ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.32 by jsr166, Wed Jul 29 02:19:56 2009 UTC vs.
Revision 1.46 by jsr166, Thu Oct 22 08:19:44 2009 UTC

# Line 10 | Line 10 | import java.util.concurrent.*;
10  
11   import java.util.AbstractQueue;
12   import java.util.Collection;
13 + import java.util.ConcurrentModificationException;
14   import java.util.Iterator;
15   import java.util.NoSuchElementException;
16 + import java.util.Queue;
17   import java.util.concurrent.locks.LockSupport;
16 import java.util.concurrent.atomic.AtomicReference;
17
18   /**
19 < * An unbounded {@linkplain TransferQueue} based on linked nodes.
19 > * An unbounded {@link TransferQueue} based on linked nodes.
20   * This queue orders elements FIFO (first-in-first-out) with respect
21   * to any given producer.  The <em>head</em> of the queue is that
22   * element that has been on the queue the longest time for some
# Line 52 | Line 52 | public class LinkedTransferQueue<E> exte
52      private static final long serialVersionUID = -3223113410248163686L;
53  
54      /*
55 <     * This class extends the approach used in FIFO-mode
56 <     * SynchronousQueues. See the internal documentation, as well as
57 <     * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
58 <     * Lea & Scott
59 <     * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
55 >     * *** Overview of Dual Queues with Slack ***
56       *
57 <     * The main extension is to provide different Wait modes for the
58 <     * main "xfer" method that puts or takes items.  These don't
59 <     * impact the basic dual-queue logic, but instead control whether
60 <     * or how threads block upon insertion of request or data nodes
61 <     * into the dual queue. It also uses slightly different
62 <     * conventions for tracking whether nodes are off-list or
63 <     * cancelled.
64 <     */
65 <
66 <    // Wait modes for xfer method
67 <    static final int NOWAIT  = 0;
68 <    static final int TIMEOUT = 1;
69 <    static final int WAIT    = 2;
70 <
71 <    /** The number of CPUs, for spin control */
72 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
73 <
74 <    /**
75 <     * The number of times to spin before blocking in timed waits.
76 <     * The value is empirically derived -- it works well across a
77 <     * variety of processors and OSes. Empirically, the best value
78 <     * seems not to vary with number of CPUs (beyond 2) so is just
79 <     * a constant.
80 <     */
81 <    static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
82 <
83 <    /**
84 <     * The number of times to spin before blocking in untimed waits.
85 <     * This is greater than timed value because untimed waits spin
86 <     * faster since they don't need to check times on each spin.
87 <     */
88 <    static final int maxUntimedSpins = maxTimedSpins * 16;
57 >     * Dual Queues, introduced by Scherer and Scott
58 >     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 >     * (linked) queues in which nodes may represent either data or
60 >     * requests.  When a thread tries to enqueue a data node, but
61 >     * encounters a request node, it instead "matches" and removes it;
62 >     * and vice versa for enqueuing requests. Blocking Dual Queues
63 >     * arrange that threads enqueuing unmatched requests block until
64 >     * other threads provide the match. Dual Synchronous Queues (see
65 >     * Scherer, Lea, & Scott
66 >     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 >     * additionally arrange that threads enqueuing unmatched data also
68 >     * block.  Dual Transfer Queues support all of these modes, as
69 >     * dictated by callers.
70 >     *
71 >     * A FIFO dual queue may be implemented using a variation of the
72 >     * Michael & Scott (M&S) lock-free queue algorithm
73 >     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 >     * It maintains two pointer fields, "head", pointing to a
75 >     * (matched) node that in turn points to the first actual
76 >     * (unmatched) queue node (or null if empty); and "tail" that
77 >     * points to the last node on the queue (or again null if
78 >     * empty). For example, here is a possible queue with four data
79 >     * elements:
80 >     *
81 >     *  head                tail
82 >     *    |                   |
83 >     *    v                   v
84 >     *    M -> U -> U -> U -> U
85 >     *
86 >     * The M&S queue algorithm is known to be prone to scalability and
87 >     * overhead limitations when maintaining (via CAS) these head and
88 >     * tail pointers. This has led to the development of
89 >     * contention-reducing variants such as elimination arrays (see
90 >     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 >     * optimistic back pointers (see Ladan-Mozes & Shavit
92 >     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 >     * However, the nature of dual queues enables a simpler tactic for
94 >     * improving M&S-style implementations when dual-ness is needed.
95 >     *
96 >     * In a dual queue, each node must atomically maintain its match
97 >     * status. While there are other possible variants, we implement
98 >     * this here as: for a data-mode node, matching entails CASing an
99 >     * "item" field from a non-null data value to null upon match, and
100 >     * vice-versa for request nodes, CASing from null to a data
101 >     * value. (Note that the linearization properties of this style of
102 >     * queue are easy to verify -- elements are made available by
103 >     * linking, and unavailable by matching.) Compared to plain M&S
104 >     * queues, this property of dual queues requires one additional
105 >     * successful atomic operation per enq/deq pair. But it also
106 >     * enables lower cost variants of queue maintenance mechanics. (A
107 >     * variation of this idea applies even for non-dual queues that
108 >     * support deletion of embedded elements, such as
109 >     * j.u.c.ConcurrentLinkedQueue.)
110 >     *
111 >     * Once a node is matched, its item can never again change.  We
112 >     * may thus arrange that the linked list of them contains a prefix
113 >     * of zero or more matched nodes, followed by a suffix of zero or
114 >     * more unmatched nodes. (Note that we allow both the prefix and
115 >     * suffix to be zero length, which in turn means that we do not
116 >     * use a dummy header.)  If we were not concerned with either time
117 >     * or space efficiency, we could correctly perform enqueue and
118 >     * dequeue operations by traversing from a pointer to the initial
119 >     * node; CASing the item of the first unmatched node on match and
120 >     * CASing the next field of the trailing node on appends.  While
121 >     * this would be a terrible idea in itself, it does have the
122 >     * benefit of not requiring ANY atomic updates on head/tail
123 >     * fields.
124 >     *
125 >     * We introduce here an approach that lies between the extremes of
126 >     * never versus always updating queue (head and tail) pointers
127 >     * that reflects the tradeoff of sometimes requiring extra traversal
128 >     * steps to locate the first and/or last unmatched nodes, versus
129 >     * the reduced overhead and contention of fewer updates to queue
130 >     * pointers. For example, a possible snapshot of a queue is:
131 >     *
132 >     *  head           tail
133 >     *    |              |
134 >     *    v              v
135 >     *    M -> M -> U -> U -> U -> U
136 >     *
137 >     * The best value for this "slack" (the targeted maximum distance
138 >     * between the value of "head" and the first unmatched node, and
139 >     * similarly for "tail") is an empirical matter. We have found
140 >     * that using very small constants in the range of 1-3 work best
141 >     * over a range of platforms. Larger values introduce increasing
142 >     * costs of cache misses and risks of long traversal chains.
143 >     *
144 >     * Dual queues with slack differ from plain M&S dual queues by
145 >     * virtue of only sometimes updating head or tail pointers when
146 >     * matching, appending, or even traversing nodes; in order to
147 >     * maintain a targeted slack.  The idea of "sometimes" may be
148 >     * operationalized in several ways. The simplest is to use a
149 >     * per-operation counter incremented on each traversal step, and
150 >     * to try (via CAS) to update the associated queue pointer
151 >     * whenever the count exceeds a threshold. Another, that requires
152 >     * more overhead, is to use random number generators to update
153 >     * with a given probability per traversal step.
154 >     *
155 >     * In any strategy along these lines, because CASes updating
156 >     * fields may fail, the actual slack may exceed targeted
157 >     * slack. However, they may be retried at any time to maintain
158 >     * targets.  Even when using very small slack values, this
159 >     * approach works well for dual queues because it allows all
160 >     * operations up to the point of matching or appending an item
161 >     * (hence potentially releasing another thread) to be read-only,
162 >     * thus not introducing any further contention. As described
163 >     * below, we implement this by performing slack maintenance
164 >     * retries only after these points.
165 >     *
166 >     * As an accompaniment to such techniques, traversal overhead can
167 >     * be further reduced without increasing contention of head
168 >     * pointer updates.  During traversals, threads may sometimes
169 >     * shortcut the "next" link path from the current "head" node to
170 >     * be closer to the currently known first unmatched node. Again,
171 >     * this may be triggered with using thresholds or randomization.
172 >     *
173 >     * These ideas must be further extended to avoid unbounded amounts
174 >     * of costly-to-reclaim garbage caused by the sequential "next"
175 >     * links of nodes starting at old forgotten head nodes: As first
176 >     * described in detail by Boehm
177 >     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
178 >     * delays noticing that any arbitrarily old node has become
179 >     * garbage, all newer dead nodes will also be unreclaimed.
180 >     * (Similar issues arise in non-GC environments.)  To cope with
181 >     * this in our implementation, upon CASing to advance the head
182 >     * pointer, we set the "next" link of the previous head to point
183 >     * only to itself; thus limiting the length of connected dead lists.
184 >     * (We also take similar care to wipe out possibly garbage
185 >     * retaining values held in other Node fields.)  However, doing so
186 >     * adds some further complexity to traversal: If any "next"
187 >     * pointer links to itself, it indicates that the current thread
188 >     * has lagged behind a head-update, and so the traversal must
189 >     * continue from the "head".  Traversals trying to find the
190 >     * current tail starting from "tail" may also encounter
191 >     * self-links, in which case they also continue at "head".
192 >     *
193 >     * It is tempting in slack-based scheme to not even use CAS for
194 >     * updates (similarly to Ladan-Mozes & Shavit). However, this
195 >     * cannot be done for head updates under the above link-forgetting
196 >     * mechanics because an update may leave head at a detached node.
197 >     * And while direct writes are possible for tail updates, they
198 >     * increase the risk of long retraversals, and hence long garbage
199 >     * chains which can be much more costly than is worthwhile
200 >     * considering that the cost difference of performing a CAS vs
201 >     * write is smaller when they are not triggered on each operation
202 >     * (especially considering that writes and CASes equally require
203 >     * additional GC bookkeeping ("write barriers") that are sometimes
204 >     * more costly than the writes themselves because of contention).
205 >     *
206 >     * Removal of internal nodes (due to timed out or interrupted
207 >     * waits, or calls to remove or Iterator.remove) uses a scheme
208 >     * roughly similar to that in Scherer, Lea, and Scott
209 >     * SynchronousQueue. Given a predecessor, we can unsplice any node
210 >     * except the (actual) tail of the queue. To avoid build-up of
211 >     * cancelled trailing nodes, upon a request to remove a trailing
212 >     * node, it is placed in field "cleanMe" to be unspliced later.
213 >     *
214 >     * *** Overview of implementation ***
215 >     *
216 >     * We use a threshold-based approach to updates, with a target
217 >     * slack of two.  The slack value is hard-wired: a path greater
218 >     * than one is naturally implemented by checking equality of
219 >     * traversal pointers except when the list has only one element,
220 >     * in which case we keep max slack at one. Avoiding tracking
221 >     * explicit counts across situations slightly simplifies an
222 >     * already-messy implementation. Using randomization would
223 >     * probably work better if there were a low-quality dirt-cheap
224 >     * per-thread one available, but even ThreadLocalRandom is too
225 >     * heavy for these purposes.
226 >     *
227 >     * With such a small slack value, path short-circuiting is rarely
228 >     * worthwhile. However, it is used (in awaitMatch) immediately
229 >     * before a waiting thread starts to block, as a final bit of
230 >     * helping at a point when contention with others is extremely
231 >     * unlikely (since if other threads that could release it are
232 >     * operating, then the current thread wouldn't be blocking).
233 >     *
234 >     * All enqueue/dequeue operations are handled by the single method
235 >     * "xfer" with parameters indicating whether to act as some form
236 >     * of offer, put, poll, take, or transfer (each possibly with
237 >     * timeout). The relative complexity of using one monolithic
238 >     * method outweighs the code bulk and maintenance problems of
239 >     * using nine separate methods.
240 >     *
241 >     * Operation consists of up to three phases. The first is
242 >     * implemented within method xfer, the second in tryAppend, and
243 >     * the third in method awaitMatch.
244 >     *
245 >     * 1. Try to match an existing node
246 >     *
247 >     *    Starting at head, skip already-matched nodes until finding
248 >     *    an unmatched node of opposite mode, if one exists, in which
249 >     *    case matching it and returning, also if necessary updating
250 >     *    head to one past the matched node (or the node itself if the
251 >     *    list has no other unmatched nodes). If the CAS misses, then
252 >     *    a retry loops until the slack is at most two. Traversals
253 >     *    also check if the initial head is now off-list, in which
254 >     *    case they start at the new head.
255 >     *
256 >     *    If no candidates are found and the call was untimed
257 >     *    poll/offer, (argument "how" is NOW) return.
258 >     *
259 >     * 2. Try to append a new node (method tryAppend)
260 >     *
261 >     *    Starting at current tail pointer, try to append a new node
262 >     *    to the list (or if head was null, establish the first
263 >     *    node). Nodes can be appended only if their predecessors are
264 >     *    either already matched or are of the same mode. If we detect
265 >     *    otherwise, then a new node with opposite mode must have been
266 >     *    appended during traversal, so must restart at phase 1. The
267 >     *    traversal and update steps are otherwise similar to phase 1:
268 >     *    Retrying upon CAS misses and checking for staleness.  In
269 >     *    particular, if a self-link is encountered, then we can
270 >     *    safely jump to a node on the list by continuing the
271 >     *    traversal at current head.
272 >     *
273 >     *    On successful append, if the call was ASYNC, return.
274 >     *
275 >     * 3. Await match or cancellation (method awaitMatch)
276 >     *
277 >     *    Wait for another thread to match node; instead cancelling if
278 >     *    current thread was interrupted or the wait timed out. On
279 >     *    multiprocessors, we use front-of-queue spinning: If a node
280 >     *    appears to be the first unmatched node in the queue, it
281 >     *    spins a bit before blocking. In either case, before blocking
282 >     *    it tries to unsplice any nodes between the current "head"
283 >     *    and the first unmatched node.
284 >     *
285 >     *    Front-of-queue spinning vastly improves performance of
286 >     *    heavily contended queues. And so long as it is relatively
287 >     *    brief and "quiet", spinning does not much impact performance
288 >     *    of less-contended queues.  During spins threads check their
289 >     *    interrupt status and generate a thread-local random number
290 >     *    to decide to occasionally perform a Thread.yield. While
291 >     *    yield has underdefined specs, we assume that might it help,
292 >     *    and will not hurt in limiting impact of spinning on busy
293 >     *    systems.  We also use much smaller (1/4) spins for nodes
294 >     *    that are not known to be front but whose predecessors have
295 >     *    not blocked -- these "chained" spins avoid artifacts of
296 >     *    front-of-queue rules which otherwise lead to alternating
297 >     *    nodes spinning vs blocking. Further, front threads that
298 >     *    represent phase changes (from data to request node or vice
299 >     *    versa) compared to their predecessors receive additional
300 >     *    spins, reflecting the longer code path lengths necessary to
301 >     *    release them under contention.
302 >     */
303 >
304 >    /** True if on multiprocessor */
305 >    private static final boolean MP =
306 >        Runtime.getRuntime().availableProcessors() > 1;
307 >
308 >    /**
309 >     * The number of times to spin (with on average one randomly
310 >     * interspersed call to Thread.yield) on multiprocessor before
311 >     * blocking when a node is apparently the first waiter in the
312 >     * queue.  See above for explanation. Must be a power of two. The
313 >     * value is empirically derived -- it works pretty well across a
314 >     * variety of processors, numbers of CPUs, and OSes.
315 >     */
316 >    private static final int FRONT_SPINS   = 1 << 7;
317 >
318 >    /**
319 >     * The number of times to spin before blocking when a node is
320 >     * preceded by another node that is apparently spinning.
321 >     */
322 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 2;
323 >
324 >    /**
325 >     * Queue nodes. Uses Object, not E, for items to allow forgetting
326 >     * them after use.  Relies heavily on Unsafe mechanics to minimize
327 >     * unnecessary ordering constraints: Writes that intrinsically
328 >     * precede or follow CASes use simple relaxed forms.  Other
329 >     * cleanups use releasing/lazy writes.
330 >     */
331 >    static final class Node {
332 >        final boolean isData;   // false if this is a request node
333 >        volatile Object item;   // initially non-null if isData; CASed to match
334 >        volatile Node next;
335 >        volatile Thread waiter; // null until waiting
336  
337 <    /**
338 <     * The number of nanoseconds for which it is faster to spin
339 <     * rather than to use timed park. A rough estimate suffices.
340 <     */
98 <    static final long spinForTimeoutThreshold = 1000L;
337 >        // CAS methods for fields
338 >        final boolean casNext(Node cmp, Node val) {
339 >            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
340 >        }
341  
342 <    /**
343 <     * Node class for LinkedTransferQueue. Opportunistically
344 <     * subclasses from AtomicReference to represent item. Uses Object,
103 <     * not E, to allow setting item to "this" after use, to avoid
104 <     * garbage retention. Similarly, setting the next field to this is
105 <     * used as sentinel that node is off list.
106 <     */
107 <    static final class Node<E> extends AtomicReference<Object> {
108 <        volatile Node<E> next;
109 <        volatile Thread waiter;       // to control park/unpark
110 <        final boolean isData;
342 >        final boolean casItem(Object cmp, Object val) {
343 >            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
344 >        }
345  
346 <        Node(E item, boolean isData) {
347 <            super(item);
346 >        /**
347 >         * Creates a new node. Uses relaxed write because item can only
348 >         * be seen if followed by CAS.
349 >         */
350 >        Node(Object item, boolean isData) {
351 >            UNSAFE.putObject(this, itemOffset, item); // relaxed write
352              this.isData = isData;
353          }
354  
355 <        // Unsafe mechanics
355 >        /**
356 >         * Links node to itself to avoid garbage retention.  Called
357 >         * only after CASing head field, so uses relaxed write.
358 >         */
359 >        final void forgetNext() {
360 >            UNSAFE.putObject(this, nextOffset, this);
361 >        }
362  
363 <        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
364 <        private static final long nextOffset =
365 <            objectFieldOffset(UNSAFE, "next", Node.class);
363 >        /**
364 >         * Sets item to self (using a releasing/lazy write) and waiter
365 >         * to null, to avoid garbage retention after extracting or
366 >         * cancelling.
367 >         */
368 >        final void forgetContents() {
369 >            UNSAFE.putOrderedObject(this, itemOffset, this);
370 >            UNSAFE.putOrderedObject(this, waiterOffset, null);
371 >        }
372  
373 <        final boolean casNext(Node<E> cmp, Node<E> val) {
374 <            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
373 >        /**
374 >         * Returns true if this node has been matched, including the
375 >         * case of artificial matches due to cancellation.
376 >         */
377 >        final boolean isMatched() {
378 >            Object x = item;
379 >            return x == this || (x != null) != isData;
380          }
381  
382 <        final void clearNext() {
383 <            UNSAFE.putOrderedObject(this, nextOffset, this);
382 >        /**
383 >         * Returns true if a node with the given mode cannot be
384 >         * appended to this node because this node is unmatched and
385 >         * has opposite data mode.
386 >         */
387 >        final boolean cannotPrecede(boolean haveData) {
388 >            boolean d = isData;
389 >            Object x;
390 >            return d != haveData && (x = item) != this && (x != null) == d;
391          }
392  
393          /**
394 <         * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
133 <         * Replace with a simple call to Unsafe.getUnsafe when integrating
134 <         * into a jdk.
135 <         *
136 <         * @return a sun.misc.Unsafe
394 >         * Tries to artificially match a data node -- used by remove.
395           */
396 <        private static sun.misc.Unsafe getUnsafe() {
397 <            try {
398 <                return sun.misc.Unsafe.getUnsafe();
399 <            } catch (SecurityException se) {
400 <                try {
143 <                    return java.security.AccessController.doPrivileged
144 <                        (new java.security
145 <                         .PrivilegedExceptionAction<sun.misc.Unsafe>() {
146 <                            public sun.misc.Unsafe run() throws Exception {
147 <                                java.lang.reflect.Field f = sun.misc
148 <                                    .Unsafe.class.getDeclaredField("theUnsafe");
149 <                                f.setAccessible(true);
150 <                                return (sun.misc.Unsafe) f.get(null);
151 <                            }});
152 <                } catch (java.security.PrivilegedActionException e) {
153 <                    throw new RuntimeException("Could not initialize intrinsics",
154 <                                               e.getCause());
155 <                }
396 >        final boolean tryMatchData() {
397 >            Object x = item;
398 >            if (x != null && x != this && casItem(x, null)) {
399 >                LockSupport.unpark(waiter);
400 >                return true;
401              }
402 +            return false;
403          }
404  
405 +        // Unsafe mechanics
406 +        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
407 +        private static final long nextOffset =
408 +            objectFieldOffset(UNSAFE, "next", Node.class);
409 +        private static final long itemOffset =
410 +            objectFieldOffset(UNSAFE, "item", Node.class);
411 +        private static final long waiterOffset =
412 +            objectFieldOffset(UNSAFE, "waiter", Node.class);
413 +
414          private static final long serialVersionUID = -3375979862319811754L;
415      }
416  
417 <    /**
418 <     * Padded version of AtomicReference used for head, tail and
164 <     * cleanMe, to alleviate contention across threads CASing one vs
165 <     * the other.
166 <     */
167 <    static final class PaddedAtomicReference<T> extends AtomicReference<T> {
168 <        // enough padding for 64bytes with 4byte refs
169 <        Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
170 <        PaddedAtomicReference(T r) { super(r); }
171 <        private static final long serialVersionUID = 8170090609809740854L;
172 <    }
417 >    /** head of the queue; null until first enqueue */
418 >    private transient volatile Node head;
419  
420 +    /** predecessor of dangling unspliceable node */
421 +    private transient volatile Node cleanMe; // decl here to reduce contention
422  
423 <    /** head of the queue */
424 <    private transient final PaddedAtomicReference<Node<E>> head;
423 >    /** tail of the queue; null until first append */
424 >    private transient volatile Node tail;
425  
426 <    /** tail of the queue */
427 <    private transient final PaddedAtomicReference<Node<E>> tail;
426 >    // CAS methods for fields
427 >    private boolean casTail(Node cmp, Node val) {
428 >        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
429 >    }
430  
431 <    /**
432 <     * Reference to a cancelled node that might not yet have been
433 <     * unlinked from queue because it was the last inserted node
184 <     * when it cancelled.
185 <     */
186 <    private transient final PaddedAtomicReference<Node<E>> cleanMe;
431 >    private boolean casHead(Node cmp, Node val) {
432 >        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
433 >    }
434  
435 <    /**
436 <     * Tries to cas nh as new head; if successful, unlink
190 <     * old head's next node to avoid garbage retention.
191 <     */
192 <    private boolean advanceHead(Node<E> h, Node<E> nh) {
193 <        if (h == head.get() && head.compareAndSet(h, nh)) {
194 <            h.clearNext(); // forget old next
195 <            return true;
196 <        }
197 <        return false;
435 >    private boolean casCleanMe(Node cmp, Node val) {
436 >        return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
437      }
438  
439 +    /*
440 +     * Possible values for "how" argument in xfer method. Beware that
441 +     * the order of assigned numerical values matters.
442 +     */
443 +    private static final int NOW     = 0; // for untimed poll, tryTransfer
444 +    private static final int ASYNC   = 1; // for offer, put, add
445 +    private static final int SYNC    = 2; // for transfer, take
446 +    private static final int TIMEOUT = 3; // for timed poll, tryTransfer
447 +
448      /**
449 <     * Puts or takes an item. Used for most queue operations (except
202 <     * poll() and tryTransfer()). See the similar code in
203 <     * SynchronousQueue for detailed explanation.
449 >     * Implements all queuing methods. See above for explanation.
450       *
451 <     * @param e the item or if null, signifies that this is a take
452 <     * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
451 >     * @param e the item or null for take
452 >     * @param haveData true if this is a put, else a take
453 >     * @param how NOW, ASYNC, SYNC, or TIMEOUT
454       * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
455 <     * @return an item, or null on failure
455 >     * @return an item if matched, else e
456 >     * @throws NullPointerException if haveData mode but e is null
457       */
458 <    private E xfer(E e, int mode, long nanos) {
459 <        boolean isData = (e != null);
460 <        Node<E> s = null;
461 <        final PaddedAtomicReference<Node<E>> head = this.head;
214 <        final PaddedAtomicReference<Node<E>> tail = this.tail;
458 >    private Object xfer(Object e, boolean haveData, int how, long nanos) {
459 >        if (haveData && (e == null))
460 >            throw new NullPointerException();
461 >        Node s = null;                        // the node to append, if needed
462  
463 <        for (;;) {
217 <            Node<E> t = tail.get();
218 <            Node<E> h = head.get();
463 >        retry: for (;;) {                     // restart on append race
464  
465 <            if (t != null && (t == h || t.isData == isData)) {
466 <                if (s == null)
467 <                    s = new Node<E>(e, isData);
468 <                Node<E> last = t.next;
469 <                if (last != null) {
470 <                    if (t == tail.get())
471 <                        tail.compareAndSet(t, last);
472 <                }
473 <                else if (t.casNext(null, s)) {
474 <                    tail.compareAndSet(t, s);
475 <                    return awaitFulfill(t, s, e, mode, nanos);
465 >            for (Node h = head, p = h; p != null;) { // find & match first node
466 >                boolean isData = p.isData;
467 >                Object item = p.item;
468 >                if (item != p && (item != null) == isData) { // unmatched
469 >                    if (isData == haveData)   // can't match
470 >                        break;
471 >                    if (p.casItem(item, e)) { // match
472 >                        Thread w = p.waiter;
473 >                        while (p != h) {      // update head
474 >                            Node n = p.next;  // by 2 unless singleton
475 >                            if (n != null)
476 >                                p = n;
477 >                            if (head == h && casHead(h, p)) {
478 >                                h.forgetNext();
479 >                                break;
480 >                            }                 // advance and retry
481 >                            if ((h = head)   == null ||
482 >                                (p = h.next) == null || !p.isMatched())
483 >                                break;        // unless slack < 2
484 >                        }
485 >                        LockSupport.unpark(w);
486 >                        return item;
487 >                    }
488                  }
489 +                Node n = p.next;
490 +                p = p != n ? n : (h = head);  // Use head if p offlist
491              }
492  
493 <            else if (h != null) {
494 <                Node<E> first = h.next;
495 <                if (t == tail.get() && first != null &&
496 <                    advanceHead(h, first)) {
497 <                    Object x = first.get();
498 <                    if (x != first && first.compareAndSet(x, e)) {
499 <                        LockSupport.unpark(first.waiter);
500 <                        return isData ? e : (E) x;
242 <                    }
243 <                }
493 >            if (how >= ASYNC) {               // No matches available
494 >                if (s == null)
495 >                    s = new Node(e, haveData);
496 >                Node pred = tryAppend(s, haveData);
497 >                if (pred == null)
498 >                    continue retry;           // lost race vs opposite mode
499 >                if (how >= SYNC)
500 >                    return awaitMatch(pred, s, e, how, nanos);
501              }
502 +            return e; // not waiting
503          }
504      }
505  
248
506      /**
507 <     * Version of xfer for poll() and tryTransfer, which
508 <     * simplifies control paths both here and in xfer.
509 <     */
510 <    private E fulfill(E e) {
511 <        boolean isData = (e != null);
512 <        final PaddedAtomicReference<Node<E>> head = this.head;
513 <        final PaddedAtomicReference<Node<E>> tail = this.tail;
514 <
515 <        for (;;) {
516 <            Node<E> t = tail.get();
517 <            Node<E> h = head.get();
518 <
519 <            if (t != null && (t == h || t.isData == isData)) {
520 <                Node<E> last = t.next;
521 <                if (t == tail.get()) {
522 <                    if (last != null)
523 <                        tail.compareAndSet(t, last);
524 <                    else
525 <                        return null;
526 <                }
527 <            }
528 <            else if (h != null) {
529 <                Node<E> first = h.next;
530 <                if (t == tail.get() &&
531 <                    first != null &&
532 <                    advanceHead(h, first)) {
533 <                    Object x = first.get();
534 <                    if (x != first && first.compareAndSet(x, e)) {
278 <                        LockSupport.unpark(first.waiter);
279 <                        return isData ? e : (E) x;
280 <                    }
507 >     * Tries to append node s as tail.
508 >     *
509 >     * @param haveData true if appending in data mode
510 >     * @param s the node to append
511 >     * @return null on failure due to losing race with append in
512 >     * different mode, else s's predecessor, or s itself if no
513 >     * predecessor
514 >     */
515 >    private Node tryAppend(Node s, boolean haveData) {
516 >        for (Node t = tail, p = t;;) { // move p to actual tail and append
517 >            Node n, u;                        // temps for reads of next & tail
518 >            if (p == null && (p = head) == null) {
519 >                if (casHead(null, s))
520 >                    return s;                 // initialize
521 >            }
522 >            else if (p.cannotPrecede(haveData))
523 >                return null;                  // lost race vs opposite mode
524 >            else if ((n = p.next) != null)    // Not tail; keep traversing
525 >                p = p != t && t != (u = tail) ? (t = u) : // stale tail
526 >                    p != n ? n : null;        // restart if off list
527 >            else if (!p.casNext(null, s))
528 >                p = p.next;                   // re-read on CAS failure
529 >            else {
530 >                if (p != t) {                 // Update if slack now >= 2
531 >                    while ((tail != t || !casTail(t, s)) &&
532 >                           (t = tail)   != null &&
533 >                           (s = t.next) != null && // advance and retry
534 >                           (s = s.next) != null && s != t);
535                  }
536 +                return p;
537              }
538          }
539      }
540  
541      /**
542 <     * Spins/blocks until node s is fulfilled or caller gives up,
288 <     * depending on wait mode.
542 >     * Spins/yields/blocks until node s is matched or caller gives up.
543       *
544 <     * @param pred the predecessor of waiting node
544 >     * @param pred the predecessor of s or s or null if none
545       * @param s the waiting node
546       * @param e the comparison value for checking match
547 <     * @param mode mode
547 >     * @param how either SYNC or TIMEOUT
548       * @param nanos timeout value
549 <     * @return matched item, or s if cancelled
549 >     * @return matched item, or e if unmatched on interrupt or timeout
550       */
551 <    private E awaitFulfill(Node<E> pred, Node<E> s, E e,
552 <                           int mode, long nanos) {
553 <        if (mode == NOWAIT)
300 <            return null;
301 <
302 <        long lastTime = (mode == TIMEOUT) ? System.nanoTime() : 0;
551 >    private Object awaitMatch(Node pred, Node s, Object e,
552 >                              int how, long nanos) {
553 >        long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
554          Thread w = Thread.currentThread();
555 <        int spins = -1; // set to desired spin count below
555 >        int spins = -1; // initialized after first item and cancel checks
556 >        ThreadLocalRandom randomYields = null; // bound if needed
557 >
558          for (;;) {
559 <            if (w.isInterrupted())
560 <                s.compareAndSet(e, s);
561 <            Object x = s.get();
562 <            if (x != e) {                 // Node was matched or cancelled
563 <                advanceHead(pred, s);     // unlink if head
564 <                if (x == s) {             // was cancelled
565 <                    clean(pred, s);
566 <                    return null;
567 <                }
568 <                else if (x != null) {
569 <                    s.set(s);             // avoid garbage retention
570 <                    return (E) x;
571 <                }
572 <                else
573 <                    return e;
559 >            Object item = s.item;
560 >            if (item != e) {                  // matched
561 >                s.forgetContents();           // avoid garbage
562 >                return item;
563 >            }
564 >            if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
565 >                     s.casItem(e, s)) {       // cancel
566 >                unsplice(pred, s);
567 >                return e;
568 >            }
569 >
570 >            if (spins < 0) {                  // establish spins at/near front
571 >                if ((spins = spinsFor(pred, s.isData)) > 0)
572 >                    randomYields = ThreadLocalRandom.current();
573 >            }
574 >            else if (spins > 0) {             // spin, occasionally yield
575 >                if (randomYields.nextInt(FRONT_SPINS) == 0)
576 >                    Thread.yield();
577 >                --spins;
578 >            }
579 >            else if (s.waiter == null) {
580 >                shortenHeadPath();            // reduce slack before blocking
581 >                s.waiter = w;                 // request unpark
582              }
583 <            if (mode == TIMEOUT) {
583 >            else if (how == TIMEOUT) {
584                  long now = System.nanoTime();
585 <                nanos -= now - lastTime;
585 >                if ((nanos -= now - lastTime) > 0)
586 >                    LockSupport.parkNanos(this, nanos);
587                  lastTime = now;
326                if (nanos <= 0) {
327                    s.compareAndSet(e, s); // try to cancel
328                    continue;
329                }
330            }
331            if (spins < 0) {
332                Node<E> h = head.get(); // only spin if at head
333                spins = ((h != null && h.next == s) ?
334                         ((mode == TIMEOUT) ?
335                          maxTimedSpins : maxUntimedSpins) : 0);
588              }
589 <            if (spins > 0)
338 <                --spins;
339 <            else if (s.waiter == null)
340 <                s.waiter = w;
341 <            else if (mode != TIMEOUT) {
589 >            else {
590                  LockSupport.park(this);
591 <                s.waiter = null;
344 <                spins = -1;
345 <            }
346 <            else if (nanos > spinForTimeoutThreshold) {
347 <                LockSupport.parkNanos(this, nanos);
348 <                s.waiter = null;
349 <                spins = -1;
591 >                spins = -1;                   // spin if front upon wakeup
592              }
593          }
594      }
595  
596      /**
597 <     * Returns validated tail for use in cleaning methods.
597 >     * Returns spin/yield value for a node with given predecessor and
598 >     * data mode. See above for explanation.
599       */
600 <    private Node<E> getValidatedTail() {
601 <        for (;;) {
602 <            Node<E> h = head.get();
603 <            Node<E> first = h.next;
604 <            if (first != null && first.next == first) { // help advance
605 <                advanceHead(h, first);
606 <                continue;
607 <            }
608 <            Node<E> t = tail.get();
609 <            Node<E> last = t.next;
610 <            if (t == tail.get()) {
611 <                if (last != null)
612 <                    tail.compareAndSet(t, last); // help advance
613 <                else
614 <                    return t;
600 >    private static int spinsFor(Node pred, boolean haveData) {
601 >        if (MP && pred != null) {
602 >            boolean predData = pred.isData;
603 >            if (predData != haveData)         // front and phase change
604 >                return FRONT_SPINS + (FRONT_SPINS >>> 1);
605 >            if (predData != (pred.item != null)) // probably at front
606 >                return FRONT_SPINS;
607 >            if (pred.waiter == null)          // pred apparently spinning
608 >                return CHAINED_SPINS;
609 >        }
610 >        return 0;
611 >    }
612 >
613 >    /**
614 >     * Tries (once) to unsplice nodes between head and first unmatched
615 >     * or trailing node; failing on contention.
616 >     */
617 >    private void shortenHeadPath() {
618 >        Node h, hn, p, q;
619 >        if ((p = h = head) != null && h.isMatched() &&
620 >            (q = hn = h.next) != null) {
621 >            Node n;
622 >            while ((n = q.next) != q) {
623 >                if (n == null || !q.isMatched()) {
624 >                    if (hn != q && h.next == hn)
625 >                        h.casNext(hn, q);
626 >                    break;
627 >                }
628 >                p = q;
629 >                q = n;
630              }
631          }
632      }
633  
634 +    /* -------------- Traversal methods -------------- */
635 +
636      /**
637 <     * Gets rid of cancelled node s with original predecessor pred.
638 <     *
639 <     * @param pred predecessor of cancelled node
640 <     * @param s the cancelled node
637 >     * Returns the first unmatched node of the given mode, or null if
638 >     * none.  Used by methods isEmpty, hasWaitingConsumer.
639 >     */
640 >    private Node firstOfMode(boolean data) {
641 >        for (Node p = head; p != null; ) {
642 >            if (!p.isMatched())
643 >                return p.isData == data? p : null;
644 >            Node n = p.next;
645 >            p = n != p ? n : head;
646 >        }
647 >        return null;
648 >    }
649 >
650 >    /**
651 >     * Returns the item in the first unmatched node with isData; or
652 >     * null if none. Used by peek.
653       */
654 <    private void clean(Node<E> pred, Node<E> s) {
655 <        Thread w = s.waiter;
656 <        if (w != null) {             // Wake up thread
657 <            s.waiter = null;
658 <            if (w != Thread.currentThread())
659 <                LockSupport.unpark(w);
654 >    private Object firstDataItem() {
655 >        for (Node p = head; p != null; ) {
656 >            boolean isData = p.isData;
657 >            Object item = p.item;
658 >            if (item != p && (item != null) == isData)
659 >                return isData ? item : null;
660 >            Node n = p.next;
661 >            p = n != p ? n : head;
662          }
663 +        return null;
664 +    }
665 +
666 +    /**
667 +     * Traverses and counts unmatched nodes of the given mode.
668 +     * Used by methods size and getWaitingConsumerCount.
669 +     */
670 +    private int countOfMode(boolean data) {
671 +        int count = 0;
672 +        for (Node p = head; p != null; ) {
673 +            if (!p.isMatched()) {
674 +                if (p.isData != data)
675 +                    return 0;
676 +                if (++count == Integer.MAX_VALUE) // saturated
677 +                    break;
678 +            }
679 +            Node n = p.next;
680 +            if (n != p)
681 +                p = n;
682 +            else {
683 +                count = 0;
684 +                p = head;
685 +            }
686 +        }
687 +        return count;
688 +    }
689  
690 <        if (pred == null)
691 <            return;
690 >    final class Itr implements Iterator<E> {
691 >        private Node nextNode;   // next node to return item for
692 >        private Object nextItem; // the corresponding item
693 >        private Node lastRet;    // last returned node, to support remove
694  
695 +        /**
696 +         * Moves to next node after prev, or first node if prev null.
697 +         */
698 +        private void advance(Node prev) {
699 +            lastRet = prev;
700 +            Node p;
701 +            if (prev == null || (p = prev.next) == prev)
702 +                p = head;
703 +            while (p != null) {
704 +                Object item = p.item;
705 +                if (p.isData) {
706 +                    if (item != null && item != p) {
707 +                        nextItem = item;
708 +                        nextNode = p;
709 +                        return;
710 +                    }
711 +                }
712 +                else if (item == null)
713 +                    break;
714 +                Node n = p.next;
715 +                p = n != p ? n : head;
716 +            }
717 +            nextNode = null;
718 +        }
719 +
720 +        Itr() {
721 +            advance(null);
722 +        }
723 +
724 +        public final boolean hasNext() {
725 +            return nextNode != null;
726 +        }
727 +
728 +        public final E next() {
729 +            Node p = nextNode;
730 +            if (p == null) throw new NoSuchElementException();
731 +            Object e = nextItem;
732 +            advance(p);
733 +            return (E) e;
734 +        }
735 +
736 +        public final void remove() {
737 +            Node p = lastRet;
738 +            if (p == null) throw new IllegalStateException();
739 +            lastRet = null;
740 +            findAndRemoveNode(p);
741 +        }
742 +    }
743 +
744 +    /* -------------- Removal methods -------------- */
745 +
746 +    /**
747 +     * Unsplices (now or later) the given deleted/cancelled node with
748 +     * the given predecessor.
749 +     *
750 +     * @param pred predecessor of node to be unspliced
751 +     * @param s the node to be unspliced
752 +     */
753 +    private void unsplice(Node pred, Node s) {
754 +        s.forgetContents(); // clear unneeded fields
755          /*
756           * At any given time, exactly one node on list cannot be
757           * deleted -- the last inserted node. To accommodate this, if
758           * we cannot delete s, we save its predecessor as "cleanMe",
759 <         * processing the previously saved version first. At least one
760 <         * of node s or the node previously saved can always be
759 >         * processing the previously saved version first. Because only
760 >         * one node in the list can have a null next, at least one of
761 >         * node s or the node previously saved can always be
762           * processed, so this always terminates.
763           */
764 <        while (pred.next == s) {
765 <            Node<E> oldpred = reclean();  // First, help get rid of cleanMe
766 <            Node<E> t = getValidatedTail();
767 <            if (s != t) {               // If not tail, try to unsplice
768 <                Node<E> sn = s.next;      // s.next == s means s already off list
769 <                if (sn == s || pred.casNext(s, sn))
764 >        if (pred != null && pred != s) {
765 >            while (pred.next == s) {
766 >                Node oldpred = cleanMe == null? null : reclean();
767 >                Node n = s.next;
768 >                if (n != null) {
769 >                    if (n != s)
770 >                        pred.casNext(s, n);
771                      break;
772 +                }
773 +                if (oldpred == pred ||      // Already saved
774 +                    (oldpred == null && casCleanMe(null, pred)))
775 +                    break;                  // Postpone cleaning
776              }
409            else if (oldpred == pred || // Already saved
410                     (oldpred == null && cleanMe.compareAndSet(null, pred)))
411                break;                  // Postpone cleaning
777          }
778      }
779  
780      /**
781 <     * Tries to unsplice the cancelled node held in cleanMe that was
782 <     * previously uncleanable because it was at tail.
781 >     * Tries to unsplice the deleted/cancelled node held in cleanMe
782 >     * that was previously uncleanable because it was at tail.
783       *
784       * @return current cleanMe node (or null)
785       */
786 <    private Node<E> reclean() {
786 >    private Node reclean() {
787          /*
788 <         * cleanMe is, or at one time was, predecessor of cancelled
789 <         * node s that was the tail so could not be unspliced.  If s
788 >         * cleanMe is, or at one time was, predecessor of a cancelled
789 >         * node s that was the tail so could not be unspliced.  If it
790           * is no longer the tail, try to unsplice if necessary and
791           * make cleanMe slot available.  This differs from similar
792 <         * code in clean() because we must check that pred still
793 <         * points to a cancelled node that must be unspliced -- if
794 <         * not, we can (must) clear cleanMe without unsplicing.
795 <         * This can loop only due to contention on casNext or
431 <         * clearing cleanMe.
792 >         * code in unsplice() because we must check that pred still
793 >         * points to a matched node that can be unspliced -- if not,
794 >         * we can (must) clear cleanMe without unsplicing.  This can
795 >         * loop only due to contention.
796           */
797 <        Node<E> pred;
798 <        while ((pred = cleanMe.get()) != null) {
799 <            Node<E> t = getValidatedTail();
800 <            Node<E> s = pred.next;
801 <            if (s != t) {
802 <                Node<E> sn;
803 <                if (s == null || s == pred || s.get() != s ||
804 <                    (sn = s.next) == s || pred.casNext(s, sn))
805 <                    cleanMe.compareAndSet(pred, null);
797 >        Node pred;
798 >        while ((pred = cleanMe) != null) {
799 >            Node s = pred.next;
800 >            Node n;
801 >            if (s == null || s == pred || !s.isMatched())
802 >                casCleanMe(pred, null); // already gone
803 >            else if ((n = s.next) != null) {
804 >                if (n != s)
805 >                    pred.casNext(s, n);
806 >                casCleanMe(pred, null);
807              }
808 <            else // s is still tail; cannot clean
808 >            else
809                  break;
810          }
811          return pred;
812      }
813  
814      /**
815 +     * Main implementation of Iterator.remove(). Find
816 +     * and unsplice the given node.
817 +     */
818 +    final void findAndRemoveNode(Node s) {
819 +        if (s.tryMatchData()) {
820 +            Node pred = null;
821 +            Node p = head;
822 +            while (p != null) {
823 +                if (p == s) {
824 +                    unsplice(pred, p);
825 +                    break;
826 +                }
827 +                if (!p.isData && !p.isMatched())
828 +                    break;
829 +                pred = p;
830 +                if ((p = p.next) == pred) { // stale
831 +                    pred = null;
832 +                    p = head;
833 +                }
834 +            }
835 +        }
836 +    }
837 +
838 +    /**
839 +     * Main implementation of remove(Object)
840 +     */
841 +    private boolean findAndRemove(Object e) {
842 +        if (e != null) {
843 +            Node pred = null;
844 +            Node p = head;
845 +            while (p != null) {
846 +                Object item = p.item;
847 +                if (p.isData) {
848 +                    if (item != null && item != p && e.equals(item) &&
849 +                        p.tryMatchData()) {
850 +                        unsplice(pred, p);
851 +                        return true;
852 +                    }
853 +                }
854 +                else if (item == null)
855 +                    break;
856 +                pred = p;
857 +                if ((p = p.next) == pred) {
858 +                    pred = null;
859 +                    p = head;
860 +                }
861 +            }
862 +        }
863 +        return false;
864 +    }
865 +
866 +
867 +    /**
868       * Creates an initially empty {@code LinkedTransferQueue}.
869       */
870      public LinkedTransferQueue() {
453        Node<E> dummy = new Node<E>(null, false);
454        head = new PaddedAtomicReference<Node<E>>(dummy);
455        tail = new PaddedAtomicReference<Node<E>>(dummy);
456        cleanMe = new PaddedAtomicReference<Node<E>>(null);
871      }
872  
873      /**
# Line 471 | Line 885 | public class LinkedTransferQueue<E> exte
885      }
886  
887      /**
888 <     * @throws InterruptedException {@inheritDoc}
889 <     * @throws NullPointerException {@inheritDoc}
888 >     * Inserts the specified element at the tail of this queue.
889 >     * As the queue is unbounded, this method will never block.
890 >     *
891 >     * @throws NullPointerException if the specified element is null
892       */
893 <    public void put(E e) throws InterruptedException {
894 <        if (e == null) throw new NullPointerException();
479 <        if (Thread.interrupted()) throw new InterruptedException();
480 <        xfer(e, NOWAIT, 0);
893 >    public void put(E e) {
894 >        xfer(e, true, ASYNC, 0);
895      }
896  
897      /**
898 <     * @throws InterruptedException {@inheritDoc}
899 <     * @throws NullPointerException {@inheritDoc}
898 >     * Inserts the specified element at the tail of this queue.
899 >     * As the queue is unbounded, this method will never block or
900 >     * return {@code false}.
901 >     *
902 >     * @return {@code true} (as specified by
903 >     *  {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
904 >     * @throws NullPointerException if the specified element is null
905       */
906 <    public boolean offer(E e, long timeout, TimeUnit unit)
907 <        throws InterruptedException {
489 <        if (e == null) throw new NullPointerException();
490 <        if (Thread.interrupted()) throw new InterruptedException();
491 <        xfer(e, NOWAIT, 0);
906 >    public boolean offer(E e, long timeout, TimeUnit unit) {
907 >        xfer(e, true, ASYNC, 0);
908          return true;
909      }
910  
911      /**
912 <     * @throws NullPointerException {@inheritDoc}
912 >     * Inserts the specified element at the tail of this queue.
913 >     * As the queue is unbounded, this method will never return {@code false}.
914 >     *
915 >     * @return {@code true} (as specified by
916 >     *         {@link BlockingQueue#offer(Object) BlockingQueue.offer})
917 >     * @throws NullPointerException if the specified element is null
918       */
919      public boolean offer(E e) {
920 <        if (e == null) throw new NullPointerException();
500 <        xfer(e, NOWAIT, 0);
920 >        xfer(e, true, ASYNC, 0);
921          return true;
922      }
923  
924      /**
925 <     * @throws NullPointerException {@inheritDoc}
925 >     * Inserts the specified element at the tail of this queue.
926 >     * As the queue is unbounded, this method will never throw
927 >     * {@link IllegalStateException} or return {@code false}.
928 >     *
929 >     * @return {@code true} (as specified by {@link Collection#add})
930 >     * @throws NullPointerException if the specified element is null
931       */
932      public boolean add(E e) {
933 <        if (e == null) throw new NullPointerException();
509 <        xfer(e, NOWAIT, 0);
933 >        xfer(e, true, ASYNC, 0);
934          return true;
935      }
936  
937      /**
938 <     * @throws InterruptedException {@inheritDoc}
939 <     * @throws NullPointerException {@inheritDoc}
938 >     * Transfers the element to a waiting consumer immediately, if possible.
939 >     *
940 >     * <p>More precisely, transfers the specified element immediately
941 >     * if there exists a consumer already waiting to receive it (in
942 >     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
943 >     * otherwise returning {@code false} without enqueuing the element.
944 >     *
945 >     * @throws NullPointerException if the specified element is null
946 >     */
947 >    public boolean tryTransfer(E e) {
948 >        return xfer(e, true, NOW, 0) == null;
949 >    }
950 >
951 >    /**
952 >     * Transfers the element to a consumer, waiting if necessary to do so.
953 >     *
954 >     * <p>More precisely, transfers the specified element immediately
955 >     * if there exists a consumer already waiting to receive it (in
956 >     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
957 >     * else inserts the specified element at the tail of this queue
958 >     * and waits until the element is received by a consumer.
959 >     *
960 >     * @throws NullPointerException if the specified element is null
961       */
962      public void transfer(E e) throws InterruptedException {
963 <        if (e == null) throw new NullPointerException();
964 <        if (xfer(e, WAIT, 0) == null) {
520 <            Thread.interrupted();
963 >        if (xfer(e, true, SYNC, 0) != null) {
964 >            Thread.interrupted(); // failure possible only due to interrupt
965              throw new InterruptedException();
966          }
967      }
968  
969      /**
970 <     * @throws InterruptedException {@inheritDoc}
971 <     * @throws NullPointerException {@inheritDoc}
970 >     * Transfers the element to a consumer if it is possible to do so
971 >     * before the timeout elapses.
972 >     *
973 >     * <p>More precisely, transfers the specified element immediately
974 >     * if there exists a consumer already waiting to receive it (in
975 >     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
976 >     * else inserts the specified element at the tail of this queue
977 >     * and waits until the element is received by a consumer,
978 >     * returning {@code false} if the specified wait time elapses
979 >     * before the element can be transferred.
980 >     *
981 >     * @throws NullPointerException if the specified element is null
982       */
983      public boolean tryTransfer(E e, long timeout, TimeUnit unit)
984          throws InterruptedException {
985 <        if (e == null) throw new NullPointerException();
532 <        if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
985 >        if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
986              return true;
987          if (!Thread.interrupted())
988              return false;
989          throw new InterruptedException();
990      }
991  
539    /**
540     * @throws NullPointerException {@inheritDoc}
541     */
542    public boolean tryTransfer(E e) {
543        if (e == null) throw new NullPointerException();
544        return fulfill(e) != null;
545    }
546
547    /**
548     * @throws InterruptedException {@inheritDoc}
549     */
992      public E take() throws InterruptedException {
993 <        Object e = xfer(null, WAIT, 0);
993 >        Object e = xfer(null, false, SYNC, 0);
994          if (e != null)
995 <            return (E) e;
995 >            return (E)e;
996          Thread.interrupted();
997          throw new InterruptedException();
998      }
999  
558    /**
559     * @throws InterruptedException {@inheritDoc}
560     */
1000      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1001 <        Object e = xfer(null, TIMEOUT, unit.toNanos(timeout));
1001 >        Object e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1002          if (e != null || !Thread.interrupted())
1003 <            return (E) e;
1003 >            return (E)e;
1004          throw new InterruptedException();
1005      }
1006  
1007      public E poll() {
1008 <        return fulfill(null);
1008 >        return (E)xfer(null, false, NOW, 0);
1009      }
1010  
1011      /**
# Line 605 | Line 1044 | public class LinkedTransferQueue<E> exte
1044          return n;
1045      }
1046  
608    // Traversal-based methods
609
1047      /**
1048 <     * Returns head after performing any outstanding helping steps.
1048 >     * Returns an iterator over the elements in this queue in proper
1049 >     * sequence, from head to tail.
1050 >     *
1051 >     * <p>The returned iterator is a "weakly consistent" iterator that
1052 >     * will never throw
1053 >     * {@link ConcurrentModificationException ConcurrentModificationException},
1054 >     * and guarantees to traverse elements as they existed upon
1055 >     * construction of the iterator, and may (but is not guaranteed
1056 >     * to) reflect any modifications subsequent to construction.
1057 >     *
1058 >     * @return an iterator over the elements in this queue in proper sequence
1059       */
613    private Node<E> traversalHead() {
614        for (;;) {
615            Node<E> t = tail.get();
616            Node<E> h = head.get();
617            if (h != null && t != null) {
618                Node<E> last = t.next;
619                Node<E> first = h.next;
620                if (t == tail.get()) {
621                    if (last != null)
622                        tail.compareAndSet(t, last);
623                    else if (first != null) {
624                        Object x = first.get();
625                        if (x == first)
626                            advanceHead(h, first);
627                        else
628                            return h;
629                    }
630                    else
631                        return h;
632                }
633            }
634            reclean();
635        }
636    }
637
638
1060      public Iterator<E> iterator() {
1061          return new Itr();
1062      }
1063  
643    /**
644     * Iterators. Basic strategy is to traverse list, treating
645     * non-data (i.e., request) nodes as terminating list.
646     * Once a valid data node is found, the item is cached
647     * so that the next call to next() will return it even
648     * if subsequently removed.
649     */
650    class Itr implements Iterator<E> {
651        Node<E> next;        // node to return next
652        Node<E> pnext;       // predecessor of next
653        Node<E> snext;       // successor of next
654        Node<E> curr;        // last returned node, for remove()
655        Node<E> pcurr;       // predecessor of curr, for remove()
656        E nextItem;        // Cache of next item, once committed to in next
657
658        Itr() {
659            findNext();
660        }
661
662        /**
663         * Ensures next points to next valid node, or null if none.
664         */
665        void findNext() {
666            for (;;) {
667                Node<E> pred = pnext;
668                Node<E> q = next;
669                if (pred == null || pred == q) {
670                    pred = traversalHead();
671                    q = pred.next;
672                }
673                if (q == null || !q.isData) {
674                    next = null;
675                    return;
676                }
677                Object x = q.get();
678                Node<E> s = q.next;
679                if (x != null && q != x && q != s) {
680                    nextItem = (E) x;
681                    snext = s;
682                    pnext = pred;
683                    next = q;
684                    return;
685                }
686                pnext = q;
687                next = s;
688            }
689        }
690
691        public boolean hasNext() {
692            return next != null;
693        }
694
695        public E next() {
696            if (next == null) throw new NoSuchElementException();
697            pcurr = pnext;
698            curr = next;
699            pnext = next;
700            next = snext;
701            E x = nextItem;
702            findNext();
703            return x;
704        }
705
706        public void remove() {
707            Node<E> p = curr;
708            if (p == null)
709                throw new IllegalStateException();
710            Object x = p.get();
711            if (x != null && x != p && p.compareAndSet(x, p))
712                clean(pcurr, p);
713        }
714    }
715
1064      public E peek() {
1065 <        for (;;) {
718 <            Node<E> h = traversalHead();
719 <            Node<E> p = h.next;
720 <            if (p == null)
721 <                return null;
722 <            Object x = p.get();
723 <            if (p != x) {
724 <                if (!p.isData)
725 <                    return null;
726 <                if (x != null)
727 <                    return (E) x;
728 <            }
729 <        }
1065 >        return (E) firstDataItem();
1066      }
1067  
1068 +    /**
1069 +     * Returns {@code true} if this queue contains no elements.
1070 +     *
1071 +     * @return {@code true} if this queue contains no elements
1072 +     */
1073      public boolean isEmpty() {
1074 <        for (;;) {
734 <            Node<E> h = traversalHead();
735 <            Node<E> p = h.next;
736 <            if (p == null)
737 <                return true;
738 <            Object x = p.get();
739 <            if (p != x) {
740 <                if (!p.isData)
741 <                    return true;
742 <                if (x != null)
743 <                    return false;
744 <            }
745 <        }
1074 >        return firstOfMode(true) == null;
1075      }
1076  
1077      public boolean hasWaitingConsumer() {
1078 <        for (;;) {
750 <            Node<E> h = traversalHead();
751 <            Node<E> p = h.next;
752 <            if (p == null)
753 <                return false;
754 <            Object x = p.get();
755 <            if (p != x)
756 <                return !p.isData;
757 <        }
1078 >        return firstOfMode(false) != null;
1079      }
1080  
1081      /**
# Line 770 | Line 1091 | public class LinkedTransferQueue<E> exte
1091       * @return the number of elements in this queue
1092       */
1093      public int size() {
1094 <        int count = 0;
774 <        Node<E> h = traversalHead();
775 <        for (Node<E> p = h.next; p != null && p.isData; p = p.next) {
776 <            Object x = p.get();
777 <            if (x != null && x != p) {
778 <                if (++count == Integer.MAX_VALUE) // saturated
779 <                    break;
780 <            }
781 <        }
782 <        return count;
1094 >        return countOfMode(true);
1095      }
1096  
1097      public int getWaitingConsumerCount() {
1098 <        int count = 0;
787 <        Node<E> h = traversalHead();
788 <        for (Node<E> p = h.next; p != null && !p.isData; p = p.next) {
789 <            if (p.get() == null) {
790 <                if (++count == Integer.MAX_VALUE)
791 <                    break;
792 <            }
793 <        }
794 <        return count;
1098 >        return countOfMode(false);
1099      }
1100  
1101 <    public int remainingCapacity() {
1102 <        return Integer.MAX_VALUE;
1101 >    /**
1102 >     * Removes a single instance of the specified element from this queue,
1103 >     * if it is present.  More formally, removes an element {@code e} such
1104 >     * that {@code o.equals(e)}, if this queue contains one or more such
1105 >     * elements.
1106 >     * Returns {@code true} if this queue contained the specified element
1107 >     * (or equivalently, if this queue changed as a result of the call).
1108 >     *
1109 >     * @param o element to be removed from this queue, if present
1110 >     * @return {@code true} if this queue changed as a result of the call
1111 >     */
1112 >    public boolean remove(Object o) {
1113 >        return findAndRemove(o);
1114      }
1115  
1116 <    public boolean remove(Object o) {
1117 <        if (o == null)
1118 <            return false;
1119 <        for (;;) {
1120 <            Node<E> pred = traversalHead();
1121 <            for (;;) {
1122 <                Node<E> q = pred.next;
1123 <                if (q == null || !q.isData)
1124 <                    return false;
810 <                if (q == pred) // restart
811 <                    break;
812 <                Object x = q.get();
813 <                if (x != null && x != q && o.equals(x) &&
814 <                    q.compareAndSet(x, q)) {
815 <                    clean(pred, q);
816 <                    return true;
817 <                }
818 <                pred = q;
819 <            }
820 <        }
1116 >    /**
1117 >     * Always returns {@code Integer.MAX_VALUE} because a
1118 >     * {@code LinkedTransferQueue} is not capacity constrained.
1119 >     *
1120 >     * @return {@code Integer.MAX_VALUE} (as specified by
1121 >     *         {@link BlockingQueue#remainingCapacity()})
1122 >     */
1123 >    public int remainingCapacity() {
1124 >        return Integer.MAX_VALUE;
1125      }
1126  
1127      /**
1128 <     * Save the state to a stream (that is, serialize it).
1128 >     * Saves the state to a stream (that is, serializes it).
1129       *
1130       * @serialData All of the elements (each an {@code E}) in
1131       * the proper order, followed by a null
# Line 837 | Line 1141 | public class LinkedTransferQueue<E> exte
1141      }
1142  
1143      /**
1144 <     * Reconstitute the Queue instance from a stream (that is,
1145 <     * deserialize it).
1144 >     * Reconstitutes the Queue instance from a stream (that is,
1145 >     * deserializes it).
1146       *
1147       * @param s the stream
1148       */
1149      private void readObject(java.io.ObjectInputStream s)
1150          throws java.io.IOException, ClassNotFoundException {
1151          s.defaultReadObject();
848        resetHeadAndTail();
1152          for (;;) {
1153              @SuppressWarnings("unchecked") E item = (E) s.readObject();
1154              if (item == null)
# Line 855 | Line 1158 | public class LinkedTransferQueue<E> exte
1158          }
1159      }
1160  
858    // Support for resetting head/tail while deserializing
859    private void resetHeadAndTail() {
860        Node<E> dummy = new Node<E>(null, false);
861        UNSAFE.putObjectVolatile(this, headOffset,
862                                 new PaddedAtomicReference<Node<E>>(dummy));
863        UNSAFE.putObjectVolatile(this, tailOffset,
864                                 new PaddedAtomicReference<Node<E>>(dummy));
865        UNSAFE.putObjectVolatile(this, cleanMeOffset,
866                                 new PaddedAtomicReference<Node<E>>(null));
867    }
1161  
1162      // Unsafe mechanics
1163  
# Line 876 | Line 1169 | public class LinkedTransferQueue<E> exte
1169      private static final long cleanMeOffset =
1170          objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1171  
879
1172      static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1173                                    String field, Class<?> klazz) {
1174          try {
# Line 889 | Line 1181 | public class LinkedTransferQueue<E> exte
1181          }
1182      }
1183  
892    /**
893     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
894     * Replace with a simple call to Unsafe.getUnsafe when integrating
895     * into a jdk.
896     *
897     * @return a sun.misc.Unsafe
898     */
1184      private static sun.misc.Unsafe getUnsafe() {
1185          try {
1186              return sun.misc.Unsafe.getUnsafe();
# Line 916 | Line 1201 | public class LinkedTransferQueue<E> exte
1201              }
1202          }
1203      }
1204 +
1205   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines