ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.1 by dl, Tue May 29 09:55:32 2007 UTC vs.
Revision 1.45 by dl, Wed Oct 21 16:30:40 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.concurrent.*;
9 import java.util.concurrent.locks.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.*;
12 import java.io.*;
10  
11 + import java.util.AbstractQueue;
12 + import java.util.Collection;
13 + import java.util.ConcurrentModificationException;
14 + import java.util.Iterator;
15 + import java.util.NoSuchElementException;
16 + import java.util.Queue;
17 + import java.util.concurrent.locks.LockSupport;
18   /**
19 < * An unbounded {@linkplain TransferQueue} based on linked nodes.
19 > * An unbounded {@link TransferQueue} based on linked nodes.
20   * This queue orders elements FIFO (first-in-first-out) with respect
21   * to any given producer.  The <em>head</em> of the queue is that
22   * element that has been on the queue the longest time for some
23   * producer.  The <em>tail</em> of the queue is that element that has
24   * been on the queue the shortest time for some producer.
25   *
26 < * <p>Beware that, unlike in most collections, the <tt>size</tt>
26 > * <p>Beware that, unlike in most collections, the {@code size}
27   * method is <em>NOT</em> a constant-time operation. Because of the
28   * asynchronous nature of these queues, determining the current number
29   * of elements requires a traversal of the elements.
# Line 39 | Line 43 | import java.io.*;
43   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
44   * Java Collections Framework</a>.
45   *
46 < * @since 1.5
46 > * @since 1.7
47   * @author Doug Lea
48   * @param <E> the type of elements held in this collection
45 *
49   */
50   public class LinkedTransferQueue<E> extends AbstractQueue<E>
51      implements TransferQueue<E>, java.io.Serializable {
52      private static final long serialVersionUID = -3223113410248163686L;
53  
54      /*
55 <     * This is still a work in prgress...
55 >     * *** Overview of Dual Queues with Slack ***
56 >     *
57 >     * Dual Queues, introduced by Scherer and Scott
58 >     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 >     * (linked) queues in which nodes may represent either data or
60 >     * requests.  When a thread tries to enqueue a data node, but
61 >     * encounters a request node, it instead "matches" and removes it;
62 >     * and vice versa for enqueuing requests. Blocking Dual Queues
63 >     * arrange that threads enqueuing unmatched requests block until
64 >     * other threads provide the match. Dual Synchronous Queues (see
65 >     * Scherer, Lea, & Scott
66 >     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 >     * additionally arrange that threads enqueuing unmatched data also
68 >     * block.  Dual Transfer Queues support all of these modes, as
69 >     * dictated by callers.
70 >     *
71 >     * A FIFO dual queue may be implemented using a variation of the
72 >     * Michael & Scott (M&S) lock-free queue algorithm
73 >     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 >     * It maintains two pointer fields, "head", pointing to a
75 >     * (matched) node that in turn points to the first actual
76 >     * (unmatched) queue node (or null if empty); and "tail" that
77 >     * points to the last node on the queue (or again null if
78 >     * empty). For example, here is a possible queue with four data
79 >     * elements:
80 >     *
81 >     *  head                tail
82 >     *    |                   |
83 >     *    v                   v
84 >     *    M -> U -> U -> U -> U
85 >     *
86 >     * The M&S queue algorithm is known to be prone to scalability and
87 >     * overhead limitations when maintaining (via CAS) these head and
88 >     * tail pointers. This has led to the development of
89 >     * contention-reducing variants such as elimination arrays (see
90 >     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 >     * optimistic back pointers (see Ladan-Mozes & Shavit
92 >     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 >     * However, the nature of dual queues enables a simpler tactic for
94 >     * improving M&S-style implementations when dual-ness is needed.
95 >     *
96 >     * In a dual queue, each node must atomically maintain its match
97 >     * status. While there are other possible variants, we implement
98 >     * this here as: for a data-mode node, matching entails CASing an
99 >     * "item" field from a non-null data value to null upon match, and
100 >     * vice-versa for request nodes, CASing from null to a data
101 >     * value. (Note that the linearization properties of this style of
102 >     * queue are easy to verify -- elements are made available by
103 >     * linking, and unavailable by matching.) Compared to plain M&S
104 >     * queues, this property of dual queues requires one additional
105 >     * successful atomic operation per enq/deq pair. But it also
106 >     * enables lower cost variants of queue maintenance mechanics. (A
107 >     * variation of this idea applies even for non-dual queues that
108 >     * support deletion of embedded elements, such as
109 >     * j.u.c.ConcurrentLinkedQueue.)
110 >     *
111 >     * Once a node is matched, its item can never again change.  We
112 >     * may thus arrange that the linked list of them contains a prefix
113 >     * of zero or more matched nodes, followed by a suffix of zero or
114 >     * more unmatched nodes. (Note that we allow both the prefix and
115 >     * suffix to be zero length, which in turn means that we do not
116 >     * use a dummy header.)  If we were not concerned with either time
117 >     * or space efficiency, we could correctly perform enqueue and
118 >     * dequeue operations by traversing from a pointer to the initial
119 >     * node; CASing the item of the first unmatched node on match and
120 >     * CASing the next field of the trailing node on appends.  While
121 >     * this would be a terrible idea in itself, it does have the
122 >     * benefit of not requiring ANY atomic updates on head/tail
123 >     * fields.
124 >     *
125 >     * We introduce here an approach that lies between the extremes of
126 >     * never versus always updating queue (head and tail) pointers
127 >     * that reflects the tradeoff of sometimes require extra traversal
128 >     * steps to locate the first and/or last unmatched nodes, versus
129 >     * the reduced overhead and contention of fewer updates to queue
130 >     * pointers. For example, a possible snapshot of a queue is:
131 >     *
132 >     *  head           tail
133 >     *    |              |
134 >     *    v              v
135 >     *    M -> M -> U -> U -> U -> U
136 >     *
137 >     * The best value for this "slack" (the targeted maximum distance
138 >     * between the value of "head" and the first unmatched node, and
139 >     * similarly for "tail") is an empirical matter. We have found
140 >     * that using very small constants in the range of 1-3 work best
141 >     * over a range of platforms. Larger values introduce increasing
142 >     * costs of cache misses and risks of long traversal chains.
143 >     *
144 >     * Dual queues with slack differ from plain M&S dual queues by
145 >     * virtue of only sometimes updating head or tail pointers when
146 >     * matching, appending, or even traversing nodes; in order to
147 >     * maintain a targeted slack.  The idea of "sometimes" may be
148 >     * operationalized in several ways. The simplest is to use a
149 >     * per-operation counter incremented on each traversal step, and
150 >     * to try (via CAS) to update the associated queue pointer
151 >     * whenever the count exceeds a threshold. Another, that requires
152 >     * more overhead, is to use random number generators to update
153 >     * with a given probability per traversal step.
154 >     *
155 >     * In any strategy along these lines, because CASes updating
156 >     * fields may fail, the actual slack may exceed targeted
157 >     * slack. However, they may be retried at any time to maintain
158 >     * targets.  Even when using very small slack values, this
159 >     * approach works well for dual queues because it allows all
160 >     * operations up to the point of matching or appending an item
161 >     * (hence potentially releasing another thread) to be read-only,
162 >     * thus not introducing any further contention. As described
163 >     * below, we implement this by performing slack maintenance
164 >     * retries only after these points.
165 >     *
166 >     * As an accompaniment to such techniques, traversal overhead can
167 >     * be further reduced without increasing contention of head
168 >     * pointer updates.  During traversals, threads may sometimes
169 >     * shortcut the "next" link path from the current "head" node to
170 >     * be closer to the currently known first unmatched node. Again,
171 >     * this may be triggered with using thresholds or randomization.
172 >     *
173 >     * These ideas must be further extended to avoid unbounded amounts
174 >     * of costly-to-reclaim garbage caused by the sequential "next"
175 >     * links of nodes starting at old forgotten head nodes: As first
176 >     * described in detail by Boehm
177 >     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
178 >     * delays noticing that any arbitrarily old node has become
179 >     * garbage, all newer dead nodes will also be unreclaimed.
180 >     * (Similar issues arise in non-GC environments.)  To cope with
181 >     * this in our implementation, upon CASing to advance the head
182 >     * pointer, we set the "next" link of the previous head to point
183 >     * only to itself; thus limiting the length connected dead lists.
184 >     * (We also take similar care to wipe out possibly garbage
185 >     * retaining values held in other Node fields.)  However, doing so
186 >     * adds some further complexity to traversal: If any "next"
187 >     * pointer links to itself, it indicates that the current thread
188 >     * has lagged behind a head-update, and so the traversal must
189 >     * continue from the "head".  Traversals trying to find the
190 >     * current tail starting from "tail" may also encounter
191 >     * self-links, in which case they also continue at "head".
192 >     *
193 >     * It is tempting in slack-based scheme to not even use CAS for
194 >     * updates (similarly to Ladan-Mozes & Shavit). However, this
195 >     * cannot be done for head updates under the above link-forgetting
196 >     * mechanics because an update may leave head at a detached node.
197 >     * And while direct writes are possible for tail updates, they
198 >     * increase the risk of long retraversals, and hence long garbage
199 >     * chains which can be much more costly than is worthwhile
200 >     * considering that the cost difference of performing a CAS vs
201 >     * write is smaller when they are not triggered on each operation
202 >     * (especially considering that writes and CASes equally require
203 >     * additional GC bookkeeping ("write barriers") that are sometimes
204 >     * more costly than the writes themselves because of contention).
205 >     *
206 >     * Removal of internal nodes (due to timed out or interrupted
207 >     * waits, or calls to remove or Iterator.remove) uses a scheme
208 >     * roughly similar to that in Scherer, Lea, and Scott
209 >     * SynchronousQueue. Given a predecessor, we can unsplice any node
210 >     * except the (actual) tail of the queue. To avoid build-up of
211 >     * cancelled trailing nodes, upon a request to remove a trailing
212 >     * node, it is placed in field "cleanMe" to be unspliced later.
213       *
214 <     * This class extends the approach used in FIFO-mode
55 <     * SynchronousQueues. See the internal documentation, as well as
56 <     * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
57 <     * Lea & Scott
58 <     * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
214 >     * *** Overview of implementation ***
215       *
216 <     * The main extension is to provide different Wait modes
217 <     * for the main "xfer" method that puts or takes items.
218 <     * These don't impact the basic dual-queue logic, but instead
219 <     * control whether or how threads block upon insertion
220 <     * of request or data nodes into the dual queue.
216 >     * We use a threshold-based approach to updates, with a target
217 >     * slack of two.  The slack value is hard-wired: a path greater
218 >     * than one is naturally implemented by checking equality of
219 >     * traversal pointers except when the list has only one element,
220 >     * in which case we keep max slack at one. Avoiding tracking
221 >     * explicit counts across situations slightly simplifies an
222 >     * already-messy implementation. Using randomization would
223 >     * probably work better if there were a low-quality dirt-cheap
224 >     * per-thread one available, but even ThreadLocalRandom is too
225 >     * heavy for these purposes.
226 >     *
227 >     * With such a small slack value, path short-circuiting is rarely
228 >     * worthwhile. However, it is used (in awaitMatch) immediately
229 >     * before a waiting thread starts to block, as a final bit of
230 >     * helping at a point when contention with others is extremely
231 >     * unlikely (since if other threads that could release it are
232 >     * operating, then the current thread wouldn't be blocking).
233 >     *
234 >     * All enqueue/dequeue operations are handled by the single method
235 >     * "xfer" with parameters indicating whether to act as some form
236 >     * of offer, put, poll, take, or transfer (each possibly with
237 >     * timeout). The relative complexity of using one monolithic
238 >     * method outweighs the code bulk and maintenance problems of
239 >     * using nine separate methods.
240 >     *
241 >     * Operation consists of up to three phases. The first is
242 >     * implemented within method xfer, the second in tryAppend, and
243 >     * the third in method awaitMatch.
244 >     *
245 >     * 1. Try to match an existing node
246 >     *
247 >     *    Starting at head, skip already-matched nodes until finding
248 >     *    an unmatched node of opposite mode, if one exists, in which
249 >     *    case matching it and returning, also if necessary updating
250 >     *    head to one past the matched node (or the node itself if the
251 >     *    list has no other unmatched nodes). If the CAS misses, then
252 >     *    a retry loops until the slack is at most two. Traversals
253 >     *    also check if the initial head is now off-list, in which
254 >     *    case they start at the new head.
255 >     *
256 >     *    If no candidates are found and the call was untimed
257 >     *    poll/offer, (argument "how" is NOW) return.
258 >     *
259 >     * 2. Try to append a new node (method tryAppend)
260 >     *
261 >     *    Starting at current tail pointer, try to append a new node
262 >     *    to the list (or if head was null, establish the first
263 >     *    node). Nodes can be appended only if their predecessors are
264 >     *    either already matched or are of the same mode. If we detect
265 >     *    otherwise, then a new node with opposite mode must have been
266 >     *    appended during traversal, so must restart at phase 1. The
267 >     *    traversal and update steps are otherwise similar to phase 1:
268 >     *    Retrying upon CAS misses and checking for staleness.  In
269 >     *    particular, if a self-link is encountered, then we can
270 >     *    safely jump to a node on the list by continuing the
271 >     *    traversal at current head.
272 >     *
273 >     *    On successful append, if the call was ASYNC, return
274 >     *
275 >     * 3. Await match or cancellation (method awaitMatch)
276 >     *
277 >     *    Wait for another thread to match node; instead cancelling if
278 >     *    current thread was interrupted or the wait timed out. On
279 >     *    multiprocessors, we use front-of-queue spinning: If a node
280 >     *    appears to be the first unmatched node in the queue, it
281 >     *    spins a bit before blocking. In either case, before blocking
282 >     *    it tries to unsplice any nodes between the current "head"
283 >     *    and the first unmatched node.
284 >     *
285 >     *    Front-of-queue spinning vastly improves performance of
286 >     *    heavily contended queues. And so long as it is relatively
287 >     *    brief and "quiet", spinning does not much impact performance
288 >     *    of less-contended queues.  During spins threads check their
289 >     *    interrupt status and generate a thread-local random number
290 >     *    to decide to occasionally perform a Thread.yield. While
291 >     *    yield has underdefined specs, we assume that might it help,
292 >     *    and will not hurt in limiting impact of spinning on busy
293 >     *    systems.  We also use much smaller (1/4) spins for nodes
294 >     *    that are not known to be front but whose predecessors have
295 >     *    not blocked -- these "chained" spins avoid artifacts of
296 >     *    front-of-queue rules which otherwise lead to alternating
297 >     *    nodes spinning vs blocking. Further, front threads that
298 >     *    represent phase changes (from data to request node or vice
299 >     *    versa) compared to their predecessors receive additional
300 >     *    spins, reflecting the longer code path lengths necessary to
301 >     *    release them under contention.
302       */
303  
304 <    // Wait modes for xfer method
305 <    static final int NOWAIT  = 0;
306 <    static final int TIMEOUT = 1;
70 <    static final int WAIT    = 2;
71 <
72 <    /** The number of CPUs, for spin control */
73 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
304 >    /** True if on multiprocessor */
305 >    private static final boolean MP =
306 >        Runtime.getRuntime().availableProcessors() > 1;
307  
308      /**
309 <     * The number of times to spin before blocking in timed waits.
310 <     * The value is empirically derived -- it works well across a
311 <     * variety of processors and OSes. Empirically, the best value
312 <     * seems not to vary with number of CPUs (beyond 2) so is just
313 <     * a constant.
309 >     * The number of times to spin (with on average one randomly
310 >     * interspersed call to Thread.yield) on multiprocessor before
311 >     * blocking when a node is apparently the first waiter in the
312 >     * queue.  See above for explanation. Must be a power of two. The
313 >     * value is empirically derived -- it works pretty well across a
314 >     * variety of processors, numbers of CPUs, and OSes.
315       */
316 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
316 >    private static final int FRONT_SPINS   = 1 << 7;
317  
318      /**
319 <     * The number of times to spin before blocking in untimed waits.
320 <     * This is greater than timed value because untimed waits spin
87 <     * faster since they don't need to check times on each spin.
319 >     * The number of times to spin before blocking when a node is
320 >     * preceded by another node that is apparently spinning.
321       */
322 <    static final int maxUntimedSpins = maxTimedSpins * 16;
322 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 2;
323  
324      /**
325 <     * The number of nanoseconds for which it is faster to spin
326 <     * rather than to use timed park. A rough estimate suffices.
327 <     */
328 <    static final long spinForTimeoutThreshold = 1000L;
329 <
97 <    /**
98 <     * Node class for LinkedTransferQueue. Opportunistically subclasses from
99 <     * AtomicReference to represent item. Uses Object, not E, to allow
100 <     * setting item to "this" after use, to avoid garbage
101 <     * retention. Similarly, setting the next field to this is used as
102 <     * sentinel that node is off list.
325 >     * Queue nodes. Uses Object, not E for items to allow forgetting
326 >     * them after use.  Relies heavily on Unsafe mechanics to minimize
327 >     * unecessary ordering constraints: Writes that intrinsically
328 >     * precede or follow CASes use simple relaxed forms.  Other
329 >     * cleanups use releasing/lazy writes.
330       */
331 <    static final class QNode extends AtomicReference<Object> {
332 <        volatile QNode next;
333 <        volatile Thread waiter;       // to control park/unpark
334 <        final boolean isData;
335 <        QNode(Object item, boolean isData) {
336 <            super(item);
331 >    static final class Node {
332 >        final boolean isData;   // false if this is a request node
333 >        volatile Object item;   // initially nonnull if isData; CASed to match
334 >        volatile Node next;
335 >        volatile Thread waiter; // null until waiting
336 >
337 >        // CAS methods for fields
338 >        final boolean casNext(Node cmp, Node val) {
339 >            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
340 >        }
341 >
342 >        final boolean casItem(Object cmp, Object val) {
343 >            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
344 >        }
345 >
346 >        /**
347 >         * Create a new node. Uses relaxed write because item can only
348 >         * be seen if followed by CAS
349 >         */
350 >        Node(Object item, boolean isData) {
351 >            UNSAFE.putObject(this, itemOffset, item); // relaxed write
352              this.isData = isData;
353          }
354  
355 <        static final AtomicReferenceFieldUpdater<QNode, QNode>
356 <            nextUpdater = AtomicReferenceFieldUpdater.newUpdater
357 <            (QNode.class, QNode.class, "next");
358 <
359 <        boolean casNext(QNode cmp, QNode val) {
360 <            return nextUpdater.compareAndSet(this, cmp, val);
355 >        /**
356 >         * Links node to itself to avoid garbage retention.  Called
357 >         * only after CASing head field, so uses relaxed write.
358 >         */
359 >        final void forgetNext() {
360 >            UNSAFE.putObject(this, nextOffset, this);
361 >        }
362 >
363 >        /**
364 >         * Sets item to self (using a releasing/lazy write) and waiter
365 >         * to null, to avoid garbage retention after extracting or
366 >         * cancelling.
367 >         */
368 >        final void forgetContents() {
369 >            UNSAFE.putOrderedObject(this, itemOffset, this);
370 >            UNSAFE.putOrderedObject(this, waiterOffset, null);
371 >        }
372 >
373 >        /**
374 >         * Returns true if this node has been matched, including the
375 >         * case of artificial matches due to cancellation.
376 >         */
377 >        final boolean isMatched() {
378 >            Object x = item;
379 >            return x == this || (x != null) != isData;
380 >        }
381 >
382 >        /**
383 >         * Returns true if a node with the given mode cannot be
384 >         * appended to this node because this node is unmatched and
385 >         * has opposite data mode.
386 >         */
387 >        final boolean cannotPrecede(boolean haveData) {
388 >            boolean d = isData;
389 >            Object x;
390 >            return d != haveData && (x = item) != this && (x != null) == d;
391 >        }
392 >
393 >        /**
394 >         * Tries to artifically match a data node -- used by remove.
395 >         */
396 >        final boolean tryMatchData() {
397 >            Object x = item;
398 >            if (x != null && x != this && casItem(x, null)) {
399 >                LockSupport.unpark(waiter);
400 >                return true;
401 >            }
402 >            return false;
403          }
404 +
405 +        // Unsafe mechanics
406 +        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
407 +        private static final long nextOffset =
408 +            objectFieldOffset(UNSAFE, "next", Node.class);
409 +        private static final long itemOffset =
410 +            objectFieldOffset(UNSAFE, "item", Node.class);
411 +        private static final long waiterOffset =
412 +            objectFieldOffset(UNSAFE, "waiter", Node.class);
413 +
414 +        private static final long serialVersionUID = -3375979862319811754L;
415      }
416  
417 <    /**
418 <     * Padded version of AtomicReference used for head, tail and
419 <     * cleanMe, to alleviate contention across threads CASing one vs
420 <     * the other.
421 <     */
422 <    static final class PaddedAtomicReference<T> extends AtomicReference<T> {
423 <        // enough padding for 64bytes with 4byte refs
424 <        Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
425 <        PaddedAtomicReference(T r) { super(r); }
417 >    /** head of the queue; null until first enqueue */
418 >    private transient volatile Node head;
419 >
420 >    /** predecessor of dangling unspliceable node */
421 >    private transient volatile Node cleanMe; // decl here to reduce contention
422 >
423 >    /** tail of the queue; null until first append */
424 >    private transient volatile Node tail;
425 >
426 >    // CAS methods for fields
427 >    private boolean casTail(Node cmp, Node val) {
428 >        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
429      }
430  
431 +    private boolean casHead(Node cmp, Node val) {
432 +        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
433 +    }
434  
435 <    private final QNode dummy = new QNode(null, false);
436 <    private final PaddedAtomicReference<QNode> head =
437 <        new PaddedAtomicReference<QNode>(dummy);
137 <    private final PaddedAtomicReference<QNode> tail =
138 <        new PaddedAtomicReference<QNode>(dummy);
435 >    private boolean casCleanMe(Node cmp, Node val) {
436 >        return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
437 >    }
438  
439 <    /**
440 <     * Reference to a cancelled node that might not yet have been
441 <     * unlinked from queue because it was the last inserted node
143 <     * when it cancelled.
439 >    /*
440 >     * Possible values for "how" argument in xfer method. Beware that
441 >     * the order of assigned numerical values matters.
442       */
443 <    private final PaddedAtomicReference<QNode> cleanMe =
444 <        new PaddedAtomicReference<QNode>(null);
443 >    private static final int NOW     = 0; // for untimed poll, tryTransfer
444 >    private static final int ASYNC   = 1; // for offer, put, add
445 >    private static final int SYNC    = 2; // for transfer, take
446 >    private static final int TIMEOUT = 3; // for timed poll, tryTransfer
447  
448      /**
449 <     * Tries to cas nh as new head; if successful, unlink
450 <     * old head's next node to avoid garbage retention.
451 <     */
452 <    private boolean advanceHead(QNode h, QNode nh) {
453 <        if (h == head.get() && head.compareAndSet(h, nh)) {
154 <            h.next = h; // forget old next
155 <            return true;
156 <        }
157 <        return false;
158 <    }
159 <    
160 <    /**
161 <     * Puts or takes an item. Used for most queue operations (except
162 <     * poll() and tryTransfer())
163 <     * @param e the item or if null, signfies that this is a take
164 <     * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
449 >     * Implements all queuing methods. See above for explanation.
450 >     *
451 >     * @param e the item or null for take
452 >     * @param haveData true if this is a put else a take
453 >     * @param how NOW, ASYNC, SYNC, or TIMEOUT
454       * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
455 <     * @return an item, or null on failure
455 >     * @return an item if matched, else e;
456 >     * @throws NullPointerException if haveData mode but e is null
457       */
458 <    private Object xfer(Object e, int mode, long nanos) {
459 <        boolean isData = (e != null);
460 <        QNode s = null;
461 <        final PaddedAtomicReference<QNode> head = this.head;
172 <        final PaddedAtomicReference<QNode> tail = this.tail;
458 >    private Object xfer(Object e, boolean haveData, int how, long nanos) {
459 >        if (haveData && (e == null))
460 >            throw new NullPointerException();
461 >        Node s = null;                        // the node to append, if needed
462  
463 <        for (;;) {
175 <            QNode t = tail.get();
176 <            QNode h = head.get();
463 >        retry: for (;;) {                     // restart on append race
464  
465 <            if (t != null && (t == h || t.isData == isData)) {
466 <                if (s == null)
467 <                    s = new QNode(e, isData);
468 <                QNode last = t.next;
469 <                if (last != null) {
470 <                    if (t == tail.get())
471 <                        tail.compareAndSet(t, last);
472 <                }
473 <                else if (t.casNext(null, s)) {
474 <                    tail.compareAndSet(t, s);
475 <                    return awaitFulfill(t, s, e, mode, nanos);
476 <                }
477 <            }
478 <            
479 <            else if (h != null) {
480 <                QNode first = h.next;
481 <                if (t == tail.get() && first != null &&
482 <                    advanceHead(h, first)) {
483 <                    Object x = first.get();
484 <                    if (x != first && first.compareAndSet(x, e)) {
485 <                        LockSupport.unpark(first.waiter);
486 <                        return isData? e : x;
465 >            for (Node h = head, p = h; p != null;) { // find & match first node
466 >                boolean isData = p.isData;
467 >                Object item = p.item;
468 >                if (item != p && (item != null) == isData) { // unmatched
469 >                    if (isData == haveData)   // can't match
470 >                        break;
471 >                    if (p.casItem(item, e)) { // match
472 >                        Thread w = p.waiter;
473 >                        while (p != h) {      // update head
474 >                            Node n = p.next;  // by 2 unless singleton
475 >                            if (n != null)
476 >                                p = n;
477 >                            if (head == h && casHead(h, p)) {
478 >                                h.forgetNext();
479 >                                break;
480 >                            }                 // advance and retry
481 >                            if ((h = head)   == null ||
482 >                                (p = h.next) == null || !p.isMatched())
483 >                                break;        // unless slack < 2
484 >                        }
485 >                        LockSupport.unpark(w);
486 >                        return item;
487                      }
488                  }
489 +                Node n = p.next;
490 +                p = p != n ? n : (h = head);  // Use head if p offlist
491 +            }
492 +
493 +            if (how >= ASYNC) {               // No matches available
494 +                if (s == null)
495 +                    s = new Node(e, haveData);
496 +                Node pred = tryAppend(s, haveData);
497 +                if (pred == null)
498 +                    continue retry;           // lost race vs opposite mode
499 +                if (how >= SYNC)
500 +                    return awaitMatch(pred, s, e, how, nanos);
501              }
502 +            return e; // not waiting
503          }
504      }
505  
206
506      /**
507 <     * Version of xfer for poll() and tryTransfer, which
508 <     * simpifies control paths both here and in xfer
507 >     * Tries to append node s as tail
508 >     * @param haveData true if appending in data mode
509 >     * @param s the node to append
510 >     * @return null on failure due to losing race with append in
511 >     * different mode, else s's predecessor, or s itself if no
512 >     * predecessor
513       */
514 <    private Object fulfill(Object e) {
515 <        boolean isData = (e != null);
516 <        final PaddedAtomicReference<QNode> head = this.head;
517 <        final PaddedAtomicReference<QNode> tail = this.tail;
518 <
519 <        for (;;) {
217 <            QNode t = tail.get();
218 <            QNode h = head.get();
219 <
220 <            if (t != null && (t == h || t.isData == isData)) {
221 <                QNode last = t.next;
222 <                if (t == tail.get()) {
223 <                    if (last != null)
224 <                        tail.compareAndSet(t, last);
225 <                    else
226 <                        return null;
227 <                }
514 >    private Node tryAppend(Node s, boolean haveData) {
515 >        for (Node t = tail, p = t;;) { // move p to actual tail and append
516 >            Node n, u;                        // temps for reads of next & tail
517 >            if (p == null && (p = head) == null) {
518 >                if (casHead(null, s))
519 >                    return s;                 // initialize
520              }
521 <            else if (h != null) {
522 <                QNode first = h.next;
523 <                if (t == tail.get() &&
524 <                    first != null &&
525 <                    advanceHead(h, first)) {
526 <                    Object x = first.get();
527 <                    if (x != first && first.compareAndSet(x, e)) {
528 <                        LockSupport.unpark(first.waiter);
529 <                        return isData? e : x;
530 <                    }
521 >            else if (p.cannotPrecede(haveData))
522 >                return null;                  // lost race vs opposite mode
523 >            else if ((n = p.next) != null)    // Not tail; keep traversing
524 >                p = p != t && t != (u = tail) ? (t = u) : // stale tail
525 >                    p != n ? n : null;        // restart if off list
526 >            else if (!p.casNext(null, s))
527 >                p = p.next;                   // re-read on CAS failure
528 >            else {
529 >                if (p != t) {                 // Update if slack now >= 2
530 >                    while ((tail != t || !casTail(t, s)) &&
531 >                           (t = tail)   != null &&
532 >                           (s = t.next) != null && // advance and retry
533 >                           (s = s.next) != null && s != t);
534                  }
535 +                return p;
536              }
537          }
538      }
539  
540      /**
541 <     * Spins/blocks until node s is fulfilled or caller gives up,
246 <     * depending on wait mode.
541 >     * Spins/yields/blocks until node s is matched or caller gives up.
542       *
543 <     * @param pred the predecessor of waiting node
543 >     * @param pred the predecessor of s or s or null if none
544       * @param s the waiting node
545       * @param e the comparison value for checking match
546 <     * @param mode mode
546 >     * @param how either SYNC or TIMEOUT
547       * @param nanos timeout value
548 <     * @return matched item, or s if cancelled
548 >     * @return matched item, or e if unmatched on interrupt or timeout
549       */
550 <    private Object awaitFulfill(QNode pred, QNode s, Object e,
551 <                                int mode, long nanos) {
552 <        if (mode == NOWAIT)
258 <            return null;
259 <
260 <        long lastTime = (mode == TIMEOUT)? System.nanoTime() : 0;
550 >    private Object awaitMatch(Node pred, Node s, Object e,
551 >                              int how, long nanos) {
552 >        long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
553          Thread w = Thread.currentThread();
554 <        int spins = -1; // set to desired spin count below
554 >        int spins = -1; // initialized after first item and cancel checks
555 >        ThreadLocalRandom randomYields = null; // bound if needed
556 >
557          for (;;) {
558 <            if (w.isInterrupted())
559 <                s.compareAndSet(e, s);
560 <            Object x = s.get();
561 <            if (x != e) {                 // Node was matched or cancelled
562 <                advanceHead(pred, s);     // unlink if head
563 <                if (x == s)               // was cancelled
564 <                    return clean(pred, s);
565 <                else if (x != null) {    
566 <                    s.set(s);             // avoid garbage retention
273 <                    return x;
274 <                }
275 <                else
276 <                    return e;
558 >            Object item = s.item;
559 >            if (item != e) {                  // matched
560 >                s.forgetContents();           // avoid garbage
561 >                return item;
562 >            }
563 >            if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
564 >                     s.casItem(e, s)) {       // cancel
565 >                unsplice(pred, s);
566 >                return e;
567              }
568  
569 <            if (mode == TIMEOUT) {
569 >            if (spins < 0) {                  // establish spins at/near front
570 >                if ((spins = spinsFor(pred, s.isData)) > 0)
571 >                    randomYields = ThreadLocalRandom.current();
572 >            }
573 >            else if (spins > 0) {             // spin, occasionally yield
574 >                if (randomYields.nextInt(FRONT_SPINS) == 0)
575 >                    Thread.yield();
576 >                --spins;
577 >            }
578 >            else if (s.waiter == null) {
579 >                shortenHeadPath();            // reduce slack before blocking
580 >                s.waiter = w;                 // request unpark
581 >            }
582 >            else if (how == TIMEOUT) {
583                  long now = System.nanoTime();
584 <                nanos -= now - lastTime;
584 >                if ((nanos -= now - lastTime) > 0)
585 >                    LockSupport.parkNanos(this, nanos);
586                  lastTime = now;
587 <                if (nanos <= 0) {
588 <                    s.compareAndSet(e, s); // try to cancel
589 <                    continue;
587 >            }
588 >            else {
589 >                LockSupport.park(this);
590 >                spins = -1;                   // spin if front upon wakeup
591 >            }
592 >        }
593 >    }
594 >
595 >    /**
596 >     * Return spin/yield value for a node with given predecessor and
597 >     * data mode. See above for explanation.
598 >     */
599 >    private static int spinsFor(Node pred, boolean haveData) {
600 >        if (MP && pred != null) {
601 >            boolean predData = pred.isData;
602 >            if (predData != haveData)         // front and phase change
603 >                return FRONT_SPINS + (FRONT_SPINS >>> 1);
604 >            if (predData != (pred.item != null)) // probably at front
605 >                return FRONT_SPINS;
606 >            if (pred.waiter == null)          // pred apparently spinning
607 >                return CHAINED_SPINS;
608 >        }
609 >        return 0;
610 >    }
611 >
612 >    /**
613 >     * Tries (once) to unsplice nodes between head and first unmatched
614 >     * or trailing node; failing on contention.
615 >     */
616 >    private void shortenHeadPath() {
617 >        Node h, hn, p, q;
618 >        if ((p = h = head) != null && h.isMatched() &&
619 >            (q = hn = h.next) != null) {
620 >            Node n;
621 >            while ((n = q.next) != q) {
622 >                if (n == null || !q.isMatched()) {
623 >                    if (hn != q && h.next == hn)
624 >                        h.casNext(hn, q);
625 >                    break;
626                  }
627 +                p = q;
628 +                q = n;
629              }
630 <            if (spins < 0) {
631 <                QNode h = head.get(); // only spin if at head
632 <                spins = ((h != null && h.next == s) ?
633 <                         (mode == TIMEOUT?
634 <                          maxTimedSpins : maxUntimedSpins) : 0);
630 >        }
631 >    }
632 >
633 >    /* -------------- Traversal methods -------------- */
634 >
635 >    /**
636 >     * Return the first unmatched node of the given mode, or null if
637 >     * none.  Used by methods isEmpty, hasWaitingConsumer.
638 >     */
639 >    private Node firstOfMode(boolean data) {
640 >        for (Node p = head; p != null; ) {
641 >            if (!p.isMatched())
642 >                return p.isData == data? p : null;
643 >            Node n = p.next;
644 >            p = n != p ? n : head;
645 >        }
646 >        return null;
647 >    }
648 >
649 >    /**
650 >     * Returns the item in the first unmatched node with isData; or
651 >     * null if none. Used by peek.
652 >     */
653 >    private Object firstDataItem() {
654 >        for (Node p = head; p != null; ) {
655 >            boolean isData = p.isData;
656 >            Object item = p.item;
657 >            if (item != p && (item != null) == isData)
658 >                return isData ? item : null;
659 >            Node n = p.next;
660 >            p = n != p ? n : head;
661 >        }
662 >        return null;
663 >    }
664 >
665 >    /**
666 >     * Traverse and count nodes of the given mode.
667 >     * Used by methds size and getWaitingConsumerCount.
668 >     */
669 >    private int countOfMode(boolean data) {
670 >        int count = 0;
671 >        for (Node p = head; p != null; ) {
672 >            if (!p.isMatched()) {
673 >                if (p.isData != data)
674 >                    return 0;
675 >                if (++count == Integer.MAX_VALUE) // saturated
676 >                    break;
677              }
678 <            if (spins > 0)
679 <                --spins;
680 <            else if (s.waiter == null)
681 <                s.waiter = w;
682 <            else if (mode != TIMEOUT) {
683 <                //                LockSupport.park(this);
300 <                LockSupport.park(); // allows run on java5
301 <                s.waiter = null;
302 <                spins = -1;
678 >            Node n = p.next;
679 >            if (n != p)
680 >                p = n;
681 >            else {
682 >                count = 0;
683 >                p = head;
684              }
685 <            else if (nanos > spinForTimeoutThreshold) {
686 <                //                LockSupport.parkNanos(this, nanos);
687 <                LockSupport.parkNanos(nanos);
688 <                s.waiter = null;
689 <                spins = -1;
685 >        }
686 >        return count;
687 >    }
688 >
689 >    final class Itr implements Iterator<E> {
690 >        private Node nextNode;   // next node to return item for
691 >        private Object nextItem; // the corresponding item
692 >        private Node lastRet;    // last returned node, to support remove
693 >
694 >        /**
695 >         * Moves to next node after prev, or first node if prev null.
696 >         */
697 >        private void advance(Node prev) {
698 >            lastRet = prev;
699 >            Node p;
700 >            if (prev == null || (p = prev.next) == prev)
701 >                p = head;
702 >            while (p != null) {
703 >                Object item = p.item;
704 >                if (p.isData) {
705 >                    if (item != null && item != p) {
706 >                        nextItem = item;
707 >                        nextNode = p;
708 >                        return;
709 >                    }
710 >                }
711 >                else if (item == null)
712 >                    break;
713 >                Node n = p.next;
714 >                p = n != p ? n : head;
715              }
716 +            nextNode = null;
717 +        }
718 +
719 +        Itr() {
720 +            advance(null);
721 +        }
722 +
723 +        public final boolean hasNext() {
724 +            return nextNode != null;
725 +        }
726 +
727 +        public final E next() {
728 +            Node p = nextNode;
729 +            if (p == null) throw new NoSuchElementException();
730 +            Object e = nextItem;
731 +            advance(p);
732 +            return (E) e;
733 +        }
734 +
735 +        public final void remove() {
736 +            Node p = lastRet;
737 +            if (p == null) throw new IllegalStateException();
738 +            lastRet = null;
739 +            findAndRemoveNode(p);
740          }
741      }
742  
743 +    /* -------------- Removal methods -------------- */
744 +
745      /**
746 <     * Gets rid of cancelled node s with original predecessor pred.
747 <     * @return null (to simplify use by callers)
746 >     * Unsplices (now or later) the given deleted/cancelled node with
747 >     * the given predecessor.
748 >     *
749 >     * @param pred predecessor of node to be unspliced
750 >     * @param s the node to be unspliced
751       */
752 <    private Object clean(QNode pred, QNode s) {
753 <        Thread w = s.waiter;
754 <        if (w != null) {             // Wake up thread
755 <            s.waiter = null;
756 <            if (w != Thread.currentThread())
757 <                LockSupport.unpark(w);
752 >    private void unsplice(Node pred, Node s) {
753 >        s.forgetContents(); // clear unneeded fields
754 >        /*
755 >         * At any given time, exactly one node on list cannot be
756 >         * deleted -- the last inserted node. To accommodate this, if
757 >         * we cannot delete s, we save its predecessor as "cleanMe",
758 >         * processing the previously saved version first. Because only
759 >         * one node in the list can have a null next, at least one of
760 >         * node s or the node previously saved can always be
761 >         * processed, so this always terminates.
762 >         */
763 >        if (pred != null && pred != s) {
764 >            while (pred.next == s) {
765 >                Node oldpred = cleanMe == null? null : reclean();
766 >                Node n = s.next;
767 >                if (n != null) {
768 >                    if (n != s)
769 >                        pred.casNext(s, n);
770 >                    break;
771 >                }
772 >                if (oldpred == pred ||      // Already saved
773 >                    (oldpred == null && casCleanMe(null, pred)))
774 >                    break;                  // Postpone cleaning
775 >            }
776          }
777 <        
778 <        for (;;) {
779 <            if (pred.next != s) // already cleaned
780 <                return null;
781 <            QNode h = head.get();
782 <            QNode hn = h.next;   // Absorb cancelled first node as head
783 <            if (hn != null && hn.next == hn) {
784 <                advanceHead(h, hn);
785 <                continue;
786 <            }
787 <            QNode t = tail.get();      // Ensure consistent read for tail
788 <            if (t == h)
789 <                return null;
790 <            QNode tn = t.next;
791 <            if (t != tail.get())
792 <                continue;
793 <            if (tn != null) {          // Help advance tail
794 <                tail.compareAndSet(t, tn);
795 <                continue;
796 <            }
797 <            if (s != t) {             // If not tail, try to unsplice
798 <                QNode sn = s.next;
799 <                if (sn == s || pred.casNext(s, sn))
800 <                    return null;
801 <            }
802 <            QNode dp = cleanMe.get();
803 <            if (dp != null) {    // Try unlinking previous cancelled node
804 <                QNode d = dp.next;
805 <                QNode dn;
806 <                if (d == null ||               // d is gone or
807 <                    d == dp ||                 // d is off list or
808 <                    d.get() != d ||            // d not cancelled or
356 <                    (d != t &&                 // d not tail and
357 <                     (dn = d.next) != null &&  //   has successor
358 <                     dn != d &&                //   that is on list
359 <                     dp.casNext(d, dn)))       // d unspliced
360 <                    cleanMe.compareAndSet(dp, null);
361 <                if (dp == pred)
362 <                    return null;      // s is already saved node
363 <            }
364 <            else if (cleanMe.compareAndSet(null, pred))
365 <                return null;          // Postpone cleaning s
777 >    }
778 >
779 >    /**
780 >     * Tries to unsplice the deleted/cancelled node held in cleanMe
781 >     * that was previously uncleanable because it was at tail.
782 >     *
783 >     * @return current cleanMe node (or null)
784 >     */
785 >    private Node reclean() {
786 >        /*
787 >         * cleanMe is, or at one time was, predecessor of a cancelled
788 >         * node s that was the tail so could not be unspliced.  If it
789 >         * is no longer the tail, try to unsplice if necessary and
790 >         * make cleanMe slot available.  This differs from similar
791 >         * code in unsplice() because we must check that pred still
792 >         * points to a matched node that can be unspliced -- if not,
793 >         * we can (must) clear cleanMe without unsplicing.  This can
794 >         * loop only due to contention.
795 >         */
796 >        Node pred;
797 >        while ((pred = cleanMe) != null) {
798 >            Node s = pred.next;
799 >            Node n;
800 >            if (s == null || s == pred || !s.isMatched())
801 >                casCleanMe(pred, null); // already gone
802 >            else if ((n = s.next) != null) {
803 >                if (n != s)
804 >                    pred.casNext(s, n);
805 >                casCleanMe(pred, null);
806 >            }
807 >            else
808 >                break;
809          }
810 +        return pred;
811      }
812 <    
812 >
813      /**
814 <     * Creates an initially empty <tt>LinkedTransferQueue</tt>.
814 >     * Main implementation of Iterator.remove(). Find
815 >     * and unsplice the given node.
816 >     */
817 >    final void findAndRemoveNode(Node s) {
818 >        if (s.tryMatchData()) {
819 >            Node pred = null;
820 >            Node p = head;
821 >            while (p != null) {
822 >                if (p == s) {
823 >                    unsplice(pred, p);
824 >                    break;
825 >                }
826 >                if (!p.isData && !p.isMatched())
827 >                    break;
828 >                pred = p;
829 >                if ((p = p.next) == pred) { // stale
830 >                    pred = null;
831 >                    p = head;
832 >                }
833 >            }
834 >        }
835 >    }
836 >
837 >    /**
838 >     * Main implementation of remove(Object)
839 >     */
840 >    private boolean findAndRemove(Object e) {
841 >        if (e != null) {
842 >            Node pred = null;
843 >            Node p = head;
844 >            while (p != null) {
845 >                Object item = p.item;
846 >                if (p.isData) {
847 >                    if (item != null && item != p && e.equals(item) &&
848 >                        p.tryMatchData()) {
849 >                        unsplice(pred, p);
850 >                        return true;
851 >                    }
852 >                }
853 >                else if (item == null)
854 >                    break;
855 >                pred = p;
856 >                if ((p = p.next) == pred) {
857 >                    pred = null;
858 >                    p = head;
859 >                }
860 >            }
861 >        }
862 >        return false;
863 >    }
864 >
865 >
866 >    /**
867 >     * Creates an initially empty {@code LinkedTransferQueue}.
868       */
869      public LinkedTransferQueue() {
870      }
871  
872      /**
873 <     * Creates a <tt>LinkedTransferQueue</tt>
873 >     * Creates a {@code LinkedTransferQueue}
874       * initially containing the elements of the given collection,
875       * added in traversal order of the collection's iterator.
876 +     *
877       * @param c the collection of elements to initially contain
878       * @throws NullPointerException if the specified collection or any
879       *         of its elements are null
880       */
881      public LinkedTransferQueue(Collection<? extends E> c) {
882 +        this();
883          addAll(c);
884      }
885  
886 <    public void put(E e) throws InterruptedException {
887 <        if (e == null) throw new NullPointerException();
888 <        if (Thread.interrupted()) throw new InterruptedException();
889 <        xfer(e, NOWAIT, 0);
886 >    /**
887 >     * Inserts the specified element at the tail of this queue.
888 >     * As the queue is unbounded, this method will never block.
889 >     *
890 >     * @throws NullPointerException if the specified element is null
891 >     */
892 >    public void put(E e) {
893 >        xfer(e, true, ASYNC, 0);
894      }
895  
896 <    public boolean offer(E e, long timeout, TimeUnit unit)  
897 <        throws InterruptedException {
898 <        if (e == null) throw new NullPointerException();
899 <        if (Thread.interrupted()) throw new InterruptedException();
900 <        xfer(e, NOWAIT, 0);
896 >    /**
897 >     * Inserts the specified element at the tail of this queue.
898 >     * As the queue is unbounded, this method will never block or
899 >     * return {@code false}.
900 >     *
901 >     * @return {@code true} (as specified by
902 >     *  {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
903 >     * @throws NullPointerException if the specified element is null
904 >     */
905 >    public boolean offer(E e, long timeout, TimeUnit unit) {
906 >        xfer(e, true, ASYNC, 0);
907          return true;
908      }
909  
910 +    /**
911 +     * Inserts the specified element at the tail of this queue.
912 +     * As the queue is unbounded, this method will never return {@code false}.
913 +     *
914 +     * @return {@code true} (as specified by
915 +     *         {@link BlockingQueue#offer(Object) BlockingQueue.offer})
916 +     * @throws NullPointerException if the specified element is null
917 +     */
918      public boolean offer(E e) {
919 <        if (e == null) throw new NullPointerException();
403 <        xfer(e, NOWAIT, 0);
919 >        xfer(e, true, ASYNC, 0);
920          return true;
921      }
922  
923 +    /**
924 +     * Inserts the specified element at the tail of this queue.
925 +     * As the queue is unbounded, this method will never throw
926 +     * {@link IllegalStateException} or return {@code false}.
927 +     *
928 +     * @return {@code true} (as specified by {@link Collection#add})
929 +     * @throws NullPointerException if the specified element is null
930 +     */
931 +    public boolean add(E e) {
932 +        xfer(e, true, ASYNC, 0);
933 +        return true;
934 +    }
935 +
936 +    /**
937 +     * Transfers the element to a waiting consumer immediately, if possible.
938 +     *
939 +     * <p>More precisely, transfers the specified element immediately
940 +     * if there exists a consumer already waiting to receive it (in
941 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
942 +     * otherwise returning {@code false} without enqueuing the element.
943 +     *
944 +     * @throws NullPointerException if the specified element is null
945 +     */
946 +    public boolean tryTransfer(E e) {
947 +        return xfer(e, true, NOW, 0) == null;
948 +    }
949 +
950 +    /**
951 +     * Transfers the element to a consumer, waiting if necessary to do so.
952 +     *
953 +     * <p>More precisely, transfers the specified element immediately
954 +     * if there exists a consumer already waiting to receive it (in
955 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
956 +     * else inserts the specified element at the tail of this queue
957 +     * and waits until the element is received by a consumer.
958 +     *
959 +     * @throws NullPointerException if the specified element is null
960 +     */
961      public void transfer(E e) throws InterruptedException {
962 <        if (e == null) throw new NullPointerException();
963 <        if (xfer(e, WAIT, 0) == null) {
410 <            Thread.interrupted();
962 >        if (xfer(e, true, SYNC, 0) != null) {
963 >            Thread.interrupted(); // failure possible only due to interrupt
964              throw new InterruptedException();
965 <        }
965 >        }
966      }
967  
968 +    /**
969 +     * Transfers the element to a consumer if it is possible to do so
970 +     * before the timeout elapses.
971 +     *
972 +     * <p>More precisely, transfers the specified element immediately
973 +     * if there exists a consumer already waiting to receive it (in
974 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
975 +     * else inserts the specified element at the tail of this queue
976 +     * and waits until the element is received by a consumer,
977 +     * returning {@code false} if the specified wait time elapses
978 +     * before the element can be transferred.
979 +     *
980 +     * @throws NullPointerException if the specified element is null
981 +     */
982      public boolean tryTransfer(E e, long timeout, TimeUnit unit)
983          throws InterruptedException {
984 <        if (e == null) throw new NullPointerException();
418 <        if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
984 >        if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
985              return true;
986          if (!Thread.interrupted())
987              return false;
988          throw new InterruptedException();
989      }
990  
425    public boolean tryTransfer(E e) {
426        if (e == null) throw new NullPointerException();
427        return fulfill(e) != null;
428    }
429
991      public E take() throws InterruptedException {
992 <        Object e = xfer(null, WAIT, 0);
992 >        Object e = xfer(null, false, SYNC, 0);
993          if (e != null)
994              return (E)e;
995 <        Thread.interrupted();
995 >        Thread.interrupted();
996          throw new InterruptedException();
997      }
998  
999      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1000 <        Object e = xfer(null, TIMEOUT, unit.toNanos(timeout));
1000 >        Object e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1001          if (e != null || !Thread.interrupted())
1002              return (E)e;
1003          throw new InterruptedException();
1004      }
1005  
1006      public E poll() {
1007 <        return (E)fulfill(null);
1007 >        return (E)xfer(null, false, NOW, 0);
1008      }
1009  
1010 +    /**
1011 +     * @throws NullPointerException     {@inheritDoc}
1012 +     * @throws IllegalArgumentException {@inheritDoc}
1013 +     */
1014      public int drainTo(Collection<? super E> c) {
1015          if (c == null)
1016              throw new NullPointerException();
# Line 460 | Line 1025 | public class LinkedTransferQueue<E> exte
1025          return n;
1026      }
1027  
1028 +    /**
1029 +     * @throws NullPointerException     {@inheritDoc}
1030 +     * @throws IllegalArgumentException {@inheritDoc}
1031 +     */
1032      public int drainTo(Collection<? super E> c, int maxElements) {
1033          if (c == null)
1034              throw new NullPointerException();
# Line 474 | Line 1043 | public class LinkedTransferQueue<E> exte
1043          return n;
1044      }
1045  
477    // Traversal-based methods
478
1046      /**
1047 <     * Return head after performing any outstanding helping steps
1047 >     * Returns an iterator over the elements in this queue in proper
1048 >     * sequence, from head to tail.
1049 >     *
1050 >     * <p>The returned iterator is a "weakly consistent" iterator that
1051 >     * will never throw
1052 >     * {@link ConcurrentModificationException ConcurrentModificationException},
1053 >     * and guarantees to traverse elements as they existed upon
1054 >     * construction of the iterator, and may (but is not guaranteed
1055 >     * to) reflect any modifications subsequent to construction.
1056 >     *
1057 >     * @return an iterator over the elements in this queue in proper sequence
1058       */
482    private QNode traversalHead() {
483        for (;;) {
484            QNode t = tail.get();
485            QNode h = head.get();
486            if (h != null && t != null) {
487                QNode last = t.next;
488                QNode first = h.next;
489                if (t == tail.get()) {
490                    if (last != null)
491                        tail.compareAndSet(t, last);
492                    else if (first != null) {
493                        Object x = first.get();
494                        if (x == first)
495                            advanceHead(h, first);    
496                        else
497                            return h;
498                    }
499                    else
500                        return h;
501                }
502            }
503        }
504    }
505
506
1059      public Iterator<E> iterator() {
1060          return new Itr();
1061      }
1062  
1063 <    /**
1064 <     * Iterators. Basic strategy os to travers list, treating
513 <     * non-data (i.e., request) nodes as terminating list.
514 <     * Once a valid data node is found, the item is cached
515 <     * so that the next call to next() will return it even
516 <     * if subsequently removed.
517 <     */
518 <    class Itr implements Iterator<E> {
519 <        QNode nextNode;    // Next node to return next
520 <        QNode currentNode; // last returned node, for remove()
521 <        QNode prevNode;    // predecessor of last returned node
522 <        E nextItem;        // Cache of next item, once commited to in next
523 <        
524 <        Itr() {
525 <            nextNode = traversalHead();
526 <            advance();
527 <        }
528 <        
529 <        E advance() {
530 <            prevNode = currentNode;
531 <            currentNode = nextNode;
532 <            E x = nextItem;
533 <            
534 <            QNode p = nextNode.next;
535 <            for (;;) {
536 <                if (p == null || !p.isData) {
537 <                    nextNode = null;
538 <                    nextItem = null;
539 <                    return x;
540 <                }
541 <                Object item = p.get();
542 <                if (item != p && item != null) {
543 <                    nextNode = p;
544 <                    nextItem = (E)item;
545 <                    return x;
546 <                }
547 <                prevNode = p;
548 <                p = p.next;
549 <            }
550 <        }
551 <        
552 <        public boolean hasNext() {
553 <            return nextNode != null;
554 <        }
555 <        
556 <        public E next() {
557 <            if (nextNode == null) throw new NoSuchElementException();
558 <            return advance();
559 <        }
560 <        
561 <        public void remove() {
562 <            QNode p = currentNode;
563 <            QNode prev = prevNode;
564 <            if (prev == null || p == null)
565 <                throw new IllegalStateException();
566 <            Object x = p.get();
567 <            if (x != null && x != p && p.compareAndSet(x, p))
568 <                clean(prev, p);
569 <        }
1063 >    public E peek() {
1064 >        return (E) firstDataItem();
1065      }
1066  
1067 <    public E peek() {
1068 <        for (;;) {
1069 <            QNode h = traversalHead();
1070 <            QNode p = h.next;
1071 <            if (p == null)
1072 <                return null;
1073 <            Object x = p.get();
579 <            if (p != x) {
580 <                if (!p.isData)
581 <                    return null;
582 <                if (x != null)
583 <                    return (E)x;
584 <            }
585 <        }
1067 >    /**
1068 >     * Returns {@code true} if this queue contains no elements.
1069 >     *
1070 >     * @return {@code true} if this queue contains no elements
1071 >     */
1072 >    public boolean isEmpty() {
1073 >        return firstOfMode(true) == null;
1074      }
1075  
1076      public boolean hasWaitingConsumer() {
1077 <        for (;;) {
590 <            QNode h = traversalHead();
591 <            QNode p = h.next;
592 <            if (p == null)
593 <                return false;
594 <            Object x = p.get();
595 <            if (p != x)
596 <                return !p.isData;
597 <        }
1077 >        return firstOfMode(false) != null;
1078      }
1079 <    
1079 >
1080      /**
1081       * Returns the number of elements in this queue.  If this queue
1082 <     * contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
1083 <     * <tt>Integer.MAX_VALUE</tt>.
1082 >     * contains more than {@code Integer.MAX_VALUE} elements, returns
1083 >     * {@code Integer.MAX_VALUE}.
1084       *
1085       * <p>Beware that, unlike in most collections, this method is
1086       * <em>NOT</em> a constant-time operation. Because of the
# Line 610 | Line 1090 | public class LinkedTransferQueue<E> exte
1090       * @return the number of elements in this queue
1091       */
1092      public int size() {
1093 <        int count = 0;
614 <        QNode h = traversalHead();
615 <        for (QNode p = h.next; p != null && p.isData; p = p.next) {
616 <            Object x = p.get();
617 <            if (x != null && x != p) {
618 <                if (++count == Integer.MAX_VALUE) // saturated
619 <                    break;
620 <            }
621 <        }
622 <        return count;
1093 >        return countOfMode(true);
1094      }
1095  
1096      public int getWaitingConsumerCount() {
1097 <        int count = 0;
627 <        QNode h = traversalHead();
628 <        for (QNode p = h.next; p != null && !p.isData; p = p.next) {
629 <            if (p.get() == null) {
630 <                if (++count == Integer.MAX_VALUE)
631 <                    break;
632 <            }
633 <        }
634 <        return count;
1097 >        return countOfMode(false);
1098      }
1099  
1100 +    /**
1101 +     * Removes a single instance of the specified element from this queue,
1102 +     * if it is present.  More formally, removes an element {@code e} such
1103 +     * that {@code o.equals(e)}, if this queue contains one or more such
1104 +     * elements.
1105 +     * Returns {@code true} if this queue contained the specified element
1106 +     * (or equivalently, if this queue changed as a result of the call).
1107 +     *
1108 +     * @param o element to be removed from this queue, if present
1109 +     * @return {@code true} if this queue changed as a result of the call
1110 +     */
1111 +    public boolean remove(Object o) {
1112 +        return findAndRemove(o);
1113 +    }
1114 +
1115 +    /**
1116 +     * Always returns {@code Integer.MAX_VALUE} because a
1117 +     * {@code LinkedTransferQueue} is not capacity constrained.
1118 +     *
1119 +     * @return {@code Integer.MAX_VALUE} (as specified by
1120 +     *         {@link BlockingQueue#remainingCapacity()})
1121 +     */
1122      public int remainingCapacity() {
1123          return Integer.MAX_VALUE;
1124      }
# Line 641 | Line 1126 | public class LinkedTransferQueue<E> exte
1126      /**
1127       * Save the state to a stream (that is, serialize it).
1128       *
1129 <     * @serialData All of the elements (each an <tt>E</tt>) in
1129 >     * @serialData All of the elements (each an {@code E}) in
1130       * the proper order, followed by a null
1131       * @param s the stream
1132       */
1133      private void writeObject(java.io.ObjectOutputStream s)
1134          throws java.io.IOException {
1135          s.defaultWriteObject();
1136 <        for (Iterator<E> it = iterator(); it.hasNext(); )
1137 <            s.writeObject(it.next());
1136 >        for (E e : this)
1137 >            s.writeObject(e);
1138          // Use trailing null as sentinel
1139          s.writeObject(null);
1140      }
# Line 657 | Line 1142 | public class LinkedTransferQueue<E> exte
1142      /**
1143       * Reconstitute the Queue instance from a stream (that is,
1144       * deserialize it).
1145 +     *
1146       * @param s the stream
1147       */
1148      private void readObject(java.io.ObjectInputStream s)
1149          throws java.io.IOException, ClassNotFoundException {
1150          s.defaultReadObject();
1151          for (;;) {
1152 <            E item = (E)s.readObject();
1152 >            @SuppressWarnings("unchecked") E item = (E) s.readObject();
1153              if (item == null)
1154                  break;
1155              else
1156                  offer(item);
1157          }
1158      }
1159 +
1160 +
1161 +    // Unsafe mechanics
1162 +
1163 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1164 +    private static final long headOffset =
1165 +        objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1166 +    private static final long tailOffset =
1167 +        objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1168 +    private static final long cleanMeOffset =
1169 +        objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1170 +
1171 +    static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1172 +                                  String field, Class<?> klazz) {
1173 +        try {
1174 +            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1175 +        } catch (NoSuchFieldException e) {
1176 +            // Convert Exception to corresponding Error
1177 +            NoSuchFieldError error = new NoSuchFieldError(field);
1178 +            error.initCause(e);
1179 +            throw error;
1180 +        }
1181 +    }
1182 +
1183 +    private static sun.misc.Unsafe getUnsafe() {
1184 +        try {
1185 +            return sun.misc.Unsafe.getUnsafe();
1186 +        } catch (SecurityException se) {
1187 +            try {
1188 +                return java.security.AccessController.doPrivileged
1189 +                    (new java.security
1190 +                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1191 +                        public sun.misc.Unsafe run() throws Exception {
1192 +                            java.lang.reflect.Field f = sun.misc
1193 +                                .Unsafe.class.getDeclaredField("theUnsafe");
1194 +                            f.setAccessible(true);
1195 +                            return (sun.misc.Unsafe) f.get(null);
1196 +                        }});
1197 +            } catch (java.security.PrivilegedActionException e) {
1198 +                throw new RuntimeException("Could not initialize intrinsics",
1199 +                                           e.getCause());
1200 +            }
1201 +        }
1202 +    }
1203 +
1204   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines