875 <            else // s is still tail; cannot clean
875 >        }
876 >    }
877 >
878 >    /**
879 >     * Unlinks matched nodes encountered in a traversal from head.
880 >     */
881 >    private void sweep() {
882 >        for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
883 >            if (p == s)                    // stale
884 >                p = head;
885 >            else if (!s.isMatched())
886 >                p = s;
887 >            else if ((n = s.next) == null) // trailing node is pinned
888                  break;
889 +            else
890 +                p.casNext(s, n);
891          }
410        return pred;
892      }
893  
894      /**
895 +     * Main implementation of remove(Object)
896 +     */
897 +    private boolean findAndRemove(Object e) {
898 +        if (e != null) {
899 +            for (Node pred = null, p = head; p != null; ) {
900 +                Object item = p.item;
901 +                if (p.isData) {
902 +                    if (item != null && item != p && e.equals(item) &&
903 +                        p.tryMatchData()) {
904 +                        unsplice(pred, p);
905 +                        return true;
906 +                    }
907 +                }
908 +                else if (item == null)
909 +                    break;
910 +                pred = p;
911 +                if ((p = p.next) == pred) { // stale
912 +                    pred = null;
913 +                    p = head;
914 +                }
915 +            }
916 +        }
917 +        return false;
918 +    }
919 +
920 +
921 +    /**
922       * Creates an initially empty {@code LinkedTransferQueue}.
923       */
924      public LinkedTransferQueue() {
417        QNode dummy = new QNode(null, false);
418        head = new PaddedAtomicReference<QNode>(dummy);
419        tail = new PaddedAtomicReference<QNode>(dummy);
420        cleanMe = new PaddedAtomicReference<QNode>(null);
925      }
926  
927      /**
# Line 434 | Line 938 | public class LinkedTransferQueue<E> exte
938          addAll(c);
939      }
940  
941 <    public void put(E e) throws InterruptedException {
942 <        if (e == null) throw new NullPointerException();
943 <        if (Thread.interrupted()) throw new InterruptedException();
944 <        xfer(e, NOWAIT, 0);
941 >    /**
942 >     * Inserts the specified element at the tail of this queue.
943 >     * As the queue is unbounded, this method will never block.
944 >     *
945 >     * @throws NullPointerException if the specified element is null
946 >     */
947 >    public void put(E e) {
948 >        xfer(e, true, ASYNC, 0);
949      }
950  
951 <    public boolean offer(E e, long timeout, TimeUnit unit)
952 <        throws InterruptedException {
953 <        if (e == null) throw new NullPointerException();
954 <        if (Thread.interrupted()) throw new InterruptedException();
955 <        xfer(e, NOWAIT, 0);
951 >    /**
952 >     * Inserts the specified element at the tail of this queue.
953 >     * As the queue is unbounded, this method will never block or
954 >     * return {@code false}.
955 >     *
956 >     * @return {@code true} (as specified by
957 >     *  {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
958 >     * @throws NullPointerException if the specified element is null
959 >     */
960 >    public boolean offer(E e, long timeout, TimeUnit unit) {
961 >        xfer(e, true, ASYNC, 0);
962          return true;
963      }
964  
965 +    /**
966 +     * Inserts the specified element at the tail of this queue.
967 +     * As the queue is unbounded, this method will never return {@code false}.
968 +     *
969 +     * @return {@code true} (as specified by
970 +     *         {@link BlockingQueue#offer(Object) BlockingQueue.offer})
971 +     * @throws NullPointerException if the specified element is null
972 +     */
973      public boolean offer(E e) {
974 <        if (e == null) throw new NullPointerException();
453 <        xfer(e, NOWAIT, 0);
974 >        xfer(e, true, ASYNC, 0);
975          return true;
976      }
977  
978 +    /**
979 +     * Inserts the specified element at the tail of this queue.
980 +     * As the queue is unbounded, this method will never throw
981 +     * {@link IllegalStateException} or return {@code false}.
982 +     *
983 +     * @return {@code true} (as specified by {@link Collection#add})
984 +     * @throws NullPointerException if the specified element is null
985 +     */
986      public boolean add(E e) {
987 <        if (e == null) throw new NullPointerException();
459 <        xfer(e, NOWAIT, 0);
987 >        xfer(e, true, ASYNC, 0);
988          return true;
989      }
990  
991 +    /**
992 +     * Transfers the element to a waiting consumer immediately, if possible.
993 +     *
994 +     * <p>More precisely, transfers the specified element immediately
995 +     * if there exists a consumer already waiting to receive it (in
996 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
997 +     * otherwise returning {@code false} without enqueuing the element.
998 +     *
999 +     * @throws NullPointerException if the specified element is null
1000 +     */
1001 +    public boolean tryTransfer(E e) {
1002 +        return xfer(e, true, NOW, 0) == null;
1003 +    }
1004 +
1005 +    /**
1006 +     * Transfers the element to a consumer, waiting if necessary to do so.
1007 +     *
1008 +     * <p>More precisely, transfers the specified element immediately
1009 +     * if there exists a consumer already waiting to receive it (in
1010 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1011 +     * else inserts the specified element at the tail of this queue
1012 +     * and waits until the element is received by a consumer.
1013 +     *
1014 +     * @throws NullPointerException if the specified element is null
1015 +     */
1016      public void transfer(E e) throws InterruptedException {
1017 <        if (e == null) throw new NullPointerException();
1018 <        if (xfer(e, WAIT, 0) == null) {
466 <            Thread.interrupted();
1017 >        if (xfer(e, true, SYNC, 0) != null) {
1018 >            Thread.interrupted(); // failure possible only due to interrupt
1019              throw new InterruptedException();
1020          }
1021      }
1022  
1023 +    /**
1024 +     * Transfers the element to a consumer if it is possible to do so
1025 +     * before the timeout elapses.
1026 +     *
1027 +     * <p>More precisely, transfers the specified element immediately
1028 +     * if there exists a consumer already waiting to receive it (in
1029 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1030 +     * else inserts the specified element at the tail of this queue
1031 +     * and waits until the element is received by a consumer,
1032 +     * returning {@code false} if the specified wait time elapses
1033 +     * before the element can be transferred.
1034 +     *
1035 +     * @throws NullPointerException if the specified element is null
1036 +     */
1037      public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1038          throws InterruptedException {
1039 <        if (e == null) throw new NullPointerException();
474 <        if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
1039 >        if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1040              return true;
1041          if (!Thread.interrupted())
1042              return false;
1043          throw new InterruptedException();
1044      }
1045  
481    public boolean tryTransfer(E e) {
482        if (e == null) throw new NullPointerException();
483        return fulfill(e) != null;
484    }
485
1046      public E take() throws InterruptedException {
1047 <        Object e = xfer(null, WAIT, 0);
1047 >        E e = xfer(null, false, SYNC, 0);
1048          if (e != null)
1049 <            return (E) e;
1049 >            return e;
1050          Thread.interrupted();
1051          throw new InterruptedException();
1052      }
1053  
1054      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1055 <        Object e = xfer(null, TIMEOUT, unit.toNanos(timeout));
1055 >        E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1056          if (e != null || !Thread.interrupted())
1057 <            return (E) e;
1057 >            return e;
1058          throw new InterruptedException();
1059      }
1060  
1061      public E poll() {
1062 <        return (E) fulfill(null);
1062 >        return xfer(null, false, NOW, 0);
1063      }
1064  
1065 +    /**
1066 +     * @throws NullPointerException     {@inheritDoc}
1067 +     * @throws IllegalArgumentException {@inheritDoc}
1068 +     */
1069      public int drainTo(Collection<? super E> c) {
1070          if (c == null)
1071              throw new NullPointerException();
# Line 516 | Line 1080 | public class LinkedTransferQueue<E> exte
1080          return n;
1081      }
1082  
1083 +    /**
1084 +     * @throws NullPointerException     {@inheritDoc}
1085 +     * @throws IllegalArgumentException {@inheritDoc}
1086 +     */
1087      public int drainTo(Collection<? super E> c, int maxElements) {
1088          if (c == null)
1089              throw new NullPointerException();
# Line 530 | Line 1098 | public class LinkedTransferQueue<E> exte
1098          return n;
1099      }
1100  
533    // Traversal-based methods
534
1101      /**
1102 <     * Returns head after performing any outstanding helping steps.
1102 >     * Returns an iterator over the elements in this queue in proper
1103 >     * sequence, from head to tail.
1104 >     *
1105 >     * <p>The returned iterator is a "weakly consistent" iterator that
1106 >     * will never throw
1107 >     * {@link ConcurrentModificationException ConcurrentModificationException},
1108 >     * and guarantees to traverse elements as they existed upon
1109 >     * construction of the iterator, and may (but is not guaranteed
1110 >     * to) reflect any modifications subsequent to construction.
1111 >     *
1112 >     * @return an iterator over the elements in this queue in proper sequence
1113       */
538    private QNode traversalHead() {
539        for (;;) {
540            QNode t = tail.get();
541            QNode h = head.get();
542            if (h != null && t != null) {
543                QNode last = t.next;
544                QNode first = h.next;
545                if (t == tail.get()) {
546                    if (last != null)
547                        tail.compareAndSet(t, last);
548                    else if (first != null) {
549                        Object x = first.get();
550                        if (x == first)
551                            advanceHead(h, first);
552                        else
553                            return h;
554                    }
555                    else
556                        return h;
557                }
558            }
559            reclean();
560        }
561    }
562
563
1114      public Iterator<E> iterator() {
1115          return new Itr();
1116      }
1117  
568    /**
569     * Iterators. Basic strategy is to traverse list, treating
570     * non-data (i.e., request) nodes as terminating list.
571     * Once a valid data node is found, the item is cached
572     * so that the next call to next() will return it even
573     * if subsequently removed.
574     */
575    class Itr implements Iterator<E> {
576        QNode next;        // node to return next
577        QNode pnext;       // predecessor of next
578        QNode snext;       // successor of next
579        QNode curr;        // last returned node, for remove()
580        QNode pcurr;       // predecessor of curr, for remove()
581        E nextItem;        // Cache of next item, once committed to in next
582
583        Itr() {
584            findNext();
585        }
586
587        /**
588         * Ensures next points to next valid node, or null if none.
589         */
590        void findNext() {
591            for (;;) {
592                QNode pred = pnext;
593                QNode q = next;
594                if (pred == null || pred == q) {
595                    pred = traversalHead();
596                    q = pred.next;
597                }
598                if (q == null || !q.isData) {
599                    next = null;
600                    return;
601                }
602                Object x = q.get();
603                QNode s = q.next;
604                if (x != null && q != x && q != s) {
605                    nextItem = (E) x;
606                    snext = s;
607                    pnext = pred;
608                    next = q;
609                    return;
610                }
611                pnext = q;
612                next = s;
613            }
614        }
615
616        public boolean hasNext() {
617            return next != null;
618        }
619
620        public E next() {
621            if (next == null) throw new NoSuchElementException();
622            pcurr = pnext;
623            curr = next;
624            pnext = next;
625            next = snext;
626            E x = nextItem;
627            findNext();
628            return x;
629        }
630
631        public void remove() {
632            QNode p = curr;
633            if (p == null)
634                throw new IllegalStateException();
635            Object x = p.get();
636            if (x != null && x != p && p.compareAndSet(x, p))
637                clean(pcurr, p);
638        }
639    }
640
1118      public E peek() {
1119 <        for (;;) {
643 <            QNode h = traversalHead();
644 <            QNode p = h.next;
645 <            if (p == null)
646 <                return null;
647 <            Object x = p.get();
648 <            if (p != x) {
649 <                if (!p.isData)
650 <                    return null;
651 <                if (x != null)
652 <                    return (E) x;
653 <            }
654 <        }
1119 >        return firstDataItem();
1120      }
1121  
1122 +    /**
1123 +     * Returns {@code true} if this queue contains no elements.
1124 +     *
1125 +     * @return {@code true} if this queue contains no elements
1126 +     */
1127      public boolean isEmpty() {
1128 <        for (;;) {
1129 <            QNode h = traversalHead();
1130 <            QNode p = h.next;
661 <            if (p == null)
662 <                return true;
663 <            Object x = p.get();
664 <            if (p != x) {
665 <                if (!p.isData)
666 <                    return true;
667 <                if (x != null)
668 <                    return false;
669 <            }
1128 >        for (Node p = head; p != null; p = succ(p)) {
1129 >            if (!p.isMatched())
1130 >                return !p.isData;
1131          }
1132 +        return true;
1133      }
1134  
1135      public boolean hasWaitingConsumer() {
1136 <        for (;;) {
675 <            QNode h = traversalHead();
676 <            QNode p = h.next;
677 <            if (p == null)
678 <                return false;
679 <            Object x = p.get();
680 <            if (p != x)
681 <                return !p.isData;
682 <        }
1136 >        return firstOfMode(false) != null;
1137      }
1138  
1139      /**
# Line 695 | Line 1149 | public class LinkedTransferQueue<E> exte
1149       * @return the number of elements in this queue
1150       */
1151      public int size() {
1152 <        int count = 0;
699 <        QNode h = traversalHead();
700 <        for (QNode p = h.next; p != null && p.isData; p = p.next) {
701 <            Object x = p.get();
702 <            if (x != null && x != p) {
703 <                if (++count == Integer.MAX_VALUE) // saturated
704 <                    break;
705 <            }
706 <        }
707 <        return count;
1152 >        return countOfMode(true);
1153      }
1154  
1155      public int getWaitingConsumerCount() {
1156 <        int count = 0;
712 <        QNode h = traversalHead();
713 <        for (QNode p = h.next; p != null && !p.isData; p = p.next) {
714 <            if (p.get() == null) {
715 <                if (++count == Integer.MAX_VALUE)
716 <                    break;
717 <            }
718 <        }
719 <        return count;
1156 >        return countOfMode(false);
1157      }
1158  
1159 <    public int remainingCapacity() {
1160 <        return Integer.MAX_VALUE;
1159 >    /**
1160 >     * Removes a single instance of the specified element from this queue,
1161 >     * if it is present.  More formally, removes an element {@code e} such
1162 >     * that {@code o.equals(e)}, if this queue contains one or more such
1163 >     * elements.
1164 >     * Returns {@code true} if this queue contained the specified element
1165 >     * (or equivalently, if this queue changed as a result of the call).
1166 >     *
1167 >     * @param o element to be removed from this queue, if present
1168 >     * @return {@code true} if this queue changed as a result of the call
1169 >     */
1170 >    public boolean remove(Object o) {
1171 >        return findAndRemove(o);
1172      }
1173  
1174 <    public boolean remove(Object o) {
1175 <        if (o == null)
1176 <            return false;
1177 <        for (;;) {
1178 <            QNode pred = traversalHead();
1179 <            for (;;) {
1180 <                QNode q = pred.next;
1181 <                if (q == null || !q.isData)
1182 <                    return false;
735 <                if (q == pred) // restart
736 <                    break;
737 <                Object x = q.get();
738 <                if (x != null && x != q && o.equals(x) &&
739 <                    q.compareAndSet(x, q)) {
740 <                    clean(pred, q);
741 <                    return true;
742 <                }
743 <                pred = q;
744 <            }
745 <        }
1174 >    /**
1175 >     * Always returns {@code Integer.MAX_VALUE} because a
1176 >     * {@code LinkedTransferQueue} is not capacity constrained.
1177 >     *
1178 >     * @return {@code Integer.MAX_VALUE} (as specified by
1179 >     *         {@link BlockingQueue#remainingCapacity()})
1180 >     */
1181 >    public int remainingCapacity() {
1182 >        return Integer.MAX_VALUE;
1183      }
1184  
1185      /**
1186 <     * Save the state to a stream (that is, serialize it).
1186 >     * Saves the state to a stream (that is, serializes it).
1187       *
1188       * @serialData All of the elements (each an {@code E}) in
1189       * the proper order, followed by a null
# Line 762 | Line 1199 | public class LinkedTransferQueue<E> exte
1199      }
1200  
1201      /**
1202 <     * Reconstitute the Queue instance from a stream (that is,
1203 <     * deserialize it).
1202 >     * Reconstitutes the Queue instance from a stream (that is,
1203 >     * deserializes it).
1204       *
1205       * @param s the stream
1206       */
1207      private void readObject(java.io.ObjectInputStream s)
1208          throws java.io.IOException, ClassNotFoundException {
1209          s.defaultReadObject();
773        resetHeadAndTail();
1210          for (;;) {
1211 <            E item = (E) s.readObject();
1211 >            @SuppressWarnings("unchecked") E item = (E) s.readObject();
1212              if (item == null)
1213                  break;
1214              else
# Line 780 | Line 1216 | public class LinkedTransferQueue<E> exte
1216          }
1217      }
1218  
1219 +    // Unsafe mechanics
1220 +
1221 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1222 +    private static final long headOffset =
1223 +        objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1224 +    private static final long tailOffset =
1225 +        objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1226 +    private static final long sweepVotesOffset =
1227 +        objectFieldOffset(UNSAFE, "sweepVotes", LinkedTransferQueue.class);
1228  
1229 <    // Support for resetting head/tail while deserializing
1230 <    private void resetHeadAndTail() {
1231 <        QNode dummy = new QNode(null, false);
1232 <        UNSAFE.putObjectVolatile(this, headOffset,
1233 <                                  new PaddedAtomicReference<QNode>(dummy));
1234 <        UNSAFE.putObjectVolatile(this, tailOffset,
1235 <                                  new PaddedAtomicReference<QNode>(dummy));
1236 <        UNSAFE.putObjectVolatile(this, cleanMeOffset,
1237 <                                  new PaddedAtomicReference<QNode>(null));
1229 >    static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1230 >                                  String field, Class<?> klazz) {
1231 >        try {
1232 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1233 >        } catch (NoSuchFieldException e) {
1234 >            // Convert Exception to corresponding Error
1235 >            NoSuchFieldError error = new NoSuchFieldError(field);
1236 >            error.initCause(e);
1237 >            throw error;
1238 >        }
1239      }
1240  
1241 <    // Temporary Unsafe mechanics for preliminary release
1242 <    private static Unsafe getUnsafe() throws Throwable {
1241 >    /**
1242 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1243 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1244 >     * into a jdk.
1245 >     *
1246 >     * @return a sun.misc.Unsafe
1247 >     */
1248 >    static sun.misc.Unsafe getUnsafe() {
1249          try {
1250 <            return Unsafe.getUnsafe();
1250 >            return sun.misc.Unsafe.getUnsafe();
1251          } catch (SecurityException se) {
1252              try {
1253                  return java.security.AccessController.doPrivileged
1254 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
1255 <                        public Unsafe run() throws Exception {
1256 <                            return getUnsafePrivileged();
1254 >                    (new java.security
1255 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1256 >                        public sun.misc.Unsafe run() throws Exception {
1257 >                            java.lang.reflect.Field f = sun.misc
1258 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1259 >                            f.setAccessible(true);
1260 >                            return (sun.misc.Unsafe) f.get(null);
1261                          }});
1262              } catch (java.security.PrivilegedActionException e) {
1263 <                throw e.getCause();
1263 >                throw new RuntimeException("Could not initialize intrinsics",
1264 >                                           e.getCause());
1265              }
1266          }
1267      }
1268  
812    private static Unsafe getUnsafePrivileged()
813            throws NoSuchFieldException, IllegalAccessException {
814        Field f = Unsafe.class.getDeclaredField("theUnsafe");
815        f.setAccessible(true);
816        return (Unsafe) f.get(null);
817    }
818
819    private static long fieldOffset(String fieldName)
820            throws NoSuchFieldException {
821        return UNSAFE.objectFieldOffset
822            (LinkedTransferQueue.class.getDeclaredField(fieldName));
823    }
824
825    private static final Unsafe UNSAFE;
826    private static final long headOffset;
827    private static final long tailOffset;
828    private static final long cleanMeOffset;
829    static {
830        try {
831            UNSAFE = getUnsafe();
832            headOffset = fieldOffset("head");
833            tailOffset = fieldOffset("tail");
834            cleanMeOffset = fieldOffset("cleanMe");
835        } catch (Throwable e) {
836            throw new RuntimeException("Could not initialize intrinsics", e);
837        }
838    }
839
1269   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines