ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.41 by jsr166, Sat Aug 1 20:44:05 2009 UTC vs.
Revision 1.50 by dl, Sat Oct 24 12:29:57 2009 UTC

# Line 15 | Line 15 | import java.util.Iterator;
15   import java.util.NoSuchElementException;
16   import java.util.Queue;
17   import java.util.concurrent.locks.LockSupport;
18 import java.util.concurrent.atomic.AtomicReference;
19
18   /**
19 < * An unbounded {@linkplain TransferQueue} based on linked nodes.
19 > * An unbounded {@link TransferQueue} based on linked nodes.
20   * This queue orders elements FIFO (first-in-first-out) with respect
21   * to any given producer.  The <em>head</em> of the queue is that
22   * element that has been on the queue the longest time for some
# Line 54 | Line 52 | public class LinkedTransferQueue<E> exte
52      private static final long serialVersionUID = -3223113410248163686L;
53  
54      /*
55 <     * This class extends the approach used in FIFO-mode
58 <     * SynchronousQueues. See the internal documentation, as well as
59 <     * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
60 <     * Lea & Scott
61 <     * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
55 >     * *** Overview of Dual Queues with Slack ***
56       *
57 <     * The main extension is to provide different Wait modes for the
58 <     * main "xfer" method that puts or takes items.  These don't
59 <     * impact the basic dual-queue logic, but instead control whether
60 <     * or how threads block upon insertion of request or data nodes
61 <     * into the dual queue. It also uses slightly different
62 <     * conventions for tracking whether nodes are off-list or
63 <     * cancelled.
64 <     */
65 <
66 <    // Wait modes for xfer method
67 <    static final int NOWAIT  = 0;
68 <    static final int TIMEOUT = 1;
69 <    static final int WAIT    = 2;
70 <
71 <    /** The number of CPUs, for spin control */
72 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
73 <
74 <    /**
75 <     * The number of times to spin before blocking in timed waits.
76 <     * The value is empirically derived -- it works well across a
77 <     * variety of processors and OSes. Empirically, the best value
78 <     * seems not to vary with number of CPUs (beyond 2) so is just
79 <     * a constant.
80 <     */
81 <    static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
57 >     * Dual Queues, introduced by Scherer and Scott
58 >     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 >     * (linked) queues in which nodes may represent either data or
60 >     * requests.  When a thread tries to enqueue a data node, but
61 >     * encounters a request node, it instead "matches" and removes it;
62 >     * and vice versa for enqueuing requests. Blocking Dual Queues
63 >     * arrange that threads enqueuing unmatched requests block until
64 >     * other threads provide the match. Dual Synchronous Queues (see
65 >     * Scherer, Lea, & Scott
66 >     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 >     * additionally arrange that threads enqueuing unmatched data also
68 >     * block.  Dual Transfer Queues support all of these modes, as
69 >     * dictated by callers.
70 >     *
71 >     * A FIFO dual queue may be implemented using a variation of the
72 >     * Michael & Scott (M&S) lock-free queue algorithm
73 >     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 >     * It maintains two pointer fields, "head", pointing to a
75 >     * (matched) node that in turn points to the first actual
76 >     * (unmatched) queue node (or null if empty); and "tail" that
77 >     * points to the last node on the queue (or again null if
78 >     * empty). For example, here is a possible queue with four data
79 >     * elements:
80 >     *
81 >     *  head                tail
82 >     *    |                   |
83 >     *    v                   v
84 >     *    M -> U -> U -> U -> U
85 >     *
86 >     * The M&S queue algorithm is known to be prone to scalability and
87 >     * overhead limitations when maintaining (via CAS) these head and
88 >     * tail pointers. This has led to the development of
89 >     * contention-reducing variants such as elimination arrays (see
90 >     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 >     * optimistic back pointers (see Ladan-Mozes & Shavit
92 >     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 >     * However, the nature of dual queues enables a simpler tactic for
94 >     * improving M&S-style implementations when dual-ness is needed.
95 >     *
96 >     * In a dual queue, each node must atomically maintain its match
97 >     * status. While there are other possible variants, we implement
98 >     * this here as: for a data-mode node, matching entails CASing an
99 >     * "item" field from a non-null data value to null upon match, and
100 >     * vice-versa for request nodes, CASing from null to a data
101 >     * value. (Note that the linearization properties of this style of
102 >     * queue are easy to verify -- elements are made available by
103 >     * linking, and unavailable by matching.) Compared to plain M&S
104 >     * queues, this property of dual queues requires one additional
105 >     * successful atomic operation per enq/deq pair. But it also
106 >     * enables lower cost variants of queue maintenance mechanics. (A
107 >     * variation of this idea applies even for non-dual queues that
108 >     * support deletion of interior elements, such as
109 >     * j.u.c.ConcurrentLinkedQueue.)
110 >     *
111 >     * Once a node is matched, its match status can never again
112 >     * change.  We may thus arrange that the linked list of them
113 >     * contain a prefix of zero or more matched nodes, followed by a
114 >     * suffix of zero or more unmatched nodes. (Note that we allow
115 >     * both the prefix and suffix to be zero length, which in turn
116 >     * means that we do not use a dummy header.)  If we were not
117 >     * concerned with either time or space efficiency, we could
118 >     * correctly perform enqueue and dequeue operations by traversing
119 >     * from a pointer to the initial node; CASing the item of the
120 >     * first unmatched node on match and CASing the next field of the
121 >     * trailing node on appends. (Plus some special-casing when
122 >     * initially empty).  While this would be a terrible idea in
123 >     * itself, it does have the benefit of not requiring ANY atomic
124 >     * updates on head/tail fields.
125 >     *
126 >     * We introduce here an approach that lies between the extremes of
127 >     * never versus always updating queue (head and tail) pointers.
128 >     * This offers a tradeoff between sometimes requiring extra
129 >     * traversal steps to locate the first and/or last unmatched
130 >     * nodes, versus the reduced overhead and contention of fewer
131 >     * updates to queue pointers. For example, a possible snapshot of
132 >     * a queue is:
133 >     *
134 >     *  head           tail
135 >     *    |              |
136 >     *    v              v
137 >     *    M -> M -> U -> U -> U -> U
138 >     *
139 >     * The best value for this "slack" (the targeted maximum distance
140 >     * between the value of "head" and the first unmatched node, and
141 >     * similarly for "tail") is an empirical matter. We have found
142 >     * that using very small constants in the range of 1-3 work best
143 >     * over a range of platforms. Larger values introduce increasing
144 >     * costs of cache misses and risks of long traversal chains, while
145 >     * smaller values increase CAS contention and overhead.
146 >     *
147 >     * Dual queues with slack differ from plain M&S dual queues by
148 >     * virtue of only sometimes updating head or tail pointers when
149 >     * matching, appending, or even traversing nodes; in order to
150 >     * maintain a targeted slack.  The idea of "sometimes" may be
151 >     * operationalized in several ways. The simplest is to use a
152 >     * per-operation counter incremented on each traversal step, and
153 >     * to try (via CAS) to update the associated queue pointer
154 >     * whenever the count exceeds a threshold. Another, that requires
155 >     * more overhead, is to use random number generators to update
156 >     * with a given probability per traversal step.
157 >     *
158 >     * In any strategy along these lines, because CASes updating
159 >     * fields may fail, the actual slack may exceed targeted
160 >     * slack. However, they may be retried at any time to maintain
161 >     * targets.  Even when using very small slack values, this
162 >     * approach works well for dual queues because it allows all
163 >     * operations up to the point of matching or appending an item
164 >     * (hence potentially allowing progress by another thread) to be
165 >     * read-only, thus not introducing any further contention. As
166 >     * described below, we implement this by performing slack
167 >     * maintenance retries only after these points.
168 >     *
169 >     * As an accompaniment to such techniques, traversal overhead can
170 >     * be further reduced without increasing contention of head
171 >     * pointer updates: Threads may sometimes shortcut the "next" link
172 >     * path from the current "head" node to be closer to the currently
173 >     * known first unmatched node, and similarly for tail. Again, this
174 >     * may be triggered with using thresholds or randomization.
175 >     *
176 >     * These ideas must be further extended to avoid unbounded amounts
177 >     * of costly-to-reclaim garbage caused by the sequential "next"
178 >     * links of nodes starting at old forgotten head nodes: As first
179 >     * described in detail by Boehm
180 >     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181 >     * delays noticing that any arbitrarily old node has become
182 >     * garbage, all newer dead nodes will also be unreclaimed.
183 >     * (Similar issues arise in non-GC environments.)  To cope with
184 >     * this in our implementation, upon CASing to advance the head
185 >     * pointer, we set the "next" link of the previous head to point
186 >     * only to itself; thus limiting the length of connected dead lists.
187 >     * (We also take similar care to wipe out possibly garbage
188 >     * retaining values held in other Node fields.)  However, doing so
189 >     * adds some further complexity to traversal: If any "next"
190 >     * pointer links to itself, it indicates that the current thread
191 >     * has lagged behind a head-update, and so the traversal must
192 >     * continue from the "head".  Traversals trying to find the
193 >     * current tail starting from "tail" may also encounter
194 >     * self-links, in which case they also continue at "head".
195 >     *
196 >     * It is tempting in slack-based scheme to not even use CAS for
197 >     * updates (similarly to Ladan-Mozes & Shavit). However, this
198 >     * cannot be done for head updates under the above link-forgetting
199 >     * mechanics because an update may leave head at a detached node.
200 >     * And while direct writes are possible for tail updates, they
201 >     * increase the risk of long retraversals, and hence long garbage
202 >     * chains, which can be much more costly than is worthwhile
203 >     * considering that the cost difference of performing a CAS vs
204 >     * write is smaller when they are not triggered on each operation
205 >     * (especially considering that writes and CASes equally require
206 >     * additional GC bookkeeping ("write barriers") that are sometimes
207 >     * more costly than the writes themselves because of contention).
208 >     *
209 >     * Removal of interior nodes (due to timed out or interrupted
210 >     * waits, or calls to remove(x) or Iterator.remove) can use a
211 >     * scheme roughly similar to that described in Scherer, Lea, and
212 >     * Scott's SynchronousQueue. Given a predecessor, we can unsplice
213 >     * any node except the (actual) tail of the queue. To avoid
214 >     * build-up of cancelled trailing nodes, upon a request to remove
215 >     * a trailing node, it is placed in field "cleanMe" to be
216 >     * unspliced upon the next call to unsplice any other node.
217 >     * Situations needing such mechanics are not common but do occur
218 >     * in practice; for example when an unbounded series of short
219 >     * timed calls to poll repeatedly time out but never otherwise
220 >     * fall off the list because of an untimed call to take at the
221 >     * front of the queue. Note that maintaining field cleanMe does
222 >     * not otherwise much impact garbage retention even if never
223 >     * cleared by some other call because the held node will
224 >     * eventually either directly or indirectly lead to a self-link
225 >     * once off the list.
226 >     *
227 >     * *** Overview of implementation ***
228 >     *
229 >     * We use a threshold-based approach to updates, with a slack
230 >     * threshold of two -- that is, we update head/tail when the
231 >     * current pointer appears to be two or more steps away from the
232 >     * first/last node. The slack value is hard-wired: a path greater
233 >     * than one is naturally implemented by checking equality of
234 >     * traversal pointers except when the list has only one element,
235 >     * in which case we keep slack threshold at one. Avoiding tracking
236 >     * explicit counts across method calls slightly simplifies an
237 >     * already-messy implementation. Using randomization would
238 >     * probably work better if there were a low-quality dirt-cheap
239 >     * per-thread one available, but even ThreadLocalRandom is too
240 >     * heavy for these purposes.
241 >     *
242 >     * With such a small slack threshold value, it is rarely
243 >     * worthwhile to augment this with path short-circuiting; i.e.,
244 >     * unsplicing nodes between head and the first unmatched node, or
245 >     * similarly for tail, rather than advancing head or tail
246 >     * proper. However, it is used (in awaitMatch) immediately before
247 >     * a waiting thread starts to block, as a final bit of helping at
248 >     * a point when contention with others is extremely unlikely
249 >     * (since if other threads that could release it are operating,
250 >     * then the current thread wouldn't be blocking).
251 >     *
252 >     * We allow both the head and tail fields to be null before any
253 >     * nodes are enqueued; initializing upon first append.  This
254 >     * simplifies some other logic, as well as providing more
255 >     * efficient explicit control paths instead of letting JVMs insert
256 >     * implicit NullPointerExceptions when they are null.  While not
257 >     * currently fully implemented, we also leave open the possibility
258 >     * of re-nulling these fields when empty (which is complicated to
259 >     * arrange, for little benefit.)
260 >     *
261 >     * All enqueue/dequeue operations are handled by the single method
262 >     * "xfer" with parameters indicating whether to act as some form
263 >     * of offer, put, poll, take, or transfer (each possibly with
264 >     * timeout). The relative complexity of using one monolithic
265 >     * method outweighs the code bulk and maintenance problems of
266 >     * using separate methods for each case.
267 >     *
268 >     * Operation consists of up to three phases. The first is
269 >     * implemented within method xfer, the second in tryAppend, and
270 >     * the third in method awaitMatch.
271 >     *
272 >     * 1. Try to match an existing node
273 >     *
274 >     *    Starting at head, skip already-matched nodes until finding
275 >     *    an unmatched node of opposite mode, if one exists, in which
276 >     *    case matching it and returning, also if necessary updating
277 >     *    head to one past the matched node (or the node itself if the
278 >     *    list has no other unmatched nodes). If the CAS misses, then
279 >     *    a loop retries advancing head by two steps until either
280 >     *    success or the slack is at most two. By requiring that each
281 >     *    attempt advances head by two (if applicable), we ensure that
282 >     *    the slack does not grow without bound. Traversals also check
283 >     *    if the initial head is now off-list, in which case they
284 >     *    start at the new head.
285 >     *
286 >     *    If no candidates are found and the call was untimed
287 >     *    poll/offer, (argument "how" is NOW) return.
288 >     *
289 >     * 2. Try to append a new node (method tryAppend)
290 >     *
291 >     *    Starting at current tail pointer, find the actual last node
292 >     *    and try to append a new node (or if head was null, establish
293 >     *    the first node). Nodes can be appended only if their
294 >     *    predecessors are either already matched or are of the same
295 >     *    mode. If we detect otherwise, then a new node with opposite
296 >     *    mode must have been appended during traversal, so we must
297 >     *    restart at phase 1. The traversal and update steps are
298 >     *    otherwise similar to phase 1: Retrying upon CAS misses and
299 >     *    checking for staleness.  In particular, if a self-link is
300 >     *    encountered, then we can safely jump to a node on the list
301 >     *    by continuing the traversal at current head.
302 >     *
303 >     *    On successful append, if the call was ASYNC, return.
304 >     *
305 >     * 3. Await match or cancellation (method awaitMatch)
306 >     *
307 >     *    Wait for another thread to match node; instead cancelling if
308 >     *    the current thread was interrupted or the wait timed out. On
309 >     *    multiprocessors, we use front-of-queue spinning: If a node
310 >     *    appears to be the first unmatched node in the queue, it
311 >     *    spins a bit before blocking. In either case, before blocking
312 >     *    it tries to unsplice any nodes between the current "head"
313 >     *    and the first unmatched node.
314 >     *
315 >     *    Front-of-queue spinning vastly improves performance of
316 >     *    heavily contended queues. And so long as it is relatively
317 >     *    brief and "quiet", spinning does not much impact performance
318 >     *    of less-contended queues.  During spins threads check their
319 >     *    interrupt status and generate a thread-local random number
320 >     *    to decide to occasionally perform a Thread.yield. While
321 >     *    yield has underdefined specs, we assume that might it help,
322 >     *    and will not hurt in limiting impact of spinning on busy
323 >     *    systems.  We also use smaller (1/2) spins for nodes that are
324 >     *    not known to be front but whose predecessors have not
325 >     *    blocked -- these "chained" spins avoid artifacts of
326 >     *    front-of-queue rules which otherwise lead to alternating
327 >     *    nodes spinning vs blocking. Further, front threads that
328 >     *    represent phase changes (from data to request node or vice
329 >     *    versa) compared to their predecessors receive additional
330 >     *    chained spins, reflecting longer paths typically required to
331 >     *    unblock threads during phase changes.
332 >     */
333 >
334 >    /** True if on multiprocessor */
335 >    private static final boolean MP =
336 >        Runtime.getRuntime().availableProcessors() > 1;
337 >
338 >    /**
339 >     * The number of times to spin (with randomly interspersed calls
340 >     * to Thread.yield) on multiprocessor before blocking when a node
341 >     * is apparently the first waiter in the queue.  See above for
342 >     * explanation. Must be a power of two. The value is empirically
343 >     * derived -- it works pretty well across a variety of processors,
344 >     * numbers of CPUs, and OSes.
345 >     */
346 >    private static final int FRONT_SPINS   = 1 << 7;
347 >
348 >    /**
349 >     * The number of times to spin before blocking when a node is
350 >     * preceded by another node that is apparently spinning.  Also
351 >     * serves as an increment to FRONT_SPINS on phase changes, and as
352 >     * base average frequency for yielding during spins. Must be a
353 >     * power of two.
354 >     */
355 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
356 >
357 >    /**
358 >     * Queue nodes. Uses Object, not E, for items to allow forgetting
359 >     * them after use.  Relies heavily on Unsafe mechanics to minimize
360 >     * unnecessary ordering constraints: Writes that intrinsically
361 >     * precede or follow CASes use simple relaxed forms.  Other
362 >     * cleanups use releasing/lazy writes.
363 >     */
364 >    static final class Node {
365 >        final boolean isData;   // false if this is a request node
366 >        volatile Object item;   // initially non-null if isData; CASed to match
367 >        volatile Node next;
368 >        volatile Thread waiter; // null until waiting
369  
370 <    /**
371 <     * The number of times to spin before blocking in untimed waits.
372 <     * This is greater than timed value because untimed waits spin
373 <     * faster since they don't need to check times on each spin.
93 <     */
94 <    static final int maxUntimedSpins = maxTimedSpins * 16;
95 <
96 <    /**
97 <     * The number of nanoseconds for which it is faster to spin
98 <     * rather than to use timed park. A rough estimate suffices.
99 <     */
100 <    static final long spinForTimeoutThreshold = 1000L;
370 >        // CAS methods for fields
371 >        final boolean casNext(Node cmp, Node val) {
372 >            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
373 >        }
374  
375 <    /**
376 <     * Node class for LinkedTransferQueue. Opportunistically
377 <     * subclasses from AtomicReference to represent item. Uses Object,
105 <     * not E, to allow setting item to "this" after use, to avoid
106 <     * garbage retention. Similarly, setting the next field to this is
107 <     * used as sentinel that node is off list.
108 <     */
109 <    static final class Node<E> extends AtomicReference<Object> {
110 <        volatile Node<E> next;
111 <        volatile Thread waiter;       // to control park/unpark
112 <        final boolean isData;
375 >        final boolean casItem(Object cmp, Object val) {
376 >            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
377 >        }
378  
379 <        Node(E item, boolean isData) {
380 <            super(item);
379 >        /**
380 >         * Creates a new node. Uses relaxed write because item can only
381 >         * be seen if followed by CAS.
382 >         */
383 >        Node(Object item, boolean isData) {
384 >            UNSAFE.putObject(this, itemOffset, item); // relaxed write
385              this.isData = isData;
386          }
387  
388 <        // Unsafe mechanics
388 >        /**
389 >         * Links node to itself to avoid garbage retention.  Called
390 >         * only after CASing head field, so uses relaxed write.
391 >         */
392 >        final void forgetNext() {
393 >            UNSAFE.putObject(this, nextOffset, this);
394 >        }
395  
396 <        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
397 <        private static final long nextOffset =
398 <            objectFieldOffset(UNSAFE, "next", Node.class);
396 >        /**
397 >         * Sets item to self (using a releasing/lazy write) and waiter
398 >         * to null, to avoid garbage retention after extracting or
399 >         * cancelling.
400 >         */
401 >        final void forgetContents() {
402 >            UNSAFE.putOrderedObject(this, itemOffset, this);
403 >            UNSAFE.putOrderedObject(this, waiterOffset, null);
404 >        }
405  
406 <        final boolean casNext(Node<E> cmp, Node<E> val) {
407 <            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
406 >        /**
407 >         * Returns true if this node has been matched, including the
408 >         * case of artificial matches due to cancellation.
409 >         */
410 >        final boolean isMatched() {
411 >            Object x = item;
412 >            return x == this || (x != null) != isData;
413          }
414  
415 <        final void clearNext() {
416 <            UNSAFE.putOrderedObject(this, nextOffset, this);
415 >        /**
416 >         * Returns true if a node with the given mode cannot be
417 >         * appended to this node because this node is unmatched and
418 >         * has opposite data mode.
419 >         */
420 >        final boolean cannotPrecede(boolean haveData) {
421 >            boolean d = isData;
422 >            Object x;
423 >            return d != haveData && (x = item) != this && (x != null) == d;
424          }
425  
426          /**
427 <         * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
135 <         * Replace with a simple call to Unsafe.getUnsafe when integrating
136 <         * into a jdk.
137 <         *
138 <         * @return a sun.misc.Unsafe
427 >         * Tries to artificially match a data node -- used by remove.
428           */
429 <        private static sun.misc.Unsafe getUnsafe() {
430 <            try {
431 <                return sun.misc.Unsafe.getUnsafe();
432 <            } catch (SecurityException se) {
433 <                try {
145 <                    return java.security.AccessController.doPrivileged
146 <                        (new java.security
147 <                         .PrivilegedExceptionAction<sun.misc.Unsafe>() {
148 <                            public sun.misc.Unsafe run() throws Exception {
149 <                                java.lang.reflect.Field f = sun.misc
150 <                                    .Unsafe.class.getDeclaredField("theUnsafe");
151 <                                f.setAccessible(true);
152 <                                return (sun.misc.Unsafe) f.get(null);
153 <                            }});
154 <                } catch (java.security.PrivilegedActionException e) {
155 <                    throw new RuntimeException("Could not initialize intrinsics",
156 <                                               e.getCause());
157 <                }
429 >        final boolean tryMatchData() {
430 >            Object x = item;
431 >            if (x != null && x != this && casItem(x, null)) {
432 >                LockSupport.unpark(waiter);
433 >                return true;
434              }
435 +            return false;
436          }
437  
438 +        // Unsafe mechanics
439 +        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
440 +        private static final long nextOffset =
441 +            objectFieldOffset(UNSAFE, "next", Node.class);
442 +        private static final long itemOffset =
443 +            objectFieldOffset(UNSAFE, "item", Node.class);
444 +        private static final long waiterOffset =
445 +            objectFieldOffset(UNSAFE, "waiter", Node.class);
446 +
447          private static final long serialVersionUID = -3375979862319811754L;
448      }
449  
450 <    /**
451 <     * Padded version of AtomicReference used for head, tail and
166 <     * cleanMe, to alleviate contention across threads CASing one vs
167 <     * the other.
168 <     */
169 <    static final class PaddedAtomicReference<T> extends AtomicReference<T> {
170 <        // enough padding for 64bytes with 4byte refs
171 <        Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
172 <        PaddedAtomicReference(T r) { super(r); }
173 <        private static final long serialVersionUID = 8170090609809740854L;
174 <    }
450 >    /** head of the queue; null until first enqueue */
451 >    private transient volatile Node head;
452  
453 +    /** predecessor of dangling unspliceable node */
454 +    private transient volatile Node cleanMe; // decl here to reduce contention
455  
456 <    /** head of the queue */
457 <    private transient final PaddedAtomicReference<Node<E>> head;
456 >    /** tail of the queue; null until first append */
457 >    private transient volatile Node tail;
458  
459 <    /** tail of the queue */
460 <    private transient final PaddedAtomicReference<Node<E>> tail;
459 >    // CAS methods for fields
460 >    private boolean casTail(Node cmp, Node val) {
461 >        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
462 >    }
463  
464 <    /**
465 <     * Reference to a cancelled node that might not yet have been
466 <     * unlinked from queue because it was the last inserted node
186 <     * when it cancelled.
187 <     */
188 <    private transient final PaddedAtomicReference<Node<E>> cleanMe;
464 >    private boolean casHead(Node cmp, Node val) {
465 >        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
466 >    }
467  
468 <    /**
469 <     * Tries to cas nh as new head; if successful, unlink
192 <     * old head's next node to avoid garbage retention.
193 <     */
194 <    private boolean advanceHead(Node<E> h, Node<E> nh) {
195 <        if (h == head.get() && head.compareAndSet(h, nh)) {
196 <            h.clearNext(); // forget old next
197 <            return true;
198 <        }
199 <        return false;
468 >    private boolean casCleanMe(Node cmp, Node val) {
469 >        return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
470      }
471  
472 +    /*
473 +     * Possible values for "how" argument in xfer method. Beware that
474 +     * the order of assigned numerical values matters.
475 +     */
476 +    private static final int NOW     = 0; // for untimed poll, tryTransfer
477 +    private static final int ASYNC   = 1; // for offer, put, add
478 +    private static final int SYNC    = 2; // for transfer, take
479 +    private static final int TIMEOUT = 3; // for timed poll, tryTransfer
480 +
481      /**
482 <     * Puts or takes an item. Used for most queue operations (except
204 <     * poll() and tryTransfer()). See the similar code in
205 <     * SynchronousQueue for detailed explanation.
482 >     * Implements all queuing methods. See above for explanation.
483       *
484 <     * @param e the item or if null, signifies that this is a take
485 <     * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
484 >     * @param e the item or null for take
485 >     * @param haveData true if this is a put, else a take
486 >     * @param how NOW, ASYNC, SYNC, or TIMEOUT
487       * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
488 <     * @return an item, or null on failure
488 >     * @return an item if matched, else e
489 >     * @throws NullPointerException if haveData mode but e is null
490       */
491 <    private E xfer(E e, int mode, long nanos) {
492 <        boolean isData = (e != null);
493 <        Node<E> s = null;
494 <        final PaddedAtomicReference<Node<E>> head = this.head;
216 <        final PaddedAtomicReference<Node<E>> tail = this.tail;
217 <
218 <        for (;;) {
219 <            Node<E> t = tail.get();
220 <            Node<E> h = head.get();
491 >    private Object xfer(Object e, boolean haveData, int how, long nanos) {
492 >        if (haveData && (e == null))
493 >            throw new NullPointerException();
494 >        Node s = null;                        // the node to append, if needed
495  
496 <            if (t != null && (t == h || t.isData == isData)) {
223 <                if (s == null)
224 <                    s = new Node<E>(e, isData);
225 <                Node<E> last = t.next;
226 <                if (last != null) {
227 <                    if (t == tail.get())
228 <                        tail.compareAndSet(t, last);
229 <                }
230 <                else if (t.casNext(null, s)) {
231 <                    tail.compareAndSet(t, s);
232 <                    return awaitFulfill(t, s, e, mode, nanos);
233 <                }
234 <            }
496 >        retry: for (;;) {                     // restart on append race
497  
498 <            else if (h != null) {
499 <                Node<E> first = h.next;
500 <                if (t == tail.get() && first != null &&
501 <                    advanceHead(h, first)) {
502 <                    Object x = first.get();
503 <                    if (x != first && first.compareAndSet(x, e)) {
504 <                        LockSupport.unpark(first.waiter);
505 <                        return isData ? e : (E) x;
498 >            for (Node h = head, p = h; p != null;) { // find & match first node
499 >                boolean isData = p.isData;
500 >                Object item = p.item;
501 >                if (item != p && (item != null) == isData) { // unmatched
502 >                    if (isData == haveData)   // can't match
503 >                        break;
504 >                    if (p.casItem(item, e)) { // match
505 >                        Thread w = p.waiter;
506 >                        while (p != h) {      // update head
507 >                            Node n = p.next;  // by 2 unless singleton
508 >                            if (n != null)
509 >                                p = n;
510 >                            if (head == h && casHead(h, p)) {
511 >                                h.forgetNext();
512 >                                break;
513 >                            }                 // advance and retry
514 >                            if ((h = head)   == null ||
515 >                                (p = h.next) == null || !p.isMatched())
516 >                                break;        // unless slack < 2
517 >                        }
518 >                        LockSupport.unpark(w);
519 >                        return item;
520                      }
521                  }
522 +                Node n = p.next;
523 +                p = (p != n) ? n : (h = head); // Use head if p offlist
524              }
525 +
526 +            if (how >= ASYNC) {               // No matches available
527 +                if (s == null)
528 +                    s = new Node(e, haveData);
529 +                Node pred = tryAppend(s, haveData);
530 +                if (pred == null)
531 +                    continue retry;           // lost race vs opposite mode
532 +                if (how >= SYNC)
533 +                    return awaitMatch(s, pred, e, how, nanos);
534 +            }
535 +            return e; // not waiting
536          }
537      }
538  
250
539      /**
540 <     * Version of xfer for poll() and tryTransfer, which
541 <     * simplifies control paths both here and in xfer.
542 <     */
543 <    private E fulfill(E e) {
544 <        boolean isData = (e != null);
545 <        final PaddedAtomicReference<Node<E>> head = this.head;
546 <        final PaddedAtomicReference<Node<E>> tail = this.tail;
547 <
548 <        for (;;) {
549 <            Node<E> t = tail.get();
550 <            Node<E> h = head.get();
551 <
552 <            if (t != null && (t == h || t.isData == isData)) {
553 <                Node<E> last = t.next;
554 <                if (t == tail.get()) {
555 <                    if (last != null)
556 <                        tail.compareAndSet(t, last);
557 <                    else
558 <                        return null;
559 <                }
560 <            }
561 <            else if (h != null) {
562 <                Node<E> first = h.next;
563 <                if (t == tail.get() &&
564 <                    first != null &&
565 <                    advanceHead(h, first)) {
566 <                    Object x = first.get();
567 <                    if (x != first && first.compareAndSet(x, e)) {
280 <                        LockSupport.unpark(first.waiter);
281 <                        return isData ? e : (E) x;
282 <                    }
540 >     * Tries to append node s as tail.
541 >     *
542 >     * @param s the node to append
543 >     * @param haveData true if appending in data mode
544 >     * @return null on failure due to losing race with append in
545 >     * different mode, else s's predecessor, or s itself if no
546 >     * predecessor
547 >     */
548 >    private Node tryAppend(Node s, boolean haveData) {
549 >        for (Node t = tail, p = t;;) { // move p to last node and append
550 >            Node n, u;                        // temps for reads of next & tail
551 >            if (p == null && (p = head) == null) {
552 >                if (casHead(null, s))
553 >                    return s;                 // initialize
554 >            }
555 >            else if (p.cannotPrecede(haveData))
556 >                return null;                  // lost race vs opposite mode
557 >            else if ((n = p.next) != null)    // not last; keep traversing
558 >                p = p != t && t != (u = tail) ? (t = u) : // stale tail
559 >                    (p != n) ? n : null;      // restart if off list
560 >            else if (!p.casNext(null, s))
561 >                p = p.next;                   // re-read on CAS failure
562 >            else {
563 >                if (p != t) {                 // update if slack now >= 2
564 >                    while ((tail != t || !casTail(t, s)) &&
565 >                           (t = tail)   != null &&
566 >                           (s = t.next) != null && // advance and retry
567 >                           (s = s.next) != null && s != t);
568                  }
569 +                return p;
570              }
571          }
572      }
573  
574      /**
575 <     * Spins/blocks until node s is fulfilled or caller gives up,
290 <     * depending on wait mode.
575 >     * Spins/yields/blocks until node s is matched or caller gives up.
576       *
292     * @param pred the predecessor of waiting node
577       * @param s the waiting node
578 +     * @param pred the predecessor of s, or s itself if it has no
579 +     * predecessor, or null if unknown (the null case does not occur
580 +     * in any current calls but may in possible future extensions)
581       * @param e the comparison value for checking match
582 <     * @param mode mode
582 >     * @param how either SYNC or TIMEOUT
583       * @param nanos timeout value
584 <     * @return matched item, or null if cancelled
584 >     * @return matched item, or e if unmatched on interrupt or timeout
585       */
586 <    private E awaitFulfill(Node<E> pred, Node<E> s, E e,
587 <                           int mode, long nanos) {
588 <        if (mode == NOWAIT)
302 <            return null;
303 <
304 <        long lastTime = (mode == TIMEOUT) ? System.nanoTime() : 0;
586 >    private Object awaitMatch(Node s, Node pred, Object e,
587 >                              int how, long nanos) {
588 >        long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
589          Thread w = Thread.currentThread();
590 <        int spins = -1; // set to desired spin count below
590 >        int spins = -1; // initialized after first item and cancel checks
591 >        ThreadLocalRandom randomYields = null; // bound if needed
592 >
593          for (;;) {
594 <            if (w.isInterrupted())
595 <                s.compareAndSet(e, s);
596 <            Object x = s.get();
597 <            if (x != e) {                 // Node was matched or cancelled
598 <                advanceHead(pred, s);     // unlink if head
599 <                if (x == s) {             // was cancelled
600 <                    clean(pred, s);
601 <                    return null;
602 <                }
603 <                else if (x != null) {
604 <                    s.set(s);             // avoid garbage retention
605 <                    return (E) x;
606 <                }
607 <                else
608 <                    return e;
594 >            Object item = s.item;
595 >            if (item != e) {                  // matched
596 >                s.forgetContents();           // avoid garbage
597 >                return item;
598 >            }
599 >            if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
600 >                     s.casItem(e, s)) {       // cancel
601 >                unsplice(pred, s);
602 >                return e;
603 >            }
604 >
605 >            if (spins < 0) {                  // establish spins at/near front
606 >                if ((spins = spinsFor(pred, s.isData)) > 0)
607 >                    randomYields = ThreadLocalRandom.current();
608 >            }
609 >            else if (spins > 0) {             // spin
610 >                if (--spins == 0)
611 >                    shortenHeadPath();        // reduce slack before blocking
612 >                else if (randomYields.nextInt(CHAINED_SPINS) == 0)
613 >                    Thread.yield();           // occasionally yield
614 >            }
615 >            else if (s.waiter == null) {
616 >                s.waiter = w;                 // request unpark
617              }
618 <            if (mode == TIMEOUT) {
618 >            else if (how == TIMEOUT) {
619                  long now = System.nanoTime();
620 <                nanos -= now - lastTime;
620 >                if ((nanos -= now - lastTime) > 0)
621 >                    LockSupport.parkNanos(this, nanos);
622                  lastTime = now;
328                if (nanos <= 0) {
329                    s.compareAndSet(e, s); // try to cancel
330                    continue;
331                }
623              }
624 <            if (spins < 0) {
334 <                Node<E> h = head.get(); // only spin if at head
335 <                spins = ((h != null && h.next == s) ?
336 <                         ((mode == TIMEOUT) ?
337 <                          maxTimedSpins : maxUntimedSpins) : 0);
338 <            }
339 <            if (spins > 0)
340 <                --spins;
341 <            else if (s.waiter == null)
342 <                s.waiter = w;
343 <            else if (mode != TIMEOUT) {
624 >            else {
625                  LockSupport.park(this);
626 <                s.waiter = null;
346 <                spins = -1;
347 <            }
348 <            else if (nanos > spinForTimeoutThreshold) {
349 <                LockSupport.parkNanos(this, nanos);
350 <                s.waiter = null;
351 <                spins = -1;
626 >                spins = -1;                   // spin if front upon wakeup
627              }
628          }
629      }
630  
631      /**
632 <     * Returns validated tail for use in cleaning methods.
632 >     * Returns spin/yield value for a node with given predecessor and
633 >     * data mode. See above for explanation.
634       */
635 <    private Node<E> getValidatedTail() {
636 <        for (;;) {
637 <            Node<E> h = head.get();
638 <            Node<E> first = h.next;
639 <            if (first != null && first.get() == first) { // help advance
640 <                advanceHead(h, first);
641 <                continue;
642 <            }
643 <            Node<E> t = tail.get();
644 <            Node<E> last = t.next;
645 <            if (t == tail.get()) {
646 <                if (last != null)
647 <                    tail.compareAndSet(t, last); // help advance
648 <                else
649 <                    return t;
635 >    private static int spinsFor(Node pred, boolean haveData) {
636 >        if (MP && pred != null) {
637 >            if (pred.isData != haveData)      // phase change
638 >                return FRONT_SPINS + CHAINED_SPINS;
639 >            if (pred.isMatched())             // probably at front
640 >                return FRONT_SPINS;
641 >            if (pred.waiter == null)          // pred apparently spinning
642 >                return CHAINED_SPINS;
643 >        }
644 >        return 0;
645 >    }
646 >
647 >    /**
648 >     * Tries (once) to unsplice nodes between head and first unmatched
649 >     * or trailing node; failing on contention.
650 >     */
651 >    private void shortenHeadPath() {
652 >        Node h, hn, p, q;
653 >        if ((p = h = head) != null && h.isMatched() &&
654 >            (q = hn = h.next) != null) {
655 >            Node n;
656 >            while ((n = q.next) != q) {
657 >                if (n == null || !q.isMatched()) {
658 >                    if (hn != q && h.next == hn)
659 >                        h.casNext(hn, q);
660 >                    break;
661 >                }
662 >                p = q;
663 >                q = n;
664              }
665          }
666      }
667  
668 +    /* -------------- Traversal methods -------------- */
669 +
670      /**
671 <     * Gets rid of cancelled node s with original predecessor pred.
672 <     *
381 <     * @param pred predecessor of cancelled node
382 <     * @param s the cancelled node
671 >     * Returns the first unmatched node of the given mode, or null if
672 >     * none.  Used by methods isEmpty, hasWaitingConsumer.
673       */
674 <    private void clean(Node<E> pred, Node<E> s) {
675 <        Thread w = s.waiter;
676 <        if (w != null) {             // Wake up thread
677 <            s.waiter = null;
678 <            if (w != Thread.currentThread())
679 <                LockSupport.unpark(w);
674 >    private Node firstOfMode(boolean data) {
675 >        for (Node p = head; p != null; ) {
676 >            if (!p.isMatched())
677 >                return (p.isData == data) ? p : null;
678 >            Node n = p.next;
679 >            p = (n != p) ? n : head;
680 >        }
681 >        return null;
682 >    }
683 >
684 >    /**
685 >     * Returns the item in the first unmatched node with isData; or
686 >     * null if none. Used by peek.
687 >     */
688 >    private Object firstDataItem() {
689 >        for (Node p = head; p != null; ) {
690 >            boolean isData = p.isData;
691 >            Object item = p.item;
692 >            if (item != p && (item != null) == isData)
693 >                return isData ? item : null;
694 >            Node n = p.next;
695 >            p = (n != p) ? n : head;
696 >        }
697 >        return null;
698 >    }
699 >
700 >    /**
701 >     * Traverses and counts unmatched nodes of the given mode.
702 >     * Used by methods size and getWaitingConsumerCount.
703 >     */
704 >    private int countOfMode(boolean data) {
705 >        int count = 0;
706 >        for (Node p = head; p != null; ) {
707 >            if (!p.isMatched()) {
708 >                if (p.isData != data)
709 >                    return 0;
710 >                if (++count == Integer.MAX_VALUE) // saturated
711 >                    break;
712 >            }
713 >            Node n = p.next;
714 >            if (n != p)
715 >                p = n;
716 >            else {
717 >                count = 0;
718 >                p = head;
719 >            }
720 >        }
721 >        return count;
722 >    }
723 >
724 >    final class Itr implements Iterator<E> {
725 >        private Node nextNode;   // next node to return item for
726 >        private Object nextItem; // the corresponding item
727 >        private Node lastRet;    // last returned node, to support remove
728 >
729 >        /**
730 >         * Moves to next node after prev, or first node if prev null.
731 >         */
732 >        private void advance(Node prev) {
733 >            lastRet = prev;
734 >            Node p;
735 >            if (prev == null || (p = prev.next) == prev)
736 >                p = head;
737 >            while (p != null) {
738 >                Object item = p.item;
739 >                if (p.isData) {
740 >                    if (item != null && item != p) {
741 >                        nextItem = item;
742 >                        nextNode = p;
743 >                        return;
744 >                    }
745 >                }
746 >                else if (item == null)
747 >                    break;
748 >                Node n = p.next;
749 >                p = (n != p) ? n : head;
750 >            }
751 >            nextNode = null;
752 >        }
753 >
754 >        Itr() {
755 >            advance(null);
756 >        }
757 >
758 >        public final boolean hasNext() {
759 >            return nextNode != null;
760 >        }
761 >
762 >        public final E next() {
763 >            Node p = nextNode;
764 >            if (p == null) throw new NoSuchElementException();
765 >            Object e = nextItem;
766 >            advance(p);
767 >            return (E) e;
768 >        }
769 >
770 >        public final void remove() {
771 >            Node p = lastRet;
772 >            if (p == null) throw new IllegalStateException();
773 >            lastRet = null;
774 >            findAndRemoveNode(p);
775          }
776 +    }
777  
778 <        if (pred == null)
393 <            return;
778 >    /* -------------- Removal methods -------------- */
779  
780 +    /**
781 +     * Unsplices (now or later) the given deleted/cancelled node with
782 +     * the given predecessor.
783 +     *
784 +     * @param pred predecessor of node to be unspliced
785 +     * @param s the node to be unspliced
786 +     */
787 +    private void unsplice(Node pred, Node s) {
788 +        s.forgetContents(); // clear unneeded fields
789          /*
790           * At any given time, exactly one node on list cannot be
791 <         * deleted -- the last inserted node. To accommodate this, if
792 <         * we cannot delete s, we save its predecessor as "cleanMe",
793 <         * processing the previously saved version first. At least one
794 <         * of node s or the node previously saved can always be
791 >         * unlinked -- the last inserted node. To accommodate this, if
792 >         * we cannot unlink s, we save its predecessor as "cleanMe",
793 >         * processing the previously saved version first. Because only
794 >         * one node in the list can have a null next, at least one of
795 >         * node s or the node previously saved can always be
796           * processed, so this always terminates.
797           */
798 <        while (pred.next == s) {
799 <            Node<E> oldpred = reclean();  // First, help get rid of cleanMe
800 <            Node<E> t = getValidatedTail();
801 <            if (s != t) {               // If not tail, try to unsplice
802 <                Node<E> sn = s.next;      // s.next == s means s already off list
803 <                if (sn == s || pred.casNext(s, sn))
798 >        if (pred != null && pred != s) {
799 >            while (pred.next == s) {
800 >                Node oldpred = (cleanMe == null) ? null : reclean();
801 >                Node n = s.next;
802 >                if (n != null) {
803 >                    if (n != s)
804 >                        pred.casNext(s, n);
805                      break;
806 +                }
807 +                if (oldpred == pred ||      // Already saved
808 +                    (oldpred == null && casCleanMe(null, pred)))
809 +                    break;                  // Postpone cleaning
810              }
411            else if (oldpred == pred || // Already saved
412                     (oldpred == null && cleanMe.compareAndSet(null, pred)))
413                break;                  // Postpone cleaning
811          }
812      }
813  
814      /**
815 <     * Tries to unsplice the cancelled node held in cleanMe that was
816 <     * previously uncleanable because it was at tail.
815 >     * Tries to unsplice the deleted/cancelled node held in cleanMe
816 >     * that was previously uncleanable because it was at tail.
817       *
818       * @return current cleanMe node (or null)
819       */
820 <    private Node<E> reclean() {
820 >    private Node reclean() {
821          /*
822 <         * cleanMe is, or at one time was, predecessor of cancelled
823 <         * node s that was the tail so could not be unspliced.  If s
822 >         * cleanMe is, or at one time was, predecessor of a cancelled
823 >         * node s that was the tail so could not be unspliced.  If it
824           * is no longer the tail, try to unsplice if necessary and
825           * make cleanMe slot available.  This differs from similar
826 <         * code in clean() because we must check that pred still
827 <         * points to a cancelled node that must be unspliced -- if
828 <         * not, we can (must) clear cleanMe without unsplicing.
829 <         * This can loop only due to contention on casNext or
433 <         * clearing cleanMe.
826 >         * code in unsplice() because we must check that pred still
827 >         * points to a matched node that can be unspliced -- if not,
828 >         * we can (must) clear cleanMe without unsplicing.  This can
829 >         * loop only due to contention.
830           */
831 <        Node<E> pred;
832 <        while ((pred = cleanMe.get()) != null) {
833 <            Node<E> t = getValidatedTail();
834 <            Node<E> s = pred.next;
835 <            if (s != t) {
836 <                Node<E> sn;
837 <                if (s == null || s == pred || s.get() != s ||
838 <                    (sn = s.next) == s || pred.casNext(s, sn))
839 <                    cleanMe.compareAndSet(pred, null);
831 >        Node pred;
832 >        while ((pred = cleanMe) != null) {
833 >            Node s = pred.next;
834 >            Node n;
835 >            if (s == null || s == pred || !s.isMatched())
836 >                casCleanMe(pred, null); // already gone
837 >            else if ((n = s.next) != null) {
838 >                if (n != s)
839 >                    pred.casNext(s, n);
840 >                casCleanMe(pred, null);
841              }
842 <            else // s is still tail; cannot clean
842 >            else
843                  break;
844          }
845          return pred;
846      }
847  
848      /**
849 +     * Main implementation of Iterator.remove(). Find
850 +     * and unsplice the given node.
851 +     */
852 +    final void findAndRemoveNode(Node s) {
853 +        if (s.tryMatchData()) {
854 +            Node pred = null;
855 +            Node p = head;
856 +            while (p != null) {
857 +                if (p == s) {
858 +                    unsplice(pred, p);
859 +                    break;
860 +                }
861 +                if (!p.isData && !p.isMatched())
862 +                    break;
863 +                pred = p;
864 +                if ((p = p.next) == pred) { // stale
865 +                    pred = null;
866 +                    p = head;
867 +                }
868 +            }
869 +        }
870 +    }
871 +
872 +    /**
873 +     * Main implementation of remove(Object)
874 +     */
875 +    private boolean findAndRemove(Object e) {
876 +        if (e != null) {
877 +            Node pred = null;
878 +            Node p = head;
879 +            while (p != null) {
880 +                Object item = p.item;
881 +                if (p.isData) {
882 +                    if (item != null && item != p && e.equals(item) &&
883 +                        p.tryMatchData()) {
884 +                        unsplice(pred, p);
885 +                        return true;
886 +                    }
887 +                }
888 +                else if (item == null)
889 +                    break;
890 +                pred = p;
891 +                if ((p = p.next) == pred) {
892 +                    pred = null;
893 +                    p = head;
894 +                }
895 +            }
896 +        }
897 +        return false;
898 +    }
899 +
900 +
901 +    /**
902       * Creates an initially empty {@code LinkedTransferQueue}.
903       */
904      public LinkedTransferQueue() {
455        Node<E> dummy = new Node<E>(null, false);
456        head = new PaddedAtomicReference<Node<E>>(dummy);
457        tail = new PaddedAtomicReference<Node<E>>(dummy);
458        cleanMe = new PaddedAtomicReference<Node<E>>(null);
905      }
906  
907      /**
# Line 479 | Line 925 | public class LinkedTransferQueue<E> exte
925       * @throws NullPointerException if the specified element is null
926       */
927      public void put(E e) {
928 <        offer(e);
928 >        xfer(e, true, ASYNC, 0);
929      }
930  
931      /**
# Line 492 | Line 938 | public class LinkedTransferQueue<E> exte
938       * @throws NullPointerException if the specified element is null
939       */
940      public boolean offer(E e, long timeout, TimeUnit unit) {
941 <        return offer(e);
941 >        xfer(e, true, ASYNC, 0);
942 >        return true;
943      }
944  
945      /**
# Line 504 | Line 951 | public class LinkedTransferQueue<E> exte
951       * @throws NullPointerException if the specified element is null
952       */
953      public boolean offer(E e) {
954 <        if (e == null) throw new NullPointerException();
508 <        xfer(e, NOWAIT, 0);
954 >        xfer(e, true, ASYNC, 0);
955          return true;
956      }
957  
# Line 518 | Line 964 | public class LinkedTransferQueue<E> exte
964       * @throws NullPointerException if the specified element is null
965       */
966      public boolean add(E e) {
967 <        return offer(e);
967 >        xfer(e, true, ASYNC, 0);
968 >        return true;
969      }
970  
971      /**
# Line 532 | Line 979 | public class LinkedTransferQueue<E> exte
979       * @throws NullPointerException if the specified element is null
980       */
981      public boolean tryTransfer(E e) {
982 <        if (e == null) throw new NullPointerException();
536 <        return fulfill(e) != null;
982 >        return xfer(e, true, NOW, 0) == null;
983      }
984  
985      /**
# Line 548 | Line 994 | public class LinkedTransferQueue<E> exte
994       * @throws NullPointerException if the specified element is null
995       */
996      public void transfer(E e) throws InterruptedException {
997 <        if (e == null) throw new NullPointerException();
998 <        if (xfer(e, WAIT, 0) == null) {
553 <            Thread.interrupted();
997 >        if (xfer(e, true, SYNC, 0) != null) {
998 >            Thread.interrupted(); // failure possible only due to interrupt
999              throw new InterruptedException();
1000          }
1001      }
# Line 571 | Line 1016 | public class LinkedTransferQueue<E> exte
1016       */
1017      public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1018          throws InterruptedException {
1019 <        if (e == null) throw new NullPointerException();
575 <        if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
1019 >        if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1020              return true;
1021          if (!Thread.interrupted())
1022              return false;
# Line 580 | Line 1024 | public class LinkedTransferQueue<E> exte
1024      }
1025  
1026      public E take() throws InterruptedException {
1027 <        E e = xfer(null, WAIT, 0);
1027 >        Object e = xfer(null, false, SYNC, 0);
1028          if (e != null)
1029 <            return e;
1029 >            return (E)e;
1030          Thread.interrupted();
1031          throw new InterruptedException();
1032      }
1033  
1034      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1035 <        E e = xfer(null, TIMEOUT, unit.toNanos(timeout));
1035 >        Object e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1036          if (e != null || !Thread.interrupted())
1037 <            return e;
1037 >            return (E)e;
1038          throw new InterruptedException();
1039      }
1040  
1041      public E poll() {
1042 <        return fulfill(null);
1042 >        return (E)xfer(null, false, NOW, 0);
1043      }
1044  
1045      /**
# Line 634 | Line 1078 | public class LinkedTransferQueue<E> exte
1078          return n;
1079      }
1080  
637    // Traversal-based methods
638
639    /**
640     * Returns head after performing any outstanding helping steps.
641     */
642    private Node<E> traversalHead() {
643        for (;;) {
644            Node<E> t = tail.get();
645            Node<E> h = head.get();
646            if (h != null && t != null) {
647                Node<E> last = t.next;
648                Node<E> first = h.next;
649                if (t == tail.get()) {
650                    if (last != null)
651                        tail.compareAndSet(t, last);
652                    else if (first != null) {
653                        Object x = first.get();
654                        if (x == first)
655                            advanceHead(h, first);
656                        else
657                            return h;
658                    }
659                    else
660                        return h;
661                }
662            }
663            reclean();
664        }
665    }
666
1081      /**
1082       * Returns an iterator over the elements in this queue in proper
1083       * sequence, from head to tail.
# Line 681 | Line 1095 | public class LinkedTransferQueue<E> exte
1095          return new Itr();
1096      }
1097  
684    /**
685     * Iterators. Basic strategy is to traverse list, treating
686     * non-data (i.e., request) nodes as terminating list.
687     * Once a valid data node is found, the item is cached
688     * so that the next call to next() will return it even
689     * if subsequently removed.
690     */
691    class Itr implements Iterator<E> {
692        Node<E> next;        // node to return next
693        Node<E> pnext;       // predecessor of next
694        Node<E> curr;        // last returned node, for remove()
695        Node<E> pcurr;       // predecessor of curr, for remove()
696        E nextItem;          // Cache of next item, once committed to in next
697
698        Itr() {
699            advance();
700        }
701
702        /**
703         * Moves to next valid node and returns item to return for
704         * next(), or null if no such.
705         */
706        private E advance() {
707            pcurr = pnext;
708            curr = next;
709            E item = nextItem;
710
711            for (;;) {
712                pnext = (next == null) ? traversalHead() : next;
713                next = pnext.next;
714                if (next == pnext) {
715                    next = null;
716                    continue;  // restart
717                }
718                if (next == null)
719                    break;
720                Object x = next.get();
721                if (x != null && x != next) {
722                    nextItem = (E) x;
723                    break;
724                }
725            }
726            return item;
727        }
728
729        public boolean hasNext() {
730            return next != null;
731        }
732
733        public E next() {
734            if (next == null)
735                throw new NoSuchElementException();
736            return advance();
737        }
738
739        public void remove() {
740            Node<E> p = curr;
741            if (p == null)
742                throw new IllegalStateException();
743            Object x = p.get();
744            if (x != null && x != p && p.compareAndSet(x, p))
745                clean(pcurr, p);
746        }
747    }
748
1098      public E peek() {
1099 <        for (;;) {
751 <            Node<E> h = traversalHead();
752 <            Node<E> p = h.next;
753 <            if (p == null)
754 <                return null;
755 <            Object x = p.get();
756 <            if (p != x) {
757 <                if (!p.isData)
758 <                    return null;
759 <                if (x != null)
760 <                    return (E) x;
761 <            }
762 <        }
1099 >        return (E) firstDataItem();
1100      }
1101  
1102      /**
# Line 768 | Line 1105 | public class LinkedTransferQueue<E> exte
1105       * @return {@code true} if this queue contains no elements
1106       */
1107      public boolean isEmpty() {
1108 <        for (;;) {
772 <            Node<E> h = traversalHead();
773 <            Node<E> p = h.next;
774 <            if (p == null)
775 <                return true;
776 <            Object x = p.get();
777 <            if (p != x) {
778 <                if (!p.isData)
779 <                    return true;
780 <                if (x != null)
781 <                    return false;
782 <            }
783 <        }
1108 >        return firstOfMode(true) == null;
1109      }
1110  
1111      public boolean hasWaitingConsumer() {
1112 <        for (;;) {
788 <            Node<E> h = traversalHead();
789 <            Node<E> p = h.next;
790 <            if (p == null)
791 <                return false;
792 <            Object x = p.get();
793 <            if (p != x)
794 <                return !p.isData;
795 <        }
1112 >        return firstOfMode(false) != null;
1113      }
1114  
1115      /**
# Line 808 | Line 1125 | public class LinkedTransferQueue<E> exte
1125       * @return the number of elements in this queue
1126       */
1127      public int size() {
1128 <        for (;;) {
812 <            int count = 0;
813 <            Node<E> pred = traversalHead();
814 <            for (;;) {
815 <                Node<E> q = pred.next;
816 <                if (q == pred) // restart
817 <                    break;
818 <                if (q == null || !q.isData)
819 <                    return count;
820 <                Object x = q.get();
821 <                if (x != null && x != q) {
822 <                    if (++count == Integer.MAX_VALUE) // saturated
823 <                        return count;
824 <                }
825 <                pred = q;
826 <            }
827 <        }
1128 >        return countOfMode(true);
1129      }
1130  
1131      public int getWaitingConsumerCount() {
1132 <        // converse of size -- count valid non-data nodes
832 <        for (;;) {
833 <            int count = 0;
834 <            Node<E> pred = traversalHead();
835 <            for (;;) {
836 <                Node<E> q = pred.next;
837 <                if (q == pred) // restart
838 <                    break;
839 <                if (q == null || q.isData)
840 <                    return count;
841 <                Object x = q.get();
842 <                if (x == null) {
843 <                    if (++count == Integer.MAX_VALUE) // saturated
844 <                        return count;
845 <                }
846 <                pred = q;
847 <            }
848 <        }
1132 >        return countOfMode(false);
1133      }
1134  
1135 +    /**
1136 +     * Removes a single instance of the specified element from this queue,
1137 +     * if it is present.  More formally, removes an element {@code e} such
1138 +     * that {@code o.equals(e)}, if this queue contains one or more such
1139 +     * elements.
1140 +     * Returns {@code true} if this queue contained the specified element
1141 +     * (or equivalently, if this queue changed as a result of the call).
1142 +     *
1143 +     * @param o element to be removed from this queue, if present
1144 +     * @return {@code true} if this queue changed as a result of the call
1145 +     */
1146      public boolean remove(Object o) {
1147 <        if (o == null)
853 <            return false;
854 <        for (;;) {
855 <            Node<E> pred = traversalHead();
856 <            for (;;) {
857 <                Node<E> q = pred.next;
858 <                if (q == pred) // restart
859 <                    break;
860 <                if (q == null || !q.isData)
861 <                    return false;
862 <                Object x = q.get();
863 <                if (x != null && x != q && o.equals(x) &&
864 <                    q.compareAndSet(x, q)) {
865 <                    clean(pred, q);
866 <                    return true;
867 <                }
868 <                pred = q;
869 <            }
870 <        }
1147 >        return findAndRemove(o);
1148      }
1149  
1150      /**
# Line 882 | Line 1159 | public class LinkedTransferQueue<E> exte
1159      }
1160  
1161      /**
1162 <     * Save the state to a stream (that is, serialize it).
1162 >     * Saves the state to a stream (that is, serializes it).
1163       *
1164       * @serialData All of the elements (each an {@code E}) in
1165       * the proper order, followed by a null
# Line 898 | Line 1175 | public class LinkedTransferQueue<E> exte
1175      }
1176  
1177      /**
1178 <     * Reconstitute the Queue instance from a stream (that is,
1179 <     * deserialize it).
1178 >     * Reconstitutes the Queue instance from a stream (that is,
1179 >     * deserializes it).
1180       *
1181       * @param s the stream
1182       */
1183      private void readObject(java.io.ObjectInputStream s)
1184          throws java.io.IOException, ClassNotFoundException {
1185          s.defaultReadObject();
909        resetHeadAndTail();
1186          for (;;) {
1187              @SuppressWarnings("unchecked") E item = (E) s.readObject();
1188              if (item == null)
# Line 916 | Line 1192 | public class LinkedTransferQueue<E> exte
1192          }
1193      }
1194  
919    // Support for resetting head/tail while deserializing
920    private void resetHeadAndTail() {
921        Node<E> dummy = new Node<E>(null, false);
922        UNSAFE.putObjectVolatile(this, headOffset,
923                                 new PaddedAtomicReference<Node<E>>(dummy));
924        UNSAFE.putObjectVolatile(this, tailOffset,
925                                 new PaddedAtomicReference<Node<E>>(dummy));
926        UNSAFE.putObjectVolatile(this, cleanMeOffset,
927                                 new PaddedAtomicReference<Node<E>>(null));
928    }
1195  
1196      // Unsafe mechanics
1197  
# Line 937 | Line 1203 | public class LinkedTransferQueue<E> exte
1203      private static final long cleanMeOffset =
1204          objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1205  
940
1206      static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1207                                    String field, Class<?> klazz) {
1208          try {
# Line 950 | Line 1215 | public class LinkedTransferQueue<E> exte
1215          }
1216      }
1217  
953    /**
954     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
955     * Replace with a simple call to Unsafe.getUnsafe when integrating
956     * into a jdk.
957     *
958     * @return a sun.misc.Unsafe
959     */
1218      private static sun.misc.Unsafe getUnsafe() {
1219          try {
1220              return sun.misc.Unsafe.getUnsafe();
# Line 977 | Line 1235 | public class LinkedTransferQueue<E> exte
1235              }
1236          }
1237      }
1238 +
1239   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines