ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.17 by jsr166, Tue Mar 31 15:17:19 2009 UTC vs.
Revision 1.52 by dl, Sat Oct 24 14:57:32 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.concurrent.*;
9 import java.util.concurrent.locks.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.*;
12 import java.io.*;
13 import sun.misc.Unsafe;
14 import java.lang.reflect.*;
10  
11 + import java.util.AbstractQueue;
12 + import java.util.Collection;
13 + import java.util.ConcurrentModificationException;
14 + import java.util.Iterator;
15 + import java.util.NoSuchElementException;
16 + import java.util.Queue;
17 + import java.util.concurrent.locks.LockSupport;
18   /**
19 < * An unbounded {@linkplain TransferQueue} based on linked nodes.
19 > * An unbounded {@link TransferQueue} based on linked nodes.
20   * This queue orders elements FIFO (first-in-first-out) with respect
21   * to any given producer.  The <em>head</em> of the queue is that
22   * element that has been on the queue the longest time for some
# Line 44 | Line 46 | import java.lang.reflect.*;
46   * @since 1.7
47   * @author Doug Lea
48   * @param <E> the type of elements held in this collection
47 *
49   */
50   public class LinkedTransferQueue<E> extends AbstractQueue<E>
51      implements TransferQueue<E>, java.io.Serializable {
52      private static final long serialVersionUID = -3223113410248163686L;
53  
54      /*
55 <     * This class extends the approach used in FIFO-mode
55 <     * SynchronousQueues. See the internal documentation, as well as
56 <     * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
57 <     * Lea & Scott
58 <     * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
55 >     * *** Overview of Dual Queues with Slack ***
56       *
57 <     * The main extension is to provide different Wait modes for the
58 <     * main "xfer" method that puts or takes items.  These don't
59 <     * impact the basic dual-queue logic, but instead control whether
60 <     * or how threads block upon insertion of request or data nodes
61 <     * into the dual queue. It also uses slightly different
62 <     * conventions for tracking whether nodes are off-list or
63 <     * cancelled.
64 <     */
65 <
66 <    // Wait modes for xfer method
67 <    static final int NOWAIT  = 0;
68 <    static final int TIMEOUT = 1;
69 <    static final int WAIT    = 2;
70 <
71 <    /** The number of CPUs, for spin control */
72 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
57 >     * Dual Queues, introduced by Scherer and Scott
58 >     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 >     * (linked) queues in which nodes may represent either data or
60 >     * requests.  When a thread tries to enqueue a data node, but
61 >     * encounters a request node, it instead "matches" and removes it;
62 >     * and vice versa for enqueuing requests. Blocking Dual Queues
63 >     * arrange that threads enqueuing unmatched requests block until
64 >     * other threads provide the match. Dual Synchronous Queues (see
65 >     * Scherer, Lea, & Scott
66 >     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 >     * additionally arrange that threads enqueuing unmatched data also
68 >     * block.  Dual Transfer Queues support all of these modes, as
69 >     * dictated by callers.
70 >     *
71 >     * A FIFO dual queue may be implemented using a variation of the
72 >     * Michael & Scott (M&S) lock-free queue algorithm
73 >     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 >     * It maintains two pointer fields, "head", pointing to a
75 >     * (matched) node that in turn points to the first actual
76 >     * (unmatched) queue node (or null if empty); and "tail" that
77 >     * points to the last node on the queue (or again null if
78 >     * empty). For example, here is a possible queue with four data
79 >     * elements:
80 >     *
81 >     *  head                tail
82 >     *    |                   |
83 >     *    v                   v
84 >     *    M -> U -> U -> U -> U
85 >     *
86 >     * The M&S queue algorithm is known to be prone to scalability and
87 >     * overhead limitations when maintaining (via CAS) these head and
88 >     * tail pointers. This has led to the development of
89 >     * contention-reducing variants such as elimination arrays (see
90 >     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 >     * optimistic back pointers (see Ladan-Mozes & Shavit
92 >     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 >     * However, the nature of dual queues enables a simpler tactic for
94 >     * improving M&S-style implementations when dual-ness is needed.
95 >     *
96 >     * In a dual queue, each node must atomically maintain its match
97 >     * status. While there are other possible variants, we implement
98 >     * this here as: for a data-mode node, matching entails CASing an
99 >     * "item" field from a non-null data value to null upon match, and
100 >     * vice-versa for request nodes, CASing from null to a data
101 >     * value. (Note that the linearization properties of this style of
102 >     * queue are easy to verify -- elements are made available by
103 >     * linking, and unavailable by matching.) Compared to plain M&S
104 >     * queues, this property of dual queues requires one additional
105 >     * successful atomic operation per enq/deq pair. But it also
106 >     * enables lower cost variants of queue maintenance mechanics. (A
107 >     * variation of this idea applies even for non-dual queues that
108 >     * support deletion of interior elements, such as
109 >     * j.u.c.ConcurrentLinkedQueue.)
110 >     *
111 >     * Once a node is matched, its match status can never again
112 >     * change.  We may thus arrange that the linked list of them
113 >     * contain a prefix of zero or more matched nodes, followed by a
114 >     * suffix of zero or more unmatched nodes. (Note that we allow
115 >     * both the prefix and suffix to be zero length, which in turn
116 >     * means that we do not use a dummy header.)  If we were not
117 >     * concerned with either time or space efficiency, we could
118 >     * correctly perform enqueue and dequeue operations by traversing
119 >     * from a pointer to the initial node; CASing the item of the
120 >     * first unmatched node on match and CASing the next field of the
121 >     * trailing node on appends. (Plus some special-casing when
122 >     * initially empty).  While this would be a terrible idea in
123 >     * itself, it does have the benefit of not requiring ANY atomic
124 >     * updates on head/tail fields.
125 >     *
126 >     * We introduce here an approach that lies between the extremes of
127 >     * never versus always updating queue (head and tail) pointers.
128 >     * This offers a tradeoff between sometimes requiring extra
129 >     * traversal steps to locate the first and/or last unmatched
130 >     * nodes, versus the reduced overhead and contention of fewer
131 >     * updates to queue pointers. For example, a possible snapshot of
132 >     * a queue is:
133 >     *
134 >     *  head           tail
135 >     *    |              |
136 >     *    v              v
137 >     *    M -> M -> U -> U -> U -> U
138 >     *
139 >     * The best value for this "slack" (the targeted maximum distance
140 >     * between the value of "head" and the first unmatched node, and
141 >     * similarly for "tail") is an empirical matter. We have found
142 >     * that using very small constants in the range of 1-3 work best
143 >     * over a range of platforms. Larger values introduce increasing
144 >     * costs of cache misses and risks of long traversal chains, while
145 >     * smaller values increase CAS contention and overhead.
146 >     *
147 >     * Dual queues with slack differ from plain M&S dual queues by
148 >     * virtue of only sometimes updating head or tail pointers when
149 >     * matching, appending, or even traversing nodes; in order to
150 >     * maintain a targeted slack.  The idea of "sometimes" may be
151 >     * operationalized in several ways. The simplest is to use a
152 >     * per-operation counter incremented on each traversal step, and
153 >     * to try (via CAS) to update the associated queue pointer
154 >     * whenever the count exceeds a threshold. Another, that requires
155 >     * more overhead, is to use random number generators to update
156 >     * with a given probability per traversal step.
157 >     *
158 >     * In any strategy along these lines, because CASes updating
159 >     * fields may fail, the actual slack may exceed targeted
160 >     * slack. However, they may be retried at any time to maintain
161 >     * targets.  Even when using very small slack values, this
162 >     * approach works well for dual queues because it allows all
163 >     * operations up to the point of matching or appending an item
164 >     * (hence potentially allowing progress by another thread) to be
165 >     * read-only, thus not introducing any further contention. As
166 >     * described below, we implement this by performing slack
167 >     * maintenance retries only after these points.
168 >     *
169 >     * As an accompaniment to such techniques, traversal overhead can
170 >     * be further reduced without increasing contention of head
171 >     * pointer updates: Threads may sometimes shortcut the "next" link
172 >     * path from the current "head" node to be closer to the currently
173 >     * known first unmatched node, and similarly for tail. Again, this
174 >     * may be triggered with using thresholds or randomization.
175 >     *
176 >     * These ideas must be further extended to avoid unbounded amounts
177 >     * of costly-to-reclaim garbage caused by the sequential "next"
178 >     * links of nodes starting at old forgotten head nodes: As first
179 >     * described in detail by Boehm
180 >     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181 >     * delays noticing that any arbitrarily old node has become
182 >     * garbage, all newer dead nodes will also be unreclaimed.
183 >     * (Similar issues arise in non-GC environments.)  To cope with
184 >     * this in our implementation, upon CASing to advance the head
185 >     * pointer, we set the "next" link of the previous head to point
186 >     * only to itself; thus limiting the length of connected dead lists.
187 >     * (We also take similar care to wipe out possibly garbage
188 >     * retaining values held in other Node fields.)  However, doing so
189 >     * adds some further complexity to traversal: If any "next"
190 >     * pointer links to itself, it indicates that the current thread
191 >     * has lagged behind a head-update, and so the traversal must
192 >     * continue from the "head".  Traversals trying to find the
193 >     * current tail starting from "tail" may also encounter
194 >     * self-links, in which case they also continue at "head".
195 >     *
196 >     * It is tempting in slack-based scheme to not even use CAS for
197 >     * updates (similarly to Ladan-Mozes & Shavit). However, this
198 >     * cannot be done for head updates under the above link-forgetting
199 >     * mechanics because an update may leave head at a detached node.
200 >     * And while direct writes are possible for tail updates, they
201 >     * increase the risk of long retraversals, and hence long garbage
202 >     * chains, which can be much more costly than is worthwhile
203 >     * considering that the cost difference of performing a CAS vs
204 >     * write is smaller when they are not triggered on each operation
205 >     * (especially considering that writes and CASes equally require
206 >     * additional GC bookkeeping ("write barriers") that are sometimes
207 >     * more costly than the writes themselves because of contention).
208 >     *
209 >     * Removal of interior nodes (due to timed out or interrupted
210 >     * waits, or calls to remove(x) or Iterator.remove) can use a
211 >     * scheme roughly similar to that described in Scherer, Lea, and
212 >     * Scott's SynchronousQueue. Given a predecessor, we can unsplice
213 >     * any node except the (actual) tail of the queue. To avoid
214 >     * build-up of cancelled trailing nodes, upon a request to remove
215 >     * a trailing node, it is placed in field "cleanMe" to be
216 >     * unspliced upon the next call to unsplice any other node.
217 >     * Situations needing such mechanics are not common but do occur
218 >     * in practice; for example when an unbounded series of short
219 >     * timed calls to poll repeatedly time out but never otherwise
220 >     * fall off the list because of an untimed call to take at the
221 >     * front of the queue. Note that maintaining field cleanMe does
222 >     * not otherwise much impact garbage retention even if never
223 >     * cleared by some other call because the held node will
224 >     * eventually either directly or indirectly lead to a self-link
225 >     * once off the list.
226 >     *
227 >     * *** Overview of implementation ***
228 >     *
229 >     * We use a threshold-based approach to updates, with a slack
230 >     * threshold of two -- that is, we update head/tail when the
231 >     * current pointer appears to be two or more steps away from the
232 >     * first/last node. The slack value is hard-wired: a path greater
233 >     * than one is naturally implemented by checking equality of
234 >     * traversal pointers except when the list has only one element,
235 >     * in which case we keep slack threshold at one. Avoiding tracking
236 >     * explicit counts across method calls slightly simplifies an
237 >     * already-messy implementation. Using randomization would
238 >     * probably work better if there were a low-quality dirt-cheap
239 >     * per-thread one available, but even ThreadLocalRandom is too
240 >     * heavy for these purposes.
241 >     *
242 >     * With such a small slack threshold value, it is rarely
243 >     * worthwhile to augment this with path short-circuiting; i.e.,
244 >     * unsplicing nodes between head and the first unmatched node, or
245 >     * similarly for tail, rather than advancing head or tail
246 >     * proper. However, it is used (in awaitMatch) immediately before
247 >     * a waiting thread starts to block, as a final bit of helping at
248 >     * a point when contention with others is extremely unlikely
249 >     * (since if other threads that could release it are operating,
250 >     * then the current thread wouldn't be blocking).
251 >     *
252 >     * We allow both the head and tail fields to be null before any
253 >     * nodes are enqueued; initializing upon first append.  This
254 >     * simplifies some other logic, as well as providing more
255 >     * efficient explicit control paths instead of letting JVMs insert
256 >     * implicit NullPointerExceptions when they are null.  While not
257 >     * currently fully implemented, we also leave open the possibility
258 >     * of re-nulling these fields when empty (which is complicated to
259 >     * arrange, for little benefit.)
260 >     *
261 >     * All enqueue/dequeue operations are handled by the single method
262 >     * "xfer" with parameters indicating whether to act as some form
263 >     * of offer, put, poll, take, or transfer (each possibly with
264 >     * timeout). The relative complexity of using one monolithic
265 >     * method outweighs the code bulk and maintenance problems of
266 >     * using separate methods for each case.
267 >     *
268 >     * Operation consists of up to three phases. The first is
269 >     * implemented within method xfer, the second in tryAppend, and
270 >     * the third in method awaitMatch.
271 >     *
272 >     * 1. Try to match an existing node
273 >     *
274 >     *    Starting at head, skip already-matched nodes until finding
275 >     *    an unmatched node of opposite mode, if one exists, in which
276 >     *    case matching it and returning, also if necessary updating
277 >     *    head to one past the matched node (or the node itself if the
278 >     *    list has no other unmatched nodes). If the CAS misses, then
279 >     *    a loop retries advancing head by two steps until either
280 >     *    success or the slack is at most two. By requiring that each
281 >     *    attempt advances head by two (if applicable), we ensure that
282 >     *    the slack does not grow without bound. Traversals also check
283 >     *    if the initial head is now off-list, in which case they
284 >     *    start at the new head.
285 >     *
286 >     *    If no candidates are found and the call was untimed
287 >     *    poll/offer, (argument "how" is NOW) return.
288 >     *
289 >     * 2. Try to append a new node (method tryAppend)
290 >     *
291 >     *    Starting at current tail pointer, find the actual last node
292 >     *    and try to append a new node (or if head was null, establish
293 >     *    the first node). Nodes can be appended only if their
294 >     *    predecessors are either already matched or are of the same
295 >     *    mode. If we detect otherwise, then a new node with opposite
296 >     *    mode must have been appended during traversal, so we must
297 >     *    restart at phase 1. The traversal and update steps are
298 >     *    otherwise similar to phase 1: Retrying upon CAS misses and
299 >     *    checking for staleness.  In particular, if a self-link is
300 >     *    encountered, then we can safely jump to a node on the list
301 >     *    by continuing the traversal at current head.
302 >     *
303 >     *    On successful append, if the call was ASYNC, return.
304 >     *
305 >     * 3. Await match or cancellation (method awaitMatch)
306 >     *
307 >     *    Wait for another thread to match node; instead cancelling if
308 >     *    the current thread was interrupted or the wait timed out. On
309 >     *    multiprocessors, we use front-of-queue spinning: If a node
310 >     *    appears to be the first unmatched node in the queue, it
311 >     *    spins a bit before blocking. In either case, before blocking
312 >     *    it tries to unsplice any nodes between the current "head"
313 >     *    and the first unmatched node.
314 >     *
315 >     *    Front-of-queue spinning vastly improves performance of
316 >     *    heavily contended queues. And so long as it is relatively
317 >     *    brief and "quiet", spinning does not much impact performance
318 >     *    of less-contended queues.  During spins threads check their
319 >     *    interrupt status and generate a thread-local random number
320 >     *    to decide to occasionally perform a Thread.yield. While
321 >     *    yield has underdefined specs, we assume that might it help,
322 >     *    and will not hurt in limiting impact of spinning on busy
323 >     *    systems.  We also use smaller (1/2) spins for nodes that are
324 >     *    not known to be front but whose predecessors have not
325 >     *    blocked -- these "chained" spins avoid artifacts of
326 >     *    front-of-queue rules which otherwise lead to alternating
327 >     *    nodes spinning vs blocking. Further, front threads that
328 >     *    represent phase changes (from data to request node or vice
329 >     *    versa) compared to their predecessors receive additional
330 >     *    chained spins, reflecting longer paths typically required to
331 >     *    unblock threads during phase changes.
332 >     */
333 >
334 >    /** True if on multiprocessor */
335 >    private static final boolean MP =
336 >        Runtime.getRuntime().availableProcessors() > 1;
337  
338      /**
339 <     * The number of times to spin before blocking in timed waits.
340 <     * The value is empirically derived -- it works well across a
341 <     * variety of processors and OSes. Empirically, the best value
342 <     * seems not to vary with number of CPUs (beyond 2) so is just
343 <     * a constant.
339 >     * The number of times to spin (with randomly interspersed calls
340 >     * to Thread.yield) on multiprocessor before blocking when a node
341 >     * is apparently the first waiter in the queue.  See above for
342 >     * explanation. Must be a power of two. The value is empirically
343 >     * derived -- it works pretty well across a variety of processors,
344 >     * numbers of CPUs, and OSes.
345       */
346 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
346 >    private static final int FRONT_SPINS   = 1 << 7;
347  
348      /**
349 <     * The number of times to spin before blocking in untimed waits.
350 <     * This is greater than timed value because untimed waits spin
351 <     * faster since they don't need to check times on each spin.
349 >     * The number of times to spin before blocking when a node is
350 >     * preceded by another node that is apparently spinning.  Also
351 >     * serves as an increment to FRONT_SPINS on phase changes, and as
352 >     * base average frequency for yielding during spins. Must be a
353 >     * power of two.
354       */
355 <    static final int maxUntimedSpins = maxTimedSpins * 16;
355 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
356  
357      /**
358 <     * The number of nanoseconds for which it is faster to spin
359 <     * rather than to use timed park. A rough estimate suffices.
360 <     */
361 <    static final long spinForTimeoutThreshold = 1000L;
358 >     * Queue nodes. Uses Object, not E, for items to allow forgetting
359 >     * them after use.  Relies heavily on Unsafe mechanics to minimize
360 >     * unnecessary ordering constraints: Writes that intrinsically
361 >     * precede or follow CASes use simple relaxed forms.  Other
362 >     * cleanups use releasing/lazy writes.
363 >     */
364 >    static final class Node {
365 >        final boolean isData;   // false if this is a request node
366 >        volatile Object item;   // initially non-null if isData; CASed to match
367 >        volatile Node next;
368 >        volatile Thread waiter; // null until waiting
369 >
370 >        // CAS methods for fields
371 >        final boolean casNext(Node cmp, Node val) {
372 >            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
373 >        }
374  
375 <    /**
376 <     * Node class for LinkedTransferQueue. Opportunistically
377 <     * subclasses from AtomicReference to represent item. Uses Object,
378 <     * not E, to allow setting item to "this" after use, to avoid
379 <     * garbage retention. Similarly, setting the next field to this is
380 <     * used as sentinel that node is off list.
381 <     */
382 <    static final class QNode extends AtomicReference<Object> {
383 <        volatile QNode next;
384 <        volatile Thread waiter;       // to control park/unpark
109 <        final boolean isData;
110 <        QNode(Object item, boolean isData) {
111 <            super(item);
375 >        final boolean casItem(Object cmp, Object val) {
376 >            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
377 >        }
378 >
379 >        /**
380 >         * Creates a new node. Uses relaxed write because item can only
381 >         * be seen if followed by CAS.
382 >         */
383 >        Node(Object item, boolean isData) {
384 >            UNSAFE.putObject(this, itemOffset, item); // relaxed write
385              this.isData = isData;
386          }
387  
388 <        static final AtomicReferenceFieldUpdater<QNode, QNode>
389 <            nextUpdater = AtomicReferenceFieldUpdater.newUpdater
390 <            (QNode.class, QNode.class, "next");
388 >        /**
389 >         * Links node to itself to avoid garbage retention.  Called
390 >         * only after CASing head field, so uses relaxed write.
391 >         */
392 >        final void forgetNext() {
393 >            UNSAFE.putObject(this, nextOffset, this);
394 >        }
395  
396 <        final boolean casNext(QNode cmp, QNode val) {
397 <            return nextUpdater.compareAndSet(this, cmp, val);
396 >        /**
397 >         * Sets item to self (using a releasing/lazy write) and waiter
398 >         * to null, to avoid garbage retention after extracting or
399 >         * cancelling.
400 >         */
401 >        final void forgetContents() {
402 >            UNSAFE.putOrderedObject(this, itemOffset, this);
403 >            UNSAFE.putOrderedObject(this, waiterOffset, null);
404          }
405  
406 <        final void clearNext() {
407 <            nextUpdater.lazySet(this, this);
406 >        /**
407 >         * Returns true if this node has been matched, including the
408 >         * case of artificial matches due to cancellation.
409 >         */
410 >        final boolean isMatched() {
411 >            Object x = item;
412 >            return x == this || (x != null) != isData;
413          }
414  
415 <    }
415 >        /**
416 >         * Returns true if a node with the given mode cannot be
417 >         * appended to this node because this node is unmatched and
418 >         * has opposite data mode.
419 >         */
420 >        final boolean cannotPrecede(boolean haveData) {
421 >            boolean d = isData;
422 >            Object x;
423 >            return d != haveData && (x = item) != this && (x != null) == d;
424 >        }
425  
426 <    /**
427 <     * Padded version of AtomicReference used for head, tail and
428 <     * cleanMe, to alleviate contention across threads CASing one vs
429 <     * the other.
430 <     */
431 <    static final class PaddedAtomicReference<T> extends AtomicReference<T> {
432 <        // enough padding for 64bytes with 4byte refs
433 <        Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
434 <        PaddedAtomicReference(T r) { super(r); }
426 >        /**
427 >         * Tries to artificially match a data node -- used by remove.
428 >         */
429 >        final boolean tryMatchData() {
430 >            Object x = item;
431 >            if (x != null && x != this && casItem(x, null)) {
432 >                LockSupport.unpark(waiter);
433 >                return true;
434 >            }
435 >            return false;
436 >        }
437 >
438 >        // Unsafe mechanics
439 >        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
440 >        private static final long nextOffset =
441 >            objectFieldOffset(UNSAFE, "next", Node.class);
442 >        private static final long itemOffset =
443 >            objectFieldOffset(UNSAFE, "item", Node.class);
444 >        private static final long waiterOffset =
445 >            objectFieldOffset(UNSAFE, "waiter", Node.class);
446 >
447 >        private static final long serialVersionUID = -3375979862319811754L;
448      }
449  
450 +    /** head of the queue; null until first enqueue */
451 +    private transient volatile Node head;
452  
453 <    /** head of the queue */
454 <    private transient final PaddedAtomicReference<QNode> head;
143 <    /** tail of the queue */
144 <    private transient final PaddedAtomicReference<QNode> tail;
453 >    /** predecessor of dangling unspliceable node */
454 >    private transient volatile Node cleanMe; // decl here to reduce contention
455  
456 <    /**
457 <     * Reference to a cancelled node that might not yet have been
148 <     * unlinked from queue because it was the last inserted node
149 <     * when it cancelled.
150 <     */
151 <    private transient final PaddedAtomicReference<QNode> cleanMe;
456 >    /** tail of the queue; null until first append */
457 >    private transient volatile Node tail;
458  
459 <    /**
460 <     * Tries to cas nh as new head; if successful, unlink
461 <     * old head's next node to avoid garbage retention.
462 <     */
463 <    private boolean advanceHead(QNode h, QNode nh) {
464 <        if (h == head.get() && head.compareAndSet(h, nh)) {
465 <            h.clearNext(); // forget old next
466 <            return true;
467 <        }
468 <        return false;
459 >    // CAS methods for fields
460 >    private boolean casTail(Node cmp, Node val) {
461 >        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
462 >    }
463 >
464 >    private boolean casHead(Node cmp, Node val) {
465 >        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
466 >    }
467 >
468 >    private boolean casCleanMe(Node cmp, Node val) {
469 >        return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
470      }
471  
472 +    /*
473 +     * Possible values for "how" argument in xfer method. Beware that
474 +     * the order of assigned numerical values matters.
475 +     */
476 +    private static final int NOW     = 0; // for untimed poll, tryTransfer
477 +    private static final int ASYNC   = 1; // for offer, put, add
478 +    private static final int SYNC    = 2; // for transfer, take
479 +    private static final int TIMEOUT = 3; // for timed poll, tryTransfer
480 +
481      /**
482 <     * Puts or takes an item. Used for most queue operations (except
167 <     * poll() and tryTransfer()). See the similar code in
168 <     * SynchronousQueue for detailed explanation.
482 >     * Implements all queuing methods. See above for explanation.
483       *
484 <     * @param e the item or if null, signifies that this is a take
485 <     * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
484 >     * @param e the item or null for take
485 >     * @param haveData true if this is a put, else a take
486 >     * @param how NOW, ASYNC, SYNC, or TIMEOUT
487       * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
488 <     * @return an item, or null on failure
488 >     * @return an item if matched, else e
489 >     * @throws NullPointerException if haveData mode but e is null
490       */
491 <    private Object xfer(Object e, int mode, long nanos) {
492 <        boolean isData = (e != null);
493 <        QNode s = null;
494 <        final PaddedAtomicReference<QNode> head = this.head;
179 <        final PaddedAtomicReference<QNode> tail = this.tail;
491 >    private Object xfer(Object e, boolean haveData, int how, long nanos) {
492 >        if (haveData && (e == null))
493 >            throw new NullPointerException();
494 >        Node s = null;                        // the node to append, if needed
495  
496 <        for (;;) {
182 <            QNode t = tail.get();
183 <            QNode h = head.get();
496 >        retry: for (;;) {                     // restart on append race
497  
498 <            if (t != null && (t == h || t.isData == isData)) {
499 <                if (s == null)
500 <                    s = new QNode(e, isData);
501 <                QNode last = t.next;
502 <                if (last != null) {
503 <                    if (t == tail.get())
504 <                        tail.compareAndSet(t, last);
505 <                }
506 <                else if (t.casNext(null, s)) {
507 <                    tail.compareAndSet(t, s);
508 <                    return awaitFulfill(t, s, e, mode, nanos);
498 >            for (Node h = head, p = h; p != null;) { // find & match first node
499 >                boolean isData = p.isData;
500 >                Object item = p.item;
501 >                if (item != p && (item != null) == isData) { // unmatched
502 >                    if (isData == haveData)   // can't match
503 >                        break;
504 >                    if (p.casItem(item, e)) { // match
505 >                        for (Node q = p; q != h;) {
506 >                            Node n = q.next;  // update head by 2
507 >                            if (n != null)    // unless singleton
508 >                                q = n;
509 >                            if (head == h && casHead(h, q)) {
510 >                                h.forgetNext();
511 >                                break;
512 >                            }                 // advance and retry
513 >                            if ((h = head)   == null ||
514 >                                (q = h.next) == null || !q.isMatched())
515 >                                break;        // unless slack < 2
516 >                        }
517 >                        LockSupport.unpark(p.waiter);
518 >                        return item;
519 >                    }
520                  }
521 +                Node n = p.next;
522 +                p = (p != n) ? n : (h = head); // Use head if p offlist
523              }
524  
525 <            else if (h != null) {
526 <                QNode first = h.next;
527 <                if (t == tail.get() && first != null &&
528 <                    advanceHead(h, first)) {
529 <                    Object x = first.get();
530 <                    if (x != first && first.compareAndSet(x, e)) {
531 <                        LockSupport.unpark(first.waiter);
532 <                        return isData? e : x;
207 <                    }
208 <                }
525 >            if (how >= ASYNC) {               // No matches available
526 >                if (s == null)
527 >                    s = new Node(e, haveData);
528 >                Node pred = tryAppend(s, haveData);
529 >                if (pred == null)
530 >                    continue retry;           // lost race vs opposite mode
531 >                if (how >= SYNC)
532 >                    return awaitMatch(s, pred, e, how, nanos);
533              }
534 +            return e; // not waiting
535          }
536      }
537  
213
538      /**
539 <     * Version of xfer for poll() and tryTransfer, which
540 <     * simplifies control paths both here and in xfer.
541 <     */
542 <    private Object fulfill(Object e) {
543 <        boolean isData = (e != null);
544 <        final PaddedAtomicReference<QNode> head = this.head;
545 <        final PaddedAtomicReference<QNode> tail = this.tail;
546 <
547 <        for (;;) {
548 <            QNode t = tail.get();
549 <            QNode h = head.get();
550 <
551 <            if (t != null && (t == h || t.isData == isData)) {
552 <                QNode last = t.next;
553 <                if (t == tail.get()) {
554 <                    if (last != null)
555 <                        tail.compareAndSet(t, last);
556 <                    else
557 <                        return null;
558 <                }
559 <            }
560 <            else if (h != null) {
561 <                QNode first = h.next;
562 <                if (t == tail.get() &&
563 <                    first != null &&
564 <                    advanceHead(h, first)) {
565 <                    Object x = first.get();
566 <                    if (x != first && first.compareAndSet(x, e)) {
243 <                        LockSupport.unpark(first.waiter);
244 <                        return isData? e : x;
245 <                    }
539 >     * Tries to append node s as tail.
540 >     *
541 >     * @param s the node to append
542 >     * @param haveData true if appending in data mode
543 >     * @return null on failure due to losing race with append in
544 >     * different mode, else s's predecessor, or s itself if no
545 >     * predecessor
546 >     */
547 >    private Node tryAppend(Node s, boolean haveData) {
548 >        for (Node t = tail, p = t;;) { // move p to last node and append
549 >            Node n, u;                        // temps for reads of next & tail
550 >            if (p == null && (p = head) == null) {
551 >                if (casHead(null, s))
552 >                    return s;                 // initialize
553 >            }
554 >            else if (p.cannotPrecede(haveData))
555 >                return null;                  // lost race vs opposite mode
556 >            else if ((n = p.next) != null)    // not last; keep traversing
557 >                p = p != t && t != (u = tail) ? (t = u) : // stale tail
558 >                    (p != n) ? n : null;      // restart if off list
559 >            else if (!p.casNext(null, s))
560 >                p = p.next;                   // re-read on CAS failure
561 >            else {
562 >                if (p != t) {                 // update if slack now >= 2
563 >                    while ((tail != t || !casTail(t, s)) &&
564 >                           (t = tail)   != null &&
565 >                           (s = t.next) != null && // advance and retry
566 >                           (s = s.next) != null && s != t);
567                  }
568 +                return p;
569              }
570          }
571      }
572  
573      /**
574 <     * Spins/blocks until node s is fulfilled or caller gives up,
253 <     * depending on wait mode.
574 >     * Spins/yields/blocks until node s is matched or caller gives up.
575       *
255     * @param pred the predecessor of waiting node
576       * @param s the waiting node
577 +     * @param pred the predecessor of s, or s itself if it has no
578 +     * predecessor, or null if unknown (the null case does not occur
579 +     * in any current calls but may in possible future extensions)
580       * @param e the comparison value for checking match
581 <     * @param mode mode
581 >     * @param how either SYNC or TIMEOUT
582       * @param nanos timeout value
583 <     * @return matched item, or s if cancelled
583 >     * @return matched item, or e if unmatched on interrupt or timeout
584       */
585 <    private Object awaitFulfill(QNode pred, QNode s, Object e,
586 <                                int mode, long nanos) {
587 <        if (mode == NOWAIT)
265 <            return null;
266 <
267 <        long lastTime = (mode == TIMEOUT)? System.nanoTime() : 0;
585 >    private Object awaitMatch(Node s, Node pred, Object e,
586 >                              int how, long nanos) {
587 >        long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
588          Thread w = Thread.currentThread();
589 <        int spins = -1; // set to desired spin count below
589 >        int spins = -1; // initialized after first item and cancel checks
590 >        ThreadLocalRandom randomYields = null; // bound if needed
591 >
592          for (;;) {
593 <            if (w.isInterrupted())
594 <                s.compareAndSet(e, s);
595 <            Object x = s.get();
596 <            if (x != e) {                 // Node was matched or cancelled
597 <                advanceHead(pred, s);     // unlink if head
598 <                if (x == s) {             // was cancelled
599 <                    clean(pred, s);
600 <                    return null;
601 <                }
602 <                else if (x != null) {
603 <                    s.set(s);             // avoid garbage retention
604 <                    return x;
605 <                }
606 <                else
607 <                    return e;
593 >            Object item = s.item;
594 >            if (item != e) {                  // matched
595 >                s.forgetContents();           // avoid garbage
596 >                return item;
597 >            }
598 >            if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
599 >                     s.casItem(e, s)) {       // cancel
600 >                unsplice(pred, s);
601 >                return e;
602 >            }
603 >
604 >            if (spins < 0) {                  // establish spins at/near front
605 >                if ((spins = spinsFor(pred, s.isData)) > 0)
606 >                    randomYields = ThreadLocalRandom.current();
607 >            }
608 >            else if (spins > 0) {             // spin
609 >                if (--spins == 0)
610 >                    shortenHeadPath();        // reduce slack before blocking
611 >                else if (randomYields.nextInt(CHAINED_SPINS) == 0)
612 >                    Thread.yield();           // occasionally yield
613              }
614 <            if (mode == TIMEOUT) {
614 >            else if (s.waiter == null) {
615 >                s.waiter = w;                 // request unpark then recheck
616 >            }
617 >            else if (how == TIMEOUT) {
618                  long now = System.nanoTime();
619 <                nanos -= now - lastTime;
619 >                if ((nanos -= now - lastTime) > 0)
620 >                    LockSupport.parkNanos(this, nanos);
621                  lastTime = now;
291                if (nanos <= 0) {
292                    s.compareAndSet(e, s); // try to cancel
293                    continue;
294                }
622              }
623 <            if (spins < 0) {
297 <                QNode h = head.get(); // only spin if at head
298 <                spins = ((h != null && h.next == s) ?
299 <                         (mode == TIMEOUT?
300 <                          maxTimedSpins : maxUntimedSpins) : 0);
301 <            }
302 <            if (spins > 0)
303 <                --spins;
304 <            else if (s.waiter == null)
305 <                s.waiter = w;
306 <            else if (mode != TIMEOUT) {
623 >            else {
624                  LockSupport.park(this);
625                  s.waiter = null;
626 <                spins = -1;
310 <            }
311 <            else if (nanos > spinForTimeoutThreshold) {
312 <                LockSupport.parkNanos(this, nanos);
313 <                s.waiter = null;
314 <                spins = -1;
626 >                spins = -1;                   // spin if front upon wakeup
627              }
628          }
629      }
630  
631      /**
632 <     * Returns validated tail for use in cleaning methods.
632 >     * Returns spin/yield value for a node with given predecessor and
633 >     * data mode. See above for explanation.
634       */
635 <    private QNode getValidatedTail() {
636 <        for (;;) {
637 <            QNode h = head.get();
638 <            QNode first = h.next;
639 <            if (first != null && first.next == first) { // help advance
640 <                advanceHead(h, first);
641 <                continue;
642 <            }
643 <            QNode t = tail.get();
644 <            QNode last = t.next;
645 <            if (t == tail.get()) {
646 <                if (last != null)
647 <                    tail.compareAndSet(t, last); // help advance
648 <                else
649 <                    return t;
635 >    private static int spinsFor(Node pred, boolean haveData) {
636 >        if (MP && pred != null) {
637 >            if (pred.isData != haveData)      // phase change
638 >                return FRONT_SPINS + CHAINED_SPINS;
639 >            if (pred.isMatched())             // probably at front
640 >                return FRONT_SPINS;
641 >            if (pred.waiter == null)          // pred apparently spinning
642 >                return CHAINED_SPINS;
643 >        }
644 >        return 0;
645 >    }
646 >
647 >    /**
648 >     * Tries (once) to unsplice nodes between head and first unmatched
649 >     * or trailing node; failing on contention.
650 >     */
651 >    private void shortenHeadPath() {
652 >        Node h, hn, p, q;
653 >        if ((p = h = head) != null && h.isMatched() &&
654 >            (q = hn = h.next) != null) {
655 >            Node n;
656 >            while ((n = q.next) != q) {
657 >                if (n == null || !q.isMatched()) {
658 >                    if (hn != q && h.next == hn)
659 >                        h.casNext(hn, q);
660 >                    break;
661 >                }
662 >                p = q;
663 >                q = n;
664              }
665          }
666      }
667  
668 +    /* -------------- Traversal methods -------------- */
669 +
670      /**
671 <     * Gets rid of cancelled node s with original predecessor pred.
672 <     *
673 <     * @param pred predecessor of cancelled node
674 <     * @param s the cancelled node
671 >     * Returns the first unmatched node of the given mode, or null if
672 >     * none.  Used by methods isEmpty, hasWaitingConsumer.
673 >     */
674 >    private Node firstOfMode(boolean data) {
675 >        for (Node p = head; p != null; ) {
676 >            if (!p.isMatched())
677 >                return (p.isData == data) ? p : null;
678 >            Node n = p.next;
679 >            p = (n != p) ? n : head;
680 >        }
681 >        return null;
682 >    }
683 >
684 >    /**
685 >     * Returns the item in the first unmatched node with isData; or
686 >     * null if none. Used by peek.
687       */
688 <    private void clean(QNode pred, QNode s) {
689 <        Thread w = s.waiter;
690 <        if (w != null) {             // Wake up thread
691 <            s.waiter = null;
692 <            if (w != Thread.currentThread())
693 <                LockSupport.unpark(w);
688 >    private Object firstDataItem() {
689 >        for (Node p = head; p != null; ) {
690 >            boolean isData = p.isData;
691 >            Object item = p.item;
692 >            if (item != p && (item != null) == isData)
693 >                return isData ? item : null;
694 >            Node n = p.next;
695 >            p = (n != p) ? n : head;
696 >        }
697 >        return null;
698 >    }
699 >
700 >    /**
701 >     * Traverses and counts unmatched nodes of the given mode.
702 >     * Used by methods size and getWaitingConsumerCount.
703 >     */
704 >    private int countOfMode(boolean data) {
705 >        int count = 0;
706 >        for (Node p = head; p != null; ) {
707 >            if (!p.isMatched()) {
708 >                if (p.isData != data)
709 >                    return 0;
710 >                if (++count == Integer.MAX_VALUE) // saturated
711 >                    break;
712 >            }
713 >            Node n = p.next;
714 >            if (n != p)
715 >                p = n;
716 >            else {
717 >                count = 0;
718 >                p = head;
719 >            }
720 >        }
721 >        return count;
722 >    }
723 >
724 >    final class Itr implements Iterator<E> {
725 >        private Node nextNode;   // next node to return item for
726 >        private Object nextItem; // the corresponding item
727 >        private Node lastRet;    // last returned node, to support remove
728 >
729 >        /**
730 >         * Moves to next node after prev, or first node if prev null.
731 >         */
732 >        private void advance(Node prev) {
733 >            lastRet = prev;
734 >            Node p;
735 >            if (prev == null || (p = prev.next) == prev)
736 >                p = head;
737 >            while (p != null) {
738 >                Object item = p.item;
739 >                if (p.isData) {
740 >                    if (item != null && item != p) {
741 >                        nextItem = item;
742 >                        nextNode = p;
743 >                        return;
744 >                    }
745 >                }
746 >                else if (item == null)
747 >                    break;
748 >                Node n = p.next;
749 >                p = (n != p) ? n : head;
750 >            }
751 >            nextNode = null;
752 >        }
753 >
754 >        Itr() {
755 >            advance(null);
756 >        }
757 >
758 >        public final boolean hasNext() {
759 >            return nextNode != null;
760 >        }
761 >
762 >        public final E next() {
763 >            Node p = nextNode;
764 >            if (p == null) throw new NoSuchElementException();
765 >            Object e = nextItem;
766 >            advance(p);
767 >            return (E) e;
768 >        }
769 >
770 >        public final void remove() {
771 >            Node p = lastRet;
772 >            if (p == null) throw new IllegalStateException();
773 >            lastRet = null;
774 >            findAndRemoveNode(p);
775          }
776 +    }
777  
778 <        if (pred == null)
356 <            return;
778 >    /* -------------- Removal methods -------------- */
779  
780 +    /**
781 +     * Unsplices (now or later) the given deleted/cancelled node with
782 +     * the given predecessor.
783 +     *
784 +     * @param pred predecessor of node to be unspliced
785 +     * @param s the node to be unspliced
786 +     */
787 +    private void unsplice(Node pred, Node s) {
788 +        s.forgetContents(); // clear unneeded fields
789          /*
790           * At any given time, exactly one node on list cannot be
791 <         * deleted -- the last inserted node. To accommodate this, if
792 <         * we cannot delete s, we save its predecessor as "cleanMe",
793 <         * processing the previously saved version first. At least one
794 <         * of node s or the node previously saved can always be
791 >         * unlinked -- the last inserted node. To accommodate this, if
792 >         * we cannot unlink s, we save its predecessor as "cleanMe",
793 >         * processing the previously saved version first. Because only
794 >         * one node in the list can have a null next, at least one of
795 >         * node s or the node previously saved can always be
796           * processed, so this always terminates.
797           */
798 <        while (pred.next == s) {
799 <            QNode oldpred = reclean();  // First, help get rid of cleanMe
800 <            QNode t = getValidatedTail();
801 <            if (s != t) {               // If not tail, try to unsplice
802 <                QNode sn = s.next;      // s.next == s means s already off list
803 <                if (sn == s || pred.casNext(s, sn))
798 >        if (pred != null && pred != s) {
799 >            while (pred.next == s) {
800 >                Node oldpred = (cleanMe == null) ? null : reclean();
801 >                Node n = s.next;
802 >                if (n != null) {
803 >                    if (n != s)
804 >                        pred.casNext(s, n);
805                      break;
806 +                }
807 +                if (oldpred == pred ||      // Already saved
808 +                    (oldpred == null && casCleanMe(null, pred)))
809 +                    break;                  // Postpone cleaning
810              }
374            else if (oldpred == pred || // Already saved
375                     (oldpred == null && cleanMe.compareAndSet(null, pred)))
376                break;                  // Postpone cleaning
811          }
812      }
813  
814      /**
815 <     * Tries to unsplice the cancelled node held in cleanMe that was
816 <     * previously uncleanable because it was at tail.
815 >     * Tries to unsplice the deleted/cancelled node held in cleanMe
816 >     * that was previously uncleanable because it was at tail.
817       *
818       * @return current cleanMe node (or null)
819       */
820 <    private QNode reclean() {
820 >    private Node reclean() {
821          /*
822 <         * cleanMe is, or at one time was, predecessor of cancelled
823 <         * node s that was the tail so could not be unspliced.  If s
822 >         * cleanMe is, or at one time was, predecessor of a cancelled
823 >         * node s that was the tail so could not be unspliced.  If it
824           * is no longer the tail, try to unsplice if necessary and
825           * make cleanMe slot available.  This differs from similar
826 <         * code in clean() because we must check that pred still
827 <         * points to a cancelled node that must be unspliced -- if
828 <         * not, we can (must) clear cleanMe without unsplicing.
829 <         * This can loop only due to contention on casNext or
396 <         * clearing cleanMe.
826 >         * code in unsplice() because we must check that pred still
827 >         * points to a matched node that can be unspliced -- if not,
828 >         * we can (must) clear cleanMe without unsplicing.  This can
829 >         * loop only due to contention.
830           */
831 <        QNode pred;
832 <        while ((pred = cleanMe.get()) != null) {
833 <            QNode t = getValidatedTail();
834 <            QNode s = pred.next;
835 <            if (s != t) {
836 <                QNode sn;
837 <                if (s == null || s == pred || s.get() != s ||
838 <                    (sn = s.next) == s || pred.casNext(s, sn))
839 <                    cleanMe.compareAndSet(pred, null);
831 >        Node pred;
832 >        while ((pred = cleanMe) != null) {
833 >            Node s = pred.next;
834 >            Node n;
835 >            if (s == null || s == pred || !s.isMatched())
836 >                casCleanMe(pred, null); // already gone
837 >            else if ((n = s.next) != null) {
838 >                if (n != s)
839 >                    pred.casNext(s, n);
840 >                casCleanMe(pred, null);
841              }
842 <            else // s is still tail; cannot clean
842 >            else
843                  break;
844          }
845          return pred;
846      }
847  
848      /**
849 +     * Main implementation of Iterator.remove(). Find
850 +     * and unsplice the given node.
851 +     */
852 +    final void findAndRemoveNode(Node s) {
853 +        if (s.tryMatchData()) {
854 +            Node pred = null;
855 +            Node p = head;
856 +            while (p != null) {
857 +                if (p == s) {
858 +                    unsplice(pred, p);
859 +                    break;
860 +                }
861 +                if (!p.isData && !p.isMatched())
862 +                    break;
863 +                pred = p;
864 +                if ((p = p.next) == pred) { // stale
865 +                    pred = null;
866 +                    p = head;
867 +                }
868 +            }
869 +        }
870 +    }
871 +
872 +    /**
873 +     * Main implementation of remove(Object)
874 +     */
875 +    private boolean findAndRemove(Object e) {
876 +        if (e != null) {
877 +            Node pred = null;
878 +            Node p = head;
879 +            while (p != null) {
880 +                Object item = p.item;
881 +                if (p.isData) {
882 +                    if (item != null && item != p && e.equals(item) &&
883 +                        p.tryMatchData()) {
884 +                        unsplice(pred, p);
885 +                        return true;
886 +                    }
887 +                }
888 +                else if (item == null)
889 +                    break;
890 +                pred = p;
891 +                if ((p = p.next) == pred) {
892 +                    pred = null;
893 +                    p = head;
894 +                }
895 +            }
896 +        }
897 +        return false;
898 +    }
899 +
900 +
901 +    /**
902       * Creates an initially empty {@code LinkedTransferQueue}.
903       */
904      public LinkedTransferQueue() {
418        QNode dummy = new QNode(null, false);
419        head = new PaddedAtomicReference<QNode>(dummy);
420        tail = new PaddedAtomicReference<QNode>(dummy);
421        cleanMe = new PaddedAtomicReference<QNode>(null);
905      }
906  
907      /**
# Line 435 | Line 918 | public class LinkedTransferQueue<E> exte
918          addAll(c);
919      }
920  
921 <    public void put(E e) throws InterruptedException {
922 <        if (e == null) throw new NullPointerException();
923 <        if (Thread.interrupted()) throw new InterruptedException();
924 <        xfer(e, NOWAIT, 0);
921 >    /**
922 >     * Inserts the specified element at the tail of this queue.
923 >     * As the queue is unbounded, this method will never block.
924 >     *
925 >     * @throws NullPointerException if the specified element is null
926 >     */
927 >    public void put(E e) {
928 >        xfer(e, true, ASYNC, 0);
929      }
930  
931 <    public boolean offer(E e, long timeout, TimeUnit unit)
932 <        throws InterruptedException {
933 <        if (e == null) throw new NullPointerException();
934 <        if (Thread.interrupted()) throw new InterruptedException();
935 <        xfer(e, NOWAIT, 0);
931 >    /**
932 >     * Inserts the specified element at the tail of this queue.
933 >     * As the queue is unbounded, this method will never block or
934 >     * return {@code false}.
935 >     *
936 >     * @return {@code true} (as specified by
937 >     *  {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
938 >     * @throws NullPointerException if the specified element is null
939 >     */
940 >    public boolean offer(E e, long timeout, TimeUnit unit) {
941 >        xfer(e, true, ASYNC, 0);
942          return true;
943      }
944  
945 +    /**
946 +     * Inserts the specified element at the tail of this queue.
947 +     * As the queue is unbounded, this method will never return {@code false}.
948 +     *
949 +     * @return {@code true} (as specified by
950 +     *         {@link BlockingQueue#offer(Object) BlockingQueue.offer})
951 +     * @throws NullPointerException if the specified element is null
952 +     */
953      public boolean offer(E e) {
954 <        if (e == null) throw new NullPointerException();
454 <        xfer(e, NOWAIT, 0);
954 >        xfer(e, true, ASYNC, 0);
955          return true;
956      }
957  
958 +    /**
959 +     * Inserts the specified element at the tail of this queue.
960 +     * As the queue is unbounded, this method will never throw
961 +     * {@link IllegalStateException} or return {@code false}.
962 +     *
963 +     * @return {@code true} (as specified by {@link Collection#add})
964 +     * @throws NullPointerException if the specified element is null
965 +     */
966      public boolean add(E e) {
967 <        if (e == null) throw new NullPointerException();
460 <        xfer(e, NOWAIT, 0);
967 >        xfer(e, true, ASYNC, 0);
968          return true;
969      }
970  
971 +    /**
972 +     * Transfers the element to a waiting consumer immediately, if possible.
973 +     *
974 +     * <p>More precisely, transfers the specified element immediately
975 +     * if there exists a consumer already waiting to receive it (in
976 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
977 +     * otherwise returning {@code false} without enqueuing the element.
978 +     *
979 +     * @throws NullPointerException if the specified element is null
980 +     */
981 +    public boolean tryTransfer(E e) {
982 +        return xfer(e, true, NOW, 0) == null;
983 +    }
984 +
985 +    /**
986 +     * Transfers the element to a consumer, waiting if necessary to do so.
987 +     *
988 +     * <p>More precisely, transfers the specified element immediately
989 +     * if there exists a consumer already waiting to receive it (in
990 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
991 +     * else inserts the specified element at the tail of this queue
992 +     * and waits until the element is received by a consumer.
993 +     *
994 +     * @throws NullPointerException if the specified element is null
995 +     */
996      public void transfer(E e) throws InterruptedException {
997 <        if (e == null) throw new NullPointerException();
998 <        if (xfer(e, WAIT, 0) == null) {
467 <            Thread.interrupted();
997 >        if (xfer(e, true, SYNC, 0) != null) {
998 >            Thread.interrupted(); // failure possible only due to interrupt
999              throw new InterruptedException();
1000          }
1001      }
1002  
1003 +    /**
1004 +     * Transfers the element to a consumer if it is possible to do so
1005 +     * before the timeout elapses.
1006 +     *
1007 +     * <p>More precisely, transfers the specified element immediately
1008 +     * if there exists a consumer already waiting to receive it (in
1009 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1010 +     * else inserts the specified element at the tail of this queue
1011 +     * and waits until the element is received by a consumer,
1012 +     * returning {@code false} if the specified wait time elapses
1013 +     * before the element can be transferred.
1014 +     *
1015 +     * @throws NullPointerException if the specified element is null
1016 +     */
1017      public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1018          throws InterruptedException {
1019 <        if (e == null) throw new NullPointerException();
475 <        if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
1019 >        if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1020              return true;
1021          if (!Thread.interrupted())
1022              return false;
1023          throw new InterruptedException();
1024      }
1025  
482    public boolean tryTransfer(E e) {
483        if (e == null) throw new NullPointerException();
484        return fulfill(e) != null;
485    }
486
1026      public E take() throws InterruptedException {
1027 <        Object e = xfer(null, WAIT, 0);
1027 >        Object e = xfer(null, false, SYNC, 0);
1028          if (e != null)
1029              return (E)e;
1030          Thread.interrupted();
# Line 493 | Line 1032 | public class LinkedTransferQueue<E> exte
1032      }
1033  
1034      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1035 <        Object e = xfer(null, TIMEOUT, unit.toNanos(timeout));
1035 >        Object e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1036          if (e != null || !Thread.interrupted())
1037              return (E)e;
1038          throw new InterruptedException();
1039      }
1040  
1041      public E poll() {
1042 <        return (E)fulfill(null);
1042 >        return (E)xfer(null, false, NOW, 0);
1043      }
1044  
1045 +    /**
1046 +     * @throws NullPointerException     {@inheritDoc}
1047 +     * @throws IllegalArgumentException {@inheritDoc}
1048 +     */
1049      public int drainTo(Collection<? super E> c) {
1050          if (c == null)
1051              throw new NullPointerException();
# Line 517 | Line 1060 | public class LinkedTransferQueue<E> exte
1060          return n;
1061      }
1062  
1063 +    /**
1064 +     * @throws NullPointerException     {@inheritDoc}
1065 +     * @throws IllegalArgumentException {@inheritDoc}
1066 +     */
1067      public int drainTo(Collection<? super E> c, int maxElements) {
1068          if (c == null)
1069              throw new NullPointerException();
# Line 531 | Line 1078 | public class LinkedTransferQueue<E> exte
1078          return n;
1079      }
1080  
534    // Traversal-based methods
535
1081      /**
1082 <     * Returns head after performing any outstanding helping steps.
1082 >     * Returns an iterator over the elements in this queue in proper
1083 >     * sequence, from head to tail.
1084 >     *
1085 >     * <p>The returned iterator is a "weakly consistent" iterator that
1086 >     * will never throw
1087 >     * {@link ConcurrentModificationException ConcurrentModificationException},
1088 >     * and guarantees to traverse elements as they existed upon
1089 >     * construction of the iterator, and may (but is not guaranteed
1090 >     * to) reflect any modifications subsequent to construction.
1091 >     *
1092 >     * @return an iterator over the elements in this queue in proper sequence
1093       */
539    private QNode traversalHead() {
540        for (;;) {
541            QNode t = tail.get();
542            QNode h = head.get();
543            if (h != null && t != null) {
544                QNode last = t.next;
545                QNode first = h.next;
546                if (t == tail.get()) {
547                    if (last != null)
548                        tail.compareAndSet(t, last);
549                    else if (first != null) {
550                        Object x = first.get();
551                        if (x == first)
552                            advanceHead(h, first);
553                        else
554                            return h;
555                    }
556                    else
557                        return h;
558                }
559            }
560            reclean();
561        }
562    }
563
564
1094      public Iterator<E> iterator() {
1095          return new Itr();
1096      }
1097  
569    /**
570     * Iterators. Basic strategy is to traverse list, treating
571     * non-data (i.e., request) nodes as terminating list.
572     * Once a valid data node is found, the item is cached
573     * so that the next call to next() will return it even
574     * if subsequently removed.
575     */
576    class Itr implements Iterator<E> {
577        QNode next;        // node to return next
578        QNode pnext;       // predecessor of next
579        QNode snext;       // successor of next
580        QNode curr;        // last returned node, for remove()
581        QNode pcurr;       // predecessor of curr, for remove()
582        E nextItem;        // Cache of next item, once commited to in next
583
584        Itr() {
585            findNext();
586        }
587
588        /**
589         * Ensures next points to next valid node, or null if none.
590         */
591        void findNext() {
592            for (;;) {
593                QNode pred = pnext;
594                QNode q = next;
595                if (pred == null || pred == q) {
596                    pred = traversalHead();
597                    q = pred.next;
598                }
599                if (q == null || !q.isData) {
600                    next = null;
601                    return;
602                }
603                Object x = q.get();
604                QNode s = q.next;
605                if (x != null && q != x && q != s) {
606                    nextItem = (E)x;
607                    snext = s;
608                    pnext = pred;
609                    next = q;
610                    return;
611                }
612                pnext = q;
613                next = s;
614            }
615        }
616
617        public boolean hasNext() {
618            return next != null;
619        }
620
621        public E next() {
622            if (next == null) throw new NoSuchElementException();
623            pcurr = pnext;
624            curr = next;
625            pnext = next;
626            next = snext;
627            E x = nextItem;
628            findNext();
629            return x;
630        }
631
632        public void remove() {
633            QNode p = curr;
634            if (p == null)
635                throw new IllegalStateException();
636            Object x = p.get();
637            if (x != null && x != p && p.compareAndSet(x, p))
638                clean(pcurr, p);
639        }
640    }
641
1098      public E peek() {
1099 <        for (;;) {
644 <            QNode h = traversalHead();
645 <            QNode p = h.next;
646 <            if (p == null)
647 <                return null;
648 <            Object x = p.get();
649 <            if (p != x) {
650 <                if (!p.isData)
651 <                    return null;
652 <                if (x != null)
653 <                    return (E)x;
654 <            }
655 <        }
1099 >        return (E) firstDataItem();
1100      }
1101  
1102 +    /**
1103 +     * Returns {@code true} if this queue contains no elements.
1104 +     *
1105 +     * @return {@code true} if this queue contains no elements
1106 +     */
1107      public boolean isEmpty() {
1108 <        for (;;) {
660 <            QNode h = traversalHead();
661 <            QNode p = h.next;
662 <            if (p == null)
663 <                return true;
664 <            Object x = p.get();
665 <            if (p != x) {
666 <                if (!p.isData)
667 <                    return true;
668 <                if (x != null)
669 <                    return false;
670 <            }
671 <        }
1108 >        return firstOfMode(true) == null;
1109      }
1110  
1111      public boolean hasWaitingConsumer() {
1112 <        for (;;) {
676 <            QNode h = traversalHead();
677 <            QNode p = h.next;
678 <            if (p == null)
679 <                return false;
680 <            Object x = p.get();
681 <            if (p != x)
682 <                return !p.isData;
683 <        }
1112 >        return firstOfMode(false) != null;
1113      }
1114  
1115      /**
# Line 696 | Line 1125 | public class LinkedTransferQueue<E> exte
1125       * @return the number of elements in this queue
1126       */
1127      public int size() {
1128 <        int count = 0;
700 <        QNode h = traversalHead();
701 <        for (QNode p = h.next; p != null && p.isData; p = p.next) {
702 <            Object x = p.get();
703 <            if (x != null && x != p) {
704 <                if (++count == Integer.MAX_VALUE) // saturated
705 <                    break;
706 <            }
707 <        }
708 <        return count;
1128 >        return countOfMode(true);
1129      }
1130  
1131      public int getWaitingConsumerCount() {
1132 <        int count = 0;
713 <        QNode h = traversalHead();
714 <        for (QNode p = h.next; p != null && !p.isData; p = p.next) {
715 <            if (p.get() == null) {
716 <                if (++count == Integer.MAX_VALUE)
717 <                    break;
718 <            }
719 <        }
720 <        return count;
1132 >        return countOfMode(false);
1133      }
1134  
1135 <    public int remainingCapacity() {
1136 <        return Integer.MAX_VALUE;
1135 >    /**
1136 >     * Removes a single instance of the specified element from this queue,
1137 >     * if it is present.  More formally, removes an element {@code e} such
1138 >     * that {@code o.equals(e)}, if this queue contains one or more such
1139 >     * elements.
1140 >     * Returns {@code true} if this queue contained the specified element
1141 >     * (or equivalently, if this queue changed as a result of the call).
1142 >     *
1143 >     * @param o element to be removed from this queue, if present
1144 >     * @return {@code true} if this queue changed as a result of the call
1145 >     */
1146 >    public boolean remove(Object o) {
1147 >        return findAndRemove(o);
1148      }
1149  
1150 <    public boolean remove(Object o) {
1151 <        if (o == null)
1152 <            return false;
1153 <        for (;;) {
1154 <            QNode pred = traversalHead();
1155 <            for (;;) {
1156 <                QNode q = pred.next;
1157 <                if (q == null || !q.isData)
1158 <                    return false;
736 <                if (q == pred) // restart
737 <                    break;
738 <                Object x = q.get();
739 <                if (x != null && x != q && o.equals(x) &&
740 <                    q.compareAndSet(x, q)) {
741 <                    clean(pred, q);
742 <                    return true;
743 <                }
744 <                pred = q;
745 <            }
746 <        }
1150 >    /**
1151 >     * Always returns {@code Integer.MAX_VALUE} because a
1152 >     * {@code LinkedTransferQueue} is not capacity constrained.
1153 >     *
1154 >     * @return {@code Integer.MAX_VALUE} (as specified by
1155 >     *         {@link BlockingQueue#remainingCapacity()})
1156 >     */
1157 >    public int remainingCapacity() {
1158 >        return Integer.MAX_VALUE;
1159      }
1160  
1161      /**
1162 <     * Save the state to a stream (that is, serialize it).
1162 >     * Saves the state to a stream (that is, serializes it).
1163       *
1164       * @serialData All of the elements (each an {@code E}) in
1165       * the proper order, followed by a null
# Line 763 | Line 1175 | public class LinkedTransferQueue<E> exte
1175      }
1176  
1177      /**
1178 <     * Reconstitute the Queue instance from a stream (that is,
1179 <     * deserialize it).
1178 >     * Reconstitutes the Queue instance from a stream (that is,
1179 >     * deserializes it).
1180 >     *
1181       * @param s the stream
1182       */
1183      private void readObject(java.io.ObjectInputStream s)
1184          throws java.io.IOException, ClassNotFoundException {
1185          s.defaultReadObject();
773        resetHeadAndTail();
1186          for (;;) {
1187 <            E item = (E)s.readObject();
1187 >            @SuppressWarnings("unchecked") E item = (E) s.readObject();
1188              if (item == null)
1189                  break;
1190              else
# Line 781 | Line 1193 | public class LinkedTransferQueue<E> exte
1193      }
1194  
1195  
1196 <    // Support for resetting head/tail while deserializing
1197 <    private void resetHeadAndTail() {
1198 <        QNode dummy = new QNode(null, false);
1199 <        _unsafe.putObjectVolatile(this, headOffset,
1200 <                                  new PaddedAtomicReference<QNode>(dummy));
1201 <        _unsafe.putObjectVolatile(this, tailOffset,
1202 <                                  new PaddedAtomicReference<QNode>(dummy));
1203 <        _unsafe.putObjectVolatile(this, cleanMeOffset,
1204 <                                  new PaddedAtomicReference<QNode>(null));
1196 >    // Unsafe mechanics
1197 >
1198 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1199 >    private static final long headOffset =
1200 >        objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1201 >    private static final long tailOffset =
1202 >        objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1203 >    private static final long cleanMeOffset =
1204 >        objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1205 >
1206 >    static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1207 >                                  String field, Class<?> klazz) {
1208 >        try {
1209 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1210 >        } catch (NoSuchFieldException e) {
1211 >            // Convert Exception to corresponding Error
1212 >            NoSuchFieldError error = new NoSuchFieldError(field);
1213 >            error.initCause(e);
1214 >            throw error;
1215 >        }
1216      }
1217  
1218 <    // Temporary Unsafe mechanics for preliminary release
796 <    private static Unsafe getUnsafe() throws Throwable {
1218 >    private static sun.misc.Unsafe getUnsafe() {
1219          try {
1220 <            return Unsafe.getUnsafe();
1220 >            return sun.misc.Unsafe.getUnsafe();
1221          } catch (SecurityException se) {
1222              try {
1223                  return java.security.AccessController.doPrivileged
1224 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
1225 <                        public Unsafe run() throws Exception {
1226 <                            return getUnsafePrivileged();
1224 >                    (new java.security
1225 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1226 >                        public sun.misc.Unsafe run() throws Exception {
1227 >                            java.lang.reflect.Field f = sun.misc
1228 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1229 >                            f.setAccessible(true);
1230 >                            return (sun.misc.Unsafe) f.get(null);
1231                          }});
1232              } catch (java.security.PrivilegedActionException e) {
1233 <                throw e.getCause();
1233 >                throw new RuntimeException("Could not initialize intrinsics",
1234 >                                           e.getCause());
1235              }
1236          }
1237      }
1238  
812    private static Unsafe getUnsafePrivileged()
813            throws NoSuchFieldException, IllegalAccessException {
814        Field f = Unsafe.class.getDeclaredField("theUnsafe");
815        f.setAccessible(true);
816        return (Unsafe) f.get(null);
817    }
818
819    private static long fieldOffset(String fieldName)
820            throws NoSuchFieldException {
821        return _unsafe.objectFieldOffset
822            (LinkedTransferQueue.class.getDeclaredField(fieldName));
823    }
824
825    private static final Unsafe _unsafe;
826    private static final long headOffset;
827    private static final long tailOffset;
828    private static final long cleanMeOffset;
829    static {
830        try {
831            _unsafe = getUnsafe();
832            headOffset = fieldOffset("head");
833            tailOffset = fieldOffset("tail");
834            cleanMeOffset = fieldOffset("cleanMe");
835        } catch (Throwable e) {
836            throw new RuntimeException("Could not initialize intrinsics", e);
837        }
838    }
839
1239   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines