ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.36 by jsr166, Fri Jul 31 07:30:29 2009 UTC vs.
Revision 1.94 by jsr166, Sat Oct 3 18:17:51 2015 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.AbstractQueue;
10   import java.util.Collection;
13 import java.util.ConcurrentModificationException;
11   import java.util.Iterator;
12   import java.util.NoSuchElementException;
13   import java.util.Queue;
14 + import java.util.concurrent.TimeUnit;
15   import java.util.concurrent.locks.LockSupport;
18 import java.util.concurrent.atomic.AtomicReference;
16  
17   /**
18 < * An unbounded {@linkplain TransferQueue} based on linked nodes.
18 > * An unbounded {@link TransferQueue} based on linked nodes.
19   * This queue orders elements FIFO (first-in-first-out) with respect
20   * to any given producer.  The <em>head</em> of the queue is that
21   * element that has been on the queue the longest time for some
22   * producer.  The <em>tail</em> of the queue is that element that has
23   * been on the queue the shortest time for some producer.
24   *
25 < * <p>Beware that, unlike in most collections, the {@code size}
26 < * method is <em>NOT</em> a constant-time operation. Because of the
25 > * <p>Beware that, unlike in most collections, the {@code size} method
26 > * is <em>NOT</em> a constant-time operation. Because of the
27   * asynchronous nature of these queues, determining the current number
28 < * of elements requires a traversal of the elements.
28 > * of elements requires a traversal of the elements, and so may report
29 > * inaccurate results if this collection is modified during traversal.
30 > * Additionally, the bulk operations {@code addAll},
31 > * {@code removeAll}, {@code retainAll}, {@code containsAll},
32 > * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
33 > * to be performed atomically. For example, an iterator operating
34 > * concurrently with an {@code addAll} operation might view only some
35 > * of the added elements.
36   *
37   * <p>This class and its iterator implement all of the
38   * <em>optional</em> methods of the {@link Collection} and {@link
# Line 54 | Line 58 | public class LinkedTransferQueue<E> exte
58      private static final long serialVersionUID = -3223113410248163686L;
59  
60      /*
61 <     * This class extends the approach used in FIFO-mode
58 <     * SynchronousQueues. See the internal documentation, as well as
59 <     * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
60 <     * Lea & Scott
61 <     * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
61 >     * *** Overview of Dual Queues with Slack ***
62       *
63 <     * The main extension is to provide different Wait modes for the
64 <     * main "xfer" method that puts or takes items.  These don't
65 <     * impact the basic dual-queue logic, but instead control whether
66 <     * or how threads block upon insertion of request or data nodes
67 <     * into the dual queue. It also uses slightly different
68 <     * conventions for tracking whether nodes are off-list or
69 <     * cancelled.
70 <     */
71 <
72 <    // Wait modes for xfer method
73 <    static final int NOWAIT  = 0;
74 <    static final int TIMEOUT = 1;
75 <    static final int WAIT    = 2;
76 <
77 <    /** The number of CPUs, for spin control */
78 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
79 <
80 <    /**
81 <     * The number of times to spin before blocking in timed waits.
82 <     * The value is empirically derived -- it works well across a
83 <     * variety of processors and OSes. Empirically, the best value
84 <     * seems not to vary with number of CPUs (beyond 2) so is just
85 <     * a constant.
86 <     */
87 <    static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
88 <
89 <    /**
90 <     * The number of times to spin before blocking in untimed waits.
91 <     * This is greater than timed value because untimed waits spin
92 <     * faster since they don't need to check times on each spin.
93 <     */
94 <    static final int maxUntimedSpins = maxTimedSpins * 16;
63 >     * Dual Queues, introduced by Scherer and Scott
64 >     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
65 >     * (linked) queues in which nodes may represent either data or
66 >     * requests.  When a thread tries to enqueue a data node, but
67 >     * encounters a request node, it instead "matches" and removes it;
68 >     * and vice versa for enqueuing requests. Blocking Dual Queues
69 >     * arrange that threads enqueuing unmatched requests block until
70 >     * other threads provide the match. Dual Synchronous Queues (see
71 >     * Scherer, Lea, & Scott
72 >     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
73 >     * additionally arrange that threads enqueuing unmatched data also
74 >     * block.  Dual Transfer Queues support all of these modes, as
75 >     * dictated by callers.
76 >     *
77 >     * A FIFO dual queue may be implemented using a variation of the
78 >     * Michael & Scott (M&S) lock-free queue algorithm
79 >     * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
80 >     * It maintains two pointer fields, "head", pointing to a
81 >     * (matched) node that in turn points to the first actual
82 >     * (unmatched) queue node (or null if empty); and "tail" that
83 >     * points to the last node on the queue (or again null if
84 >     * empty). For example, here is a possible queue with four data
85 >     * elements:
86 >     *
87 >     *  head                tail
88 >     *    |                   |
89 >     *    v                   v
90 >     *    M -> U -> U -> U -> U
91 >     *
92 >     * The M&S queue algorithm is known to be prone to scalability and
93 >     * overhead limitations when maintaining (via CAS) these head and
94 >     * tail pointers. This has led to the development of
95 >     * contention-reducing variants such as elimination arrays (see
96 >     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
97 >     * optimistic back pointers (see Ladan-Mozes & Shavit
98 >     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
99 >     * However, the nature of dual queues enables a simpler tactic for
100 >     * improving M&S-style implementations when dual-ness is needed.
101 >     *
102 >     * In a dual queue, each node must atomically maintain its match
103 >     * status. While there are other possible variants, we implement
104 >     * this here as: for a data-mode node, matching entails CASing an
105 >     * "item" field from a non-null data value to null upon match, and
106 >     * vice-versa for request nodes, CASing from null to a data
107 >     * value. (Note that the linearization properties of this style of
108 >     * queue are easy to verify -- elements are made available by
109 >     * linking, and unavailable by matching.) Compared to plain M&S
110 >     * queues, this property of dual queues requires one additional
111 >     * successful atomic operation per enq/deq pair. But it also
112 >     * enables lower cost variants of queue maintenance mechanics. (A
113 >     * variation of this idea applies even for non-dual queues that
114 >     * support deletion of interior elements, such as
115 >     * j.u.c.ConcurrentLinkedQueue.)
116 >     *
117 >     * Once a node is matched, its match status can never again
118 >     * change.  We may thus arrange that the linked list of them
119 >     * contain a prefix of zero or more matched nodes, followed by a
120 >     * suffix of zero or more unmatched nodes. (Note that we allow
121 >     * both the prefix and suffix to be zero length, which in turn
122 >     * means that we do not use a dummy header.)  If we were not
123 >     * concerned with either time or space efficiency, we could
124 >     * correctly perform enqueue and dequeue operations by traversing
125 >     * from a pointer to the initial node; CASing the item of the
126 >     * first unmatched node on match and CASing the next field of the
127 >     * trailing node on appends. (Plus some special-casing when
128 >     * initially empty).  While this would be a terrible idea in
129 >     * itself, it does have the benefit of not requiring ANY atomic
130 >     * updates on head/tail fields.
131 >     *
132 >     * We introduce here an approach that lies between the extremes of
133 >     * never versus always updating queue (head and tail) pointers.
134 >     * This offers a tradeoff between sometimes requiring extra
135 >     * traversal steps to locate the first and/or last unmatched
136 >     * nodes, versus the reduced overhead and contention of fewer
137 >     * updates to queue pointers. For example, a possible snapshot of
138 >     * a queue is:
139 >     *
140 >     *  head           tail
141 >     *    |              |
142 >     *    v              v
143 >     *    M -> M -> U -> U -> U -> U
144 >     *
145 >     * The best value for this "slack" (the targeted maximum distance
146 >     * between the value of "head" and the first unmatched node, and
147 >     * similarly for "tail") is an empirical matter. We have found
148 >     * that using very small constants in the range of 1-3 work best
149 >     * over a range of platforms. Larger values introduce increasing
150 >     * costs of cache misses and risks of long traversal chains, while
151 >     * smaller values increase CAS contention and overhead.
152 >     *
153 >     * Dual queues with slack differ from plain M&S dual queues by
154 >     * virtue of only sometimes updating head or tail pointers when
155 >     * matching, appending, or even traversing nodes; in order to
156 >     * maintain a targeted slack.  The idea of "sometimes" may be
157 >     * operationalized in several ways. The simplest is to use a
158 >     * per-operation counter incremented on each traversal step, and
159 >     * to try (via CAS) to update the associated queue pointer
160 >     * whenever the count exceeds a threshold. Another, that requires
161 >     * more overhead, is to use random number generators to update
162 >     * with a given probability per traversal step.
163 >     *
164 >     * In any strategy along these lines, because CASes updating
165 >     * fields may fail, the actual slack may exceed targeted
166 >     * slack. However, they may be retried at any time to maintain
167 >     * targets.  Even when using very small slack values, this
168 >     * approach works well for dual queues because it allows all
169 >     * operations up to the point of matching or appending an item
170 >     * (hence potentially allowing progress by another thread) to be
171 >     * read-only, thus not introducing any further contention. As
172 >     * described below, we implement this by performing slack
173 >     * maintenance retries only after these points.
174 >     *
175 >     * As an accompaniment to such techniques, traversal overhead can
176 >     * be further reduced without increasing contention of head
177 >     * pointer updates: Threads may sometimes shortcut the "next" link
178 >     * path from the current "head" node to be closer to the currently
179 >     * known first unmatched node, and similarly for tail. Again, this
180 >     * may be triggered with using thresholds or randomization.
181 >     *
182 >     * These ideas must be further extended to avoid unbounded amounts
183 >     * of costly-to-reclaim garbage caused by the sequential "next"
184 >     * links of nodes starting at old forgotten head nodes: As first
185 >     * described in detail by Boehm
186 >     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
187 >     * delays noticing that any arbitrarily old node has become
188 >     * garbage, all newer dead nodes will also be unreclaimed.
189 >     * (Similar issues arise in non-GC environments.)  To cope with
190 >     * this in our implementation, upon CASing to advance the head
191 >     * pointer, we set the "next" link of the previous head to point
192 >     * only to itself; thus limiting the length of connected dead lists.
193 >     * (We also take similar care to wipe out possibly garbage
194 >     * retaining values held in other Node fields.)  However, doing so
195 >     * adds some further complexity to traversal: If any "next"
196 >     * pointer links to itself, it indicates that the current thread
197 >     * has lagged behind a head-update, and so the traversal must
198 >     * continue from the "head".  Traversals trying to find the
199 >     * current tail starting from "tail" may also encounter
200 >     * self-links, in which case they also continue at "head".
201 >     *
202 >     * It is tempting in slack-based scheme to not even use CAS for
203 >     * updates (similarly to Ladan-Mozes & Shavit). However, this
204 >     * cannot be done for head updates under the above link-forgetting
205 >     * mechanics because an update may leave head at a detached node.
206 >     * And while direct writes are possible for tail updates, they
207 >     * increase the risk of long retraversals, and hence long garbage
208 >     * chains, which can be much more costly than is worthwhile
209 >     * considering that the cost difference of performing a CAS vs
210 >     * write is smaller when they are not triggered on each operation
211 >     * (especially considering that writes and CASes equally require
212 >     * additional GC bookkeeping ("write barriers") that are sometimes
213 >     * more costly than the writes themselves because of contention).
214 >     *
215 >     * *** Overview of implementation ***
216 >     *
217 >     * We use a threshold-based approach to updates, with a slack
218 >     * threshold of two -- that is, we update head/tail when the
219 >     * current pointer appears to be two or more steps away from the
220 >     * first/last node. The slack value is hard-wired: a path greater
221 >     * than one is naturally implemented by checking equality of
222 >     * traversal pointers except when the list has only one element,
223 >     * in which case we keep slack threshold at one. Avoiding tracking
224 >     * explicit counts across method calls slightly simplifies an
225 >     * already-messy implementation. Using randomization would
226 >     * probably work better if there were a low-quality dirt-cheap
227 >     * per-thread one available, but even ThreadLocalRandom is too
228 >     * heavy for these purposes.
229 >     *
230 >     * With such a small slack threshold value, it is not worthwhile
231 >     * to augment this with path short-circuiting (i.e., unsplicing
232 >     * interior nodes) except in the case of cancellation/removal (see
233 >     * below).
234 >     *
235 >     * We allow both the head and tail fields to be null before any
236 >     * nodes are enqueued; initializing upon first append.  This
237 >     * simplifies some other logic, as well as providing more
238 >     * efficient explicit control paths instead of letting JVMs insert
239 >     * implicit NullPointerExceptions when they are null.  While not
240 >     * currently fully implemented, we also leave open the possibility
241 >     * of re-nulling these fields when empty (which is complicated to
242 >     * arrange, for little benefit.)
243 >     *
244 >     * All enqueue/dequeue operations are handled by the single method
245 >     * "xfer" with parameters indicating whether to act as some form
246 >     * of offer, put, poll, take, or transfer (each possibly with
247 >     * timeout). The relative complexity of using one monolithic
248 >     * method outweighs the code bulk and maintenance problems of
249 >     * using separate methods for each case.
250 >     *
251 >     * Operation consists of up to three phases. The first is
252 >     * implemented within method xfer, the second in tryAppend, and
253 >     * the third in method awaitMatch.
254 >     *
255 >     * 1. Try to match an existing node
256 >     *
257 >     *    Starting at head, skip already-matched nodes until finding
258 >     *    an unmatched node of opposite mode, if one exists, in which
259 >     *    case matching it and returning, also if necessary updating
260 >     *    head to one past the matched node (or the node itself if the
261 >     *    list has no other unmatched nodes). If the CAS misses, then
262 >     *    a loop retries advancing head by two steps until either
263 >     *    success or the slack is at most two. By requiring that each
264 >     *    attempt advances head by two (if applicable), we ensure that
265 >     *    the slack does not grow without bound. Traversals also check
266 >     *    if the initial head is now off-list, in which case they
267 >     *    start at the new head.
268 >     *
269 >     *    If no candidates are found and the call was untimed
270 >     *    poll/offer, (argument "how" is NOW) return.
271 >     *
272 >     * 2. Try to append a new node (method tryAppend)
273 >     *
274 >     *    Starting at current tail pointer, find the actual last node
275 >     *    and try to append a new node (or if head was null, establish
276 >     *    the first node). Nodes can be appended only if their
277 >     *    predecessors are either already matched or are of the same
278 >     *    mode. If we detect otherwise, then a new node with opposite
279 >     *    mode must have been appended during traversal, so we must
280 >     *    restart at phase 1. The traversal and update steps are
281 >     *    otherwise similar to phase 1: Retrying upon CAS misses and
282 >     *    checking for staleness.  In particular, if a self-link is
283 >     *    encountered, then we can safely jump to a node on the list
284 >     *    by continuing the traversal at current head.
285 >     *
286 >     *    On successful append, if the call was ASYNC, return.
287 >     *
288 >     * 3. Await match or cancellation (method awaitMatch)
289 >     *
290 >     *    Wait for another thread to match node; instead cancelling if
291 >     *    the current thread was interrupted or the wait timed out. On
292 >     *    multiprocessors, we use front-of-queue spinning: If a node
293 >     *    appears to be the first unmatched node in the queue, it
294 >     *    spins a bit before blocking. In either case, before blocking
295 >     *    it tries to unsplice any nodes between the current "head"
296 >     *    and the first unmatched node.
297 >     *
298 >     *    Front-of-queue spinning vastly improves performance of
299 >     *    heavily contended queues. And so long as it is relatively
300 >     *    brief and "quiet", spinning does not much impact performance
301 >     *    of less-contended queues.  During spins threads check their
302 >     *    interrupt status and generate a thread-local random number
303 >     *    to decide to occasionally perform a Thread.yield. While
304 >     *    yield has underdefined specs, we assume that it might help,
305 >     *    and will not hurt, in limiting impact of spinning on busy
306 >     *    systems.  We also use smaller (1/2) spins for nodes that are
307 >     *    not known to be front but whose predecessors have not
308 >     *    blocked -- these "chained" spins avoid artifacts of
309 >     *    front-of-queue rules which otherwise lead to alternating
310 >     *    nodes spinning vs blocking. Further, front threads that
311 >     *    represent phase changes (from data to request node or vice
312 >     *    versa) compared to their predecessors receive additional
313 >     *    chained spins, reflecting longer paths typically required to
314 >     *    unblock threads during phase changes.
315 >     *
316 >     *
317 >     * ** Unlinking removed interior nodes **
318 >     *
319 >     * In addition to minimizing garbage retention via self-linking
320 >     * described above, we also unlink removed interior nodes. These
321 >     * may arise due to timed out or interrupted waits, or calls to
322 >     * remove(x) or Iterator.remove.  Normally, given a node that was
323 >     * at one time known to be the predecessor of some node s that is
324 >     * to be removed, we can unsplice s by CASing the next field of
325 >     * its predecessor if it still points to s (otherwise s must
326 >     * already have been removed or is now offlist). But there are two
327 >     * situations in which we cannot guarantee to make node s
328 >     * unreachable in this way: (1) If s is the trailing node of list
329 >     * (i.e., with null next), then it is pinned as the target node
330 >     * for appends, so can only be removed later after other nodes are
331 >     * appended. (2) We cannot necessarily unlink s given a
332 >     * predecessor node that is matched (including the case of being
333 >     * cancelled): the predecessor may already be unspliced, in which
334 >     * case some previous reachable node may still point to s.
335 >     * (For further explanation see Herlihy & Shavit "The Art of
336 >     * Multiprocessor Programming" chapter 9).  Although, in both
337 >     * cases, we can rule out the need for further action if either s
338 >     * or its predecessor are (or can be made to be) at, or fall off
339 >     * from, the head of list.
340 >     *
341 >     * Without taking these into account, it would be possible for an
342 >     * unbounded number of supposedly removed nodes to remain
343 >     * reachable.  Situations leading to such buildup are uncommon but
344 >     * can occur in practice; for example when a series of short timed
345 >     * calls to poll repeatedly time out but never otherwise fall off
346 >     * the list because of an untimed call to take at the front of the
347 >     * queue.
348 >     *
349 >     * When these cases arise, rather than always retraversing the
350 >     * entire list to find an actual predecessor to unlink (which
351 >     * won't help for case (1) anyway), we record a conservative
352 >     * estimate of possible unsplice failures (in "sweepVotes").
353 >     * We trigger a full sweep when the estimate exceeds a threshold
354 >     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
355 >     * removal failures to tolerate before sweeping through, unlinking
356 >     * cancelled nodes that were not unlinked upon initial removal.
357 >     * We perform sweeps by the thread hitting threshold (rather than
358 >     * background threads or by spreading work to other threads)
359 >     * because in the main contexts in which removal occurs, the
360 >     * caller is already timed-out, cancelled, or performing a
361 >     * potentially O(n) operation (e.g. remove(x)), none of which are
362 >     * time-critical enough to warrant the overhead that alternatives
363 >     * would impose on other threads.
364 >     *
365 >     * Because the sweepVotes estimate is conservative, and because
366 >     * nodes become unlinked "naturally" as they fall off the head of
367 >     * the queue, and because we allow votes to accumulate even while
368 >     * sweeps are in progress, there are typically significantly fewer
369 >     * such nodes than estimated.  Choice of a threshold value
370 >     * balances the likelihood of wasted effort and contention, versus
371 >     * providing a worst-case bound on retention of interior nodes in
372 >     * quiescent queues. The value defined below was chosen
373 >     * empirically to balance these under various timeout scenarios.
374 >     *
375 >     * Note that we cannot self-link unlinked interior nodes during
376 >     * sweeps. However, the associated garbage chains terminate when
377 >     * some successor ultimately falls off the head of the list and is
378 >     * self-linked.
379 >     */
380 >
381 >    /** True if on multiprocessor */
382 >    private static final boolean MP =
383 >        Runtime.getRuntime().availableProcessors() > 1;
384 >
385 >    /**
386 >     * The number of times to spin (with randomly interspersed calls
387 >     * to Thread.yield) on multiprocessor before blocking when a node
388 >     * is apparently the first waiter in the queue.  See above for
389 >     * explanation. Must be a power of two. The value is empirically
390 >     * derived -- it works pretty well across a variety of processors,
391 >     * numbers of CPUs, and OSes.
392 >     */
393 >    private static final int FRONT_SPINS   = 1 << 7;
394 >
395 >    /**
396 >     * The number of times to spin before blocking when a node is
397 >     * preceded by another node that is apparently spinning.  Also
398 >     * serves as an increment to FRONT_SPINS on phase changes, and as
399 >     * base average frequency for yielding during spins. Must be a
400 >     * power of two.
401 >     */
402 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
403 >
404 >    /**
405 >     * The maximum number of estimated removal failures (sweepVotes)
406 >     * to tolerate before sweeping through the queue unlinking
407 >     * cancelled nodes that were not unlinked upon initial
408 >     * removal. See above for explanation. The value must be at least
409 >     * two to avoid useless sweeps when removing trailing nodes.
410 >     */
411 >    static final int SWEEP_THRESHOLD = 32;
412 >
413 >    /**
414 >     * Queue nodes. Uses Object, not E, for items to allow forgetting
415 >     * them after use.  Relies heavily on Unsafe mechanics to minimize
416 >     * unnecessary ordering constraints: Writes that are intrinsically
417 >     * ordered wrt other accesses or CASes use simple relaxed forms.
418 >     */
419 >    static final class Node {
420 >        final boolean isData;   // false if this is a request node
421 >        volatile Object item;   // initially non-null if isData; CASed to match
422 >        volatile Node next;
423 >        volatile Thread waiter; // null until waiting
424  
425 <    /**
426 <     * The number of nanoseconds for which it is faster to spin
427 <     * rather than to use timed park. A rough estimate suffices.
428 <     */
100 <    static final long spinForTimeoutThreshold = 1000L;
425 >        // CAS methods for fields
426 >        final boolean casNext(Node cmp, Node val) {
427 >            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
428 >        }
429  
430 <    /**
431 <     * Node class for LinkedTransferQueue. Opportunistically
432 <     * subclasses from AtomicReference to represent item. Uses Object,
433 <     * not E, to allow setting item to "this" after use, to avoid
106 <     * garbage retention. Similarly, setting the next field to this is
107 <     * used as sentinel that node is off list.
108 <     */
109 <    static final class Node<E> extends AtomicReference<Object> {
110 <        volatile Node<E> next;
111 <        volatile Thread waiter;       // to control park/unpark
112 <        final boolean isData;
430 >        final boolean casItem(Object cmp, Object val) {
431 >            // assert cmp == null || cmp.getClass() != Node.class;
432 >            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
433 >        }
434  
435 <        Node(E item, boolean isData) {
436 <            super(item);
435 >        /**
436 >         * Constructs a new node.  Uses relaxed write because item can
437 >         * only be seen after publication via casNext.
438 >         */
439 >        Node(Object item, boolean isData) {
440 >            UNSAFE.putObject(this, itemOffset, item); // relaxed write
441              this.isData = isData;
442          }
443  
444 <        // Unsafe mechanics
444 >        /**
445 >         * Links node to itself to avoid garbage retention.  Called
446 >         * only after CASing head field, so uses relaxed write.
447 >         */
448 >        final void forgetNext() {
449 >            UNSAFE.putObject(this, nextOffset, this);
450 >        }
451  
452 <        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
453 <        private static final long nextOffset =
454 <            objectFieldOffset(UNSAFE, "next", Node.class);
452 >        /**
453 >         * Sets item to self and waiter to null, to avoid garbage
454 >         * retention after matching or cancelling. Uses relaxed writes
455 >         * because order is already constrained in the only calling
456 >         * contexts: item is forgotten only after volatile/atomic
457 >         * mechanics that extract items.  Similarly, clearing waiter
458 >         * follows either CAS or return from park (if ever parked;
459 >         * else we don't care).
460 >         */
461 >        final void forgetContents() {
462 >            UNSAFE.putObject(this, itemOffset, this);
463 >            UNSAFE.putObject(this, waiterOffset, null);
464 >        }
465  
466 <        final boolean casNext(Node<E> cmp, Node<E> val) {
467 <            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
466 >        /**
467 >         * Returns true if this node has been matched, including the
468 >         * case of artificial matches due to cancellation.
469 >         */
470 >        final boolean isMatched() {
471 >            Object x = item;
472 >            return (x == this) || ((x == null) == isData);
473 >        }
474 >
475 >        /**
476 >         * Returns true if this is an unmatched request node.
477 >         */
478 >        final boolean isUnmatchedRequest() {
479 >            return !isData && item == null;
480          }
481  
482 <        final void clearNext() {
483 <            UNSAFE.putOrderedObject(this, nextOffset, this);
482 >        /**
483 >         * Returns true if a node with the given mode cannot be
484 >         * appended to this node because this node is unmatched and
485 >         * has opposite data mode.
486 >         */
487 >        final boolean cannotPrecede(boolean haveData) {
488 >            boolean d = isData;
489 >            Object x;
490 >            return d != haveData && (x = item) != this && (x != null) == d;
491          }
492  
493          /**
494 <         * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
135 <         * Replace with a simple call to Unsafe.getUnsafe when integrating
136 <         * into a jdk.
137 <         *
138 <         * @return a sun.misc.Unsafe
494 >         * Tries to artificially match a data node -- used by remove.
495           */
496 <        private static sun.misc.Unsafe getUnsafe() {
497 <            try {
498 <                return sun.misc.Unsafe.getUnsafe();
499 <            } catch (SecurityException se) {
500 <                try {
501 <                    return java.security.AccessController.doPrivileged
146 <                        (new java.security
147 <                         .PrivilegedExceptionAction<sun.misc.Unsafe>() {
148 <                            public sun.misc.Unsafe run() throws Exception {
149 <                                java.lang.reflect.Field f = sun.misc
150 <                                    .Unsafe.class.getDeclaredField("theUnsafe");
151 <                                f.setAccessible(true);
152 <                                return (sun.misc.Unsafe) f.get(null);
153 <                            }});
154 <                } catch (java.security.PrivilegedActionException e) {
155 <                    throw new RuntimeException("Could not initialize intrinsics",
156 <                                               e.getCause());
157 <                }
496 >        final boolean tryMatchData() {
497 >            // assert isData;
498 >            Object x = item;
499 >            if (x != null && x != this && casItem(x, null)) {
500 >                LockSupport.unpark(waiter);
501 >                return true;
502              }
503 +            return false;
504          }
505  
506          private static final long serialVersionUID = -3375979862319811754L;
162    }
507  
508 <    /**
509 <     * Padded version of AtomicReference used for head, tail and
510 <     * cleanMe, to alleviate contention across threads CASing one vs
511 <     * the other.
512 <     */
513 <    static final class PaddedAtomicReference<T> extends AtomicReference<T> {
514 <        // enough padding for 64bytes with 4byte refs
515 <        Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
516 <        PaddedAtomicReference(T r) { super(r); }
517 <        private static final long serialVersionUID = 8170090609809740854L;
508 >        // Unsafe mechanics
509 >        private static final sun.misc.Unsafe UNSAFE;
510 >        private static final long itemOffset;
511 >        private static final long nextOffset;
512 >        private static final long waiterOffset;
513 >        static {
514 >            try {
515 >                UNSAFE = getUnsafe();
516 >                Class<?> k = Node.class;
517 >                itemOffset = UNSAFE.objectFieldOffset
518 >                    (k.getDeclaredField("item"));
519 >                nextOffset = UNSAFE.objectFieldOffset
520 >                    (k.getDeclaredField("next"));
521 >                waiterOffset = UNSAFE.objectFieldOffset
522 >                    (k.getDeclaredField("waiter"));
523 >            } catch (Exception e) {
524 >                throw new Error(e);
525 >            }
526 >        }
527      }
528  
529 +    /** head of the queue; null until first enqueue */
530 +    transient volatile Node head;
531  
532 <    /** head of the queue */
533 <    private transient final PaddedAtomicReference<Node<E>> head;
532 >    /** tail of the queue; null until first append */
533 >    private transient volatile Node tail;
534  
535 <    /** tail of the queue */
536 <    private transient final PaddedAtomicReference<Node<E>> tail;
535 >    /** The number of apparent failures to unsplice removed nodes */
536 >    private transient volatile int sweepVotes;
537  
538 <    /**
539 <     * Reference to a cancelled node that might not yet have been
540 <     * unlinked from queue because it was the last inserted node
541 <     * when it cancelled.
187 <     */
188 <    private transient final PaddedAtomicReference<Node<E>> cleanMe;
538 >    // CAS methods for fields
539 >    private boolean casTail(Node cmp, Node val) {
540 >        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
541 >    }
542  
543 <    /**
544 <     * Tries to cas nh as new head; if successful, unlink
545 <     * old head's next node to avoid garbage retention.
543 >    private boolean casHead(Node cmp, Node val) {
544 >        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
545 >    }
546 >
547 >    private boolean casSweepVotes(int cmp, int val) {
548 >        return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
549 >    }
550 >
551 >    /*
552 >     * Possible values for "how" argument in xfer method.
553       */
554 <    private boolean advanceHead(Node<E> h, Node<E> nh) {
555 <        if (h == head.get() && head.compareAndSet(h, nh)) {
556 <            h.clearNext(); // forget old next
557 <            return true;
558 <        }
559 <        return false;
554 >    private static final int NOW   = 0; // for untimed poll, tryTransfer
555 >    private static final int ASYNC = 1; // for offer, put, add
556 >    private static final int SYNC  = 2; // for transfer, take
557 >    private static final int TIMED = 3; // for timed poll, tryTransfer
558 >
559 >    @SuppressWarnings("unchecked")
560 >    static <E> E cast(Object item) {
561 >        // assert item == null || item.getClass() != Node.class;
562 >        return (E) item;
563      }
564  
565      /**
566 <     * Puts or takes an item. Used for most queue operations (except
567 <     * poll() and tryTransfer()). See the similar code in
568 <     * SynchronousQueue for detailed explanation.
569 <     *
570 <     * @param e the item or if null, signifies that this is a take
571 <     * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
572 <     * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
573 <     * @return an item, or null on failure
574 <     */
575 <    private E xfer(E e, int mode, long nanos) {
576 <        boolean isData = (e != null);
577 <        Node<E> s = null;
578 <        final PaddedAtomicReference<Node<E>> head = this.head;
216 <        final PaddedAtomicReference<Node<E>> tail = this.tail;
217 <
218 <        for (;;) {
219 <            Node<E> t = tail.get();
220 <            Node<E> h = head.get();
566 >     * Implements all queuing methods. See above for explanation.
567 >     *
568 >     * @param e the item or null for take
569 >     * @param haveData true if this is a put, else a take
570 >     * @param how NOW, ASYNC, SYNC, or TIMED
571 >     * @param nanos timeout in nanosecs, used only if mode is TIMED
572 >     * @return an item if matched, else e
573 >     * @throws NullPointerException if haveData mode but e is null
574 >     */
575 >    private E xfer(E e, boolean haveData, int how, long nanos) {
576 >        if (haveData && (e == null))
577 >            throw new NullPointerException();
578 >        Node s = null;                        // the node to append, if needed
579  
580 <            if (t != null && (t == h || t.isData == isData)) {
581 <                if (s == null)
224 <                    s = new Node<E>(e, isData);
225 <                Node<E> last = t.next;
226 <                if (last != null) {
227 <                    if (t == tail.get())
228 <                        tail.compareAndSet(t, last);
229 <                }
230 <                else if (t.casNext(null, s)) {
231 <                    tail.compareAndSet(t, s);
232 <                    return awaitFulfill(t, s, e, mode, nanos);
233 <                }
234 <            }
580 >        retry:
581 >        for (;;) {                            // restart on append race
582  
583 <            else if (h != null) {
584 <                Node<E> first = h.next;
585 <                if (t == tail.get() && first != null &&
586 <                    advanceHead(h, first)) {
587 <                    Object x = first.get();
588 <                    if (x != first && first.compareAndSet(x, e)) {
589 <                        LockSupport.unpark(first.waiter);
590 <                        return isData ? e : (E) x;
583 >            for (Node h = head, p = h; p != null;) { // find & match first node
584 >                boolean isData = p.isData;
585 >                Object item = p.item;
586 >                if (item != p && (item != null) == isData) { // unmatched
587 >                    if (isData == haveData)   // can't match
588 >                        break;
589 >                    if (p.casItem(item, e)) { // match
590 >                        for (Node q = p; q != h;) {
591 >                            Node n = q.next;  // update by 2 unless singleton
592 >                            if (head == h && casHead(h, n == null ? q : n)) {
593 >                                h.forgetNext();
594 >                                break;
595 >                            }                 // advance and retry
596 >                            if ((h = head)   == null ||
597 >                                (q = h.next) == null || !q.isMatched())
598 >                                break;        // unless slack < 2
599 >                        }
600 >                        LockSupport.unpark(p.waiter);
601 >                        return LinkedTransferQueue.<E>cast(item);
602                      }
603                  }
604 +                Node n = p.next;
605 +                p = (p != n) ? n : (h = head); // Use head if p offlist
606              }
607 +
608 +            if (how != NOW) {                 // No matches available
609 +                if (s == null)
610 +                    s = new Node(e, haveData);
611 +                Node pred = tryAppend(s, haveData);
612 +                if (pred == null)
613 +                    continue retry;           // lost race vs opposite mode
614 +                if (how != ASYNC)
615 +                    return awaitMatch(s, pred, e, (how == TIMED), nanos);
616 +            }
617 +            return e; // not waiting
618          }
619      }
620  
250
621      /**
622 <     * Version of xfer for poll() and tryTransfer, which
623 <     * simplifies control paths both here and in xfer.
624 <     */
625 <    private E fulfill(E e) {
626 <        boolean isData = (e != null);
627 <        final PaddedAtomicReference<Node<E>> head = this.head;
628 <        final PaddedAtomicReference<Node<E>> tail = this.tail;
629 <
630 <        for (;;) {
631 <            Node<E> t = tail.get();
632 <            Node<E> h = head.get();
633 <
634 <            if (t != null && (t == h || t.isData == isData)) {
635 <                Node<E> last = t.next;
636 <                if (t == tail.get()) {
637 <                    if (last != null)
638 <                        tail.compareAndSet(t, last);
639 <                    else
640 <                        return null;
641 <                }
642 <            }
643 <            else if (h != null) {
644 <                Node<E> first = h.next;
645 <                if (t == tail.get() &&
646 <                    first != null &&
647 <                    advanceHead(h, first)) {
648 <                    Object x = first.get();
649 <                    if (x != first && first.compareAndSet(x, e)) {
280 <                        LockSupport.unpark(first.waiter);
281 <                        return isData ? e : (E) x;
282 <                    }
622 >     * Tries to append node s as tail.
623 >     *
624 >     * @param s the node to append
625 >     * @param haveData true if appending in data mode
626 >     * @return null on failure due to losing race with append in
627 >     * different mode, else s's predecessor, or s itself if no
628 >     * predecessor
629 >     */
630 >    private Node tryAppend(Node s, boolean haveData) {
631 >        for (Node t = tail, p = t;;) {        // move p to last node and append
632 >            Node n, u;                        // temps for reads of next & tail
633 >            if (p == null && (p = head) == null) {
634 >                if (casHead(null, s))
635 >                    return s;                 // initialize
636 >            }
637 >            else if (p.cannotPrecede(haveData))
638 >                return null;                  // lost race vs opposite mode
639 >            else if ((n = p.next) != null)    // not last; keep traversing
640 >                p = p != t && t != (u = tail) ? (t = u) : // stale tail
641 >                    (p != n) ? n : null;      // restart if off list
642 >            else if (!p.casNext(null, s))
643 >                p = p.next;                   // re-read on CAS failure
644 >            else {
645 >                if (p != t) {                 // update if slack now >= 2
646 >                    while ((tail != t || !casTail(t, s)) &&
647 >                           (t = tail)   != null &&
648 >                           (s = t.next) != null && // advance and retry
649 >                           (s = s.next) != null && s != t);
650                  }
651 +                return p;
652              }
653          }
654      }
655  
656      /**
657 <     * Spins/blocks until node s is fulfilled or caller gives up,
290 <     * depending on wait mode.
657 >     * Spins/yields/blocks until node s is matched or caller gives up.
658       *
292     * @param pred the predecessor of waiting node
659       * @param s the waiting node
660 +     * @param pred the predecessor of s, or s itself if it has no
661 +     * predecessor, or null if unknown (the null case does not occur
662 +     * in any current calls but may in possible future extensions)
663       * @param e the comparison value for checking match
664 <     * @param mode mode
665 <     * @param nanos timeout value
666 <     * @return matched item, or s if cancelled
667 <     */
668 <    private E awaitFulfill(Node<E> pred, Node<E> s, E e,
669 <                           int mode, long nanos) {
301 <        if (mode == NOWAIT)
302 <            return null;
303 <
304 <        long lastTime = (mode == TIMEOUT) ? System.nanoTime() : 0;
664 >     * @param timed if true, wait only until timeout elapses
665 >     * @param nanos timeout in nanosecs, used only if timed is true
666 >     * @return matched item, or e if unmatched on interrupt or timeout
667 >     */
668 >    private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
669 >        long lastTime = timed ? System.nanoTime() : 0L;
670          Thread w = Thread.currentThread();
671 <        int spins = -1; // set to desired spin count below
671 >        int spins = -1; // initialized after first item and cancel checks
672 >        ThreadLocalRandom randomYields = null; // bound if needed
673 >
674          for (;;) {
675 <            if (w.isInterrupted())
676 <                s.compareAndSet(e, s);
677 <            Object x = s.get();
678 <            if (x != e) {                 // Node was matched or cancelled
679 <                advanceHead(pred, s);     // unlink if head
680 <                if (x == s) {             // was cancelled
681 <                    clean(pred, s);
682 <                    return null;
683 <                }
684 <                else if (x != null) {
685 <                    s.set(s);             // avoid garbage retention
686 <                    return (E) x;
687 <                }
688 <                else
689 <                    return e;
675 >            Object item = s.item;
676 >            if (item != e) {                  // matched
677 >                // assert item != s;
678 >                s.forgetContents();           // avoid garbage
679 >                return LinkedTransferQueue.<E>cast(item);
680 >            }
681 >            if ((w.isInterrupted() || (timed && nanos <= 0L)) &&
682 >                    s.casItem(e, s)) {        // cancel
683 >                unsplice(pred, s);
684 >                return e;
685 >            }
686 >
687 >            if (spins < 0) {                  // establish spins at/near front
688 >                if ((spins = spinsFor(pred, s.isData)) > 0)
689 >                    randomYields = ThreadLocalRandom.current();
690 >            }
691 >            else if (spins > 0) {             // spin
692 >                --spins;
693 >                if (randomYields.nextInt(CHAINED_SPINS) == 0)
694 >                    Thread.yield();           // occasionally yield
695              }
696 <            if (mode == TIMEOUT) {
696 >            else if (s.waiter == null) {
697 >                s.waiter = w;                 // request unpark then recheck
698 >            }
699 >            else if (timed) {
700                  long now = System.nanoTime();
701 <                nanos -= now - lastTime;
701 >                if ((nanos -= now - lastTime) > 0)
702 >                    LockSupport.parkNanos(this, nanos);
703                  lastTime = now;
328                if (nanos <= 0) {
329                    s.compareAndSet(e, s); // try to cancel
330                    continue;
331                }
332            }
333            if (spins < 0) {
334                Node<E> h = head.get(); // only spin if at head
335                spins = ((h != null && h.next == s) ?
336                         ((mode == TIMEOUT) ?
337                          maxTimedSpins : maxUntimedSpins) : 0);
704              }
705 <            if (spins > 0)
340 <                --spins;
341 <            else if (s.waiter == null)
342 <                s.waiter = w;
343 <            else if (mode != TIMEOUT) {
705 >            else {
706                  LockSupport.park(this);
345                s.waiter = null;
346                spins = -1;
347            }
348            else if (nanos > spinForTimeoutThreshold) {
349                LockSupport.parkNanos(this, nanos);
350                s.waiter = null;
351                spins = -1;
707              }
708          }
709      }
710  
711      /**
712 <     * Returns validated tail for use in cleaning methods.
712 >     * Returns spin/yield value for a node with given predecessor and
713 >     * data mode. See above for explanation.
714       */
715 <    private Node<E> getValidatedTail() {
716 <        for (;;) {
717 <            Node<E> h = head.get();
718 <            Node<E> first = h.next;
719 <            if (first != null && first.next == first) { // help advance
720 <                advanceHead(h, first);
721 <                continue;
722 <            }
367 <            Node<E> t = tail.get();
368 <            Node<E> last = t.next;
369 <            if (t == tail.get()) {
370 <                if (last != null)
371 <                    tail.compareAndSet(t, last); // help advance
372 <                else
373 <                    return t;
374 <            }
715 >    private static int spinsFor(Node pred, boolean haveData) {
716 >        if (MP && pred != null) {
717 >            if (pred.isData != haveData)      // phase change
718 >                return FRONT_SPINS + CHAINED_SPINS;
719 >            if (pred.isMatched())             // probably at front
720 >                return FRONT_SPINS;
721 >            if (pred.waiter == null)          // pred apparently spinning
722 >                return CHAINED_SPINS;
723          }
724 +        return 0;
725      }
726  
727 +    /* -------------- Traversal methods -------------- */
728 +
729      /**
730 <     * Gets rid of cancelled node s with original predecessor pred.
731 <     *
732 <     * @param pred predecessor of cancelled node
733 <     * @param s the cancelled node
730 >     * Returns the successor of p, or the head node if p.next has been
731 >     * linked to self, which will only be true if traversing with a
732 >     * stale pointer that is now off the list.
733 >     */
734 >    final Node succ(Node p) {
735 >        Node next = p.next;
736 >        return (p == next) ? head : next;
737 >    }
738 >
739 >    /**
740 >     * Returns the first unmatched node of the given mode, or null if
741 >     * none.  Used by methods isEmpty, hasWaitingConsumer.
742       */
743 <    private void clean(Node<E> pred, Node<E> s) {
744 <        Thread w = s.waiter;
745 <        if (w != null) {             // Wake up thread
746 <            s.waiter = null;
747 <            if (w != Thread.currentThread())
748 <                LockSupport.unpark(w);
743 >    private Node firstOfMode(boolean isData) {
744 >        for (Node p = head; p != null; p = succ(p)) {
745 >            if (!p.isMatched())
746 >                return (p.isData == isData) ? p : null;
747 >        }
748 >        return null;
749 >    }
750 >
751 >    /**
752 >     * Returns the item in the first unmatched node with isData; or
753 >     * null if none.  Used by peek.
754 >     */
755 >    private E firstDataItem() {
756 >        for (Node p = head; p != null; p = succ(p)) {
757 >            Object item = p.item;
758 >            if (p.isData) {
759 >                if (item != null && item != p)
760 >                    return LinkedTransferQueue.<E>cast(item);
761 >            }
762 >            else if (item == null)
763 >                return null;
764          }
765 +        return null;
766 +    }
767  
768 <        if (pred == null)
769 <            return;
768 >    /**
769 >     * Traverses and counts unmatched nodes of the given mode.
770 >     * Used by methods size and getWaitingConsumerCount.
771 >     */
772 >    private int countOfMode(boolean data) {
773 >        int count = 0;
774 >        for (Node p = head; p != null; ) {
775 >            if (!p.isMatched()) {
776 >                if (p.isData != data)
777 >                    return 0;
778 >                if (++count == Integer.MAX_VALUE) // saturated
779 >                    break;
780 >            }
781 >            Node n = p.next;
782 >            if (n != p)
783 >                p = n;
784 >            else {
785 >                count = 0;
786 >                p = head;
787 >            }
788 >        }
789 >        return count;
790 >    }
791 >
792 >    final class Itr implements Iterator<E> {
793 >        private Node nextNode;   // next node to return item for
794 >        private E nextItem;      // the corresponding item
795 >        private Node lastRet;    // last returned node, to support remove
796 >        private Node lastPred;   // predecessor to unlink lastRet
797  
798 <        /*
799 <         * At any given time, exactly one node on list cannot be
397 <         * deleted -- the last inserted node. To accommodate this, if
398 <         * we cannot delete s, we save its predecessor as "cleanMe",
399 <         * processing the previously saved version first. At least one
400 <         * of node s or the node previously saved can always be
401 <         * processed, so this always terminates.
798 >        /**
799 >         * Moves to next node after prev, or first node if prev null.
800           */
801 <        while (pred.next == s) {
802 <            Node<E> oldpred = reclean();  // First, help get rid of cleanMe
803 <            Node<E> t = getValidatedTail();
804 <            if (s != t) {               // If not tail, try to unsplice
805 <                Node<E> sn = s.next;      // s.next == s means s already off list
806 <                if (sn == s || pred.casNext(s, sn))
801 >        private void advance(Node prev) {
802 >            /*
803 >             * To track and avoid buildup of deleted nodes in the face
804 >             * of calls to both Queue.remove and Itr.remove, we must
805 >             * include variants of unsplice and sweep upon each
806 >             * advance: Upon Itr.remove, we may need to catch up links
807 >             * from lastPred, and upon other removes, we might need to
808 >             * skip ahead from stale nodes and unsplice deleted ones
809 >             * found while advancing.
810 >             */
811 >
812 >            Node r, b; // reset lastPred upon possible deletion of lastRet
813 >            if ((r = lastRet) != null && !r.isMatched())
814 >                lastPred = r;    // next lastPred is old lastRet
815 >            else if ((b = lastPred) == null || b.isMatched())
816 >                lastPred = null; // at start of list
817 >            else {
818 >                Node s, n;       // help with removal of lastPred.next
819 >                while ((s = b.next) != null &&
820 >                       s != b && s.isMatched() &&
821 >                       (n = s.next) != null && n != s)
822 >                    b.casNext(s, n);
823 >            }
824 >
825 >            this.lastRet = prev;
826 >
827 >            for (Node p = prev, s, n;;) {
828 >                s = (p == null) ? head : p.next;
829 >                if (s == null)
830                      break;
831 +                else if (s == p) {
832 +                    p = null;
833 +                    continue;
834 +                }
835 +                Object item = s.item;
836 +                if (s.isData) {
837 +                    if (item != null && item != s) {
838 +                        nextItem = LinkedTransferQueue.<E>cast(item);
839 +                        nextNode = s;
840 +                        return;
841 +                    }
842 +                }
843 +                else if (item == null)
844 +                    break;
845 +                // assert s.isMatched();
846 +                if (p == null)
847 +                    p = s;
848 +                else if ((n = s.next) == null)
849 +                    break;
850 +                else if (s == n)
851 +                    p = null;
852 +                else
853 +                    p.casNext(s, n);
854              }
855 <            else if (oldpred == pred || // Already saved
856 <                     (oldpred == null && cleanMe.compareAndSet(null, pred)))
857 <                break;                  // Postpone cleaning
855 >            nextNode = null;
856 >            nextItem = null;
857 >        }
858 >
859 >        Itr() {
860 >            advance(null);
861 >        }
862 >
863 >        public final boolean hasNext() {
864 >            return nextNode != null;
865 >        }
866 >
867 >        public final E next() {
868 >            Node p = nextNode;
869 >            if (p == null) throw new NoSuchElementException();
870 >            E e = nextItem;
871 >            advance(p);
872 >            return e;
873 >        }
874 >
875 >        public final void remove() {
876 >            final Node lastRet = this.lastRet;
877 >            if (lastRet == null)
878 >                throw new IllegalStateException();
879 >            this.lastRet = null;
880 >            if (lastRet.tryMatchData())
881 >                unsplice(lastPred, lastRet);
882          }
883      }
884  
885 +    /* -------------- Removal methods -------------- */
886 +
887      /**
888 <     * Tries to unsplice the cancelled node held in cleanMe that was
889 <     * previously uncleanable because it was at tail.
888 >     * Unsplices (now or later) the given deleted/cancelled node with
889 >     * the given predecessor.
890       *
891 <     * @return current cleanMe node (or null)
891 >     * @param pred a node that was at one time known to be the
892 >     * predecessor of s, or null or s itself if s is/was at head
893 >     * @param s the node to be unspliced
894       */
895 <    private Node<E> reclean() {
895 >    final void unsplice(Node pred, Node s) {
896 >        s.forgetContents(); // forget unneeded fields
897          /*
898 <         * cleanMe is, or at one time was, predecessor of cancelled
899 <         * node s that was the tail so could not be unspliced.  If s
900 <         * is no longer the tail, try to unsplice if necessary and
901 <         * make cleanMe slot available.  This differs from similar
902 <         * code in clean() because we must check that pred still
430 <         * points to a cancelled node that must be unspliced -- if
431 <         * not, we can (must) clear cleanMe without unsplicing.
432 <         * This can loop only due to contention on casNext or
433 <         * clearing cleanMe.
898 >         * See above for rationale. Briefly: if pred still points to
899 >         * s, try to unlink s.  If s cannot be unlinked, because it is
900 >         * trailing node or pred might be unlinked, and neither pred
901 >         * nor s are head or offlist, add to sweepVotes, and if enough
902 >         * votes have accumulated, sweep.
903           */
904 <        Node<E> pred;
905 <        while ((pred = cleanMe.get()) != null) {
906 <            Node<E> t = getValidatedTail();
907 <            Node<E> s = pred.next;
908 <            if (s != t) {
909 <                Node<E> sn;
910 <                if (s == null || s == pred || s.get() != s ||
911 <                    (sn = s.next) == s || pred.casNext(s, sn))
912 <                    cleanMe.compareAndSet(pred, null);
904 >        if (pred != null && pred != s && pred.next == s) {
905 >            Node n = s.next;
906 >            if (n == null ||
907 >                (n != s && pred.casNext(s, n) && pred.isMatched())) {
908 >                for (;;) {               // check if at, or could be, head
909 >                    Node h = head;
910 >                    if (h == pred || h == s || h == null)
911 >                        return;          // at head or list empty
912 >                    if (!h.isMatched())
913 >                        break;
914 >                    Node hn = h.next;
915 >                    if (hn == null)
916 >                        return;          // now empty
917 >                    if (hn != h && casHead(h, hn))
918 >                        h.forgetNext();  // advance head
919 >                }
920 >                if (pred.next != pred && s.next != s) { // recheck if offlist
921 >                    for (;;) {           // sweep now if enough votes
922 >                        int v = sweepVotes;
923 >                        if (v < SWEEP_THRESHOLD) {
924 >                            if (casSweepVotes(v, v + 1))
925 >                                break;
926 >                        }
927 >                        else if (casSweepVotes(v, 0)) {
928 >                            sweep();
929 >                            break;
930 >                        }
931 >                    }
932 >                }
933              }
934 <            else // s is still tail; cannot clean
934 >        }
935 >    }
936 >
937 >    /**
938 >     * Unlinks matched (typically cancelled) nodes encountered in a
939 >     * traversal from head.
940 >     */
941 >    private void sweep() {
942 >        for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
943 >            if (!s.isMatched())
944 >                // Unmatched nodes are never self-linked
945 >                p = s;
946 >            else if ((n = s.next) == null) // trailing node is pinned
947                  break;
948 +            else if (s == n)    // stale
949 +                // No need to also check for p == s, since that implies s == n
950 +                p = head;
951 +            else
952 +                p.casNext(s, n);
953          }
448        return pred;
954      }
955  
956      /**
957 +     * Main implementation of remove(Object)
958 +     */
959 +    private boolean findAndRemove(Object e) {
960 +        if (e != null) {
961 +            for (Node pred = null, p = head; p != null; ) {
962 +                Object item = p.item;
963 +                if (p.isData) {
964 +                    if (item != null && item != p && e.equals(item) &&
965 +                        p.tryMatchData()) {
966 +                        unsplice(pred, p);
967 +                        return true;
968 +                    }
969 +                }
970 +                else if (item == null)
971 +                    break;
972 +                pred = p;
973 +                if ((p = p.next) == pred) { // stale
974 +                    pred = null;
975 +                    p = head;
976 +                }
977 +            }
978 +        }
979 +        return false;
980 +    }
981 +
982 +
983 +    /**
984       * Creates an initially empty {@code LinkedTransferQueue}.
985       */
986      public LinkedTransferQueue() {
455        Node<E> dummy = new Node<E>(null, false);
456        head = new PaddedAtomicReference<Node<E>>(dummy);
457        tail = new PaddedAtomicReference<Node<E>>(dummy);
458        cleanMe = new PaddedAtomicReference<Node<E>>(null);
987      }
988  
989      /**
# Line 479 | Line 1007 | public class LinkedTransferQueue<E> exte
1007       * @throws NullPointerException if the specified element is null
1008       */
1009      public void put(E e) {
1010 <        offer(e);
1010 >        xfer(e, true, ASYNC, 0);
1011      }
1012  
1013      /**
# Line 488 | Line 1016 | public class LinkedTransferQueue<E> exte
1016       * return {@code false}.
1017       *
1018       * @return {@code true} (as specified by
1019 <     *  {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
1019 >     *  {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1020 >     *  BlockingQueue.offer})
1021       * @throws NullPointerException if the specified element is null
1022       */
1023      public boolean offer(E e, long timeout, TimeUnit unit) {
1024 <        return offer(e);
1024 >        xfer(e, true, ASYNC, 0);
1025 >        return true;
1026      }
1027  
1028      /**
1029       * Inserts the specified element at the tail of this queue.
1030       * As the queue is unbounded, this method will never return {@code false}.
1031       *
1032 <     * @return {@code true} (as specified by
503 <     *         {@link BlockingQueue#offer(Object) BlockingQueue.offer})
1032 >     * @return {@code true} (as specified by {@link Queue#offer})
1033       * @throws NullPointerException if the specified element is null
1034       */
1035      public boolean offer(E e) {
1036 <        if (e == null) throw new NullPointerException();
508 <        xfer(e, NOWAIT, 0);
1036 >        xfer(e, true, ASYNC, 0);
1037          return true;
1038      }
1039  
1040      /**
1041       * Inserts the specified element at the tail of this queue.
1042 <     * As the queue is unbounded this method will never throw
1042 >     * As the queue is unbounded, this method will never throw
1043       * {@link IllegalStateException} or return {@code false}.
1044       *
1045       * @return {@code true} (as specified by {@link Collection#add})
1046       * @throws NullPointerException if the specified element is null
1047       */
1048      public boolean add(E e) {
1049 <        return offer(e);
1049 >        xfer(e, true, ASYNC, 0);
1050 >        return true;
1051      }
1052  
1053      /**
1054 <     * Transfers the specified element immediately if there exists a
1055 <     * consumer already waiting to receive it (in {@link #take} or
1056 <     * timed {@link #poll(long,TimeUnit) poll}), otherwise
1057 <     * returning {@code false} without enqueuing the element.
1054 >     * Transfers the element to a waiting consumer immediately, if possible.
1055 >     *
1056 >     * <p>More precisely, transfers the specified element immediately
1057 >     * if there exists a consumer already waiting to receive it (in
1058 >     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1059 >     * otherwise returning {@code false} without enqueuing the element.
1060       *
1061       * @throws NullPointerException if the specified element is null
1062       */
1063      public boolean tryTransfer(E e) {
1064 <        if (e == null) throw new NullPointerException();
534 <        return fulfill(e) != null;
1064 >        return xfer(e, true, NOW, 0) == null;
1065      }
1066  
1067      /**
1068 <     * Inserts the specified element at the tail of this queue,
1069 <     * waiting if necessary for the element to be received by a
1070 <     * consumer invoking {@code take} or {@code poll}.
1068 >     * Transfers the element to a consumer, waiting if necessary to do so.
1069 >     *
1070 >     * <p>More precisely, transfers the specified element immediately
1071 >     * if there exists a consumer already waiting to receive it (in
1072 >     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1073 >     * else inserts the specified element at the tail of this queue
1074 >     * and waits until the element is received by a consumer.
1075       *
1076       * @throws NullPointerException if the specified element is null
1077       */
1078      public void transfer(E e) throws InterruptedException {
1079 <        if (e == null) throw new NullPointerException();
1080 <        if (xfer(e, WAIT, 0) == null) {
547 <            Thread.interrupted();
1079 >        if (xfer(e, true, SYNC, 0) != null) {
1080 >            Thread.interrupted(); // failure possible only due to interrupt
1081              throw new InterruptedException();
1082          }
1083      }
1084  
1085      /**
1086 <     * Inserts the specified element at the tail of this queue,
1087 <     * waiting up to the specified wait time for the element to be
1088 <     * received by a consumer invoking {@code take} or {@code poll}.
1086 >     * Transfers the element to a consumer if it is possible to do so
1087 >     * before the timeout elapses.
1088 >     *
1089 >     * <p>More precisely, transfers the specified element immediately
1090 >     * if there exists a consumer already waiting to receive it (in
1091 >     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1092 >     * else inserts the specified element at the tail of this queue
1093 >     * and waits until the element is received by a consumer,
1094 >     * returning {@code false} if the specified wait time elapses
1095 >     * before the element can be transferred.
1096       *
1097       * @throws NullPointerException if the specified element is null
1098       */
1099      public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1100          throws InterruptedException {
1101 <        if (e == null) throw new NullPointerException();
562 <        if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
1101 >        if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1102              return true;
1103          if (!Thread.interrupted())
1104              return false;
# Line 567 | Line 1106 | public class LinkedTransferQueue<E> exte
1106      }
1107  
1108      public E take() throws InterruptedException {
1109 <        E e = xfer(null, WAIT, 0);
1109 >        E e = xfer(null, false, SYNC, 0);
1110          if (e != null)
1111              return e;
1112          Thread.interrupted();
# Line 575 | Line 1114 | public class LinkedTransferQueue<E> exte
1114      }
1115  
1116      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1117 <        E e = xfer(null, TIMEOUT, unit.toNanos(timeout));
1117 >        E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1118          if (e != null || !Thread.interrupted())
1119              return e;
1120          throw new InterruptedException();
1121      }
1122  
1123      public E poll() {
1124 <        return fulfill(null);
1124 >        return xfer(null, false, NOW, 0);
1125      }
1126  
1127      /**
# Line 595 | Line 1134 | public class LinkedTransferQueue<E> exte
1134          if (c == this)
1135              throw new IllegalArgumentException();
1136          int n = 0;
1137 <        E e;
599 <        while ( (e = poll()) != null) {
1137 >        for (E e; (e = poll()) != null;) {
1138              c.add(e);
1139              ++n;
1140          }
# Line 613 | Line 1151 | public class LinkedTransferQueue<E> exte
1151          if (c == this)
1152              throw new IllegalArgumentException();
1153          int n = 0;
1154 <        E e;
617 <        while (n < maxElements && (e = poll()) != null) {
1154 >        for (E e; n < maxElements && (e = poll()) != null;) {
1155              c.add(e);
1156              ++n;
1157          }
1158          return n;
1159      }
1160  
624    // Traversal-based methods
625
626    /**
627     * Returns head after performing any outstanding helping steps.
628     */
629    private Node<E> traversalHead() {
630        for (;;) {
631            Node<E> t = tail.get();
632            Node<E> h = head.get();
633            if (h != null && t != null) {
634                Node<E> last = t.next;
635                Node<E> first = h.next;
636                if (t == tail.get()) {
637                    if (last != null)
638                        tail.compareAndSet(t, last);
639                    else if (first != null) {
640                        Object x = first.get();
641                        if (x == first)
642                            advanceHead(h, first);
643                        else
644                            return h;
645                    }
646                    else
647                        return h;
648                }
649            }
650            reclean();
651        }
652    }
653
1161      /**
1162 <     * Returns an iterator over the elements in this queue in proper
1163 <     * sequence, from head to tail.
1162 >     * Returns an iterator over the elements in this queue in proper sequence.
1163 >     * The elements will be returned in order from first (head) to last (tail).
1164       *
1165       * <p>The returned iterator is a "weakly consistent" iterator that
1166 <     * will never throw
1167 <     * {@link ConcurrentModificationException ConcurrentModificationException},
1168 <     * and guarantees to traverse elements as they existed upon
1169 <     * construction of the iterator, and may (but is not guaranteed
1170 <     * to) reflect any modifications subsequent to construction.
1166 >     * will never throw {@link java.util.ConcurrentModificationException
1167 >     * ConcurrentModificationException}, and guarantees to traverse
1168 >     * elements as they existed upon construction of the iterator, and
1169 >     * may (but is not guaranteed to) reflect any modifications
1170 >     * subsequent to construction.
1171       *
1172       * @return an iterator over the elements in this queue in proper sequence
1173       */
# Line 668 | Line 1175 | public class LinkedTransferQueue<E> exte
1175          return new Itr();
1176      }
1177  
671    /**
672     * Iterators. Basic strategy is to traverse list, treating
673     * non-data (i.e., request) nodes as terminating list.
674     * Once a valid data node is found, the item is cached
675     * so that the next call to next() will return it even
676     * if subsequently removed.
677     */
678    class Itr implements Iterator<E> {
679        Node<E> next;        // node to return next
680        Node<E> pnext;       // predecessor of next
681        Node<E> curr;        // last returned node, for remove()
682        Node<E> pcurr;       // predecessor of curr, for remove()
683        E nextItem;          // Cache of next item, once committed to in next
684
685        Itr() {
686            advance();
687        }
688
689        /**
690         * Moves to next valid node and returns item to return for
691         * next(), or null if no such.
692         */
693        private E advance() {
694            pcurr = pnext;
695            curr = next;
696            E item = nextItem;
697
698            for (;;) {
699                pnext = (next == null) ? traversalHead() : next;
700                next = pnext.next;
701                if (next == pnext) {
702                    next = null;
703                    continue;  // restart
704                }
705                if (next == null)
706                    break;
707                Object x = next.get();
708                if (x != null && x != next) {
709                    nextItem = (E) x;
710                    break;
711                }
712            }
713            return item;
714        }
715
716        public boolean hasNext() {
717            return next != null;
718        }
719
720        public E next() {
721            if (next == null)
722                throw new NoSuchElementException();
723            return advance();
724        }
725
726        public void remove() {
727            Node<E> p = curr;
728            if (p == null)
729                throw new IllegalStateException();
730            Object x = p.get();
731            if (x != null && x != p && p.compareAndSet(x, p))
732                clean(pcurr, p);
733        }
734    }
735
1178      public E peek() {
1179 <        for (;;) {
738 <            Node<E> h = traversalHead();
739 <            Node<E> p = h.next;
740 <            if (p == null)
741 <                return null;
742 <            Object x = p.get();
743 <            if (p != x) {
744 <                if (!p.isData)
745 <                    return null;
746 <                if (x != null)
747 <                    return (E) x;
748 <            }
749 <        }
1179 >        return firstDataItem();
1180      }
1181  
1182 +    /**
1183 +     * Returns {@code true} if this queue contains no elements.
1184 +     *
1185 +     * @return {@code true} if this queue contains no elements
1186 +     */
1187      public boolean isEmpty() {
1188 <        for (;;) {
1189 <            Node<E> h = traversalHead();
1190 <            Node<E> p = h.next;
756 <            if (p == null)
757 <                return true;
758 <            Object x = p.get();
759 <            if (p != x) {
760 <                if (!p.isData)
761 <                    return true;
762 <                if (x != null)
763 <                    return false;
764 <            }
1188 >        for (Node p = head; p != null; p = succ(p)) {
1189 >            if (!p.isMatched())
1190 >                return !p.isData;
1191          }
1192 +        return true;
1193      }
1194  
1195      public boolean hasWaitingConsumer() {
1196 <        for (;;) {
770 <            Node<E> h = traversalHead();
771 <            Node<E> p = h.next;
772 <            if (p == null)
773 <                return false;
774 <            Object x = p.get();
775 <            if (p != x)
776 <                return !p.isData;
777 <        }
1196 >        return firstOfMode(false) != null;
1197      }
1198  
1199      /**
# Line 790 | Line 1209 | public class LinkedTransferQueue<E> exte
1209       * @return the number of elements in this queue
1210       */
1211      public int size() {
1212 <        for (;;) {
794 <            int count = 0;
795 <            Node<E> pred = traversalHead();
796 <            for (;;) {
797 <                Node<E> q = pred.next;
798 <                if (q == pred) // restart
799 <                    break;
800 <                if (q == null || !q.isData)
801 <                    return count;
802 <                Object x = q.get();
803 <                if (x != null && x != q) {
804 <                    if (++count == Integer.MAX_VALUE) // saturated
805 <                        return count;
806 <                }
807 <                pred = q;
808 <            }
809 <        }
1212 >        return countOfMode(true);
1213      }
1214  
1215      public int getWaitingConsumerCount() {
1216 <        // converse of size -- count valid non-data nodes
814 <        for (;;) {
815 <            int count = 0;
816 <            Node<E> pred = traversalHead();
817 <            for (;;) {
818 <                Node<E> q = pred.next;
819 <                if (q == pred) // restart
820 <                    break;
821 <                if (q == null || q.isData)
822 <                    return count;
823 <                Object x = q.get();
824 <                if (x == null) {
825 <                    if (++count == Integer.MAX_VALUE) // saturated
826 <                        return count;
827 <                }
828 <                pred = q;
829 <            }
830 <        }
1216 >        return countOfMode(false);
1217      }
1218  
1219 +    /**
1220 +     * Removes a single instance of the specified element from this queue,
1221 +     * if it is present.  More formally, removes an element {@code e} such
1222 +     * that {@code o.equals(e)}, if this queue contains one or more such
1223 +     * elements.
1224 +     * Returns {@code true} if this queue contained the specified element
1225 +     * (or equivalently, if this queue changed as a result of the call).
1226 +     *
1227 +     * @param o element to be removed from this queue, if present
1228 +     * @return {@code true} if this queue changed as a result of the call
1229 +     */
1230      public boolean remove(Object o) {
1231 <        if (o == null)
1232 <            return false;
1233 <        for (;;) {
1234 <            Node<E> pred = traversalHead();
1235 <            for (;;) {
1236 <                Node<E> q = pred.next;
1237 <                if (q == pred) // restart
1238 <                    break;
1239 <                if (q == null || !q.isData)
1240 <                    return false;
1241 <                Object x = q.get();
1242 <                if (x != null && x != q && o.equals(x) &&
1243 <                    q.compareAndSet(x, q)) {
1244 <                    clean(pred, q);
1231 >        return findAndRemove(o);
1232 >    }
1233 >
1234 >    /**
1235 >     * Returns {@code true} if this queue contains the specified element.
1236 >     * More formally, returns {@code true} if and only if this queue contains
1237 >     * at least one element {@code e} such that {@code o.equals(e)}.
1238 >     *
1239 >     * @param o object to be checked for containment in this queue
1240 >     * @return {@code true} if this queue contains the specified element
1241 >     */
1242 >    public boolean contains(Object o) {
1243 >        if (o == null) return false;
1244 >        for (Node p = head; p != null; p = succ(p)) {
1245 >            Object item = p.item;
1246 >            if (p.isData) {
1247 >                if (item != null && item != p && o.equals(item))
1248                      return true;
849                }
850                pred = q;
1249              }
1250 +            else if (item == null)
1251 +                break;
1252          }
1253 +        return false;
1254      }
1255  
1256      /**
# Line 857 | Line 1258 | public class LinkedTransferQueue<E> exte
1258       * {@code LinkedTransferQueue} is not capacity constrained.
1259       *
1260       * @return {@code Integer.MAX_VALUE} (as specified by
1261 <     *         {@link BlockingQueue#remainingCapacity()})
1261 >     *         {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1262 >     *         BlockingQueue.remainingCapacity})
1263       */
1264      public int remainingCapacity() {
1265          return Integer.MAX_VALUE;
1266      }
1267  
1268      /**
1269 <     * Save the state to a stream (that is, serialize it).
1269 >     * Saves the state to a stream (that is, serializes it).
1270       *
1271       * @serialData All of the elements (each an {@code E}) in
1272       * the proper order, followed by a null
# Line 880 | Line 1282 | public class LinkedTransferQueue<E> exte
1282      }
1283  
1284      /**
1285 <     * Reconstitute the Queue instance from a stream (that is,
1286 <     * deserialize it).
1285 >     * Reconstitutes the Queue instance from a stream (that is,
1286 >     * deserializes it).
1287       *
1288       * @param s the stream
1289       */
1290      private void readObject(java.io.ObjectInputStream s)
1291          throws java.io.IOException, ClassNotFoundException {
1292          s.defaultReadObject();
891        resetHeadAndTail();
1293          for (;;) {
1294 <            @SuppressWarnings("unchecked") E item = (E) s.readObject();
1294 >            @SuppressWarnings("unchecked")
1295 >            E item = (E) s.readObject();
1296              if (item == null)
1297                  break;
1298              else
# Line 898 | Line 1300 | public class LinkedTransferQueue<E> exte
1300          }
1301      }
1302  
901    // Support for resetting head/tail while deserializing
902    private void resetHeadAndTail() {
903        Node<E> dummy = new Node<E>(null, false);
904        UNSAFE.putObjectVolatile(this, headOffset,
905                                 new PaddedAtomicReference<Node<E>>(dummy));
906        UNSAFE.putObjectVolatile(this, tailOffset,
907                                 new PaddedAtomicReference<Node<E>>(dummy));
908        UNSAFE.putObjectVolatile(this, cleanMeOffset,
909                                 new PaddedAtomicReference<Node<E>>(null));
910    }
911
1303      // Unsafe mechanics
1304  
1305 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1306 <    private static final long headOffset =
1307 <        objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1308 <    private static final long tailOffset =
1309 <        objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
919 <    private static final long cleanMeOffset =
920 <        objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
921 <
922 <
923 <    static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
924 <                                  String field, Class<?> klazz) {
1305 >    private static final sun.misc.Unsafe UNSAFE;
1306 >    private static final long headOffset;
1307 >    private static final long tailOffset;
1308 >    private static final long sweepVotesOffset;
1309 >    static {
1310          try {
1311 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1312 <        } catch (NoSuchFieldException e) {
1313 <            // Convert Exception to corresponding Error
1314 <            NoSuchFieldError error = new NoSuchFieldError(field);
1315 <            error.initCause(e);
1316 <            throw error;
1311 >            UNSAFE = getUnsafe();
1312 >            Class<?> k = LinkedTransferQueue.class;
1313 >            headOffset = UNSAFE.objectFieldOffset
1314 >                (k.getDeclaredField("head"));
1315 >            tailOffset = UNSAFE.objectFieldOffset
1316 >                (k.getDeclaredField("tail"));
1317 >            sweepVotesOffset = UNSAFE.objectFieldOffset
1318 >                (k.getDeclaredField("sweepVotes"));
1319 >        } catch (Exception e) {
1320 >            throw new Error(e);
1321          }
1322      }
1323  
# Line 939 | Line 1328 | public class LinkedTransferQueue<E> exte
1328       *
1329       * @return a sun.misc.Unsafe
1330       */
1331 <    private static sun.misc.Unsafe getUnsafe() {
1331 >    static sun.misc.Unsafe getUnsafe() {
1332          try {
1333              return sun.misc.Unsafe.getUnsafe();
1334 <        } catch (SecurityException se) {
1335 <            try {
1336 <                return java.security.AccessController.doPrivileged
1337 <                    (new java.security
1338 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1339 <                        public sun.misc.Unsafe run() throws Exception {
1340 <                            java.lang.reflect.Field f = sun.misc
1341 <                                .Unsafe.class.getDeclaredField("theUnsafe");
1342 <                            f.setAccessible(true);
1343 <                            return (sun.misc.Unsafe) f.get(null);
1344 <                        }});
1345 <            } catch (java.security.PrivilegedActionException e) {
1346 <                throw new RuntimeException("Could not initialize intrinsics",
1347 <                                           e.getCause());
1348 <            }
1334 >        } catch (SecurityException tryReflectionInstead) {}
1335 >        try {
1336 >            return java.security.AccessController.doPrivileged
1337 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
1338 >                public sun.misc.Unsafe run() throws Exception {
1339 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
1340 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
1341 >                        f.setAccessible(true);
1342 >                        Object x = f.get(null);
1343 >                        if (k.isInstance(x))
1344 >                            return k.cast(x);
1345 >                    }
1346 >                    throw new NoSuchFieldError("the Unsafe");
1347 >                }});
1348 >        } catch (java.security.PrivilegedActionException e) {
1349 >            throw new RuntimeException("Could not initialize intrinsics",
1350 >                                       e.getCause());
1351          }
1352      }
1353   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines