ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.24 by jsr166, Thu Jul 23 23:23:41 2009 UTC vs.
Revision 1.58 by jsr166, Wed Oct 28 10:23:38 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.concurrent.*;
9 import java.util.concurrent.locks.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.*;
12 import java.io.*;
13 import sun.misc.Unsafe;
14 import java.lang.reflect.*;
10  
11 + import java.util.AbstractQueue;
12 + import java.util.Collection;
13 + import java.util.ConcurrentModificationException;
14 + import java.util.Iterator;
15 + import java.util.NoSuchElementException;
16 + import java.util.Queue;
17 + import java.util.concurrent.locks.LockSupport;
18   /**
19 < * An unbounded {@linkplain TransferQueue} based on linked nodes.
19 > * An unbounded {@link TransferQueue} based on linked nodes.
20   * This queue orders elements FIFO (first-in-first-out) with respect
21   * to any given producer.  The <em>head</em> of the queue is that
22   * element that has been on the queue the longest time for some
# Line 50 | Line 52 | public class LinkedTransferQueue<E> exte
52      private static final long serialVersionUID = -3223113410248163686L;
53  
54      /*
55 <     * This class extends the approach used in FIFO-mode
54 <     * SynchronousQueues. See the internal documentation, as well as
55 <     * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
56 <     * Lea & Scott
57 <     * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
55 >     * *** Overview of Dual Queues with Slack ***
56       *
57 <     * The main extension is to provide different Wait modes for the
58 <     * main "xfer" method that puts or takes items.  These don't
59 <     * impact the basic dual-queue logic, but instead control whether
60 <     * or how threads block upon insertion of request or data nodes
61 <     * into the dual queue. It also uses slightly different
62 <     * conventions for tracking whether nodes are off-list or
63 <     * cancelled.
64 <     */
65 <
66 <    // Wait modes for xfer method
67 <    static final int NOWAIT  = 0;
68 <    static final int TIMEOUT = 1;
69 <    static final int WAIT    = 2;
70 <
71 <    /** The number of CPUs, for spin control */
72 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
57 >     * Dual Queues, introduced by Scherer and Scott
58 >     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 >     * (linked) queues in which nodes may represent either data or
60 >     * requests.  When a thread tries to enqueue a data node, but
61 >     * encounters a request node, it instead "matches" and removes it;
62 >     * and vice versa for enqueuing requests. Blocking Dual Queues
63 >     * arrange that threads enqueuing unmatched requests block until
64 >     * other threads provide the match. Dual Synchronous Queues (see
65 >     * Scherer, Lea, & Scott
66 >     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 >     * additionally arrange that threads enqueuing unmatched data also
68 >     * block.  Dual Transfer Queues support all of these modes, as
69 >     * dictated by callers.
70 >     *
71 >     * A FIFO dual queue may be implemented using a variation of the
72 >     * Michael & Scott (M&S) lock-free queue algorithm
73 >     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 >     * It maintains two pointer fields, "head", pointing to a
75 >     * (matched) node that in turn points to the first actual
76 >     * (unmatched) queue node (or null if empty); and "tail" that
77 >     * points to the last node on the queue (or again null if
78 >     * empty). For example, here is a possible queue with four data
79 >     * elements:
80 >     *
81 >     *  head                tail
82 >     *    |                   |
83 >     *    v                   v
84 >     *    M -> U -> U -> U -> U
85 >     *
86 >     * The M&S queue algorithm is known to be prone to scalability and
87 >     * overhead limitations when maintaining (via CAS) these head and
88 >     * tail pointers. This has led to the development of
89 >     * contention-reducing variants such as elimination arrays (see
90 >     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 >     * optimistic back pointers (see Ladan-Mozes & Shavit
92 >     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 >     * However, the nature of dual queues enables a simpler tactic for
94 >     * improving M&S-style implementations when dual-ness is needed.
95 >     *
96 >     * In a dual queue, each node must atomically maintain its match
97 >     * status. While there are other possible variants, we implement
98 >     * this here as: for a data-mode node, matching entails CASing an
99 >     * "item" field from a non-null data value to null upon match, and
100 >     * vice-versa for request nodes, CASing from null to a data
101 >     * value. (Note that the linearization properties of this style of
102 >     * queue are easy to verify -- elements are made available by
103 >     * linking, and unavailable by matching.) Compared to plain M&S
104 >     * queues, this property of dual queues requires one additional
105 >     * successful atomic operation per enq/deq pair. But it also
106 >     * enables lower cost variants of queue maintenance mechanics. (A
107 >     * variation of this idea applies even for non-dual queues that
108 >     * support deletion of interior elements, such as
109 >     * j.u.c.ConcurrentLinkedQueue.)
110 >     *
111 >     * Once a node is matched, its match status can never again
112 >     * change.  We may thus arrange that the linked list of them
113 >     * contain a prefix of zero or more matched nodes, followed by a
114 >     * suffix of zero or more unmatched nodes. (Note that we allow
115 >     * both the prefix and suffix to be zero length, which in turn
116 >     * means that we do not use a dummy header.)  If we were not
117 >     * concerned with either time or space efficiency, we could
118 >     * correctly perform enqueue and dequeue operations by traversing
119 >     * from a pointer to the initial node; CASing the item of the
120 >     * first unmatched node on match and CASing the next field of the
121 >     * trailing node on appends. (Plus some special-casing when
122 >     * initially empty).  While this would be a terrible idea in
123 >     * itself, it does have the benefit of not requiring ANY atomic
124 >     * updates on head/tail fields.
125 >     *
126 >     * We introduce here an approach that lies between the extremes of
127 >     * never versus always updating queue (head and tail) pointers.
128 >     * This offers a tradeoff between sometimes requiring extra
129 >     * traversal steps to locate the first and/or last unmatched
130 >     * nodes, versus the reduced overhead and contention of fewer
131 >     * updates to queue pointers. For example, a possible snapshot of
132 >     * a queue is:
133 >     *
134 >     *  head           tail
135 >     *    |              |
136 >     *    v              v
137 >     *    M -> M -> U -> U -> U -> U
138 >     *
139 >     * The best value for this "slack" (the targeted maximum distance
140 >     * between the value of "head" and the first unmatched node, and
141 >     * similarly for "tail") is an empirical matter. We have found
142 >     * that using very small constants in the range of 1-3 work best
143 >     * over a range of platforms. Larger values introduce increasing
144 >     * costs of cache misses and risks of long traversal chains, while
145 >     * smaller values increase CAS contention and overhead.
146 >     *
147 >     * Dual queues with slack differ from plain M&S dual queues by
148 >     * virtue of only sometimes updating head or tail pointers when
149 >     * matching, appending, or even traversing nodes; in order to
150 >     * maintain a targeted slack.  The idea of "sometimes" may be
151 >     * operationalized in several ways. The simplest is to use a
152 >     * per-operation counter incremented on each traversal step, and
153 >     * to try (via CAS) to update the associated queue pointer
154 >     * whenever the count exceeds a threshold. Another, that requires
155 >     * more overhead, is to use random number generators to update
156 >     * with a given probability per traversal step.
157 >     *
158 >     * In any strategy along these lines, because CASes updating
159 >     * fields may fail, the actual slack may exceed targeted
160 >     * slack. However, they may be retried at any time to maintain
161 >     * targets.  Even when using very small slack values, this
162 >     * approach works well for dual queues because it allows all
163 >     * operations up to the point of matching or appending an item
164 >     * (hence potentially allowing progress by another thread) to be
165 >     * read-only, thus not introducing any further contention. As
166 >     * described below, we implement this by performing slack
167 >     * maintenance retries only after these points.
168 >     *
169 >     * As an accompaniment to such techniques, traversal overhead can
170 >     * be further reduced without increasing contention of head
171 >     * pointer updates: Threads may sometimes shortcut the "next" link
172 >     * path from the current "head" node to be closer to the currently
173 >     * known first unmatched node, and similarly for tail. Again, this
174 >     * may be triggered with using thresholds or randomization.
175 >     *
176 >     * These ideas must be further extended to avoid unbounded amounts
177 >     * of costly-to-reclaim garbage caused by the sequential "next"
178 >     * links of nodes starting at old forgotten head nodes: As first
179 >     * described in detail by Boehm
180 >     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181 >     * delays noticing that any arbitrarily old node has become
182 >     * garbage, all newer dead nodes will also be unreclaimed.
183 >     * (Similar issues arise in non-GC environments.)  To cope with
184 >     * this in our implementation, upon CASing to advance the head
185 >     * pointer, we set the "next" link of the previous head to point
186 >     * only to itself; thus limiting the length of connected dead lists.
187 >     * (We also take similar care to wipe out possibly garbage
188 >     * retaining values held in other Node fields.)  However, doing so
189 >     * adds some further complexity to traversal: If any "next"
190 >     * pointer links to itself, it indicates that the current thread
191 >     * has lagged behind a head-update, and so the traversal must
192 >     * continue from the "head".  Traversals trying to find the
193 >     * current tail starting from "tail" may also encounter
194 >     * self-links, in which case they also continue at "head".
195 >     *
196 >     * It is tempting in slack-based scheme to not even use CAS for
197 >     * updates (similarly to Ladan-Mozes & Shavit). However, this
198 >     * cannot be done for head updates under the above link-forgetting
199 >     * mechanics because an update may leave head at a detached node.
200 >     * And while direct writes are possible for tail updates, they
201 >     * increase the risk of long retraversals, and hence long garbage
202 >     * chains, which can be much more costly than is worthwhile
203 >     * considering that the cost difference of performing a CAS vs
204 >     * write is smaller when they are not triggered on each operation
205 >     * (especially considering that writes and CASes equally require
206 >     * additional GC bookkeeping ("write barriers") that are sometimes
207 >     * more costly than the writes themselves because of contention).
208 >     *
209 >     * Removal of interior nodes (due to timed out or interrupted
210 >     * waits, or calls to remove(x) or Iterator.remove) can use a
211 >     * scheme roughly similar to that described in Scherer, Lea, and
212 >     * Scott's SynchronousQueue. Given a predecessor, we can unsplice
213 >     * any node except the (actual) tail of the queue. To avoid
214 >     * build-up of cancelled trailing nodes, upon a request to remove
215 >     * a trailing node, it is placed in field "cleanMe" to be
216 >     * unspliced upon the next call to unsplice any other node.
217 >     * Situations needing such mechanics are not common but do occur
218 >     * in practice; for example when an unbounded series of short
219 >     * timed calls to poll repeatedly time out but never otherwise
220 >     * fall off the list because of an untimed call to take at the
221 >     * front of the queue. Note that maintaining field cleanMe does
222 >     * not otherwise much impact garbage retention even if never
223 >     * cleared by some other call because the held node will
224 >     * eventually either directly or indirectly lead to a self-link
225 >     * once off the list.
226 >     *
227 >     * *** Overview of implementation ***
228 >     *
229 >     * We use a threshold-based approach to updates, with a slack
230 >     * threshold of two -- that is, we update head/tail when the
231 >     * current pointer appears to be two or more steps away from the
232 >     * first/last node. The slack value is hard-wired: a path greater
233 >     * than one is naturally implemented by checking equality of
234 >     * traversal pointers except when the list has only one element,
235 >     * in which case we keep slack threshold at one. Avoiding tracking
236 >     * explicit counts across method calls slightly simplifies an
237 >     * already-messy implementation. Using randomization would
238 >     * probably work better if there were a low-quality dirt-cheap
239 >     * per-thread one available, but even ThreadLocalRandom is too
240 >     * heavy for these purposes.
241 >     *
242 >     * With such a small slack threshold value, it is rarely
243 >     * worthwhile to augment this with path short-circuiting; i.e.,
244 >     * unsplicing nodes between head and the first unmatched node, or
245 >     * similarly for tail, rather than advancing head or tail
246 >     * proper. However, it is used (in awaitMatch) immediately before
247 >     * a waiting thread starts to block, as a final bit of helping at
248 >     * a point when contention with others is extremely unlikely
249 >     * (since if other threads that could release it are operating,
250 >     * then the current thread wouldn't be blocking).
251 >     *
252 >     * We allow both the head and tail fields to be null before any
253 >     * nodes are enqueued; initializing upon first append.  This
254 >     * simplifies some other logic, as well as providing more
255 >     * efficient explicit control paths instead of letting JVMs insert
256 >     * implicit NullPointerExceptions when they are null.  While not
257 >     * currently fully implemented, we also leave open the possibility
258 >     * of re-nulling these fields when empty (which is complicated to
259 >     * arrange, for little benefit.)
260 >     *
261 >     * All enqueue/dequeue operations are handled by the single method
262 >     * "xfer" with parameters indicating whether to act as some form
263 >     * of offer, put, poll, take, or transfer (each possibly with
264 >     * timeout). The relative complexity of using one monolithic
265 >     * method outweighs the code bulk and maintenance problems of
266 >     * using separate methods for each case.
267 >     *
268 >     * Operation consists of up to three phases. The first is
269 >     * implemented within method xfer, the second in tryAppend, and
270 >     * the third in method awaitMatch.
271 >     *
272 >     * 1. Try to match an existing node
273 >     *
274 >     *    Starting at head, skip already-matched nodes until finding
275 >     *    an unmatched node of opposite mode, if one exists, in which
276 >     *    case matching it and returning, also if necessary updating
277 >     *    head to one past the matched node (or the node itself if the
278 >     *    list has no other unmatched nodes). If the CAS misses, then
279 >     *    a loop retries advancing head by two steps until either
280 >     *    success or the slack is at most two. By requiring that each
281 >     *    attempt advances head by two (if applicable), we ensure that
282 >     *    the slack does not grow without bound. Traversals also check
283 >     *    if the initial head is now off-list, in which case they
284 >     *    start at the new head.
285 >     *
286 >     *    If no candidates are found and the call was untimed
287 >     *    poll/offer, (argument "how" is NOW) return.
288 >     *
289 >     * 2. Try to append a new node (method tryAppend)
290 >     *
291 >     *    Starting at current tail pointer, find the actual last node
292 >     *    and try to append a new node (or if head was null, establish
293 >     *    the first node). Nodes can be appended only if their
294 >     *    predecessors are either already matched or are of the same
295 >     *    mode. If we detect otherwise, then a new node with opposite
296 >     *    mode must have been appended during traversal, so we must
297 >     *    restart at phase 1. The traversal and update steps are
298 >     *    otherwise similar to phase 1: Retrying upon CAS misses and
299 >     *    checking for staleness.  In particular, if a self-link is
300 >     *    encountered, then we can safely jump to a node on the list
301 >     *    by continuing the traversal at current head.
302 >     *
303 >     *    On successful append, if the call was ASYNC, return.
304 >     *
305 >     * 3. Await match or cancellation (method awaitMatch)
306 >     *
307 >     *    Wait for another thread to match node; instead cancelling if
308 >     *    the current thread was interrupted or the wait timed out. On
309 >     *    multiprocessors, we use front-of-queue spinning: If a node
310 >     *    appears to be the first unmatched node in the queue, it
311 >     *    spins a bit before blocking. In either case, before blocking
312 >     *    it tries to unsplice any nodes between the current "head"
313 >     *    and the first unmatched node.
314 >     *
315 >     *    Front-of-queue spinning vastly improves performance of
316 >     *    heavily contended queues. And so long as it is relatively
317 >     *    brief and "quiet", spinning does not much impact performance
318 >     *    of less-contended queues.  During spins threads check their
319 >     *    interrupt status and generate a thread-local random number
320 >     *    to decide to occasionally perform a Thread.yield. While
321 >     *    yield has underdefined specs, we assume that might it help,
322 >     *    and will not hurt in limiting impact of spinning on busy
323 >     *    systems.  We also use smaller (1/2) spins for nodes that are
324 >     *    not known to be front but whose predecessors have not
325 >     *    blocked -- these "chained" spins avoid artifacts of
326 >     *    front-of-queue rules which otherwise lead to alternating
327 >     *    nodes spinning vs blocking. Further, front threads that
328 >     *    represent phase changes (from data to request node or vice
329 >     *    versa) compared to their predecessors receive additional
330 >     *    chained spins, reflecting longer paths typically required to
331 >     *    unblock threads during phase changes.
332 >     */
333 >
334 >    /** True if on multiprocessor */
335 >    private static final boolean MP =
336 >        Runtime.getRuntime().availableProcessors() > 1;
337  
338      /**
339 <     * The number of times to spin before blocking in timed waits.
340 <     * The value is empirically derived -- it works well across a
341 <     * variety of processors and OSes. Empirically, the best value
342 <     * seems not to vary with number of CPUs (beyond 2) so is just
343 <     * a constant.
339 >     * The number of times to spin (with randomly interspersed calls
340 >     * to Thread.yield) on multiprocessor before blocking when a node
341 >     * is apparently the first waiter in the queue.  See above for
342 >     * explanation. Must be a power of two. The value is empirically
343 >     * derived -- it works pretty well across a variety of processors,
344 >     * numbers of CPUs, and OSes.
345       */
346 <    static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
346 >    private static final int FRONT_SPINS   = 1 << 7;
347  
348      /**
349 <     * The number of times to spin before blocking in untimed waits.
350 <     * This is greater than timed value because untimed waits spin
351 <     * faster since they don't need to check times on each spin.
349 >     * The number of times to spin before blocking when a node is
350 >     * preceded by another node that is apparently spinning.  Also
351 >     * serves as an increment to FRONT_SPINS on phase changes, and as
352 >     * base average frequency for yielding during spins. Must be a
353 >     * power of two.
354       */
355 <    static final int maxUntimedSpins = maxTimedSpins * 16;
355 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
356  
357      /**
358 <     * The number of nanoseconds for which it is faster to spin
359 <     * rather than to use timed park. A rough estimate suffices.
360 <     */
361 <    static final long spinForTimeoutThreshold = 1000L;
358 >     * Queue nodes. Uses Object, not E, for items to allow forgetting
359 >     * them after use.  Relies heavily on Unsafe mechanics to minimize
360 >     * unnecessary ordering constraints: Writes that intrinsically
361 >     * precede or follow CASes use simple relaxed forms.  Other
362 >     * cleanups use releasing/lazy writes.
363 >     */
364 >    static final class Node<E> {
365 >        final boolean isData;   // false if this is a request node
366 >        volatile Object item;   // initially non-null if isData; CASed to match
367 >        volatile Node<E> next;
368 >        volatile Thread waiter; // null until waiting
369 >
370 >        // CAS methods for fields
371 >        final boolean casNext(Node<E> cmp, Node<E> val) {
372 >            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
373 >        }
374 >
375 >        final boolean casItem(Object cmp, Object val) {
376 >            assert cmp == null || cmp.getClass() != Node.class;
377 >            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
378 >        }
379  
380 <    /**
381 <     * Node class for LinkedTransferQueue. Opportunistically
382 <     * subclasses from AtomicReference to represent item. Uses Object,
383 <     * not E, to allow setting item to "this" after use, to avoid
384 <     * garbage retention. Similarly, setting the next field to this is
385 <     * used as sentinel that node is off list.
104 <     */
105 <    static final class QNode extends AtomicReference<Object> {
106 <        volatile QNode next;
107 <        volatile Thread waiter;       // to control park/unpark
108 <        final boolean isData;
109 <        QNode(Object item, boolean isData) {
110 <            super(item);
380 >        /**
381 >         * Creates a new node. Uses relaxed write because item can only
382 >         * be seen if followed by CAS.
383 >         */
384 >        Node(E item, boolean isData) {
385 >            UNSAFE.putObject(this, itemOffset, item); // relaxed write
386              this.isData = isData;
387          }
388  
389 <        static final AtomicReferenceFieldUpdater<QNode, QNode>
390 <            nextUpdater = AtomicReferenceFieldUpdater.newUpdater
391 <            (QNode.class, QNode.class, "next");
389 >        /**
390 >         * Links node to itself to avoid garbage retention.  Called
391 >         * only after CASing head field, so uses relaxed write.
392 >         */
393 >        final void forgetNext() {
394 >            UNSAFE.putObject(this, nextOffset, this);
395 >        }
396  
397 <        final boolean casNext(QNode cmp, QNode val) {
398 <            return nextUpdater.compareAndSet(this, cmp, val);
397 >        /**
398 >         * Sets item to self (using a releasing/lazy write) and waiter
399 >         * to null, to avoid garbage retention after extracting or
400 >         * cancelling.
401 >         */
402 >        final void forgetContents() {
403 >            UNSAFE.putOrderedObject(this, itemOffset, this);
404 >            UNSAFE.putOrderedObject(this, waiterOffset, null);
405          }
406  
407 <        final void clearNext() {
408 <            nextUpdater.lazySet(this, this);
407 >        /**
408 >         * Returns true if this node has been matched, including the
409 >         * case of artificial matches due to cancellation.
410 >         */
411 >        final boolean isMatched() {
412 >            Object x = item;
413 >            return (x == this) || ((x == null) == isData);
414          }
415  
416 +        /**
417 +         * Returns true if this is an unmatched request node.
418 +         */
419 +        final boolean isUnmatchedRequest() {
420 +            return !isData && item == null;
421 +        }
422 +
423 +        /**
424 +         * Returns true if a node with the given mode cannot be
425 +         * appended to this node because this node is unmatched and
426 +         * has opposite data mode.
427 +         */
428 +        final boolean cannotPrecede(boolean haveData) {
429 +            boolean d = isData;
430 +            Object x;
431 +            return d != haveData && (x = item) != this && (x != null) == d;
432 +        }
433 +
434 +        /**
435 +         * Tries to artificially match a data node -- used by remove.
436 +         */
437 +        final boolean tryMatchData() {
438 +            assert isData;
439 +            Object x = item;
440 +            if (x != null && x != this && casItem(x, null)) {
441 +                LockSupport.unpark(waiter);
442 +                return true;
443 +            }
444 +            return false;
445 +        }
446 +
447 +        // Unsafe mechanics
448 +        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
449 +        private static final long nextOffset =
450 +            objectFieldOffset(UNSAFE, "next", Node.class);
451 +        private static final long itemOffset =
452 +            objectFieldOffset(UNSAFE, "item", Node.class);
453 +        private static final long waiterOffset =
454 +            objectFieldOffset(UNSAFE, "waiter", Node.class);
455 +
456          private static final long serialVersionUID = -3375979862319811754L;
457      }
458  
459 <    /**
460 <     * Padded version of AtomicReference used for head, tail and
131 <     * cleanMe, to alleviate contention across threads CASing one vs
132 <     * the other.
133 <     */
134 <    static final class PaddedAtomicReference<T> extends AtomicReference<T> {
135 <        // enough padding for 64bytes with 4byte refs
136 <        Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
137 <        PaddedAtomicReference(T r) { super(r); }
138 <        private static final long serialVersionUID = 8170090609809740854L;
139 <    }
459 >    /** head of the queue; null until first enqueue */
460 >    transient volatile Node<E> head;
461  
462 +    /** predecessor of dangling unspliceable node */
463 +    private transient volatile Node<E> cleanMe; // decl here reduces contention
464  
465 <    /** head of the queue */
466 <    private transient final PaddedAtomicReference<QNode> head;
465 >    /** tail of the queue; null until first append */
466 >    private transient volatile Node<E> tail;
467  
468 <    /** tail of the queue */
469 <    private transient final PaddedAtomicReference<QNode> tail;
468 >    // CAS methods for fields
469 >    private boolean casTail(Node<E> cmp, Node<E> val) {
470 >        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
471 >    }
472  
473 <    /**
474 <     * Reference to a cancelled node that might not yet have been
475 <     * unlinked from queue because it was the last inserted node
151 <     * when it cancelled.
152 <     */
153 <    private transient final PaddedAtomicReference<QNode> cleanMe;
473 >    private boolean casHead(Node<E> cmp, Node<E> val) {
474 >        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
475 >    }
476  
477 <    /**
478 <     * Tries to cas nh as new head; if successful, unlink
479 <     * old head's next node to avoid garbage retention.
477 >    private boolean casCleanMe(Node<E> cmp, Node<E> val) {
478 >        return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
479 >    }
480 >
481 >    /*
482 >     * Possible values for "how" argument in xfer method. Beware that
483 >     * the order of assigned numerical values matters.
484       */
485 <    private boolean advanceHead(QNode h, QNode nh) {
486 <        if (h == head.get() && head.compareAndSet(h, nh)) {
487 <            h.clearNext(); // forget old next
488 <            return true;
489 <        }
490 <        return false;
485 >    private static final int NOW     = 0; // for untimed poll, tryTransfer
486 >    private static final int ASYNC   = 1; // for offer, put, add
487 >    private static final int SYNC    = 2; // for transfer, take
488 >    private static final int TIMEOUT = 3; // for timed poll, tryTransfer
489 >
490 >    @SuppressWarnings("unchecked")
491 >    static <E> E cast(Object item) {
492 >        assert item == null || item.getClass() != Node.class;
493 >        return (E) item;
494      }
495  
496      /**
497 <     * Puts or takes an item. Used for most queue operations (except
169 <     * poll() and tryTransfer()). See the similar code in
170 <     * SynchronousQueue for detailed explanation.
497 >     * Implements all queuing methods. See above for explanation.
498       *
499 <     * @param e the item or if null, signifies that this is a take
500 <     * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
499 >     * @param e the item or null for take
500 >     * @param haveData true if this is a put, else a take
501 >     * @param how NOW, ASYNC, SYNC, or TIMEOUT
502       * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
503 <     * @return an item, or null on failure
503 >     * @return an item if matched, else e
504 >     * @throws NullPointerException if haveData mode but e is null
505       */
506 <    private Object xfer(Object e, int mode, long nanos) {
507 <        boolean isData = (e != null);
508 <        QNode s = null;
509 <        final PaddedAtomicReference<QNode> head = this.head;
181 <        final PaddedAtomicReference<QNode> tail = this.tail;
506 >    private E xfer(E e, boolean haveData, int how, long nanos) {
507 >        if (haveData && (e == null))
508 >            throw new NullPointerException();
509 >        Node<E> s = null;                     // the node to append, if needed
510  
511 <        for (;;) {
184 <            QNode t = tail.get();
185 <            QNode h = head.get();
511 >        retry: for (;;) {                     // restart on append race
512  
513 <            if (t != null && (t == h || t.isData == isData)) {
514 <                if (s == null)
515 <                    s = new QNode(e, isData);
516 <                QNode last = t.next;
517 <                if (last != null) {
518 <                    if (t == tail.get())
519 <                        tail.compareAndSet(t, last);
520 <                }
521 <                else if (t.casNext(null, s)) {
522 <                    tail.compareAndSet(t, s);
523 <                    return awaitFulfill(t, s, e, mode, nanos);
513 >            for (Node<E> h = head, p = h; p != null;) {
514 >                // find & match first node
515 >                boolean isData = p.isData;
516 >                Object item = p.item;
517 >                if (item != p && (item != null) == isData) { // unmatched
518 >                    if (isData == haveData)   // can't match
519 >                        break;
520 >                    if (p.casItem(item, e)) { // match
521 >                        for (Node<E> q = p; q != h;) {
522 >                            Node<E> n = q.next; // update head by 2
523 >                            if (n != null)    // unless singleton
524 >                                q = n;
525 >                            if (head == h && casHead(h, q)) {
526 >                                h.forgetNext();
527 >                                break;
528 >                            }                 // advance and retry
529 >                            if ((h = head)   == null ||
530 >                                (q = h.next) == null || !q.isMatched())
531 >                                break;        // unless slack < 2
532 >                        }
533 >                        LockSupport.unpark(p.waiter);
534 >                        return this.<E>cast(item);
535 >                    }
536                  }
537 +                Node<E> n = p.next;
538 +                p = (p != n) ? n : (h = head); // Use head if p offlist
539              }
540  
541 <            else if (h != null) {
542 <                QNode first = h.next;
543 <                if (t == tail.get() && first != null &&
544 <                    advanceHead(h, first)) {
545 <                    Object x = first.get();
546 <                    if (x != first && first.compareAndSet(x, e)) {
547 <                        LockSupport.unpark(first.waiter);
548 <                        return isData ? e : x;
209 <                    }
210 <                }
541 >            if (how >= ASYNC) {               // No matches available
542 >                if (s == null)
543 >                    s = new Node<E>(e, haveData);
544 >                Node<E> pred = tryAppend(s, haveData);
545 >                if (pred == null)
546 >                    continue retry;           // lost race vs opposite mode
547 >                if (how >= SYNC)
548 >                    return awaitMatch(s, pred, e, how, nanos);
549              }
550 +            return e; // not waiting
551          }
552      }
553  
215
554      /**
555 <     * Version of xfer for poll() and tryTransfer, which
556 <     * simplifies control paths both here and in xfer.
557 <     */
558 <    private Object fulfill(Object e) {
559 <        boolean isData = (e != null);
560 <        final PaddedAtomicReference<QNode> head = this.head;
561 <        final PaddedAtomicReference<QNode> tail = this.tail;
562 <
563 <        for (;;) {
564 <            QNode t = tail.get();
565 <            QNode h = head.get();
566 <
567 <            if (t != null && (t == h || t.isData == isData)) {
568 <                QNode last = t.next;
569 <                if (t == tail.get()) {
570 <                    if (last != null)
571 <                        tail.compareAndSet(t, last);
572 <                    else
573 <                        return null;
574 <                }
575 <            }
576 <            else if (h != null) {
577 <                QNode first = h.next;
578 <                if (t == tail.get() &&
579 <                    first != null &&
580 <                    advanceHead(h, first)) {
581 <                    Object x = first.get();
582 <                    if (x != first && first.compareAndSet(x, e)) {
245 <                        LockSupport.unpark(first.waiter);
246 <                        return isData ? e : x;
247 <                    }
555 >     * Tries to append node s as tail.
556 >     *
557 >     * @param s the node to append
558 >     * @param haveData true if appending in data mode
559 >     * @return null on failure due to losing race with append in
560 >     * different mode, else s's predecessor, or s itself if no
561 >     * predecessor
562 >     */
563 >    private Node<E> tryAppend(Node<E> s, boolean haveData) {
564 >        for (Node<E> t = tail, p = t;;) { // move p to last node and append
565 >            Node<E> n, u;                     // temps for reads of next & tail
566 >            if (p == null && (p = head) == null) {
567 >                if (casHead(null, s))
568 >                    return s;                 // initialize
569 >            }
570 >            else if (p.cannotPrecede(haveData))
571 >                return null;                  // lost race vs opposite mode
572 >            else if ((n = p.next) != null)    // not last; keep traversing
573 >                p = p != t && t != (u = tail) ? (t = u) : // stale tail
574 >                    (p != n) ? n : null;      // restart if off list
575 >            else if (!p.casNext(null, s))
576 >                p = p.next;                   // re-read on CAS failure
577 >            else {
578 >                if (p != t) {                 // update if slack now >= 2
579 >                    while ((tail != t || !casTail(t, s)) &&
580 >                           (t = tail)   != null &&
581 >                           (s = t.next) != null && // advance and retry
582 >                           (s = s.next) != null && s != t);
583                  }
584 +                return p;
585              }
586          }
587      }
588  
589      /**
590 <     * Spins/blocks until node s is fulfilled or caller gives up,
255 <     * depending on wait mode.
590 >     * Spins/yields/blocks until node s is matched or caller gives up.
591       *
257     * @param pred the predecessor of waiting node
592       * @param s the waiting node
593 +     * @param pred the predecessor of s, or s itself if it has no
594 +     * predecessor, or null if unknown (the null case does not occur
595 +     * in any current calls but may in possible future extensions)
596       * @param e the comparison value for checking match
597 <     * @param mode mode
597 >     * @param how either SYNC or TIMEOUT
598       * @param nanos timeout value
599 <     * @return matched item, or s if cancelled
599 >     * @return matched item, or e if unmatched on interrupt or timeout
600       */
601 <    private Object awaitFulfill(QNode pred, QNode s, Object e,
602 <                                int mode, long nanos) {
266 <        if (mode == NOWAIT)
267 <            return null;
268 <
269 <        long lastTime = (mode == TIMEOUT) ? System.nanoTime() : 0;
601 >    private E awaitMatch(Node<E> s, Node<E> pred, E e, int how, long nanos) {
602 >        long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
603          Thread w = Thread.currentThread();
604 <        int spins = -1; // set to desired spin count below
604 >        int spins = -1; // initialized after first item and cancel checks
605 >        ThreadLocalRandom randomYields = null; // bound if needed
606 >
607          for (;;) {
608 <            if (w.isInterrupted())
609 <                s.compareAndSet(e, s);
610 <            Object x = s.get();
611 <            if (x != e) {                 // Node was matched or cancelled
612 <                advanceHead(pred, s);     // unlink if head
613 <                if (x == s) {             // was cancelled
614 <                    clean(pred, s);
615 <                    return null;
616 <                }
617 <                else if (x != null) {
618 <                    s.set(s);             // avoid garbage retention
619 <                    return x;
620 <                }
621 <                else
622 <                    return e;
608 >            Object item = s.item;
609 >            if (item != e) {                  // matched
610 >                assert item != s;
611 >                s.forgetContents();           // avoid garbage
612 >                return this.<E>cast(item);
613 >            }
614 >            if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
615 >                    s.casItem(e, s)) {       // cancel
616 >                unsplice(pred, s);
617 >                return e;
618 >            }
619 >
620 >            if (spins < 0) {                  // establish spins at/near front
621 >                if ((spins = spinsFor(pred, s.isData)) > 0)
622 >                    randomYields = ThreadLocalRandom.current();
623 >            }
624 >            else if (spins > 0) {             // spin
625 >                if (--spins == 0)
626 >                    shortenHeadPath();        // reduce slack before blocking
627 >                else if (randomYields.nextInt(CHAINED_SPINS) == 0)
628 >                    Thread.yield();           // occasionally yield
629 >            }
630 >            else if (s.waiter == null) {
631 >                s.waiter = w;                 // request unpark then recheck
632              }
633 <            if (mode == TIMEOUT) {
633 >            else if (how == TIMEOUT) {
634                  long now = System.nanoTime();
635 <                nanos -= now - lastTime;
635 >                if ((nanos -= now - lastTime) > 0)
636 >                    LockSupport.parkNanos(this, nanos);
637                  lastTime = now;
293                if (nanos <= 0) {
294                    s.compareAndSet(e, s); // try to cancel
295                    continue;
296                }
638              }
639 <            if (spins < 0) {
299 <                QNode h = head.get(); // only spin if at head
300 <                spins = ((h != null && h.next == s) ?
301 <                         ((mode == TIMEOUT) ?
302 <                          maxTimedSpins : maxUntimedSpins) : 0);
303 <            }
304 <            if (spins > 0)
305 <                --spins;
306 <            else if (s.waiter == null)
307 <                s.waiter = w;
308 <            else if (mode != TIMEOUT) {
639 >            else {
640                  LockSupport.park(this);
641                  s.waiter = null;
642 <                spins = -1;
312 <            }
313 <            else if (nanos > spinForTimeoutThreshold) {
314 <                LockSupport.parkNanos(this, nanos);
315 <                s.waiter = null;
316 <                spins = -1;
642 >                spins = -1;                   // spin if front upon wakeup
643              }
644          }
645      }
646  
647      /**
648 <     * Returns validated tail for use in cleaning methods.
648 >     * Returns spin/yield value for a node with given predecessor and
649 >     * data mode. See above for explanation.
650       */
651 <    private QNode getValidatedTail() {
652 <        for (;;) {
653 <            QNode h = head.get();
654 <            QNode first = h.next;
655 <            if (first != null && first.next == first) { // help advance
656 <                advanceHead(h, first);
657 <                continue;
658 <            }
659 <            QNode t = tail.get();
660 <            QNode last = t.next;
661 <            if (t == tail.get()) {
662 <                if (last != null)
663 <                    tail.compareAndSet(t, last); // help advance
664 <                else
665 <                    return t;
651 >    private static int spinsFor(Node<?> pred, boolean haveData) {
652 >        if (MP && pred != null) {
653 >            if (pred.isData != haveData)      // phase change
654 >                return FRONT_SPINS + CHAINED_SPINS;
655 >            if (pred.isMatched())             // probably at front
656 >                return FRONT_SPINS;
657 >            if (pred.waiter == null)          // pred apparently spinning
658 >                return CHAINED_SPINS;
659 >        }
660 >        return 0;
661 >    }
662 >
663 >    /**
664 >     * Tries (once) to unsplice nodes between head and first unmatched
665 >     * or trailing node; failing on contention.
666 >     */
667 >    private void shortenHeadPath() {
668 >        Node<E> h, hn, p, q;
669 >        if ((p = h = head) != null && h.isMatched() &&
670 >            (q = hn = h.next) != null) {
671 >            Node<E> n;
672 >            while ((n = q.next) != q) {
673 >                if (n == null || !q.isMatched()) {
674 >                    if (hn != q && h.next == hn)
675 >                        h.casNext(hn, q);
676 >                    break;
677 >                }
678 >                p = q;
679 >                q = n;
680              }
681          }
682      }
683  
684 +    /* -------------- Traversal methods -------------- */
685 +
686 +    /**
687 +     * Returns the first unmatched node of the given mode, or null if
688 +     * none.  Used by methods isEmpty, hasWaitingConsumer.
689 +     */
690 +    private Node<E> firstOfMode(boolean data) {
691 +        for (Node<E> p = head; p != null; ) {
692 +            if (!p.isMatched())
693 +                return (p.isData == data) ? p : null;
694 +            Node<E> n = p.next;
695 +            p = (n != p) ? n : head;
696 +        }
697 +        return null;
698 +    }
699 +
700      /**
701 <     * Gets rid of cancelled node s with original predecessor pred.
702 <     *
346 <     * @param pred predecessor of cancelled node
347 <     * @param s the cancelled node
701 >     * Returns the item in the first unmatched node with isData; or
702 >     * null if none.  Used by peek.
703       */
704 <    private void clean(QNode pred, QNode s) {
705 <        Thread w = s.waiter;
706 <        if (w != null) {             // Wake up thread
707 <            s.waiter = null;
708 <            if (w != Thread.currentThread())
709 <                LockSupport.unpark(w);
704 >    private E firstDataItem() {
705 >        for (Node<E> p = head; p != null; ) {
706 >            boolean isData = p.isData;
707 >            Object item = p.item;
708 >            if (item != p && (item != null) == isData)
709 >                return isData ? this.<E>cast(item) : null;
710 >            Node<E> n = p.next;
711 >            p = (n != p) ? n : head;
712          }
713 +        return null;
714 +    }
715 +
716 +    /**
717 +     * Traverses and counts unmatched nodes of the given mode.
718 +     * Used by methods size and getWaitingConsumerCount.
719 +     */
720 +    private int countOfMode(boolean data) {
721 +        int count = 0;
722 +        for (Node<E> p = head; p != null; ) {
723 +            if (!p.isMatched()) {
724 +                if (p.isData != data)
725 +                    return 0;
726 +                if (++count == Integer.MAX_VALUE) // saturated
727 +                    break;
728 +            }
729 +            Node<E> n = p.next;
730 +            if (n != p)
731 +                p = n;
732 +            else {
733 +                count = 0;
734 +                p = head;
735 +            }
736 +        }
737 +        return count;
738 +    }
739 +
740 +    final class Itr implements Iterator<E> {
741 +        private Node<E> nextNode;   // next node to return item for
742 +        private E nextItem;         // the corresponding item
743 +        private Node<E> lastRet;    // last returned node, to support remove
744 +
745 +        /**
746 +         * Moves to next node after prev, or first node if prev null.
747 +         */
748 +        private void advance(Node<E> prev) {
749 +            lastRet = prev;
750 +            Node<E> p;
751 +            if (prev == null || (p = prev.next) == prev)
752 +                p = head;
753 +            while (p != null) {
754 +                Object item = p.item;
755 +                if (p.isData) {
756 +                    if (item != null && item != p) {
757 +                        nextItem = LinkedTransferQueue.this.<E>cast(item);
758 +                        nextNode = p;
759 +                        return;
760 +                    }
761 +                }
762 +                else if (item == null)
763 +                    break;
764 +                Node<E> n = p.next;
765 +                p = (n != p) ? n : head;
766 +            }
767 +            nextNode = null;
768 +        }
769 +
770 +        Itr() {
771 +            advance(null);
772 +        }
773 +
774 +        public final boolean hasNext() {
775 +            return nextNode != null;
776 +        }
777 +
778 +        public final E next() {
779 +            Node<E> p = nextNode;
780 +            if (p == null) throw new NoSuchElementException();
781 +            E e = nextItem;
782 +            advance(p);
783 +            return e;
784 +        }
785 +
786 +        public final void remove() {
787 +            Node<E> p = lastRet;
788 +            if (p == null) throw new IllegalStateException();
789 +            lastRet = null;
790 +            findAndRemoveDataNode(p);
791 +        }
792 +    }
793  
794 <        if (pred == null)
358 <            return;
794 >    /* -------------- Removal methods -------------- */
795  
796 +    /**
797 +     * Unsplices (now or later) the given deleted/cancelled node with
798 +     * the given predecessor.
799 +     *
800 +     * @param pred predecessor of node to be unspliced
801 +     * @param s the node to be unspliced
802 +     */
803 +    private void unsplice(Node<E> pred, Node<E> s) {
804 +        s.forgetContents(); // clear unneeded fields
805          /*
806           * At any given time, exactly one node on list cannot be
807 <         * deleted -- the last inserted node. To accommodate this, if
808 <         * we cannot delete s, we save its predecessor as "cleanMe",
809 <         * processing the previously saved version first. At least one
810 <         * of node s or the node previously saved can always be
807 >         * unlinked -- the last inserted node. To accommodate this, if
808 >         * we cannot unlink s, we save its predecessor as "cleanMe",
809 >         * processing the previously saved version first. Because only
810 >         * one node in the list can have a null next, at least one of
811 >         * node s or the node previously saved can always be
812           * processed, so this always terminates.
813           */
814 <        while (pred.next == s) {
815 <            QNode oldpred = reclean();  // First, help get rid of cleanMe
816 <            QNode t = getValidatedTail();
817 <            if (s != t) {               // If not tail, try to unsplice
818 <                QNode sn = s.next;      // s.next == s means s already off list
819 <                if (sn == s || pred.casNext(s, sn))
814 >        if (pred != null && pred != s) {
815 >            while (pred.next == s) {
816 >                Node<E> oldpred = (cleanMe == null) ? null : reclean();
817 >                Node<E> n = s.next;
818 >                if (n != null) {
819 >                    if (n != s)
820 >                        pred.casNext(s, n);
821                      break;
822 +                }
823 +                if (oldpred == pred ||      // Already saved
824 +                    (oldpred == null && casCleanMe(null, pred)))
825 +                    break;                  // Postpone cleaning
826              }
376            else if (oldpred == pred || // Already saved
377                     (oldpred == null && cleanMe.compareAndSet(null, pred)))
378                break;                  // Postpone cleaning
827          }
828      }
829  
830      /**
831 <     * Tries to unsplice the cancelled node held in cleanMe that was
832 <     * previously uncleanable because it was at tail.
831 >     * Tries to unsplice the deleted/cancelled node held in cleanMe
832 >     * that was previously uncleanable because it was at tail.
833       *
834       * @return current cleanMe node (or null)
835       */
836 <    private QNode reclean() {
836 >    private Node<E> reclean() {
837          /*
838 <         * cleanMe is, or at one time was, predecessor of cancelled
839 <         * node s that was the tail so could not be unspliced.  If s
838 >         * cleanMe is, or at one time was, predecessor of a cancelled
839 >         * node s that was the tail so could not be unspliced.  If it
840           * is no longer the tail, try to unsplice if necessary and
841           * make cleanMe slot available.  This differs from similar
842 <         * code in clean() because we must check that pred still
843 <         * points to a cancelled node that must be unspliced -- if
844 <         * not, we can (must) clear cleanMe without unsplicing.
845 <         * This can loop only due to contention on casNext or
398 <         * clearing cleanMe.
842 >         * code in unsplice() because we must check that pred still
843 >         * points to a matched node that can be unspliced -- if not,
844 >         * we can (must) clear cleanMe without unsplicing.  This can
845 >         * loop only due to contention.
846           */
847 <        QNode pred;
848 <        while ((pred = cleanMe.get()) != null) {
849 <            QNode t = getValidatedTail();
850 <            QNode s = pred.next;
851 <            if (s != t) {
852 <                QNode sn;
853 <                if (s == null || s == pred || s.get() != s ||
854 <                    (sn = s.next) == s || pred.casNext(s, sn))
855 <                    cleanMe.compareAndSet(pred, null);
847 >        Node<E> pred;
848 >        while ((pred = cleanMe) != null) {
849 >            Node<E> s = pred.next;
850 >            Node<E> n;
851 >            if (s == null || s == pred || !s.isMatched())
852 >                casCleanMe(pred, null); // already gone
853 >            else if ((n = s.next) != null) {
854 >                if (n != s)
855 >                    pred.casNext(s, n);
856 >                casCleanMe(pred, null);
857              }
858 <            else // s is still tail; cannot clean
858 >            else
859                  break;
860          }
861          return pred;
862      }
863  
864      /**
865 +     * Main implementation of Iterator.remove(). Find
866 +     * and unsplice the given data node.
867 +     */
868 +    final void findAndRemoveDataNode(Node<E> s) {
869 +        assert s.isData;
870 +        if (s.tryMatchData()) {
871 +            for (Node<E> pred = null, p = head; p != null; ) {
872 +                if (p == s) {
873 +                    unsplice(pred, p);
874 +                    break;
875 +                }
876 +                if (p.isUnmatchedRequest())
877 +                    break;
878 +                pred = p;
879 +                if ((p = p.next) == pred) { // stale
880 +                    pred = null;
881 +                    p = head;
882 +                }
883 +            }
884 +        }
885 +    }
886 +
887 +    /**
888 +     * Main implementation of remove(Object)
889 +     */
890 +    private boolean findAndRemove(Object e) {
891 +        if (e != null) {
892 +            for (Node<E> pred = null, p = head; p != null; ) {
893 +                Object item = p.item;
894 +                if (p.isData) {
895 +                    if (item != null && item != p && e.equals(item) &&
896 +                        p.tryMatchData()) {
897 +                        unsplice(pred, p);
898 +                        return true;
899 +                    }
900 +                }
901 +                else if (item == null)
902 +                    break;
903 +                pred = p;
904 +                if ((p = p.next) == pred) { // stale
905 +                    pred = null;
906 +                    p = head;
907 +                }
908 +            }
909 +        }
910 +        return false;
911 +    }
912 +
913 +
914 +    /**
915       * Creates an initially empty {@code LinkedTransferQueue}.
916       */
917      public LinkedTransferQueue() {
420        QNode dummy = new QNode(null, false);
421        head = new PaddedAtomicReference<QNode>(dummy);
422        tail = new PaddedAtomicReference<QNode>(dummy);
423        cleanMe = new PaddedAtomicReference<QNode>(null);
918      }
919  
920      /**
# Line 437 | Line 931 | public class LinkedTransferQueue<E> exte
931          addAll(c);
932      }
933  
934 <    public void put(E e) throws InterruptedException {
935 <        if (e == null) throw new NullPointerException();
936 <        if (Thread.interrupted()) throw new InterruptedException();
937 <        xfer(e, NOWAIT, 0);
934 >    /**
935 >     * Inserts the specified element at the tail of this queue.
936 >     * As the queue is unbounded, this method will never block.
937 >     *
938 >     * @throws NullPointerException if the specified element is null
939 >     */
940 >    public void put(E e) {
941 >        xfer(e, true, ASYNC, 0);
942      }
943  
944 <    public boolean offer(E e, long timeout, TimeUnit unit)
945 <        throws InterruptedException {
946 <        if (e == null) throw new NullPointerException();
947 <        if (Thread.interrupted()) throw new InterruptedException();
948 <        xfer(e, NOWAIT, 0);
944 >    /**
945 >     * Inserts the specified element at the tail of this queue.
946 >     * As the queue is unbounded, this method will never block or
947 >     * return {@code false}.
948 >     *
949 >     * @return {@code true} (as specified by
950 >     *  {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
951 >     * @throws NullPointerException if the specified element is null
952 >     */
953 >    public boolean offer(E e, long timeout, TimeUnit unit) {
954 >        xfer(e, true, ASYNC, 0);
955          return true;
956      }
957  
958 +    /**
959 +     * Inserts the specified element at the tail of this queue.
960 +     * As the queue is unbounded, this method will never return {@code false}.
961 +     *
962 +     * @return {@code true} (as specified by
963 +     *         {@link BlockingQueue#offer(Object) BlockingQueue.offer})
964 +     * @throws NullPointerException if the specified element is null
965 +     */
966      public boolean offer(E e) {
967 <        if (e == null) throw new NullPointerException();
456 <        xfer(e, NOWAIT, 0);
967 >        xfer(e, true, ASYNC, 0);
968          return true;
969      }
970  
971 +    /**
972 +     * Inserts the specified element at the tail of this queue.
973 +     * As the queue is unbounded, this method will never throw
974 +     * {@link IllegalStateException} or return {@code false}.
975 +     *
976 +     * @return {@code true} (as specified by {@link Collection#add})
977 +     * @throws NullPointerException if the specified element is null
978 +     */
979      public boolean add(E e) {
980 <        if (e == null) throw new NullPointerException();
462 <        xfer(e, NOWAIT, 0);
980 >        xfer(e, true, ASYNC, 0);
981          return true;
982      }
983  
984 +    /**
985 +     * Transfers the element to a waiting consumer immediately, if possible.
986 +     *
987 +     * <p>More precisely, transfers the specified element immediately
988 +     * if there exists a consumer already waiting to receive it (in
989 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
990 +     * otherwise returning {@code false} without enqueuing the element.
991 +     *
992 +     * @throws NullPointerException if the specified element is null
993 +     */
994 +    public boolean tryTransfer(E e) {
995 +        return xfer(e, true, NOW, 0) == null;
996 +    }
997 +
998 +    /**
999 +     * Transfers the element to a consumer, waiting if necessary to do so.
1000 +     *
1001 +     * <p>More precisely, transfers the specified element immediately
1002 +     * if there exists a consumer already waiting to receive it (in
1003 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1004 +     * else inserts the specified element at the tail of this queue
1005 +     * and waits until the element is received by a consumer.
1006 +     *
1007 +     * @throws NullPointerException if the specified element is null
1008 +     */
1009      public void transfer(E e) throws InterruptedException {
1010 <        if (e == null) throw new NullPointerException();
1011 <        if (xfer(e, WAIT, 0) == null) {
469 <            Thread.interrupted();
1010 >        if (xfer(e, true, SYNC, 0) != null) {
1011 >            Thread.interrupted(); // failure possible only due to interrupt
1012              throw new InterruptedException();
1013          }
1014      }
1015  
1016 +    /**
1017 +     * Transfers the element to a consumer if it is possible to do so
1018 +     * before the timeout elapses.
1019 +     *
1020 +     * <p>More precisely, transfers the specified element immediately
1021 +     * if there exists a consumer already waiting to receive it (in
1022 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1023 +     * else inserts the specified element at the tail of this queue
1024 +     * and waits until the element is received by a consumer,
1025 +     * returning {@code false} if the specified wait time elapses
1026 +     * before the element can be transferred.
1027 +     *
1028 +     * @throws NullPointerException if the specified element is null
1029 +     */
1030      public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1031          throws InterruptedException {
1032 <        if (e == null) throw new NullPointerException();
477 <        if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
1032 >        if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1033              return true;
1034          if (!Thread.interrupted())
1035              return false;
1036          throw new InterruptedException();
1037      }
1038  
484    public boolean tryTransfer(E e) {
485        if (e == null) throw new NullPointerException();
486        return fulfill(e) != null;
487    }
488
1039      public E take() throws InterruptedException {
1040 <        Object e = xfer(null, WAIT, 0);
1040 >        E e = xfer(null, false, SYNC, 0);
1041          if (e != null)
1042 <            return (E) e;
1042 >            return e;
1043          Thread.interrupted();
1044          throw new InterruptedException();
1045      }
1046  
1047      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1048 <        Object e = xfer(null, TIMEOUT, unit.toNanos(timeout));
1048 >        E e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1049          if (e != null || !Thread.interrupted())
1050 <            return (E) e;
1050 >            return e;
1051          throw new InterruptedException();
1052      }
1053  
1054      public E poll() {
1055 <        return (E) fulfill(null);
1055 >        return xfer(null, false, NOW, 0);
1056      }
1057  
1058 +    /**
1059 +     * @throws NullPointerException     {@inheritDoc}
1060 +     * @throws IllegalArgumentException {@inheritDoc}
1061 +     */
1062      public int drainTo(Collection<? super E> c) {
1063          if (c == null)
1064              throw new NullPointerException();
# Line 519 | Line 1073 | public class LinkedTransferQueue<E> exte
1073          return n;
1074      }
1075  
1076 +    /**
1077 +     * @throws NullPointerException     {@inheritDoc}
1078 +     * @throws IllegalArgumentException {@inheritDoc}
1079 +     */
1080      public int drainTo(Collection<? super E> c, int maxElements) {
1081          if (c == null)
1082              throw new NullPointerException();
# Line 533 | Line 1091 | public class LinkedTransferQueue<E> exte
1091          return n;
1092      }
1093  
536    // Traversal-based methods
537
1094      /**
1095 <     * Returns head after performing any outstanding helping steps.
1095 >     * Returns an iterator over the elements in this queue in proper
1096 >     * sequence, from head to tail.
1097 >     *
1098 >     * <p>The returned iterator is a "weakly consistent" iterator that
1099 >     * will never throw
1100 >     * {@link ConcurrentModificationException ConcurrentModificationException},
1101 >     * and guarantees to traverse elements as they existed upon
1102 >     * construction of the iterator, and may (but is not guaranteed
1103 >     * to) reflect any modifications subsequent to construction.
1104 >     *
1105 >     * @return an iterator over the elements in this queue in proper sequence
1106       */
541    private QNode traversalHead() {
542        for (;;) {
543            QNode t = tail.get();
544            QNode h = head.get();
545            if (h != null && t != null) {
546                QNode last = t.next;
547                QNode first = h.next;
548                if (t == tail.get()) {
549                    if (last != null)
550                        tail.compareAndSet(t, last);
551                    else if (first != null) {
552                        Object x = first.get();
553                        if (x == first)
554                            advanceHead(h, first);
555                        else
556                            return h;
557                    }
558                    else
559                        return h;
560                }
561            }
562            reclean();
563        }
564    }
565
566
1107      public Iterator<E> iterator() {
1108          return new Itr();
1109      }
1110  
571    /**
572     * Iterators. Basic strategy is to traverse list, treating
573     * non-data (i.e., request) nodes as terminating list.
574     * Once a valid data node is found, the item is cached
575     * so that the next call to next() will return it even
576     * if subsequently removed.
577     */
578    class Itr implements Iterator<E> {
579        QNode next;        // node to return next
580        QNode pnext;       // predecessor of next
581        QNode snext;       // successor of next
582        QNode curr;        // last returned node, for remove()
583        QNode pcurr;       // predecessor of curr, for remove()
584        E nextItem;        // Cache of next item, once committed to in next
585
586        Itr() {
587            findNext();
588        }
589
590        /**
591         * Ensures next points to next valid node, or null if none.
592         */
593        void findNext() {
594            for (;;) {
595                QNode pred = pnext;
596                QNode q = next;
597                if (pred == null || pred == q) {
598                    pred = traversalHead();
599                    q = pred.next;
600                }
601                if (q == null || !q.isData) {
602                    next = null;
603                    return;
604                }
605                Object x = q.get();
606                QNode s = q.next;
607                if (x != null && q != x && q != s) {
608                    nextItem = (E) x;
609                    snext = s;
610                    pnext = pred;
611                    next = q;
612                    return;
613                }
614                pnext = q;
615                next = s;
616            }
617        }
618
619        public boolean hasNext() {
620            return next != null;
621        }
622
623        public E next() {
624            if (next == null) throw new NoSuchElementException();
625            pcurr = pnext;
626            curr = next;
627            pnext = next;
628            next = snext;
629            E x = nextItem;
630            findNext();
631            return x;
632        }
633
634        public void remove() {
635            QNode p = curr;
636            if (p == null)
637                throw new IllegalStateException();
638            Object x = p.get();
639            if (x != null && x != p && p.compareAndSet(x, p))
640                clean(pcurr, p);
641        }
642    }
643
1111      public E peek() {
1112 <        for (;;) {
646 <            QNode h = traversalHead();
647 <            QNode p = h.next;
648 <            if (p == null)
649 <                return null;
650 <            Object x = p.get();
651 <            if (p != x) {
652 <                if (!p.isData)
653 <                    return null;
654 <                if (x != null)
655 <                    return (E) x;
656 <            }
657 <        }
1112 >        return firstDataItem();
1113      }
1114  
1115 +    /**
1116 +     * Returns {@code true} if this queue contains no elements.
1117 +     *
1118 +     * @return {@code true} if this queue contains no elements
1119 +     */
1120      public boolean isEmpty() {
1121 <        for (;;) {
662 <            QNode h = traversalHead();
663 <            QNode p = h.next;
664 <            if (p == null)
665 <                return true;
666 <            Object x = p.get();
667 <            if (p != x) {
668 <                if (!p.isData)
669 <                    return true;
670 <                if (x != null)
671 <                    return false;
672 <            }
673 <        }
1121 >        return firstOfMode(true) == null;
1122      }
1123  
1124      public boolean hasWaitingConsumer() {
1125 <        for (;;) {
678 <            QNode h = traversalHead();
679 <            QNode p = h.next;
680 <            if (p == null)
681 <                return false;
682 <            Object x = p.get();
683 <            if (p != x)
684 <                return !p.isData;
685 <        }
1125 >        return firstOfMode(false) != null;
1126      }
1127  
1128      /**
# Line 698 | Line 1138 | public class LinkedTransferQueue<E> exte
1138       * @return the number of elements in this queue
1139       */
1140      public int size() {
1141 <        int count = 0;
702 <        QNode h = traversalHead();
703 <        for (QNode p = h.next; p != null && p.isData; p = p.next) {
704 <            Object x = p.get();
705 <            if (x != null && x != p) {
706 <                if (++count == Integer.MAX_VALUE) // saturated
707 <                    break;
708 <            }
709 <        }
710 <        return count;
1141 >        return countOfMode(true);
1142      }
1143  
1144      public int getWaitingConsumerCount() {
1145 <        int count = 0;
715 <        QNode h = traversalHead();
716 <        for (QNode p = h.next; p != null && !p.isData; p = p.next) {
717 <            if (p.get() == null) {
718 <                if (++count == Integer.MAX_VALUE)
719 <                    break;
720 <            }
721 <        }
722 <        return count;
1145 >        return countOfMode(false);
1146      }
1147  
1148 <    public int remainingCapacity() {
1149 <        return Integer.MAX_VALUE;
1148 >    /**
1149 >     * Removes a single instance of the specified element from this queue,
1150 >     * if it is present.  More formally, removes an element {@code e} such
1151 >     * that {@code o.equals(e)}, if this queue contains one or more such
1152 >     * elements.
1153 >     * Returns {@code true} if this queue contained the specified element
1154 >     * (or equivalently, if this queue changed as a result of the call).
1155 >     *
1156 >     * @param o element to be removed from this queue, if present
1157 >     * @return {@code true} if this queue changed as a result of the call
1158 >     */
1159 >    public boolean remove(Object o) {
1160 >        return findAndRemove(o);
1161      }
1162  
1163 <    public boolean remove(Object o) {
1164 <        if (o == null)
1165 <            return false;
1166 <        for (;;) {
1167 <            QNode pred = traversalHead();
1168 <            for (;;) {
1169 <                QNode q = pred.next;
1170 <                if (q == null || !q.isData)
1171 <                    return false;
738 <                if (q == pred) // restart
739 <                    break;
740 <                Object x = q.get();
741 <                if (x != null && x != q && o.equals(x) &&
742 <                    q.compareAndSet(x, q)) {
743 <                    clean(pred, q);
744 <                    return true;
745 <                }
746 <                pred = q;
747 <            }
748 <        }
1163 >    /**
1164 >     * Always returns {@code Integer.MAX_VALUE} because a
1165 >     * {@code LinkedTransferQueue} is not capacity constrained.
1166 >     *
1167 >     * @return {@code Integer.MAX_VALUE} (as specified by
1168 >     *         {@link BlockingQueue#remainingCapacity()})
1169 >     */
1170 >    public int remainingCapacity() {
1171 >        return Integer.MAX_VALUE;
1172      }
1173  
1174      /**
1175 <     * Save the state to a stream (that is, serialize it).
1175 >     * Saves the state to a stream (that is, serializes it).
1176       *
1177       * @serialData All of the elements (each an {@code E}) in
1178       * the proper order, followed by a null
# Line 765 | Line 1188 | public class LinkedTransferQueue<E> exte
1188      }
1189  
1190      /**
1191 <     * Reconstitute the Queue instance from a stream (that is,
1192 <     * deserialize it).
1191 >     * Reconstitutes the Queue instance from a stream (that is,
1192 >     * deserializes it).
1193       *
1194       * @param s the stream
1195       */
1196      private void readObject(java.io.ObjectInputStream s)
1197          throws java.io.IOException, ClassNotFoundException {
1198          s.defaultReadObject();
776        resetHeadAndTail();
1199          for (;;) {
1200 <            E item = (E) s.readObject();
1200 >            @SuppressWarnings("unchecked") E item = (E) s.readObject();
1201              if (item == null)
1202                  break;
1203              else
# Line 783 | Line 1205 | public class LinkedTransferQueue<E> exte
1205          }
1206      }
1207  
1208 +    // Unsafe mechanics
1209 +
1210 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1211 +    private static final long headOffset =
1212 +        objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1213 +    private static final long tailOffset =
1214 +        objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1215 +    private static final long cleanMeOffset =
1216 +        objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1217  
1218 <    // Support for resetting head/tail while deserializing
1219 <    private void resetHeadAndTail() {
1220 <        QNode dummy = new QNode(null, false);
1221 <        UNSAFE.putObjectVolatile(this, headOffset,
1222 <                                  new PaddedAtomicReference<QNode>(dummy));
1223 <        UNSAFE.putObjectVolatile(this, tailOffset,
1224 <                                  new PaddedAtomicReference<QNode>(dummy));
1225 <        UNSAFE.putObjectVolatile(this, cleanMeOffset,
1226 <                                  new PaddedAtomicReference<QNode>(null));
1218 >    static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1219 >                                  String field, Class<?> klazz) {
1220 >        try {
1221 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1222 >        } catch (NoSuchFieldException e) {
1223 >            // Convert Exception to corresponding Error
1224 >            NoSuchFieldError error = new NoSuchFieldError(field);
1225 >            error.initCause(e);
1226 >            throw error;
1227 >        }
1228      }
1229  
1230 <    // Temporary Unsafe mechanics for preliminary release
1231 <    private static Unsafe getUnsafe() throws Throwable {
1230 >    /**
1231 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1232 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1233 >     * into a jdk.
1234 >     *
1235 >     * @return a sun.misc.Unsafe
1236 >     */
1237 >    static sun.misc.Unsafe getUnsafe() {
1238          try {
1239 <            return Unsafe.getUnsafe();
1239 >            return sun.misc.Unsafe.getUnsafe();
1240          } catch (SecurityException se) {
1241              try {
1242                  return java.security.AccessController.doPrivileged
1243 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
1244 <                        public Unsafe run() throws Exception {
1245 <                            return getUnsafePrivileged();
1243 >                    (new java.security
1244 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1245 >                        public sun.misc.Unsafe run() throws Exception {
1246 >                            java.lang.reflect.Field f = sun.misc
1247 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1248 >                            f.setAccessible(true);
1249 >                            return (sun.misc.Unsafe) f.get(null);
1250                          }});
1251              } catch (java.security.PrivilegedActionException e) {
1252 <                throw e.getCause();
1252 >                throw new RuntimeException("Could not initialize intrinsics",
1253 >                                           e.getCause());
1254              }
1255          }
1256      }
1257  
815    private static Unsafe getUnsafePrivileged()
816            throws NoSuchFieldException, IllegalAccessException {
817        Field f = Unsafe.class.getDeclaredField("theUnsafe");
818        f.setAccessible(true);
819        return (Unsafe) f.get(null);
820    }
821
822    private static long fieldOffset(String fieldName)
823            throws NoSuchFieldException {
824        return UNSAFE.objectFieldOffset
825            (LinkedTransferQueue.class.getDeclaredField(fieldName));
826    }
827
828    private static final Unsafe UNSAFE;
829    private static final long headOffset;
830    private static final long tailOffset;
831    private static final long cleanMeOffset;
832    static {
833        try {
834            UNSAFE = getUnsafe();
835            headOffset = fieldOffset("head");
836            tailOffset = fieldOffset("tail");
837            cleanMeOffset = fieldOffset("cleanMe");
838        } catch (Throwable e) {
839            throw new RuntimeException("Could not initialize intrinsics", e);
840        }
841    }
842
1258   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines