ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.46 by jsr166, Thu Oct 22 08:19:44 2009 UTC vs.
Revision 1.80 by dl, Sat Nov 13 15:47:01 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.AbstractQueue;
10   import java.util.Collection;
11   import java.util.ConcurrentModificationException;
12   import java.util.Iterator;
13   import java.util.NoSuchElementException;
14   import java.util.Queue;
15 + import java.util.concurrent.TimeUnit;
16   import java.util.concurrent.locks.LockSupport;
17 +
18   /**
19   * An unbounded {@link TransferQueue} based on linked nodes.
20   * This queue orders elements FIFO (first-in-first-out) with respect
# Line 105 | Line 105 | public class LinkedTransferQueue<E> exte
105       * successful atomic operation per enq/deq pair. But it also
106       * enables lower cost variants of queue maintenance mechanics. (A
107       * variation of this idea applies even for non-dual queues that
108 <     * support deletion of embedded elements, such as
108 >     * support deletion of interior elements, such as
109       * j.u.c.ConcurrentLinkedQueue.)
110       *
111 <     * Once a node is matched, its item can never again change.  We
112 <     * may thus arrange that the linked list of them contains a prefix
113 <     * of zero or more matched nodes, followed by a suffix of zero or
114 <     * more unmatched nodes. (Note that we allow both the prefix and
115 <     * suffix to be zero length, which in turn means that we do not
116 <     * use a dummy header.)  If we were not concerned with either time
117 <     * or space efficiency, we could correctly perform enqueue and
118 <     * dequeue operations by traversing from a pointer to the initial
119 <     * node; CASing the item of the first unmatched node on match and
120 <     * CASing the next field of the trailing node on appends.  While
121 <     * this would be a terrible idea in itself, it does have the
122 <     * benefit of not requiring ANY atomic updates on head/tail
123 <     * fields.
111 >     * Once a node is matched, its match status can never again
112 >     * change.  We may thus arrange that the linked list of them
113 >     * contain a prefix of zero or more matched nodes, followed by a
114 >     * suffix of zero or more unmatched nodes. (Note that we allow
115 >     * both the prefix and suffix to be zero length, which in turn
116 >     * means that we do not use a dummy header.)  If we were not
117 >     * concerned with either time or space efficiency, we could
118 >     * correctly perform enqueue and dequeue operations by traversing
119 >     * from a pointer to the initial node; CASing the item of the
120 >     * first unmatched node on match and CASing the next field of the
121 >     * trailing node on appends. (Plus some special-casing when
122 >     * initially empty).  While this would be a terrible idea in
123 >     * itself, it does have the benefit of not requiring ANY atomic
124 >     * updates on head/tail fields.
125       *
126       * We introduce here an approach that lies between the extremes of
127 <     * never versus always updating queue (head and tail) pointers
128 <     * that reflects the tradeoff of sometimes requiring extra traversal
129 <     * steps to locate the first and/or last unmatched nodes, versus
130 <     * the reduced overhead and contention of fewer updates to queue
131 <     * pointers. For example, a possible snapshot of a queue is:
127 >     * never versus always updating queue (head and tail) pointers.
128 >     * This offers a tradeoff between sometimes requiring extra
129 >     * traversal steps to locate the first and/or last unmatched
130 >     * nodes, versus the reduced overhead and contention of fewer
131 >     * updates to queue pointers. For example, a possible snapshot of
132 >     * a queue is:
133       *
134       *  head           tail
135       *    |              |
# Line 139 | Line 141 | public class LinkedTransferQueue<E> exte
141       * similarly for "tail") is an empirical matter. We have found
142       * that using very small constants in the range of 1-3 work best
143       * over a range of platforms. Larger values introduce increasing
144 <     * costs of cache misses and risks of long traversal chains.
144 >     * costs of cache misses and risks of long traversal chains, while
145 >     * smaller values increase CAS contention and overhead.
146       *
147       * Dual queues with slack differ from plain M&S dual queues by
148       * virtue of only sometimes updating head or tail pointers when
# Line 158 | Line 161 | public class LinkedTransferQueue<E> exte
161       * targets.  Even when using very small slack values, this
162       * approach works well for dual queues because it allows all
163       * operations up to the point of matching or appending an item
164 <     * (hence potentially releasing another thread) to be read-only,
165 <     * thus not introducing any further contention. As described
166 <     * below, we implement this by performing slack maintenance
167 <     * retries only after these points.
164 >     * (hence potentially allowing progress by another thread) to be
165 >     * read-only, thus not introducing any further contention. As
166 >     * described below, we implement this by performing slack
167 >     * maintenance retries only after these points.
168       *
169       * As an accompaniment to such techniques, traversal overhead can
170       * be further reduced without increasing contention of head
171 <     * pointer updates.  During traversals, threads may sometimes
172 <     * shortcut the "next" link path from the current "head" node to
173 <     * be closer to the currently known first unmatched node. Again,
174 <     * this may be triggered with using thresholds or randomization.
171 >     * pointer updates: Threads may sometimes shortcut the "next" link
172 >     * path from the current "head" node to be closer to the currently
173 >     * known first unmatched node, and similarly for tail. Again, this
174 >     * may be triggered with using thresholds or randomization.
175       *
176       * These ideas must be further extended to avoid unbounded amounts
177       * of costly-to-reclaim garbage caused by the sequential "next"
# Line 196 | Line 199 | public class LinkedTransferQueue<E> exte
199       * mechanics because an update may leave head at a detached node.
200       * And while direct writes are possible for tail updates, they
201       * increase the risk of long retraversals, and hence long garbage
202 <     * chains which can be much more costly than is worthwhile
202 >     * chains, which can be much more costly than is worthwhile
203       * considering that the cost difference of performing a CAS vs
204       * write is smaller when they are not triggered on each operation
205       * (especially considering that writes and CASes equally require
206       * additional GC bookkeeping ("write barriers") that are sometimes
207       * more costly than the writes themselves because of contention).
208       *
206     * Removal of internal nodes (due to timed out or interrupted
207     * waits, or calls to remove or Iterator.remove) uses a scheme
208     * roughly similar to that in Scherer, Lea, and Scott
209     * SynchronousQueue. Given a predecessor, we can unsplice any node
210     * except the (actual) tail of the queue. To avoid build-up of
211     * cancelled trailing nodes, upon a request to remove a trailing
212     * node, it is placed in field "cleanMe" to be unspliced later.
213     *
209       * *** Overview of implementation ***
210       *
211 <     * We use a threshold-based approach to updates, with a target
212 <     * slack of two.  The slack value is hard-wired: a path greater
211 >     * We use a threshold-based approach to updates, with a slack
212 >     * threshold of two -- that is, we update head/tail when the
213 >     * current pointer appears to be two or more steps away from the
214 >     * first/last node. The slack value is hard-wired: a path greater
215       * than one is naturally implemented by checking equality of
216       * traversal pointers except when the list has only one element,
217 <     * in which case we keep max slack at one. Avoiding tracking
218 <     * explicit counts across situations slightly simplifies an
217 >     * in which case we keep slack threshold at one. Avoiding tracking
218 >     * explicit counts across method calls slightly simplifies an
219       * already-messy implementation. Using randomization would
220       * probably work better if there were a low-quality dirt-cheap
221       * per-thread one available, but even ThreadLocalRandom is too
222       * heavy for these purposes.
223       *
224 <     * With such a small slack value, path short-circuiting is rarely
225 <     * worthwhile. However, it is used (in awaitMatch) immediately
226 <     * before a waiting thread starts to block, as a final bit of
227 <     * helping at a point when contention with others is extremely
228 <     * unlikely (since if other threads that could release it are
229 <     * operating, then the current thread wouldn't be blocking).
224 >     * With such a small slack threshold value, it is not worthwhile
225 >     * to augment this with path short-circuiting (i.e., unsplicing
226 >     * interior nodes) except in the case of cancellation/removal (see
227 >     * below).
228 >     *
229 >     * We allow both the head and tail fields to be null before any
230 >     * nodes are enqueued; initializing upon first append.  This
231 >     * simplifies some other logic, as well as providing more
232 >     * efficient explicit control paths instead of letting JVMs insert
233 >     * implicit NullPointerExceptions when they are null.  While not
234 >     * currently fully implemented, we also leave open the possibility
235 >     * of re-nulling these fields when empty (which is complicated to
236 >     * arrange, for little benefit.)
237       *
238       * All enqueue/dequeue operations are handled by the single method
239       * "xfer" with parameters indicating whether to act as some form
240       * of offer, put, poll, take, or transfer (each possibly with
241       * timeout). The relative complexity of using one monolithic
242       * method outweighs the code bulk and maintenance problems of
243 <     * using nine separate methods.
243 >     * using separate methods for each case.
244       *
245       * Operation consists of up to three phases. The first is
246       * implemented within method xfer, the second in tryAppend, and
# Line 249 | Line 253 | public class LinkedTransferQueue<E> exte
253       *    case matching it and returning, also if necessary updating
254       *    head to one past the matched node (or the node itself if the
255       *    list has no other unmatched nodes). If the CAS misses, then
256 <     *    a retry loops until the slack is at most two. Traversals
257 <     *    also check if the initial head is now off-list, in which
258 <     *    case they start at the new head.
256 >     *    a loop retries advancing head by two steps until either
257 >     *    success or the slack is at most two. By requiring that each
258 >     *    attempt advances head by two (if applicable), we ensure that
259 >     *    the slack does not grow without bound. Traversals also check
260 >     *    if the initial head is now off-list, in which case they
261 >     *    start at the new head.
262       *
263       *    If no candidates are found and the call was untimed
264       *    poll/offer, (argument "how" is NOW) return.
265       *
266       * 2. Try to append a new node (method tryAppend)
267       *
268 <     *    Starting at current tail pointer, try to append a new node
269 <     *    to the list (or if head was null, establish the first
270 <     *    node). Nodes can be appended only if their predecessors are
271 <     *    either already matched or are of the same mode. If we detect
272 <     *    otherwise, then a new node with opposite mode must have been
273 <     *    appended during traversal, so must restart at phase 1. The
274 <     *    traversal and update steps are otherwise similar to phase 1:
275 <     *    Retrying upon CAS misses and checking for staleness.  In
276 <     *    particular, if a self-link is encountered, then we can
277 <     *    safely jump to a node on the list by continuing the
278 <     *    traversal at current head.
268 >     *    Starting at current tail pointer, find the actual last node
269 >     *    and try to append a new node (or if head was null, establish
270 >     *    the first node). Nodes can be appended only if their
271 >     *    predecessors are either already matched or are of the same
272 >     *    mode. If we detect otherwise, then a new node with opposite
273 >     *    mode must have been appended during traversal, so we must
274 >     *    restart at phase 1. The traversal and update steps are
275 >     *    otherwise similar to phase 1: Retrying upon CAS misses and
276 >     *    checking for staleness.  In particular, if a self-link is
277 >     *    encountered, then we can safely jump to a node on the list
278 >     *    by continuing the traversal at current head.
279       *
280       *    On successful append, if the call was ASYNC, return.
281       *
282       * 3. Await match or cancellation (method awaitMatch)
283       *
284       *    Wait for another thread to match node; instead cancelling if
285 <     *    current thread was interrupted or the wait timed out. On
285 >     *    the current thread was interrupted or the wait timed out. On
286       *    multiprocessors, we use front-of-queue spinning: If a node
287       *    appears to be the first unmatched node in the queue, it
288       *    spins a bit before blocking. In either case, before blocking
# Line 290 | Line 297 | public class LinkedTransferQueue<E> exte
297       *    to decide to occasionally perform a Thread.yield. While
298       *    yield has underdefined specs, we assume that might it help,
299       *    and will not hurt in limiting impact of spinning on busy
300 <     *    systems.  We also use much smaller (1/4) spins for nodes
301 <     *    that are not known to be front but whose predecessors have
302 <     *    not blocked -- these "chained" spins avoid artifacts of
300 >     *    systems.  We also use smaller (1/2) spins for nodes that are
301 >     *    not known to be front but whose predecessors have not
302 >     *    blocked -- these "chained" spins avoid artifacts of
303       *    front-of-queue rules which otherwise lead to alternating
304       *    nodes spinning vs blocking. Further, front threads that
305       *    represent phase changes (from data to request node or vice
306       *    versa) compared to their predecessors receive additional
307 <     *    spins, reflecting the longer code path lengths necessary to
308 <     *    release them under contention.
307 >     *    chained spins, reflecting longer paths typically required to
308 >     *    unblock threads during phase changes.
309 >     *
310 >     *
311 >     * ** Unlinking removed interior nodes **
312 >     *
313 >     * In addition to minimizing garbage retention via self-linking
314 >     * described above, we also unlink removed interior nodes. These
315 >     * may arise due to timed out or interrupted waits, or calls to
316 >     * remove(x) or Iterator.remove.  Normally, given a node that was
317 >     * at one time known to be the predecessor of some node s that is
318 >     * to be removed, we can unsplice s by CASing the next field of
319 >     * its predecessor if it still points to s (otherwise s must
320 >     * already have been removed or is now offlist). But there are two
321 >     * situations in which we cannot guarantee to make node s
322 >     * unreachable in this way: (1) If s is the trailing node of list
323 >     * (i.e., with null next), then it is pinned as the target node
324 >     * for appends, so can only be removed later after other nodes are
325 >     * appended. (2) We cannot necessarily unlink s given a
326 >     * predecessor node that is matched (including the case of being
327 >     * cancelled): the predecessor may already be unspliced, in which
328 >     * case some previous reachable node may still point to s.
329 >     * (For further explanation see Herlihy & Shavit "The Art of
330 >     * Multiprocessor Programming" chapter 9).  Although, in both
331 >     * cases, we can rule out the need for further action if either s
332 >     * or its predecessor are (or can be made to be) at, or fall off
333 >     * from, the head of list.
334 >     *
335 >     * Without taking these into account, it would be possible for an
336 >     * unbounded number of supposedly removed nodes to remain
337 >     * reachable.  Situations leading to such buildup are uncommon but
338 >     * can occur in practice; for example when a series of short timed
339 >     * calls to poll repeatedly time out but never otherwise fall off
340 >     * the list because of an untimed call to take at the front of the
341 >     * queue.
342 >     *
343 >     * When these cases arise, rather than always retraversing the
344 >     * entire list to find an actual predecessor to unlink (which
345 >     * won't help for case (1) anyway), we record a conservative
346 >     * estimate of possible unsplice failures (in "sweepVotes").
347 >     * We trigger a full sweep when the estimate exceeds a threshold
348 >     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
349 >     * removal failures to tolerate before sweeping through, unlinking
350 >     * cancelled nodes that were not unlinked upon initial removal.
351 >     * We perform sweeps by the thread hitting threshold (rather than
352 >     * background threads or by spreading work to other threads)
353 >     * because in the main contexts in which removal occurs, the
354 >     * caller is already timed-out, cancelled, or performing a
355 >     * potentially O(n) operation (e.g. remove(x)), none of which are
356 >     * time-critical enough to warrant the overhead that alternatives
357 >     * would impose on other threads.
358 >     *
359 >     * Because the sweepVotes estimate is conservative, and because
360 >     * nodes become unlinked "naturally" as they fall off the head of
361 >     * the queue, and because we allow votes to accumulate even while
362 >     * sweeps are in progress, there are typically significantly fewer
363 >     * such nodes than estimated.  Choice of a threshold value
364 >     * balances the likelihood of wasted effort and contention, versus
365 >     * providing a worst-case bound on retention of interior nodes in
366 >     * quiescent queues. The value defined below was chosen
367 >     * empirically to balance these under various timeout scenarios.
368 >     *
369 >     * Note that we cannot self-link unlinked interior nodes during
370 >     * sweeps. However, the associated garbage chains terminate when
371 >     * some successor ultimately falls off the head of the list and is
372 >     * self-linked.
373       */
374  
375      /** True if on multiprocessor */
# Line 306 | Line 377 | public class LinkedTransferQueue<E> exte
377          Runtime.getRuntime().availableProcessors() > 1;
378  
379      /**
380 <     * The number of times to spin (with on average one randomly
381 <     * interspersed call to Thread.yield) on multiprocessor before
382 <     * blocking when a node is apparently the first waiter in the
383 <     * queue.  See above for explanation. Must be a power of two. The
384 <     * value is empirically derived -- it works pretty well across a
385 <     * variety of processors, numbers of CPUs, and OSes.
380 >     * The number of times to spin (with randomly interspersed calls
381 >     * to Thread.yield) on multiprocessor before blocking when a node
382 >     * is apparently the first waiter in the queue.  See above for
383 >     * explanation. Must be a power of two. The value is empirically
384 >     * derived -- it works pretty well across a variety of processors,
385 >     * numbers of CPUs, and OSes.
386       */
387      private static final int FRONT_SPINS   = 1 << 7;
388  
389      /**
390       * The number of times to spin before blocking when a node is
391 <     * preceded by another node that is apparently spinning.
391 >     * preceded by another node that is apparently spinning.  Also
392 >     * serves as an increment to FRONT_SPINS on phase changes, and as
393 >     * base average frequency for yielding during spins. Must be a
394 >     * power of two.
395       */
396 <    private static final int CHAINED_SPINS = FRONT_SPINS >>> 2;
396 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
397 >
398 >    /**
399 >     * The maximum number of estimated removal failures (sweepVotes)
400 >     * to tolerate before sweeping through the queue unlinking
401 >     * cancelled nodes that were not unlinked upon initial
402 >     * removal. See above for explanation. The value must be at least
403 >     * two to avoid useless sweeps when removing trailing nodes.
404 >     */
405 >    static final int SWEEP_THRESHOLD = 32;
406  
407      /**
408       * Queue nodes. Uses Object, not E, for items to allow forgetting
409       * them after use.  Relies heavily on Unsafe mechanics to minimize
410 <     * unnecessary ordering constraints: Writes that intrinsically
411 <     * precede or follow CASes use simple relaxed forms.  Other
329 <     * cleanups use releasing/lazy writes.
410 >     * unnecessary ordering constraints: Writes that are intrinsically
411 >     * ordered wrt other accesses or CASes use simple relaxed forms.
412       */
413      static final class Node {
414          final boolean isData;   // false if this is a request node
# Line 340 | Line 422 | public class LinkedTransferQueue<E> exte
422          }
423  
424          final boolean casItem(Object cmp, Object val) {
425 +            // assert cmp == null || cmp.getClass() != Node.class;
426              return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
427          }
428  
429          /**
430 <         * Creates a new node. Uses relaxed write because item can only
431 <         * be seen if followed by CAS.
430 >         * Constructs a new node.  Uses relaxed write because item can
431 >         * only be seen after publication via casNext.
432           */
433          Node(Object item, boolean isData) {
434              UNSAFE.putObject(this, itemOffset, item); // relaxed write
# Line 361 | Line 444 | public class LinkedTransferQueue<E> exte
444          }
445  
446          /**
447 <         * Sets item to self (using a releasing/lazy write) and waiter
448 <         * to null, to avoid garbage retention after extracting or
449 <         * cancelling.
447 >         * Sets item to self and waiter to null, to avoid garbage
448 >         * retention after matching or cancelling. Uses relaxed writes
449 >         * because order is already constrained in the only calling
450 >         * contexts: item is forgotten only after volatile/atomic
451 >         * mechanics that extract items.  Similarly, clearing waiter
452 >         * follows either CAS or return from park (if ever parked;
453 >         * else we don't care).
454           */
455          final void forgetContents() {
456 <            UNSAFE.putOrderedObject(this, itemOffset, this);
457 <            UNSAFE.putOrderedObject(this, waiterOffset, null);
456 >            UNSAFE.putObject(this, itemOffset, this);
457 >            UNSAFE.putObject(this, waiterOffset, null);
458          }
459  
460          /**
# Line 376 | Line 463 | public class LinkedTransferQueue<E> exte
463           */
464          final boolean isMatched() {
465              Object x = item;
466 <            return x == this || (x != null) != isData;
466 >            return (x == this) || ((x == null) == isData);
467 >        }
468 >
469 >        /**
470 >         * Returns true if this is an unmatched request node.
471 >         */
472 >        final boolean isUnmatchedRequest() {
473 >            return !isData && item == null;
474          }
475  
476          /**
# Line 394 | Line 488 | public class LinkedTransferQueue<E> exte
488           * Tries to artificially match a data node -- used by remove.
489           */
490          final boolean tryMatchData() {
491 +            // assert isData;
492              Object x = item;
493              if (x != null && x != this && casItem(x, null)) {
494                  LockSupport.unpark(waiter);
# Line 415 | Line 510 | public class LinkedTransferQueue<E> exte
510      }
511  
512      /** head of the queue; null until first enqueue */
513 <    private transient volatile Node head;
419 <
420 <    /** predecessor of dangling unspliceable node */
421 <    private transient volatile Node cleanMe; // decl here to reduce contention
513 >    transient volatile Node head;
514  
515      /** tail of the queue; null until first append */
516      private transient volatile Node tail;
517  
518 +    /** The number of apparent failures to unsplice removed nodes */
519 +    private transient volatile int sweepVotes;
520 +
521      // CAS methods for fields
522      private boolean casTail(Node cmp, Node val) {
523          return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
# Line 432 | Line 527 | public class LinkedTransferQueue<E> exte
527          return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
528      }
529  
530 <    private boolean casCleanMe(Node cmp, Node val) {
531 <        return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
530 >    private boolean casSweepVotes(int cmp, int val) {
531 >        return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
532      }
533  
534      /*
535 <     * Possible values for "how" argument in xfer method. Beware that
441 <     * the order of assigned numerical values matters.
535 >     * Possible values for "how" argument in xfer method.
536       */
537 <    private static final int NOW     = 0; // for untimed poll, tryTransfer
538 <    private static final int ASYNC   = 1; // for offer, put, add
539 <    private static final int SYNC    = 2; // for transfer, take
540 <    private static final int TIMEOUT = 3; // for timed poll, tryTransfer
537 >    private static final int NOW   = 0; // for untimed poll, tryTransfer
538 >    private static final int ASYNC = 1; // for offer, put, add
539 >    private static final int SYNC  = 2; // for transfer, take
540 >    private static final int TIMED = 3; // for timed poll, tryTransfer
541 >
542 >    @SuppressWarnings("unchecked")
543 >    static <E> E cast(Object item) {
544 >        // assert item == null || item.getClass() != Node.class;
545 >        return (E) item;
546 >    }
547  
548      /**
549       * Implements all queuing methods. See above for explanation.
550       *
551       * @param e the item or null for take
552       * @param haveData true if this is a put, else a take
553 <     * @param how NOW, ASYNC, SYNC, or TIMEOUT
554 <     * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
553 >     * @param how NOW, ASYNC, SYNC, or TIMED
554 >     * @param nanos timeout in nanosecs, used only if mode is TIMED
555       * @return an item if matched, else e
556       * @throws NullPointerException if haveData mode but e is null
557       */
558 <    private Object xfer(Object e, boolean haveData, int how, long nanos) {
558 >    private E xfer(E e, boolean haveData, int how, long nanos) {
559          if (haveData && (e == null))
560              throw new NullPointerException();
561          Node s = null;                        // the node to append, if needed
562  
563 <        retry: for (;;) {                     // restart on append race
563 >        retry:
564 >        for (;;) {                            // restart on append race
565  
566              for (Node h = head, p = h; p != null;) { // find & match first node
567                  boolean isData = p.isData;
# Line 469 | Line 570 | public class LinkedTransferQueue<E> exte
570                      if (isData == haveData)   // can't match
571                          break;
572                      if (p.casItem(item, e)) { // match
573 <                        Thread w = p.waiter;
574 <                        while (p != h) {      // update head
575 <                            Node n = p.next;  // by 2 unless singleton
475 <                            if (n != null)
476 <                                p = n;
477 <                            if (head == h && casHead(h, p)) {
573 >                        for (Node q = p; q != h;) {
574 >                            Node n = q.next;  // update by 2 unless singleton
575 >                            if (head == h && casHead(h, n == null? q : n)) {
576                                  h.forgetNext();
577                                  break;
578                              }                 // advance and retry
579                              if ((h = head)   == null ||
580 <                                (p = h.next) == null || !p.isMatched())
580 >                                (q = h.next) == null || !q.isMatched())
581                                  break;        // unless slack < 2
582                          }
583 <                        LockSupport.unpark(w);
584 <                        return item;
583 >                        LockSupport.unpark(p.waiter);
584 >                        return this.<E>cast(item);
585                      }
586                  }
587                  Node n = p.next;
588 <                p = p != n ? n : (h = head);  // Use head if p offlist
588 >                p = (p != n) ? n : (h = head); // Use head if p offlist
589              }
590  
591 <            if (how >= ASYNC) {               // No matches available
591 >            if (how != NOW) {                 // No matches available
592                  if (s == null)
593                      s = new Node(e, haveData);
594                  Node pred = tryAppend(s, haveData);
595                  if (pred == null)
596                      continue retry;           // lost race vs opposite mode
597 <                if (how >= SYNC)
598 <                    return awaitMatch(pred, s, e, how, nanos);
597 >                if (how != ASYNC)
598 >                    return awaitMatch(s, pred, e, (how == TIMED), nanos);
599              }
600              return e; // not waiting
601          }
# Line 506 | Line 604 | public class LinkedTransferQueue<E> exte
604      /**
605       * Tries to append node s as tail.
606       *
509     * @param haveData true if appending in data mode
607       * @param s the node to append
608 +     * @param haveData true if appending in data mode
609       * @return null on failure due to losing race with append in
610       * different mode, else s's predecessor, or s itself if no
611       * predecessor
612       */
613      private Node tryAppend(Node s, boolean haveData) {
614 <        for (Node t = tail, p = t;;) { // move p to actual tail and append
614 >        for (Node t = tail, p = t;;) {        // move p to last node and append
615              Node n, u;                        // temps for reads of next & tail
616              if (p == null && (p = head) == null) {
617                  if (casHead(null, s))
# Line 521 | Line 619 | public class LinkedTransferQueue<E> exte
619              }
620              else if (p.cannotPrecede(haveData))
621                  return null;                  // lost race vs opposite mode
622 <            else if ((n = p.next) != null)    // Not tail; keep traversing
622 >            else if ((n = p.next) != null)    // not last; keep traversing
623                  p = p != t && t != (u = tail) ? (t = u) : // stale tail
624 <                    p != n ? n : null;        // restart if off list
624 >                    (p != n) ? n : null;      // restart if off list
625              else if (!p.casNext(null, s))
626                  p = p.next;                   // re-read on CAS failure
627              else {
628 <                if (p != t) {                 // Update if slack now >= 2
628 >                if (p != t) {                 // update if slack now >= 2
629                      while ((tail != t || !casTail(t, s)) &&
630                             (t = tail)   != null &&
631                             (s = t.next) != null && // advance and retry
# Line 541 | Line 639 | public class LinkedTransferQueue<E> exte
639      /**
640       * Spins/yields/blocks until node s is matched or caller gives up.
641       *
544     * @param pred the predecessor of s or s or null if none
642       * @param s the waiting node
643 +     * @param pred the predecessor of s, or s itself if it has no
644 +     * predecessor, or null if unknown (the null case does not occur
645 +     * in any current calls but may in possible future extensions)
646       * @param e the comparison value for checking match
647 <     * @param how either SYNC or TIMEOUT
648 <     * @param nanos timeout value
647 >     * @param timed if true, wait only until timeout elapses
648 >     * @param nanos timeout in nanosecs, used only if timed is true
649       * @return matched item, or e if unmatched on interrupt or timeout
650       */
651 <    private Object awaitMatch(Node pred, Node s, Object e,
652 <                              int how, long nanos) {
553 <        long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
651 >    private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
652 >        long lastTime = timed ? System.nanoTime() : 0L;
653          Thread w = Thread.currentThread();
654          int spins = -1; // initialized after first item and cancel checks
655          ThreadLocalRandom randomYields = null; // bound if needed
# Line 558 | Line 657 | public class LinkedTransferQueue<E> exte
657          for (;;) {
658              Object item = s.item;
659              if (item != e) {                  // matched
660 +                // assert item != s;
661                  s.forgetContents();           // avoid garbage
662 <                return item;
662 >                return this.<E>cast(item);
663              }
664 <            if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
665 <                     s.casItem(e, s)) {       // cancel
664 >            if ((w.isInterrupted() || (timed && nanos <= 0)) &&
665 >                    s.casItem(e, s)) {        // cancel
666                  unsplice(pred, s);
667                  return e;
668              }
# Line 571 | Line 671 | public class LinkedTransferQueue<E> exte
671                  if ((spins = spinsFor(pred, s.isData)) > 0)
672                      randomYields = ThreadLocalRandom.current();
673              }
674 <            else if (spins > 0) {             // spin, occasionally yield
575 <                if (randomYields.nextInt(FRONT_SPINS) == 0)
576 <                    Thread.yield();
674 >            else if (spins > 0) {             // spin
675                  --spins;
676 +                if (randomYields.nextInt(CHAINED_SPINS) == 0)
677 +                    Thread.yield();           // occasionally yield
678              }
679              else if (s.waiter == null) {
680 <                shortenHeadPath();            // reduce slack before blocking
581 <                s.waiter = w;                 // request unpark
680 >                s.waiter = w;                 // request unpark then recheck
681              }
682 <            else if (how == TIMEOUT) {
682 >            else if (timed) {
683                  long now = System.nanoTime();
684                  if ((nanos -= now - lastTime) > 0)
685                      LockSupport.parkNanos(this, nanos);
# Line 588 | Line 687 | public class LinkedTransferQueue<E> exte
687              }
688              else {
689                  LockSupport.park(this);
591                spins = -1;                   // spin if front upon wakeup
690              }
691          }
692      }
# Line 599 | Line 697 | public class LinkedTransferQueue<E> exte
697       */
698      private static int spinsFor(Node pred, boolean haveData) {
699          if (MP && pred != null) {
700 <            boolean predData = pred.isData;
701 <            if (predData != haveData)         // front and phase change
702 <                return FRONT_SPINS + (FRONT_SPINS >>> 1);
605 <            if (predData != (pred.item != null)) // probably at front
700 >            if (pred.isData != haveData)      // phase change
701 >                return FRONT_SPINS + CHAINED_SPINS;
702 >            if (pred.isMatched())             // probably at front
703                  return FRONT_SPINS;
704              if (pred.waiter == null)          // pred apparently spinning
705                  return CHAINED_SPINS;
# Line 610 | Line 707 | public class LinkedTransferQueue<E> exte
707          return 0;
708      }
709  
710 +    /* -------------- Traversal methods -------------- */
711 +
712      /**
713 <     * Tries (once) to unsplice nodes between head and first unmatched
714 <     * or trailing node; failing on contention.
715 <     */
716 <    private void shortenHeadPath() {
717 <        Node h, hn, p, q;
718 <        if ((p = h = head) != null && h.isMatched() &&
719 <            (q = hn = h.next) != null) {
621 <            Node n;
622 <            while ((n = q.next) != q) {
623 <                if (n == null || !q.isMatched()) {
624 <                    if (hn != q && h.next == hn)
625 <                        h.casNext(hn, q);
626 <                    break;
627 <                }
628 <                p = q;
629 <                q = n;
630 <            }
631 <        }
713 >     * Returns the successor of p, or the head node if p.next has been
714 >     * linked to self, which will only be true if traversing with a
715 >     * stale pointer that is now off the list.
716 >     */
717 >    final Node succ(Node p) {
718 >        Node next = p.next;
719 >        return (p == next) ? head : next;
720      }
721  
634    /* -------------- Traversal methods -------------- */
635
722      /**
723       * Returns the first unmatched node of the given mode, or null if
724       * none.  Used by methods isEmpty, hasWaitingConsumer.
725       */
726 <    private Node firstOfMode(boolean data) {
727 <        for (Node p = head; p != null; ) {
726 >    private Node firstOfMode(boolean isData) {
727 >        for (Node p = head; p != null; p = succ(p)) {
728              if (!p.isMatched())
729 <                return p.isData == data? p : null;
644 <            Node n = p.next;
645 <            p = n != p ? n : head;
729 >                return (p.isData == isData) ? p : null;
730          }
731          return null;
732      }
733  
734      /**
735       * Returns the item in the first unmatched node with isData; or
736 <     * null if none. Used by peek.
736 >     * null if none.  Used by peek.
737       */
738 <    private Object firstDataItem() {
739 <        for (Node p = head; p != null; ) {
656 <            boolean isData = p.isData;
738 >    private E firstDataItem() {
739 >        for (Node p = head; p != null; p = succ(p)) {
740              Object item = p.item;
741 <            if (item != p && (item != null) == isData)
742 <                return isData ? item : null;
743 <            Node n = p.next;
744 <            p = n != p ? n : head;
741 >            if (p.isData) {
742 >                if (item != null && item != p)
743 >                    return this.<E>cast(item);
744 >            }
745 >            else if (item == null)
746 >                return null;
747          }
748          return null;
749      }
# Line 689 | Line 774 | public class LinkedTransferQueue<E> exte
774  
775      final class Itr implements Iterator<E> {
776          private Node nextNode;   // next node to return item for
777 <        private Object nextItem; // the corresponding item
777 >        private E nextItem;      // the corresponding item
778          private Node lastRet;    // last returned node, to support remove
779 +        private Node lastPred;   // predecessor to unlink lastRet
780  
781          /**
782           * Moves to next node after prev, or first node if prev null.
783           */
784          private void advance(Node prev) {
785 <            lastRet = prev;
786 <            Node p;
787 <            if (prev == null || (p = prev.next) == prev)
788 <                p = head;
789 <            while (p != null) {
790 <                Object item = p.item;
791 <                if (p.isData) {
792 <                    if (item != null && item != p) {
793 <                        nextItem = item;
794 <                        nextNode = p;
785 >            /*
786 >             * To track and avoid buildup of deleted nodes in the face
787 >             * of calls to both Queue.remove and Itr.remove, we must
788 >             * include variants of unsplice and sweep upon each
789 >             * advance: Upon Itr.remove, we may need to catch up links
790 >             * from lastPred, and upon other removes, we might need to
791 >             * skip ahead from stale nodes and unsplice deleted ones
792 >             * found while advancing.
793 >             */
794 >
795 >            Node r, b; // reset lastPred upon possible deletion of lastRet
796 >            if ((r = lastRet) != null && !r.isMatched())
797 >                lastPred = r;    // next lastPred is old lastRet
798 >            else if ((b = lastPred) == null || b.isMatched())
799 >                lastPred = null; // at start of list
800 >            else {              
801 >                Node s, n;       // help with removal of lastPred.next
802 >                while ((s = b.next) != null &&
803 >                       s != b && s.isMatched() &&
804 >                       (n = s.next) != null && n != s)
805 >                    b.casNext(s, n);
806 >            }
807 >
808 >            this.lastRet = prev;
809 >            for (Node p = prev, s, n;;) {
810 >                s = (p == null) ? head : p.next;
811 >                if (s == null)
812 >                    break;
813 >                else if (s == p) {
814 >                    p = null;
815 >                    continue;
816 >                }
817 >                Object item = s.item;
818 >                if (s.isData) {
819 >                    if (item != null && item != s) {
820 >                        nextItem = LinkedTransferQueue.<E>cast(item);
821 >                        nextNode = s;
822                          return;
823                      }
824 <                }
824 >                }
825                  else if (item == null)
826                      break;
827 <                Node n = p.next;
828 <                p = n != p ? n : head;
827 >                // assert s.isMatched();
828 >                if (p == null)
829 >                    p = s;
830 >                else if ((n = s.next) == null)
831 >                    break;
832 >                else if (s == n)
833 >                    p = null;
834 >                else
835 >                    p.casNext(s, n);
836              }
837              nextNode = null;
838 +            nextItem = null;
839          }
840  
841          Itr() {
# Line 728 | Line 849 | public class LinkedTransferQueue<E> exte
849          public final E next() {
850              Node p = nextNode;
851              if (p == null) throw new NoSuchElementException();
852 <            Object e = nextItem;
852 >            E e = nextItem;
853              advance(p);
854 <            return (E) e;
854 >            return e;
855          }
856  
857          public final void remove() {
858 <            Node p = lastRet;
859 <            if (p == null) throw new IllegalStateException();
860 <            lastRet = null;
861 <            findAndRemoveNode(p);
858 >            final Node lastRet = this.lastRet;
859 >            if (lastRet == null)
860 >                throw new IllegalStateException();
861 >            this.lastRet = null;
862 >            if (lastRet.tryMatchData())
863 >                unsplice(lastPred, lastRet);
864          }
865      }
866  
# Line 747 | Line 870 | public class LinkedTransferQueue<E> exte
870       * Unsplices (now or later) the given deleted/cancelled node with
871       * the given predecessor.
872       *
873 <     * @param pred predecessor of node to be unspliced
873 >     * @param pred a node that was at one time known to be the
874 >     * predecessor of s, or null or s itself if s is/was at head
875       * @param s the node to be unspliced
876       */
877 <    private void unsplice(Node pred, Node s) {
878 <        s.forgetContents(); // clear unneeded fields
877 >    final void unsplice(Node pred, Node s) {
878 >        s.forgetContents(); // forget unneeded fields
879          /*
880 <         * At any given time, exactly one node on list cannot be
881 <         * deleted -- the last inserted node. To accommodate this, if
882 <         * we cannot delete s, we save its predecessor as "cleanMe",
883 <         * processing the previously saved version first. Because only
884 <         * one node in the list can have a null next, at least one of
761 <         * node s or the node previously saved can always be
762 <         * processed, so this always terminates.
880 >         * See above for rationale. Briefly: if pred still points to
881 >         * s, try to unlink s.  If s cannot be unlinked, because it is
882 >         * trailing node or pred might be unlinked, and neither pred
883 >         * nor s are head or offlist, add to sweepVotes, and if enough
884 >         * votes have accumulated, sweep.
885           */
886 <        if (pred != null && pred != s) {
887 <            while (pred.next == s) {
888 <                Node oldpred = cleanMe == null? null : reclean();
889 <                Node n = s.next;
890 <                if (n != null) {
891 <                    if (n != s)
892 <                        pred.casNext(s, n);
893 <                    break;
886 >        if (pred != null && pred != s && pred.next == s) {
887 >            Node n = s.next;
888 >            if (n == null ||
889 >                (n != s && pred.casNext(s, n) && pred.isMatched())) {
890 >                for (;;) {               // check if at, or could be, head
891 >                    Node h = head;
892 >                    if (h == pred || h == s || h == null)
893 >                        return;          // at head or list empty
894 >                    if (!h.isMatched())
895 >                        break;
896 >                    Node hn = h.next;
897 >                    if (hn == null)
898 >                        return;          // now empty
899 >                    if (hn != h && casHead(h, hn))
900 >                        h.forgetNext();  // advance head
901 >                }
902 >                if (pred.next != pred && s.next != s) { // recheck if offlist
903 >                    for (;;) {           // sweep now if enough votes
904 >                        int v = sweepVotes;
905 >                        if (v < SWEEP_THRESHOLD) {
906 >                            if (casSweepVotes(v, v + 1))
907 >                                break;
908 >                        }
909 >                        else if (casSweepVotes(v, 0)) {
910 >                            sweep();
911 >                            break;
912 >                        }
913 >                    }
914                  }
773                if (oldpred == pred ||      // Already saved
774                    (oldpred == null && casCleanMe(null, pred)))
775                    break;                  // Postpone cleaning
915              }
916          }
917      }
918  
919      /**
920 <     * Tries to unsplice the deleted/cancelled node held in cleanMe
921 <     * that was previously uncleanable because it was at tail.
783 <     *
784 <     * @return current cleanMe node (or null)
920 >     * Unlinks matched (typically cancelled) nodes encountered in a
921 >     * traversal from head.
922       */
923 <    private Node reclean() {
924 <        /*
925 <         * cleanMe is, or at one time was, predecessor of a cancelled
926 <         * node s that was the tail so could not be unspliced.  If it
927 <         * is no longer the tail, try to unsplice if necessary and
928 <         * make cleanMe slot available.  This differs from similar
792 <         * code in unsplice() because we must check that pred still
793 <         * points to a matched node that can be unspliced -- if not,
794 <         * we can (must) clear cleanMe without unsplicing.  This can
795 <         * loop only due to contention.
796 <         */
797 <        Node pred;
798 <        while ((pred = cleanMe) != null) {
799 <            Node s = pred.next;
800 <            Node n;
801 <            if (s == null || s == pred || !s.isMatched())
802 <                casCleanMe(pred, null); // already gone
803 <            else if ((n = s.next) != null) {
804 <                if (n != s)
805 <                    pred.casNext(s, n);
806 <                casCleanMe(pred, null);
807 <            }
808 <            else
923 >    private void sweep() {
924 >        for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
925 >            if (!s.isMatched())
926 >                // Unmatched nodes are never self-linked
927 >                p = s;
928 >            else if ((n = s.next) == null) // trailing node is pinned
929                  break;
930 <        }
931 <        return pred;
932 <    }
933 <
934 <    /**
815 <     * Main implementation of Iterator.remove(). Find
816 <     * and unsplice the given node.
817 <     */
818 <    final void findAndRemoveNode(Node s) {
819 <        if (s.tryMatchData()) {
820 <            Node pred = null;
821 <            Node p = head;
822 <            while (p != null) {
823 <                if (p == s) {
824 <                    unsplice(pred, p);
825 <                    break;
826 <                }
827 <                if (!p.isData && !p.isMatched())
828 <                    break;
829 <                pred = p;
830 <                if ((p = p.next) == pred) { // stale
831 <                    pred = null;
832 <                    p = head;
833 <                }
834 <            }
930 >            else if (s == n)    // stale
931 >                // No need to also check for p == s, since that implies s == n
932 >                p = head;
933 >            else
934 >                p.casNext(s, n);
935          }
936      }
937  
# Line 840 | Line 940 | public class LinkedTransferQueue<E> exte
940       */
941      private boolean findAndRemove(Object e) {
942          if (e != null) {
943 <            Node pred = null;
844 <            Node p = head;
845 <            while (p != null) {
943 >            for (Node pred = null, p = head; p != null; ) {
944                  Object item = p.item;
945                  if (p.isData) {
946                      if (item != null && item != p && e.equals(item) &&
# Line 854 | Line 952 | public class LinkedTransferQueue<E> exte
952                  else if (item == null)
953                      break;
954                  pred = p;
955 <                if ((p = p.next) == pred) {
955 >                if ((p = p.next) == pred) { // stale
956                      pred = null;
957                      p = head;
958                  }
# Line 912 | Line 1010 | public class LinkedTransferQueue<E> exte
1010       * Inserts the specified element at the tail of this queue.
1011       * As the queue is unbounded, this method will never return {@code false}.
1012       *
1013 <     * @return {@code true} (as specified by
916 <     *         {@link BlockingQueue#offer(Object) BlockingQueue.offer})
1013 >     * @return {@code true} (as specified by {@link Queue#offer})
1014       * @throws NullPointerException if the specified element is null
1015       */
1016      public boolean offer(E e) {
# Line 982 | Line 1079 | public class LinkedTransferQueue<E> exte
1079       */
1080      public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1081          throws InterruptedException {
1082 <        if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1082 >        if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1083              return true;
1084          if (!Thread.interrupted())
1085              return false;
# Line 990 | Line 1087 | public class LinkedTransferQueue<E> exte
1087      }
1088  
1089      public E take() throws InterruptedException {
1090 <        Object e = xfer(null, false, SYNC, 0);
1090 >        E e = xfer(null, false, SYNC, 0);
1091          if (e != null)
1092 <            return (E)e;
1092 >            return e;
1093          Thread.interrupted();
1094          throw new InterruptedException();
1095      }
1096  
1097      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1098 <        Object e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1098 >        E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1099          if (e != null || !Thread.interrupted())
1100 <            return (E)e;
1100 >            return e;
1101          throw new InterruptedException();
1102      }
1103  
1104      public E poll() {
1105 <        return (E)xfer(null, false, NOW, 0);
1105 >        return xfer(null, false, NOW, 0);
1106      }
1107  
1108      /**
# Line 1062 | Line 1159 | public class LinkedTransferQueue<E> exte
1159      }
1160  
1161      public E peek() {
1162 <        return (E) firstDataItem();
1162 >        return firstDataItem();
1163      }
1164  
1165      /**
# Line 1071 | Line 1168 | public class LinkedTransferQueue<E> exte
1168       * @return {@code true} if this queue contains no elements
1169       */
1170      public boolean isEmpty() {
1171 <        return firstOfMode(true) == null;
1171 >        for (Node p = head; p != null; p = succ(p)) {
1172 >            if (!p.isMatched())
1173 >                return !p.isData;
1174 >        }
1175 >        return true;
1176      }
1177  
1178      public boolean hasWaitingConsumer() {
# Line 1114 | Line 1215 | public class LinkedTransferQueue<E> exte
1215      }
1216  
1217      /**
1218 +     * Returns {@code true} if this queue contains the specified element.
1219 +     * More formally, returns {@code true} if and only if this queue contains
1220 +     * at least one element {@code e} such that {@code o.equals(e)}.
1221 +     *
1222 +     * @param o object to be checked for containment in this queue
1223 +     * @return {@code true} if this queue contains the specified element
1224 +     */
1225 +    public boolean contains(Object o) {
1226 +        if (o == null) return false;
1227 +        for (Node p = head; p != null; p = succ(p)) {
1228 +            Object item = p.item;
1229 +            if (p.isData) {
1230 +                if (item != null && item != p && o.equals(item))
1231 +                    return true;
1232 +            }
1233 +            else if (item == null)
1234 +                break;
1235 +        }
1236 +        return false;
1237 +    }
1238 +
1239 +    /**
1240       * Always returns {@code Integer.MAX_VALUE} because a
1241       * {@code LinkedTransferQueue} is not capacity constrained.
1242       *
# Line 1158 | Line 1281 | public class LinkedTransferQueue<E> exte
1281          }
1282      }
1283  
1161
1284      // Unsafe mechanics
1285  
1286      private static final sun.misc.Unsafe UNSAFE = getUnsafe();
# Line 1166 | Line 1288 | public class LinkedTransferQueue<E> exte
1288          objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1289      private static final long tailOffset =
1290          objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1291 <    private static final long cleanMeOffset =
1292 <        objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1291 >    private static final long sweepVotesOffset =
1292 >        objectFieldOffset(UNSAFE, "sweepVotes", LinkedTransferQueue.class);
1293  
1294      static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1295                                    String field, Class<?> klazz) {
# Line 1181 | Line 1303 | public class LinkedTransferQueue<E> exte
1303          }
1304      }
1305  
1306 <    private static sun.misc.Unsafe getUnsafe() {
1306 >    /**
1307 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1308 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1309 >     * into a jdk.
1310 >     *
1311 >     * @return a sun.misc.Unsafe
1312 >     */
1313 >    static sun.misc.Unsafe getUnsafe() {
1314          try {
1315              return sun.misc.Unsafe.getUnsafe();
1316          } catch (SecurityException se) {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines