ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.43 by jsr166, Sat Aug 1 21:24:01 2009 UTC vs.
Revision 1.54 by jsr166, Tue Oct 27 23:14:08 2009 UTC

# Line 15 | Line 15 | import java.util.Iterator;
15   import java.util.NoSuchElementException;
16   import java.util.Queue;
17   import java.util.concurrent.locks.LockSupport;
18 import java.util.concurrent.atomic.AtomicReference;
19
18   /**
19   * An unbounded {@link TransferQueue} based on linked nodes.
20   * This queue orders elements FIFO (first-in-first-out) with respect
# Line 54 | Line 52 | public class LinkedTransferQueue<E> exte
52      private static final long serialVersionUID = -3223113410248163686L;
53  
54      /*
55 <     * This class extends the approach used in FIFO-mode
58 <     * SynchronousQueues. See the internal documentation, as well as
59 <     * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
60 <     * Lea & Scott
61 <     * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
55 >     * *** Overview of Dual Queues with Slack ***
56       *
57 <     * The main extension is to provide different Wait modes for the
58 <     * main "xfer" method that puts or takes items.  These don't
59 <     * impact the basic dual-queue logic, but instead control whether
60 <     * or how threads block upon insertion of request or data nodes
61 <     * into the dual queue. It also uses slightly different
62 <     * conventions for tracking whether nodes are off-list or
63 <     * cancelled.
64 <     */
65 <
66 <    // Wait modes for xfer method
67 <    static final int NOWAIT  = 0;
68 <    static final int TIMEOUT = 1;
69 <    static final int WAIT    = 2;
70 <
71 <    /** The number of CPUs, for spin control */
72 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
73 <
74 <    /**
75 <     * The number of times to spin before blocking in timed waits.
76 <     * The value is empirically derived -- it works well across a
77 <     * variety of processors and OSes. Empirically, the best value
78 <     * seems not to vary with number of CPUs (beyond 2) so is just
79 <     * a constant.
80 <     */
81 <    static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
82 <
83 <    /**
84 <     * The number of times to spin before blocking in untimed waits.
85 <     * This is greater than timed value because untimed waits spin
86 <     * faster since they don't need to check times on each spin.
87 <     */
88 <    static final int maxUntimedSpins = maxTimedSpins * 16;
57 >     * Dual Queues, introduced by Scherer and Scott
58 >     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 >     * (linked) queues in which nodes may represent either data or
60 >     * requests.  When a thread tries to enqueue a data node, but
61 >     * encounters a request node, it instead "matches" and removes it;
62 >     * and vice versa for enqueuing requests. Blocking Dual Queues
63 >     * arrange that threads enqueuing unmatched requests block until
64 >     * other threads provide the match. Dual Synchronous Queues (see
65 >     * Scherer, Lea, & Scott
66 >     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 >     * additionally arrange that threads enqueuing unmatched data also
68 >     * block.  Dual Transfer Queues support all of these modes, as
69 >     * dictated by callers.
70 >     *
71 >     * A FIFO dual queue may be implemented using a variation of the
72 >     * Michael & Scott (M&S) lock-free queue algorithm
73 >     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 >     * It maintains two pointer fields, "head", pointing to a
75 >     * (matched) node that in turn points to the first actual
76 >     * (unmatched) queue node (or null if empty); and "tail" that
77 >     * points to the last node on the queue (or again null if
78 >     * empty). For example, here is a possible queue with four data
79 >     * elements:
80 >     *
81 >     *  head                tail
82 >     *    |                   |
83 >     *    v                   v
84 >     *    M -> U -> U -> U -> U
85 >     *
86 >     * The M&S queue algorithm is known to be prone to scalability and
87 >     * overhead limitations when maintaining (via CAS) these head and
88 >     * tail pointers. This has led to the development of
89 >     * contention-reducing variants such as elimination arrays (see
90 >     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 >     * optimistic back pointers (see Ladan-Mozes & Shavit
92 >     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 >     * However, the nature of dual queues enables a simpler tactic for
94 >     * improving M&S-style implementations when dual-ness is needed.
95 >     *
96 >     * In a dual queue, each node must atomically maintain its match
97 >     * status. While there are other possible variants, we implement
98 >     * this here as: for a data-mode node, matching entails CASing an
99 >     * "item" field from a non-null data value to null upon match, and
100 >     * vice-versa for request nodes, CASing from null to a data
101 >     * value. (Note that the linearization properties of this style of
102 >     * queue are easy to verify -- elements are made available by
103 >     * linking, and unavailable by matching.) Compared to plain M&S
104 >     * queues, this property of dual queues requires one additional
105 >     * successful atomic operation per enq/deq pair. But it also
106 >     * enables lower cost variants of queue maintenance mechanics. (A
107 >     * variation of this idea applies even for non-dual queues that
108 >     * support deletion of interior elements, such as
109 >     * j.u.c.ConcurrentLinkedQueue.)
110 >     *
111 >     * Once a node is matched, its match status can never again
112 >     * change.  We may thus arrange that the linked list of them
113 >     * contain a prefix of zero or more matched nodes, followed by a
114 >     * suffix of zero or more unmatched nodes. (Note that we allow
115 >     * both the prefix and suffix to be zero length, which in turn
116 >     * means that we do not use a dummy header.)  If we were not
117 >     * concerned with either time or space efficiency, we could
118 >     * correctly perform enqueue and dequeue operations by traversing
119 >     * from a pointer to the initial node; CASing the item of the
120 >     * first unmatched node on match and CASing the next field of the
121 >     * trailing node on appends. (Plus some special-casing when
122 >     * initially empty).  While this would be a terrible idea in
123 >     * itself, it does have the benefit of not requiring ANY atomic
124 >     * updates on head/tail fields.
125 >     *
126 >     * We introduce here an approach that lies between the extremes of
127 >     * never versus always updating queue (head and tail) pointers.
128 >     * This offers a tradeoff between sometimes requiring extra
129 >     * traversal steps to locate the first and/or last unmatched
130 >     * nodes, versus the reduced overhead and contention of fewer
131 >     * updates to queue pointers. For example, a possible snapshot of
132 >     * a queue is:
133 >     *
134 >     *  head           tail
135 >     *    |              |
136 >     *    v              v
137 >     *    M -> M -> U -> U -> U -> U
138 >     *
139 >     * The best value for this "slack" (the targeted maximum distance
140 >     * between the value of "head" and the first unmatched node, and
141 >     * similarly for "tail") is an empirical matter. We have found
142 >     * that using very small constants in the range of 1-3 work best
143 >     * over a range of platforms. Larger values introduce increasing
144 >     * costs of cache misses and risks of long traversal chains, while
145 >     * smaller values increase CAS contention and overhead.
146 >     *
147 >     * Dual queues with slack differ from plain M&S dual queues by
148 >     * virtue of only sometimes updating head or tail pointers when
149 >     * matching, appending, or even traversing nodes; in order to
150 >     * maintain a targeted slack.  The idea of "sometimes" may be
151 >     * operationalized in several ways. The simplest is to use a
152 >     * per-operation counter incremented on each traversal step, and
153 >     * to try (via CAS) to update the associated queue pointer
154 >     * whenever the count exceeds a threshold. Another, that requires
155 >     * more overhead, is to use random number generators to update
156 >     * with a given probability per traversal step.
157 >     *
158 >     * In any strategy along these lines, because CASes updating
159 >     * fields may fail, the actual slack may exceed targeted
160 >     * slack. However, they may be retried at any time to maintain
161 >     * targets.  Even when using very small slack values, this
162 >     * approach works well for dual queues because it allows all
163 >     * operations up to the point of matching or appending an item
164 >     * (hence potentially allowing progress by another thread) to be
165 >     * read-only, thus not introducing any further contention. As
166 >     * described below, we implement this by performing slack
167 >     * maintenance retries only after these points.
168 >     *
169 >     * As an accompaniment to such techniques, traversal overhead can
170 >     * be further reduced without increasing contention of head
171 >     * pointer updates: Threads may sometimes shortcut the "next" link
172 >     * path from the current "head" node to be closer to the currently
173 >     * known first unmatched node, and similarly for tail. Again, this
174 >     * may be triggered with using thresholds or randomization.
175 >     *
176 >     * These ideas must be further extended to avoid unbounded amounts
177 >     * of costly-to-reclaim garbage caused by the sequential "next"
178 >     * links of nodes starting at old forgotten head nodes: As first
179 >     * described in detail by Boehm
180 >     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181 >     * delays noticing that any arbitrarily old node has become
182 >     * garbage, all newer dead nodes will also be unreclaimed.
183 >     * (Similar issues arise in non-GC environments.)  To cope with
184 >     * this in our implementation, upon CASing to advance the head
185 >     * pointer, we set the "next" link of the previous head to point
186 >     * only to itself; thus limiting the length of connected dead lists.
187 >     * (We also take similar care to wipe out possibly garbage
188 >     * retaining values held in other Node fields.)  However, doing so
189 >     * adds some further complexity to traversal: If any "next"
190 >     * pointer links to itself, it indicates that the current thread
191 >     * has lagged behind a head-update, and so the traversal must
192 >     * continue from the "head".  Traversals trying to find the
193 >     * current tail starting from "tail" may also encounter
194 >     * self-links, in which case they also continue at "head".
195 >     *
196 >     * It is tempting in slack-based scheme to not even use CAS for
197 >     * updates (similarly to Ladan-Mozes & Shavit). However, this
198 >     * cannot be done for head updates under the above link-forgetting
199 >     * mechanics because an update may leave head at a detached node.
200 >     * And while direct writes are possible for tail updates, they
201 >     * increase the risk of long retraversals, and hence long garbage
202 >     * chains, which can be much more costly than is worthwhile
203 >     * considering that the cost difference of performing a CAS vs
204 >     * write is smaller when they are not triggered on each operation
205 >     * (especially considering that writes and CASes equally require
206 >     * additional GC bookkeeping ("write barriers") that are sometimes
207 >     * more costly than the writes themselves because of contention).
208 >     *
209 >     * Removal of interior nodes (due to timed out or interrupted
210 >     * waits, or calls to remove(x) or Iterator.remove) can use a
211 >     * scheme roughly similar to that described in Scherer, Lea, and
212 >     * Scott's SynchronousQueue. Given a predecessor, we can unsplice
213 >     * any node except the (actual) tail of the queue. To avoid
214 >     * build-up of cancelled trailing nodes, upon a request to remove
215 >     * a trailing node, it is placed in field "cleanMe" to be
216 >     * unspliced upon the next call to unsplice any other node.
217 >     * Situations needing such mechanics are not common but do occur
218 >     * in practice; for example when an unbounded series of short
219 >     * timed calls to poll repeatedly time out but never otherwise
220 >     * fall off the list because of an untimed call to take at the
221 >     * front of the queue. Note that maintaining field cleanMe does
222 >     * not otherwise much impact garbage retention even if never
223 >     * cleared by some other call because the held node will
224 >     * eventually either directly or indirectly lead to a self-link
225 >     * once off the list.
226 >     *
227 >     * *** Overview of implementation ***
228 >     *
229 >     * We use a threshold-based approach to updates, with a slack
230 >     * threshold of two -- that is, we update head/tail when the
231 >     * current pointer appears to be two or more steps away from the
232 >     * first/last node. The slack value is hard-wired: a path greater
233 >     * than one is naturally implemented by checking equality of
234 >     * traversal pointers except when the list has only one element,
235 >     * in which case we keep slack threshold at one. Avoiding tracking
236 >     * explicit counts across method calls slightly simplifies an
237 >     * already-messy implementation. Using randomization would
238 >     * probably work better if there were a low-quality dirt-cheap
239 >     * per-thread one available, but even ThreadLocalRandom is too
240 >     * heavy for these purposes.
241 >     *
242 >     * With such a small slack threshold value, it is rarely
243 >     * worthwhile to augment this with path short-circuiting; i.e.,
244 >     * unsplicing nodes between head and the first unmatched node, or
245 >     * similarly for tail, rather than advancing head or tail
246 >     * proper. However, it is used (in awaitMatch) immediately before
247 >     * a waiting thread starts to block, as a final bit of helping at
248 >     * a point when contention with others is extremely unlikely
249 >     * (since if other threads that could release it are operating,
250 >     * then the current thread wouldn't be blocking).
251 >     *
252 >     * We allow both the head and tail fields to be null before any
253 >     * nodes are enqueued; initializing upon first append.  This
254 >     * simplifies some other logic, as well as providing more
255 >     * efficient explicit control paths instead of letting JVMs insert
256 >     * implicit NullPointerExceptions when they are null.  While not
257 >     * currently fully implemented, we also leave open the possibility
258 >     * of re-nulling these fields when empty (which is complicated to
259 >     * arrange, for little benefit.)
260 >     *
261 >     * All enqueue/dequeue operations are handled by the single method
262 >     * "xfer" with parameters indicating whether to act as some form
263 >     * of offer, put, poll, take, or transfer (each possibly with
264 >     * timeout). The relative complexity of using one monolithic
265 >     * method outweighs the code bulk and maintenance problems of
266 >     * using separate methods for each case.
267 >     *
268 >     * Operation consists of up to three phases. The first is
269 >     * implemented within method xfer, the second in tryAppend, and
270 >     * the third in method awaitMatch.
271 >     *
272 >     * 1. Try to match an existing node
273 >     *
274 >     *    Starting at head, skip already-matched nodes until finding
275 >     *    an unmatched node of opposite mode, if one exists, in which
276 >     *    case matching it and returning, also if necessary updating
277 >     *    head to one past the matched node (or the node itself if the
278 >     *    list has no other unmatched nodes). If the CAS misses, then
279 >     *    a loop retries advancing head by two steps until either
280 >     *    success or the slack is at most two. By requiring that each
281 >     *    attempt advances head by two (if applicable), we ensure that
282 >     *    the slack does not grow without bound. Traversals also check
283 >     *    if the initial head is now off-list, in which case they
284 >     *    start at the new head.
285 >     *
286 >     *    If no candidates are found and the call was untimed
287 >     *    poll/offer, (argument "how" is NOW) return.
288 >     *
289 >     * 2. Try to append a new node (method tryAppend)
290 >     *
291 >     *    Starting at current tail pointer, find the actual last node
292 >     *    and try to append a new node (or if head was null, establish
293 >     *    the first node). Nodes can be appended only if their
294 >     *    predecessors are either already matched or are of the same
295 >     *    mode. If we detect otherwise, then a new node with opposite
296 >     *    mode must have been appended during traversal, so we must
297 >     *    restart at phase 1. The traversal and update steps are
298 >     *    otherwise similar to phase 1: Retrying upon CAS misses and
299 >     *    checking for staleness.  In particular, if a self-link is
300 >     *    encountered, then we can safely jump to a node on the list
301 >     *    by continuing the traversal at current head.
302 >     *
303 >     *    On successful append, if the call was ASYNC, return.
304 >     *
305 >     * 3. Await match or cancellation (method awaitMatch)
306 >     *
307 >     *    Wait for another thread to match node; instead cancelling if
308 >     *    the current thread was interrupted or the wait timed out. On
309 >     *    multiprocessors, we use front-of-queue spinning: If a node
310 >     *    appears to be the first unmatched node in the queue, it
311 >     *    spins a bit before blocking. In either case, before blocking
312 >     *    it tries to unsplice any nodes between the current "head"
313 >     *    and the first unmatched node.
314 >     *
315 >     *    Front-of-queue spinning vastly improves performance of
316 >     *    heavily contended queues. And so long as it is relatively
317 >     *    brief and "quiet", spinning does not much impact performance
318 >     *    of less-contended queues.  During spins threads check their
319 >     *    interrupt status and generate a thread-local random number
320 >     *    to decide to occasionally perform a Thread.yield. While
321 >     *    yield has underdefined specs, we assume that might it help,
322 >     *    and will not hurt in limiting impact of spinning on busy
323 >     *    systems.  We also use smaller (1/2) spins for nodes that are
324 >     *    not known to be front but whose predecessors have not
325 >     *    blocked -- these "chained" spins avoid artifacts of
326 >     *    front-of-queue rules which otherwise lead to alternating
327 >     *    nodes spinning vs blocking. Further, front threads that
328 >     *    represent phase changes (from data to request node or vice
329 >     *    versa) compared to their predecessors receive additional
330 >     *    chained spins, reflecting longer paths typically required to
331 >     *    unblock threads during phase changes.
332 >     */
333 >
334 >    /** True if on multiprocessor */
335 >    private static final boolean MP =
336 >        Runtime.getRuntime().availableProcessors() > 1;
337 >
338 >    /**
339 >     * The number of times to spin (with randomly interspersed calls
340 >     * to Thread.yield) on multiprocessor before blocking when a node
341 >     * is apparently the first waiter in the queue.  See above for
342 >     * explanation. Must be a power of two. The value is empirically
343 >     * derived -- it works pretty well across a variety of processors,
344 >     * numbers of CPUs, and OSes.
345 >     */
346 >    private static final int FRONT_SPINS   = 1 << 7;
347 >
348 >    /**
349 >     * The number of times to spin before blocking when a node is
350 >     * preceded by another node that is apparently spinning.  Also
351 >     * serves as an increment to FRONT_SPINS on phase changes, and as
352 >     * base average frequency for yielding during spins. Must be a
353 >     * power of two.
354 >     */
355 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
356 >
357 >    /**
358 >     * Queue nodes. Uses Object, not E, for items to allow forgetting
359 >     * them after use.  Relies heavily on Unsafe mechanics to minimize
360 >     * unnecessary ordering constraints: Writes that intrinsically
361 >     * precede or follow CASes use simple relaxed forms.  Other
362 >     * cleanups use releasing/lazy writes.
363 >     */
364 >    static final class Node<E> {
365 >        final boolean isData;   // false if this is a request node
366 >        volatile Object item;   // initially non-null if isData; CASed to match
367 >        volatile Node<E> next;
368 >        volatile Thread waiter; // null until waiting
369  
370 <    /**
371 <     * The number of nanoseconds for which it is faster to spin
372 <     * rather than to use timed park. A rough estimate suffices.
373 <     */
100 <    static final long spinForTimeoutThreshold = 1000L;
370 >        // CAS methods for fields
371 >        final boolean casNext(Node<E> cmp, Node<E> val) {
372 >            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
373 >        }
374  
375 <    /**
376 <     * Node class for LinkedTransferQueue. Opportunistically
377 <     * subclasses from AtomicReference to represent item. Uses Object,
378 <     * not E, to allow setting item to "this" after use, to avoid
106 <     * garbage retention. Similarly, setting the next field to this is
107 <     * used as sentinel that node is off list.
108 <     */
109 <    static final class Node<E> extends AtomicReference<Object> {
110 <        volatile Node<E> next;
111 <        volatile Thread waiter;       // to control park/unpark
112 <        final boolean isData;
375 >        final boolean casItem(Object cmp, Object val) {
376 >            assert cmp.getClass() != Node.class;
377 >            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
378 >        }
379  
380 +        /**
381 +         * Creates a new node. Uses relaxed write because item can only
382 +         * be seen if followed by CAS.
383 +         */
384          Node(E item, boolean isData) {
385 <            super(item);
385 >            UNSAFE.putObject(this, itemOffset, item); // relaxed write
386              this.isData = isData;
387          }
388  
389 <        // Unsafe mechanics
389 >        /**
390 >         * Links node to itself to avoid garbage retention.  Called
391 >         * only after CASing head field, so uses relaxed write.
392 >         */
393 >        final void forgetNext() {
394 >            UNSAFE.putObject(this, nextOffset, this);
395 >        }
396  
397 <        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
398 <        private static final long nextOffset =
399 <            objectFieldOffset(UNSAFE, "next", Node.class);
397 >        /**
398 >         * Sets item to self (using a releasing/lazy write) and waiter
399 >         * to null, to avoid garbage retention after extracting or
400 >         * cancelling.
401 >         */
402 >        final void forgetContents() {
403 >            UNSAFE.putOrderedObject(this, itemOffset, this);
404 >            UNSAFE.putOrderedObject(this, waiterOffset, null);
405 >        }
406  
407 <        final boolean casNext(Node<E> cmp, Node<E> val) {
408 <            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
407 >        /**
408 >         * Returns true if this node has been matched, including the
409 >         * case of artificial matches due to cancellation.
410 >         */
411 >        final boolean isMatched() {
412 >            Object x = item;
413 >            return x == this || (x != null) != isData;
414          }
415  
416 <        final void clearNext() {
417 <            UNSAFE.putOrderedObject(this, nextOffset, this);
416 >        /**
417 >         * Returns true if a node with the given mode cannot be
418 >         * appended to this node because this node is unmatched and
419 >         * has opposite data mode.
420 >         */
421 >        final boolean cannotPrecede(boolean haveData) {
422 >            boolean d = isData;
423 >            Object x;
424 >            return d != haveData && (x = item) != this && (x != null) == d;
425          }
426  
427          /**
428 <         * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
135 <         * Replace with a simple call to Unsafe.getUnsafe when integrating
136 <         * into a jdk.
137 <         *
138 <         * @return a sun.misc.Unsafe
428 >         * Tries to artificially match a data node -- used by remove.
429           */
430 <        private static sun.misc.Unsafe getUnsafe() {
431 <            try {
432 <                return sun.misc.Unsafe.getUnsafe();
433 <            } catch (SecurityException se) {
434 <                try {
145 <                    return java.security.AccessController.doPrivileged
146 <                        (new java.security
147 <                         .PrivilegedExceptionAction<sun.misc.Unsafe>() {
148 <                            public sun.misc.Unsafe run() throws Exception {
149 <                                java.lang.reflect.Field f = sun.misc
150 <                                    .Unsafe.class.getDeclaredField("theUnsafe");
151 <                                f.setAccessible(true);
152 <                                return (sun.misc.Unsafe) f.get(null);
153 <                            }});
154 <                } catch (java.security.PrivilegedActionException e) {
155 <                    throw new RuntimeException("Could not initialize intrinsics",
156 <                                               e.getCause());
157 <                }
430 >        final boolean tryMatchData() {
431 >            Object x = item;
432 >            if (x != null && x != this && casItem(x, null)) {
433 >                LockSupport.unpark(waiter);
434 >                return true;
435              }
436 +            return false;
437          }
438  
439 +        // Unsafe mechanics
440 +        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
441 +        private static final long nextOffset =
442 +            objectFieldOffset(UNSAFE, "next", Node.class);
443 +        private static final long itemOffset =
444 +            objectFieldOffset(UNSAFE, "item", Node.class);
445 +        private static final long waiterOffset =
446 +            objectFieldOffset(UNSAFE, "waiter", Node.class);
447 +
448          private static final long serialVersionUID = -3375979862319811754L;
449      }
450  
451 <    /**
452 <     * Padded version of AtomicReference used for head, tail and
166 <     * cleanMe, to alleviate contention across threads CASing one vs
167 <     * the other.
168 <     */
169 <    static final class PaddedAtomicReference<T> extends AtomicReference<T> {
170 <        // enough padding for 64bytes with 4byte refs
171 <        Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
172 <        PaddedAtomicReference(T r) { super(r); }
173 <        private static final long serialVersionUID = 8170090609809740854L;
174 <    }
451 >    /** head of the queue; null until first enqueue */
452 >    transient volatile Node<E> head;
453  
454 +    /** predecessor of dangling unspliceable node */
455 +    private transient volatile Node<E> cleanMe; // decl here reduces contention
456  
457 <    /** head of the queue */
458 <    private transient final PaddedAtomicReference<Node<E>> head;
457 >    /** tail of the queue; null until first append */
458 >    private transient volatile Node<E> tail;
459  
460 <    /** tail of the queue */
461 <    private transient final PaddedAtomicReference<Node<E>> tail;
460 >    // CAS methods for fields
461 >    private boolean casTail(Node<E> cmp, Node<E> val) {
462 >        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
463 >    }
464  
465 <    /**
466 <     * Reference to a cancelled node that might not yet have been
467 <     * unlinked from queue because it was the last inserted node
186 <     * when it cancelled.
187 <     */
188 <    private transient final PaddedAtomicReference<Node<E>> cleanMe;
465 >    private boolean casHead(Node<E> cmp, Node<E> val) {
466 >        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
467 >    }
468  
469 <    /**
470 <     * Tries to cas nh as new head; if successful, unlink
192 <     * old head's next node to avoid garbage retention.
193 <     */
194 <    private boolean advanceHead(Node<E> h, Node<E> nh) {
195 <        if (h == head.get() && head.compareAndSet(h, nh)) {
196 <            h.clearNext(); // forget old next
197 <            return true;
198 <        }
199 <        return false;
469 >    private boolean casCleanMe(Node<E> cmp, Node<E> val) {
470 >        return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
471      }
472  
473 +    /*
474 +     * Possible values for "how" argument in xfer method. Beware that
475 +     * the order of assigned numerical values matters.
476 +     */
477 +    private static final int NOW     = 0; // for untimed poll, tryTransfer
478 +    private static final int ASYNC   = 1; // for offer, put, add
479 +    private static final int SYNC    = 2; // for transfer, take
480 +    private static final int TIMEOUT = 3; // for timed poll, tryTransfer
481 +
482      /**
483 <     * Puts or takes an item. Used for most queue operations (except
204 <     * poll() and tryTransfer()). See the similar code in
205 <     * SynchronousQueue for detailed explanation.
483 >     * Implements all queuing methods. See above for explanation.
484       *
485 <     * @param e the item or if null, signifies that this is a take
486 <     * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
485 >     * @param e the item or null for take
486 >     * @param haveData true if this is a put, else a take
487 >     * @param how NOW, ASYNC, SYNC, or TIMEOUT
488       * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
489 <     * @return an item, or null on failure
489 >     * @return an item if matched, else e
490 >     * @throws NullPointerException if haveData mode but e is null
491       */
492 <    private E xfer(E e, int mode, long nanos) {
493 <        boolean isData = (e != null);
494 <        Node<E> s = null;
495 <        final PaddedAtomicReference<Node<E>> head = this.head;
216 <        final PaddedAtomicReference<Node<E>> tail = this.tail;
217 <
218 <        for (;;) {
219 <            Node<E> t = tail.get();
220 <            Node<E> h = head.get();
492 >    private E xfer(E e, boolean haveData, int how, long nanos) {
493 >        if (haveData && (e == null))
494 >            throw new NullPointerException();
495 >        Node<E> s = null;                     // the node to append, if needed
496  
497 <            if (t != null && (t == h || t.isData == isData)) {
223 <                if (s == null)
224 <                    s = new Node<E>(e, isData);
225 <                Node<E> last = t.next;
226 <                if (last != null) {
227 <                    if (t == tail.get())
228 <                        tail.compareAndSet(t, last);
229 <                }
230 <                else if (t.casNext(null, s)) {
231 <                    tail.compareAndSet(t, s);
232 <                    return awaitFulfill(t, s, e, mode, nanos);
233 <                }
234 <            }
497 >        retry: for (;;) {                     // restart on append race
498  
499 <            else if (h != null) {
500 <                Node<E> first = h.next;
501 <                if (t == tail.get() && first != null &&
502 <                    advanceHead(h, first)) {
503 <                    Object x = first.get();
504 <                    if (x != first && first.compareAndSet(x, e)) {
505 <                        LockSupport.unpark(first.waiter);
506 <                        return isData ? e : (E) x;
499 >            for (Node<E> h = head, p = h; p != null;) {
500 >                // find & match first node
501 >                boolean isData = p.isData;
502 >                Object item = p.item;
503 >                if (item != p && (item != null) == isData) { // unmatched
504 >                    if (isData == haveData)   // can't match
505 >                        break;
506 >                    if (p.casItem(item, e)) { // match
507 >                        for (Node<E> q = p; q != h;) {
508 >                            Node<E> n = q.next; // update head by 2
509 >                            if (n != null)    // unless singleton
510 >                                q = n;
511 >                            if (head == h && casHead(h, q)) {
512 >                                h.forgetNext();
513 >                                break;
514 >                            }                 // advance and retry
515 >                            if ((h = head)   == null ||
516 >                                (q = h.next) == null || !q.isMatched())
517 >                                break;        // unless slack < 2
518 >                        }
519 >                        LockSupport.unpark(p.waiter);
520 >                        return this.<E>cast(item);
521                      }
522                  }
523 +                Node<E> n = p.next;
524 +                p = (p != n) ? n : (h = head); // Use head if p offlist
525              }
526 +
527 +            if (how >= ASYNC) {               // No matches available
528 +                if (s == null)
529 +                    s = new Node<E>(e, haveData);
530 +                Node<E> pred = tryAppend(s, haveData);
531 +                if (pred == null)
532 +                    continue retry;           // lost race vs opposite mode
533 +                if (how >= SYNC)
534 +                    return awaitMatch(s, pred, e, how, nanos);
535 +            }
536 +            return e; // not waiting
537          }
538      }
539  
250
540      /**
541 <     * Version of xfer for poll() and tryTransfer, which
542 <     * simplifies control paths both here and in xfer.
543 <     */
544 <    private E fulfill(E e) {
545 <        boolean isData = (e != null);
546 <        final PaddedAtomicReference<Node<E>> head = this.head;
547 <        final PaddedAtomicReference<Node<E>> tail = this.tail;
548 <
549 <        for (;;) {
550 <            Node<E> t = tail.get();
551 <            Node<E> h = head.get();
552 <
553 <            if (t != null && (t == h || t.isData == isData)) {
554 <                Node<E> last = t.next;
555 <                if (t == tail.get()) {
556 <                    if (last != null)
557 <                        tail.compareAndSet(t, last);
558 <                    else
559 <                        return null;
560 <                }
561 <            }
562 <            else if (h != null) {
563 <                Node<E> first = h.next;
564 <                if (t == tail.get() &&
565 <                    first != null &&
566 <                    advanceHead(h, first)) {
567 <                    Object x = first.get();
568 <                    if (x != first && first.compareAndSet(x, e)) {
280 <                        LockSupport.unpark(first.waiter);
281 <                        return isData ? e : (E) x;
282 <                    }
541 >     * Tries to append node s as tail.
542 >     *
543 >     * @param s the node to append
544 >     * @param haveData true if appending in data mode
545 >     * @return null on failure due to losing race with append in
546 >     * different mode, else s's predecessor, or s itself if no
547 >     * predecessor
548 >     */
549 >    private Node<E> tryAppend(Node<E> s, boolean haveData) {
550 >        for (Node<E> t = tail, p = t;;) { // move p to last node and append
551 >            Node<E> n, u;                     // temps for reads of next & tail
552 >            if (p == null && (p = head) == null) {
553 >                if (casHead(null, s))
554 >                    return s;                 // initialize
555 >            }
556 >            else if (p.cannotPrecede(haveData))
557 >                return null;                  // lost race vs opposite mode
558 >            else if ((n = p.next) != null)    // not last; keep traversing
559 >                p = p != t && t != (u = tail) ? (t = u) : // stale tail
560 >                    (p != n) ? n : null;      // restart if off list
561 >            else if (!p.casNext(null, s))
562 >                p = p.next;                   // re-read on CAS failure
563 >            else {
564 >                if (p != t) {                 // update if slack now >= 2
565 >                    while ((tail != t || !casTail(t, s)) &&
566 >                           (t = tail)   != null &&
567 >                           (s = t.next) != null && // advance and retry
568 >                           (s = s.next) != null && s != t);
569                  }
570 +                return p;
571              }
572          }
573      }
574  
575      /**
576 <     * Spins/blocks until node s is fulfilled or caller gives up,
290 <     * depending on wait mode.
576 >     * Spins/yields/blocks until node s is matched or caller gives up.
577       *
292     * @param pred the predecessor of waiting node
578       * @param s the waiting node
579 +     * @param pred the predecessor of s, or s itself if it has no
580 +     * predecessor, or null if unknown (the null case does not occur
581 +     * in any current calls but may in possible future extensions)
582       * @param e the comparison value for checking match
583 <     * @param mode mode
583 >     * @param how either SYNC or TIMEOUT
584       * @param nanos timeout value
585 <     * @return matched item, or null if cancelled
585 >     * @return matched item, or e if unmatched on interrupt or timeout
586       */
587 <    private E awaitFulfill(Node<E> pred, Node<E> s, E e,
588 <                           int mode, long nanos) {
301 <        if (mode == NOWAIT)
302 <            return null;
303 <
304 <        long lastTime = (mode == TIMEOUT) ? System.nanoTime() : 0;
587 >    private E awaitMatch(Node<E> s, Node<E> pred, E e, int how, long nanos) {
588 >        long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
589          Thread w = Thread.currentThread();
590 <        int spins = -1; // set to desired spin count below
590 >        int spins = -1; // initialized after first item and cancel checks
591 >        ThreadLocalRandom randomYields = null; // bound if needed
592 >
593          for (;;) {
594 <            if (w.isInterrupted())
595 <                s.compareAndSet(e, s);
596 <            Object x = s.get();
597 <            if (x != e) {                 // Node was matched or cancelled
598 <                advanceHead(pred, s);     // unlink if head
599 <                if (x == s) {             // was cancelled
600 <                    clean(pred, s);
601 <                    return null;
602 <                }
603 <                else if (x != null) {
604 <                    s.set(s);             // avoid garbage retention
605 <                    return (E) x;
606 <                }
607 <                else
608 <                    return e;
594 >            Object item = s.item;
595 >            if (item != e) {                  // matched
596 >                assert item != s;
597 >                s.forgetContents();           // avoid garbage
598 >                return this.<E>cast(item);
599 >            }
600 >            if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
601 >                    s.casItem(e, s)) {       // cancel
602 >                unsplice(pred, s);
603 >                return e;
604 >            }
605 >
606 >            if (spins < 0) {                  // establish spins at/near front
607 >                if ((spins = spinsFor(pred, s.isData)) > 0)
608 >                    randomYields = ThreadLocalRandom.current();
609 >            }
610 >            else if (spins > 0) {             // spin
611 >                if (--spins == 0)
612 >                    shortenHeadPath();        // reduce slack before blocking
613 >                else if (randomYields.nextInt(CHAINED_SPINS) == 0)
614 >                    Thread.yield();           // occasionally yield
615 >            }
616 >            else if (s.waiter == null) {
617 >                s.waiter = w;                 // request unpark then recheck
618              }
619 <            if (mode == TIMEOUT) {
619 >            else if (how == TIMEOUT) {
620                  long now = System.nanoTime();
621 <                nanos -= now - lastTime;
621 >                if ((nanos -= now - lastTime) > 0)
622 >                    LockSupport.parkNanos(this, nanos);
623                  lastTime = now;
328                if (nanos <= 0) {
329                    s.compareAndSet(e, s); // try to cancel
330                    continue;
331                }
624              }
625 <            if (spins < 0) {
334 <                Node<E> h = head.get(); // only spin if at head
335 <                spins = ((h != null && h.next == s) ?
336 <                         ((mode == TIMEOUT) ?
337 <                          maxTimedSpins : maxUntimedSpins) : 0);
338 <            }
339 <            if (spins > 0)
340 <                --spins;
341 <            else if (s.waiter == null)
342 <                s.waiter = w;
343 <            else if (mode != TIMEOUT) {
625 >            else {
626                  LockSupport.park(this);
627                  s.waiter = null;
628 <                spins = -1;
347 <            }
348 <            else if (nanos > spinForTimeoutThreshold) {
349 <                LockSupport.parkNanos(this, nanos);
350 <                s.waiter = null;
351 <                spins = -1;
628 >                spins = -1;                   // spin if front upon wakeup
629              }
630          }
631      }
632  
633      /**
634 <     * Returns validated tail for use in cleaning methods.
634 >     * Returns spin/yield value for a node with given predecessor and
635 >     * data mode. See above for explanation.
636       */
637 <    private Node<E> getValidatedTail() {
638 <        for (;;) {
639 <            Node<E> h = head.get();
640 <            Node<E> first = h.next;
641 <            if (first != null && first.get() == first) { // help advance
642 <                advanceHead(h, first);
643 <                continue;
644 <            }
645 <            Node<E> t = tail.get();
646 <            Node<E> last = t.next;
647 <            if (t == tail.get()) {
648 <                if (last != null)
649 <                    tail.compareAndSet(t, last); // help advance
650 <                else
651 <                    return t;
637 >    private static int spinsFor(Node<?> pred, boolean haveData) {
638 >        if (MP && pred != null) {
639 >            if (pred.isData != haveData)      // phase change
640 >                return FRONT_SPINS + CHAINED_SPINS;
641 >            if (pred.isMatched())             // probably at front
642 >                return FRONT_SPINS;
643 >            if (pred.waiter == null)          // pred apparently spinning
644 >                return CHAINED_SPINS;
645 >        }
646 >        return 0;
647 >    }
648 >
649 >    /**
650 >     * Tries (once) to unsplice nodes between head and first unmatched
651 >     * or trailing node; failing on contention.
652 >     */
653 >    private void shortenHeadPath() {
654 >        Node<E> h, hn, p, q;
655 >        if ((p = h = head) != null && h.isMatched() &&
656 >            (q = hn = h.next) != null) {
657 >            Node<E> n;
658 >            while ((n = q.next) != q) {
659 >                if (n == null || !q.isMatched()) {
660 >                    if (hn != q && h.next == hn)
661 >                        h.casNext(hn, q);
662 >                    break;
663 >                }
664 >                p = q;
665 >                q = n;
666              }
667          }
668      }
669  
670 +    /* -------------- Traversal methods -------------- */
671 +
672      /**
673 <     * Gets rid of cancelled node s with original predecessor pred.
674 <     *
381 <     * @param pred predecessor of cancelled node
382 <     * @param s the cancelled node
673 >     * Returns the first unmatched node of the given mode, or null if
674 >     * none.  Used by methods isEmpty, hasWaitingConsumer.
675       */
676 <    private void clean(Node<E> pred, Node<E> s) {
677 <        Thread w = s.waiter;
678 <        if (w != null) {             // Wake up thread
679 <            s.waiter = null;
680 <            if (w != Thread.currentThread())
681 <                LockSupport.unpark(w);
676 >    private Node<E> firstOfMode(boolean data) {
677 >        for (Node<E> p = head; p != null; ) {
678 >            if (!p.isMatched())
679 >                return (p.isData == data) ? p : null;
680 >            Node<E> n = p.next;
681 >            p = (n != p) ? n : head;
682          }
683 +        return null;
684 +    }
685 +
686 +    @SuppressWarnings("unchecked")
687 +    static <E> E cast(Object item) {
688 +        assert item.getClass() != Node.class;
689 +        return (E) item;
690 +    }
691  
692 <        if (pred == null)
693 <            return;
692 >    /**
693 >     * Returns the item in the first unmatched node with isData; or
694 >     * null if none.  Used by peek.
695 >     */
696 >    private E firstDataItem() {
697 >        for (Node<E> p = head; p != null; ) {
698 >            boolean isData = p.isData;
699 >            Object item = p.item;
700 >            if (item != p && (item != null) == isData)
701 >                return isData ? this.<E>cast(item) : null;
702 >            Node<E> n = p.next;
703 >            p = (n != p) ? n : head;
704 >        }
705 >        return null;
706 >    }
707  
708 +    /**
709 +     * Traverses and counts unmatched nodes of the given mode.
710 +     * Used by methods size and getWaitingConsumerCount.
711 +     */
712 +    private int countOfMode(boolean data) {
713 +        int count = 0;
714 +        for (Node<E> p = head; p != null; ) {
715 +            if (!p.isMatched()) {
716 +                if (p.isData != data)
717 +                    return 0;
718 +                if (++count == Integer.MAX_VALUE) // saturated
719 +                    break;
720 +            }
721 +            Node<E> n = p.next;
722 +            if (n != p)
723 +                p = n;
724 +            else {
725 +                count = 0;
726 +                p = head;
727 +            }
728 +        }
729 +        return count;
730 +    }
731 +
732 +    final class Itr implements Iterator<E> {
733 +        private Node<E> nextNode;   // next node to return item for
734 +        private E nextItem;         // the corresponding item
735 +        private Node<E> lastRet;    // last returned node, to support remove
736 +
737 +        /**
738 +         * Moves to next node after prev, or first node if prev null.
739 +         */
740 +        private void advance(Node<E> prev) {
741 +            lastRet = prev;
742 +            Node<E> p;
743 +            if (prev == null || (p = prev.next) == prev)
744 +                p = head;
745 +            while (p != null) {
746 +                Object item = p.item;
747 +                if (p.isData) {
748 +                    if (item != null && item != p) {
749 +                        nextItem = LinkedTransferQueue.this.<E>cast(item);
750 +                        nextNode = p;
751 +                        return;
752 +                    }
753 +                }
754 +                else if (item == null)
755 +                    break;
756 +                Node<E> n = p.next;
757 +                p = (n != p) ? n : head;
758 +            }
759 +            nextNode = null;
760 +        }
761 +
762 +        Itr() {
763 +            advance(null);
764 +        }
765 +
766 +        public final boolean hasNext() {
767 +            return nextNode != null;
768 +        }
769 +
770 +        public final E next() {
771 +            Node<E> p = nextNode;
772 +            if (p == null) throw new NoSuchElementException();
773 +            E e = nextItem;
774 +            advance(p);
775 +            return e;
776 +        }
777 +
778 +        public final void remove() {
779 +            Node<E> p = lastRet;
780 +            if (p == null) throw new IllegalStateException();
781 +            lastRet = null;
782 +            findAndRemoveNode(p);
783 +        }
784 +    }
785 +
786 +    /* -------------- Removal methods -------------- */
787 +
788 +    /**
789 +     * Unsplices (now or later) the given deleted/cancelled node with
790 +     * the given predecessor.
791 +     *
792 +     * @param pred predecessor of node to be unspliced
793 +     * @param s the node to be unspliced
794 +     */
795 +    private void unsplice(Node<E> pred, Node<E> s) {
796 +        s.forgetContents(); // clear unneeded fields
797          /*
798           * At any given time, exactly one node on list cannot be
799 <         * deleted -- the last inserted node. To accommodate this, if
800 <         * we cannot delete s, we save its predecessor as "cleanMe",
801 <         * processing the previously saved version first. At least one
802 <         * of node s or the node previously saved can always be
799 >         * unlinked -- the last inserted node. To accommodate this, if
800 >         * we cannot unlink s, we save its predecessor as "cleanMe",
801 >         * processing the previously saved version first. Because only
802 >         * one node in the list can have a null next, at least one of
803 >         * node s or the node previously saved can always be
804           * processed, so this always terminates.
805           */
806 <        while (pred.next == s) {
807 <            Node<E> oldpred = reclean();  // First, help get rid of cleanMe
808 <            Node<E> t = getValidatedTail();
809 <            if (s != t) {               // If not tail, try to unsplice
810 <                Node<E> sn = s.next;      // s.next == s means s already off list
811 <                if (sn == s || pred.casNext(s, sn))
806 >        if (pred != null && pred != s) {
807 >            while (pred.next == s) {
808 >                Node<E> oldpred = (cleanMe == null) ? null : reclean();
809 >                Node<E> n = s.next;
810 >                if (n != null) {
811 >                    if (n != s)
812 >                        pred.casNext(s, n);
813                      break;
814 +                }
815 +                if (oldpred == pred ||      // Already saved
816 +                    (oldpred == null && casCleanMe(null, pred)))
817 +                    break;                  // Postpone cleaning
818              }
411            else if (oldpred == pred || // Already saved
412                     (oldpred == null && cleanMe.compareAndSet(null, pred)))
413                break;                  // Postpone cleaning
819          }
820      }
821  
822      /**
823 <     * Tries to unsplice the cancelled node held in cleanMe that was
824 <     * previously uncleanable because it was at tail.
823 >     * Tries to unsplice the deleted/cancelled node held in cleanMe
824 >     * that was previously uncleanable because it was at tail.
825       *
826       * @return current cleanMe node (or null)
827       */
828      private Node<E> reclean() {
829          /*
830 <         * cleanMe is, or at one time was, predecessor of cancelled
831 <         * node s that was the tail so could not be unspliced.  If s
830 >         * cleanMe is, or at one time was, predecessor of a cancelled
831 >         * node s that was the tail so could not be unspliced.  If it
832           * is no longer the tail, try to unsplice if necessary and
833           * make cleanMe slot available.  This differs from similar
834 <         * code in clean() because we must check that pred still
835 <         * points to a cancelled node that must be unspliced -- if
836 <         * not, we can (must) clear cleanMe without unsplicing.
837 <         * This can loop only due to contention on casNext or
433 <         * clearing cleanMe.
834 >         * code in unsplice() because we must check that pred still
835 >         * points to a matched node that can be unspliced -- if not,
836 >         * we can (must) clear cleanMe without unsplicing.  This can
837 >         * loop only due to contention.
838           */
839          Node<E> pred;
840 <        while ((pred = cleanMe.get()) != null) {
437 <            Node<E> t = getValidatedTail();
840 >        while ((pred = cleanMe) != null) {
841              Node<E> s = pred.next;
842 <            if (s != t) {
843 <                Node<E> sn;
844 <                if (s == null || s == pred || s.get() != s ||
845 <                    (sn = s.next) == s || pred.casNext(s, sn))
846 <                    cleanMe.compareAndSet(pred, null);
842 >            Node<E> n;
843 >            if (s == null || s == pred || !s.isMatched())
844 >                casCleanMe(pred, null); // already gone
845 >            else if ((n = s.next) != null) {
846 >                if (n != s)
847 >                    pred.casNext(s, n);
848 >                casCleanMe(pred, null);
849              }
850 <            else // s is still tail; cannot clean
850 >            else
851                  break;
852          }
853          return pred;
854      }
855  
856      /**
857 +     * Main implementation of Iterator.remove(). Find
858 +     * and unsplice the given node.
859 +     */
860 +    final void findAndRemoveNode(Node<E> s) {
861 +        if (s.tryMatchData()) {
862 +            Node<E> pred = null;
863 +            Node<E> p = head;
864 +            while (p != null) {
865 +                if (p == s) {
866 +                    unsplice(pred, p);
867 +                    break;
868 +                }
869 +                if (!p.isData && !p.isMatched())
870 +                    break;
871 +                pred = p;
872 +                if ((p = p.next) == pred) { // stale
873 +                    pred = null;
874 +                    p = head;
875 +                }
876 +            }
877 +        }
878 +    }
879 +
880 +    /**
881 +     * Main implementation of remove(Object)
882 +     */
883 +    private boolean findAndRemove(Object e) {
884 +        if (e != null) {
885 +            Node<E> pred = null;
886 +            Node<E> p = head;
887 +            while (p != null) {
888 +                Object item = p.item;
889 +                if (p.isData) {
890 +                    if (item != null && item != p && e.equals(item) &&
891 +                        p.tryMatchData()) {
892 +                        unsplice(pred, p);
893 +                        return true;
894 +                    }
895 +                }
896 +                else if (item == null)
897 +                    break;
898 +                pred = p;
899 +                if ((p = p.next) == pred) {
900 +                    pred = null;
901 +                    p = head;
902 +                }
903 +            }
904 +        }
905 +        return false;
906 +    }
907 +
908 +
909 +    /**
910       * Creates an initially empty {@code LinkedTransferQueue}.
911       */
912      public LinkedTransferQueue() {
455        Node<E> dummy = new Node<E>(null, false);
456        head = new PaddedAtomicReference<Node<E>>(dummy);
457        tail = new PaddedAtomicReference<Node<E>>(dummy);
458        cleanMe = new PaddedAtomicReference<Node<E>>(null);
913      }
914  
915      /**
# Line 479 | Line 933 | public class LinkedTransferQueue<E> exte
933       * @throws NullPointerException if the specified element is null
934       */
935      public void put(E e) {
936 <        offer(e);
936 >        xfer(e, true, ASYNC, 0);
937      }
938  
939      /**
# Line 492 | Line 946 | public class LinkedTransferQueue<E> exte
946       * @throws NullPointerException if the specified element is null
947       */
948      public boolean offer(E e, long timeout, TimeUnit unit) {
949 <        return offer(e);
949 >        xfer(e, true, ASYNC, 0);
950 >        return true;
951      }
952  
953      /**
# Line 504 | Line 959 | public class LinkedTransferQueue<E> exte
959       * @throws NullPointerException if the specified element is null
960       */
961      public boolean offer(E e) {
962 <        if (e == null) throw new NullPointerException();
508 <        xfer(e, NOWAIT, 0);
962 >        xfer(e, true, ASYNC, 0);
963          return true;
964      }
965  
# Line 518 | Line 972 | public class LinkedTransferQueue<E> exte
972       * @throws NullPointerException if the specified element is null
973       */
974      public boolean add(E e) {
975 <        return offer(e);
975 >        xfer(e, true, ASYNC, 0);
976 >        return true;
977      }
978  
979      /**
# Line 532 | Line 987 | public class LinkedTransferQueue<E> exte
987       * @throws NullPointerException if the specified element is null
988       */
989      public boolean tryTransfer(E e) {
990 <        if (e == null) throw new NullPointerException();
536 <        return fulfill(e) != null;
990 >        return xfer(e, true, NOW, 0) == null;
991      }
992  
993      /**
# Line 548 | Line 1002 | public class LinkedTransferQueue<E> exte
1002       * @throws NullPointerException if the specified element is null
1003       */
1004      public void transfer(E e) throws InterruptedException {
1005 <        if (e == null) throw new NullPointerException();
1006 <        if (xfer(e, WAIT, 0) == null) {
553 <            Thread.interrupted();
1005 >        if (xfer(e, true, SYNC, 0) != null) {
1006 >            Thread.interrupted(); // failure possible only due to interrupt
1007              throw new InterruptedException();
1008          }
1009      }
# Line 571 | Line 1024 | public class LinkedTransferQueue<E> exte
1024       */
1025      public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1026          throws InterruptedException {
1027 <        if (e == null) throw new NullPointerException();
575 <        if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
1027 >        if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1028              return true;
1029          if (!Thread.interrupted())
1030              return false;
# Line 580 | Line 1032 | public class LinkedTransferQueue<E> exte
1032      }
1033  
1034      public E take() throws InterruptedException {
1035 <        E e = xfer(null, WAIT, 0);
1035 >        E e = xfer(null, false, SYNC, 0);
1036          if (e != null)
1037              return e;
1038          Thread.interrupted();
# Line 588 | Line 1040 | public class LinkedTransferQueue<E> exte
1040      }
1041  
1042      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1043 <        E e = xfer(null, TIMEOUT, unit.toNanos(timeout));
1043 >        E e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1044          if (e != null || !Thread.interrupted())
1045              return e;
1046          throw new InterruptedException();
1047      }
1048  
1049      public E poll() {
1050 <        return fulfill(null);
1050 >        return xfer(null, false, NOW, 0);
1051      }
1052  
1053      /**
# Line 634 | Line 1086 | public class LinkedTransferQueue<E> exte
1086          return n;
1087      }
1088  
637    // Traversal-based methods
638
639    /**
640     * Returns head after performing any outstanding helping steps.
641     */
642    private Node<E> traversalHead() {
643        for (;;) {
644            Node<E> t = tail.get();
645            Node<E> h = head.get();
646            if (h != null && t != null) {
647                Node<E> last = t.next;
648                Node<E> first = h.next;
649                if (t == tail.get()) {
650                    if (last != null)
651                        tail.compareAndSet(t, last);
652                    else if (first != null) {
653                        Object x = first.get();
654                        if (x == first)
655                            advanceHead(h, first);
656                        else
657                            return h;
658                    }
659                    else
660                        return h;
661                }
662            }
663            reclean();
664        }
665    }
666
1089      /**
1090       * Returns an iterator over the elements in this queue in proper
1091       * sequence, from head to tail.
# Line 681 | Line 1103 | public class LinkedTransferQueue<E> exte
1103          return new Itr();
1104      }
1105  
684    /**
685     * Iterators. Basic strategy is to traverse list, treating
686     * non-data (i.e., request) nodes as terminating list.
687     * Once a valid data node is found, the item is cached
688     * so that the next call to next() will return it even
689     * if subsequently removed.
690     */
691    class Itr implements Iterator<E> {
692        Node<E> next;        // node to return next
693        Node<E> pnext;       // predecessor of next
694        Node<E> curr;        // last returned node, for remove()
695        Node<E> pcurr;       // predecessor of curr, for remove()
696        E nextItem;          // Cache of next item, once committed to in next
697
698        Itr() {
699            advance();
700        }
701
702        /**
703         * Moves to next valid node and returns item to return for
704         * next(), or null if no such.
705         */
706        private E advance() {
707            pcurr = pnext;
708            curr = next;
709            E item = nextItem;
710
711            for (;;) {
712                pnext = (next == null) ? traversalHead() : next;
713                next = pnext.next;
714                if (next == pnext) {
715                    next = null;
716                    continue;  // restart
717                }
718                if (next == null)
719                    break;
720                Object x = next.get();
721                if (x != null && x != next) {
722                    nextItem = (E) x;
723                    break;
724                }
725            }
726            return item;
727        }
728
729        public boolean hasNext() {
730            return next != null;
731        }
732
733        public E next() {
734            if (next == null)
735                throw new NoSuchElementException();
736            return advance();
737        }
738
739        public void remove() {
740            Node<E> p = curr;
741            if (p == null)
742                throw new IllegalStateException();
743            Object x = p.get();
744            if (x != null && x != p && p.compareAndSet(x, p))
745                clean(pcurr, p);
746        }
747    }
748
1106      public E peek() {
1107 <        for (;;) {
751 <            Node<E> h = traversalHead();
752 <            Node<E> p = h.next;
753 <            if (p == null)
754 <                return null;
755 <            Object x = p.get();
756 <            if (p != x) {
757 <                if (!p.isData)
758 <                    return null;
759 <                if (x != null)
760 <                    return (E) x;
761 <            }
762 <        }
1107 >        return firstDataItem();
1108      }
1109  
1110      /**
# Line 768 | Line 1113 | public class LinkedTransferQueue<E> exte
1113       * @return {@code true} if this queue contains no elements
1114       */
1115      public boolean isEmpty() {
1116 <        for (;;) {
772 <            Node<E> h = traversalHead();
773 <            Node<E> p = h.next;
774 <            if (p == null)
775 <                return true;
776 <            Object x = p.get();
777 <            if (p != x) {
778 <                if (!p.isData)
779 <                    return true;
780 <                if (x != null)
781 <                    return false;
782 <            }
783 <        }
1116 >        return firstOfMode(true) == null;
1117      }
1118  
1119      public boolean hasWaitingConsumer() {
1120 <        for (;;) {
788 <            Node<E> h = traversalHead();
789 <            Node<E> p = h.next;
790 <            if (p == null)
791 <                return false;
792 <            Object x = p.get();
793 <            if (p != x)
794 <                return !p.isData;
795 <        }
1120 >        return firstOfMode(false) != null;
1121      }
1122  
1123      /**
# Line 808 | Line 1133 | public class LinkedTransferQueue<E> exte
1133       * @return the number of elements in this queue
1134       */
1135      public int size() {
1136 <        for (;;) {
812 <            int count = 0;
813 <            Node<E> pred = traversalHead();
814 <            for (;;) {
815 <                Node<E> q = pred.next;
816 <                if (q == pred) // restart
817 <                    break;
818 <                if (q == null || !q.isData)
819 <                    return count;
820 <                Object x = q.get();
821 <                if (x != null && x != q) {
822 <                    if (++count == Integer.MAX_VALUE) // saturated
823 <                        return count;
824 <                }
825 <                pred = q;
826 <            }
827 <        }
1136 >        return countOfMode(true);
1137      }
1138  
1139      public int getWaitingConsumerCount() {
1140 <        // converse of size -- count valid non-data nodes
832 <        for (;;) {
833 <            int count = 0;
834 <            Node<E> pred = traversalHead();
835 <            for (;;) {
836 <                Node<E> q = pred.next;
837 <                if (q == pred) // restart
838 <                    break;
839 <                if (q == null || q.isData)
840 <                    return count;
841 <                Object x = q.get();
842 <                if (x == null) {
843 <                    if (++count == Integer.MAX_VALUE) // saturated
844 <                        return count;
845 <                }
846 <                pred = q;
847 <            }
848 <        }
1140 >        return countOfMode(false);
1141      }
1142  
1143      /**
# Line 860 | Line 1152 | public class LinkedTransferQueue<E> exte
1152       * @return {@code true} if this queue changed as a result of the call
1153       */
1154      public boolean remove(Object o) {
1155 <        if (o == null)
864 <            return false;
865 <        for (;;) {
866 <            Node<E> pred = traversalHead();
867 <            for (;;) {
868 <                Node<E> q = pred.next;
869 <                if (q == pred) // restart
870 <                    break;
871 <                if (q == null || !q.isData)
872 <                    return false;
873 <                Object x = q.get();
874 <                if (x != null && x != q && o.equals(x) &&
875 <                    q.compareAndSet(x, q)) {
876 <                    clean(pred, q);
877 <                    return true;
878 <                }
879 <                pred = q;
880 <            }
881 <        }
1155 >        return findAndRemove(o);
1156      }
1157  
1158      /**
# Line 893 | Line 1167 | public class LinkedTransferQueue<E> exte
1167      }
1168  
1169      /**
1170 <     * Save the state to a stream (that is, serialize it).
1170 >     * Saves the state to a stream (that is, serializes it).
1171       *
1172       * @serialData All of the elements (each an {@code E}) in
1173       * the proper order, followed by a null
# Line 909 | Line 1183 | public class LinkedTransferQueue<E> exte
1183      }
1184  
1185      /**
1186 <     * Reconstitute the Queue instance from a stream (that is,
1187 <     * deserialize it).
1186 >     * Reconstitutes the Queue instance from a stream (that is,
1187 >     * deserializes it).
1188       *
1189       * @param s the stream
1190       */
1191      private void readObject(java.io.ObjectInputStream s)
1192          throws java.io.IOException, ClassNotFoundException {
1193          s.defaultReadObject();
920        resetHeadAndTail();
1194          for (;;) {
1195              @SuppressWarnings("unchecked") E item = (E) s.readObject();
1196              if (item == null)
# Line 927 | Line 1200 | public class LinkedTransferQueue<E> exte
1200          }
1201      }
1202  
930    // Support for resetting head/tail while deserializing
931    private void resetHeadAndTail() {
932        Node<E> dummy = new Node<E>(null, false);
933        UNSAFE.putObjectVolatile(this, headOffset,
934                                 new PaddedAtomicReference<Node<E>>(dummy));
935        UNSAFE.putObjectVolatile(this, tailOffset,
936                                 new PaddedAtomicReference<Node<E>>(dummy));
937        UNSAFE.putObjectVolatile(this, cleanMeOffset,
938                                 new PaddedAtomicReference<Node<E>>(null));
939    }
940
1203      // Unsafe mechanics
1204  
1205      private static final sun.misc.Unsafe UNSAFE = getUnsafe();
# Line 948 | Line 1210 | public class LinkedTransferQueue<E> exte
1210      private static final long cleanMeOffset =
1211          objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1212  
951
1213      static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1214                                    String field, Class<?> klazz) {
1215          try {
# Line 968 | Line 1229 | public class LinkedTransferQueue<E> exte
1229       *
1230       * @return a sun.misc.Unsafe
1231       */
1232 <    private static sun.misc.Unsafe getUnsafe() {
1232 >    static sun.misc.Unsafe getUnsafe() {
1233          try {
1234              return sun.misc.Unsafe.getUnsafe();
1235          } catch (SecurityException se) {
# Line 988 | Line 1249 | public class LinkedTransferQueue<E> exte
1249              }
1250          }
1251      }
1252 +
1253   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines