ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.12 by dl, Mon Jan 12 17:16:18 2009 UTC vs.
Revision 1.60 by dl, Fri Oct 30 12:06:31 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.concurrent.*;
9 import java.util.concurrent.locks.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.*;
12 import java.io.*;
13 import sun.misc.Unsafe;
14 import java.lang.reflect.*;
10  
11 + import java.util.AbstractQueue;
12 + import java.util.Collection;
13 + import java.util.ConcurrentModificationException;
14 + import java.util.Iterator;
15 + import java.util.NoSuchElementException;
16 + import java.util.Queue;
17 + import java.util.concurrent.locks.LockSupport;
18   /**
19 < * An unbounded {@linkplain TransferQueue} based on linked nodes.
19 > * An unbounded {@link TransferQueue} based on linked nodes.
20   * This queue orders elements FIFO (first-in-first-out) with respect
21   * to any given producer.  The <em>head</em> of the queue is that
22   * element that has been on the queue the longest time for some
# Line 44 | Line 46 | import java.lang.reflect.*;
46   * @since 1.7
47   * @author Doug Lea
48   * @param <E> the type of elements held in this collection
47 *
49   */
50   public class LinkedTransferQueue<E> extends AbstractQueue<E>
51      implements TransferQueue<E>, java.io.Serializable {
52      private static final long serialVersionUID = -3223113410248163686L;
53  
54      /*
55 <     * This class extends the approach used in FIFO-mode
55 <     * SynchronousQueues. See the internal documentation, as well as
56 <     * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
57 <     * Lea & Scott
58 <     * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
55 >     * *** Overview of Dual Queues with Slack ***
56       *
57 <     * The main extension is to provide different Wait modes for the
58 <     * main "xfer" method that puts or takes items.  These don't
59 <     * impact the basic dual-queue logic, but instead control whether
60 <     * or how threads block upon insertion of request or data nodes
61 <     * into the dual queue. It also uses slightly different
62 <     * conventions for tracking whether nodes are off-list or
63 <     * cancelled.
64 <     */
65 <
66 <    // Wait modes for xfer method
67 <    static final int NOWAIT  = 0;
68 <    static final int TIMEOUT = 1;
69 <    static final int WAIT    = 2;
70 <
71 <    /** The number of CPUs, for spin control */
72 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
73 <
74 <    /**
75 <     * The number of times to spin before blocking in timed waits.
76 <     * The value is empirically derived -- it works well across a
77 <     * variety of processors and OSes. Empirically, the best value
78 <     * seems not to vary with number of CPUs (beyond 2) so is just
79 <     * a constant.
80 <     */
81 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
57 >     * Dual Queues, introduced by Scherer and Scott
58 >     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 >     * (linked) queues in which nodes may represent either data or
60 >     * requests.  When a thread tries to enqueue a data node, but
61 >     * encounters a request node, it instead "matches" and removes it;
62 >     * and vice versa for enqueuing requests. Blocking Dual Queues
63 >     * arrange that threads enqueuing unmatched requests block until
64 >     * other threads provide the match. Dual Synchronous Queues (see
65 >     * Scherer, Lea, & Scott
66 >     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 >     * additionally arrange that threads enqueuing unmatched data also
68 >     * block.  Dual Transfer Queues support all of these modes, as
69 >     * dictated by callers.
70 >     *
71 >     * A FIFO dual queue may be implemented using a variation of the
72 >     * Michael & Scott (M&S) lock-free queue algorithm
73 >     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 >     * It maintains two pointer fields, "head", pointing to a
75 >     * (matched) node that in turn points to the first actual
76 >     * (unmatched) queue node (or null if empty); and "tail" that
77 >     * points to the last node on the queue (or again null if
78 >     * empty). For example, here is a possible queue with four data
79 >     * elements:
80 >     *
81 >     *  head                tail
82 >     *    |                   |
83 >     *    v                   v
84 >     *    M -> U -> U -> U -> U
85 >     *
86 >     * The M&S queue algorithm is known to be prone to scalability and
87 >     * overhead limitations when maintaining (via CAS) these head and
88 >     * tail pointers. This has led to the development of
89 >     * contention-reducing variants such as elimination arrays (see
90 >     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 >     * optimistic back pointers (see Ladan-Mozes & Shavit
92 >     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 >     * However, the nature of dual queues enables a simpler tactic for
94 >     * improving M&S-style implementations when dual-ness is needed.
95 >     *
96 >     * In a dual queue, each node must atomically maintain its match
97 >     * status. While there are other possible variants, we implement
98 >     * this here as: for a data-mode node, matching entails CASing an
99 >     * "item" field from a non-null data value to null upon match, and
100 >     * vice-versa for request nodes, CASing from null to a data
101 >     * value. (Note that the linearization properties of this style of
102 >     * queue are easy to verify -- elements are made available by
103 >     * linking, and unavailable by matching.) Compared to plain M&S
104 >     * queues, this property of dual queues requires one additional
105 >     * successful atomic operation per enq/deq pair. But it also
106 >     * enables lower cost variants of queue maintenance mechanics. (A
107 >     * variation of this idea applies even for non-dual queues that
108 >     * support deletion of interior elements, such as
109 >     * j.u.c.ConcurrentLinkedQueue.)
110 >     *
111 >     * Once a node is matched, its match status can never again
112 >     * change.  We may thus arrange that the linked list of them
113 >     * contain a prefix of zero or more matched nodes, followed by a
114 >     * suffix of zero or more unmatched nodes. (Note that we allow
115 >     * both the prefix and suffix to be zero length, which in turn
116 >     * means that we do not use a dummy header.)  If we were not
117 >     * concerned with either time or space efficiency, we could
118 >     * correctly perform enqueue and dequeue operations by traversing
119 >     * from a pointer to the initial node; CASing the item of the
120 >     * first unmatched node on match and CASing the next field of the
121 >     * trailing node on appends. (Plus some special-casing when
122 >     * initially empty).  While this would be a terrible idea in
123 >     * itself, it does have the benefit of not requiring ANY atomic
124 >     * updates on head/tail fields.
125 >     *
126 >     * We introduce here an approach that lies between the extremes of
127 >     * never versus always updating queue (head and tail) pointers.
128 >     * This offers a tradeoff between sometimes requiring extra
129 >     * traversal steps to locate the first and/or last unmatched
130 >     * nodes, versus the reduced overhead and contention of fewer
131 >     * updates to queue pointers. For example, a possible snapshot of
132 >     * a queue is:
133 >     *
134 >     *  head           tail
135 >     *    |              |
136 >     *    v              v
137 >     *    M -> M -> U -> U -> U -> U
138 >     *
139 >     * The best value for this "slack" (the targeted maximum distance
140 >     * between the value of "head" and the first unmatched node, and
141 >     * similarly for "tail") is an empirical matter. We have found
142 >     * that using very small constants in the range of 1-3 work best
143 >     * over a range of platforms. Larger values introduce increasing
144 >     * costs of cache misses and risks of long traversal chains, while
145 >     * smaller values increase CAS contention and overhead.
146 >     *
147 >     * Dual queues with slack differ from plain M&S dual queues by
148 >     * virtue of only sometimes updating head or tail pointers when
149 >     * matching, appending, or even traversing nodes; in order to
150 >     * maintain a targeted slack.  The idea of "sometimes" may be
151 >     * operationalized in several ways. The simplest is to use a
152 >     * per-operation counter incremented on each traversal step, and
153 >     * to try (via CAS) to update the associated queue pointer
154 >     * whenever the count exceeds a threshold. Another, that requires
155 >     * more overhead, is to use random number generators to update
156 >     * with a given probability per traversal step.
157 >     *
158 >     * In any strategy along these lines, because CASes updating
159 >     * fields may fail, the actual slack may exceed targeted
160 >     * slack. However, they may be retried at any time to maintain
161 >     * targets.  Even when using very small slack values, this
162 >     * approach works well for dual queues because it allows all
163 >     * operations up to the point of matching or appending an item
164 >     * (hence potentially allowing progress by another thread) to be
165 >     * read-only, thus not introducing any further contention. As
166 >     * described below, we implement this by performing slack
167 >     * maintenance retries only after these points.
168 >     *
169 >     * As an accompaniment to such techniques, traversal overhead can
170 >     * be further reduced without increasing contention of head
171 >     * pointer updates: Threads may sometimes shortcut the "next" link
172 >     * path from the current "head" node to be closer to the currently
173 >     * known first unmatched node, and similarly for tail. Again, this
174 >     * may be triggered with using thresholds or randomization.
175 >     *
176 >     * These ideas must be further extended to avoid unbounded amounts
177 >     * of costly-to-reclaim garbage caused by the sequential "next"
178 >     * links of nodes starting at old forgotten head nodes: As first
179 >     * described in detail by Boehm
180 >     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181 >     * delays noticing that any arbitrarily old node has become
182 >     * garbage, all newer dead nodes will also be unreclaimed.
183 >     * (Similar issues arise in non-GC environments.)  To cope with
184 >     * this in our implementation, upon CASing to advance the head
185 >     * pointer, we set the "next" link of the previous head to point
186 >     * only to itself; thus limiting the length of connected dead lists.
187 >     * (We also take similar care to wipe out possibly garbage
188 >     * retaining values held in other Node fields.)  However, doing so
189 >     * adds some further complexity to traversal: If any "next"
190 >     * pointer links to itself, it indicates that the current thread
191 >     * has lagged behind a head-update, and so the traversal must
192 >     * continue from the "head".  Traversals trying to find the
193 >     * current tail starting from "tail" may also encounter
194 >     * self-links, in which case they also continue at "head".
195 >     *
196 >     * It is tempting in slack-based scheme to not even use CAS for
197 >     * updates (similarly to Ladan-Mozes & Shavit). However, this
198 >     * cannot be done for head updates under the above link-forgetting
199 >     * mechanics because an update may leave head at a detached node.
200 >     * And while direct writes are possible for tail updates, they
201 >     * increase the risk of long retraversals, and hence long garbage
202 >     * chains, which can be much more costly than is worthwhile
203 >     * considering that the cost difference of performing a CAS vs
204 >     * write is smaller when they are not triggered on each operation
205 >     * (especially considering that writes and CASes equally require
206 >     * additional GC bookkeeping ("write barriers") that are sometimes
207 >     * more costly than the writes themselves because of contention).
208 >     *
209 >     * Removal of interior nodes (due to timed out or interrupted
210 >     * waits, or calls to remove(x) or Iterator.remove) can use a
211 >     * scheme roughly similar to that described in Scherer, Lea, and
212 >     * Scott's SynchronousQueue. Given a predecessor, we can unsplice
213 >     * any node except the (actual) tail of the queue. To avoid
214 >     * build-up of cancelled trailing nodes, upon a request to remove
215 >     * a trailing node, it is placed in field "cleanMe" to be
216 >     * unspliced upon the next call to unsplice any other node.
217 >     * Situations needing such mechanics are not common but do occur
218 >     * in practice; for example when an unbounded series of short
219 >     * timed calls to poll repeatedly time out but never otherwise
220 >     * fall off the list because of an untimed call to take at the
221 >     * front of the queue. Note that maintaining field cleanMe does
222 >     * not otherwise much impact garbage retention even if never
223 >     * cleared by some other call because the held node will
224 >     * eventually either directly or indirectly lead to a self-link
225 >     * once off the list.
226 >     *
227 >     * *** Overview of implementation ***
228 >     *
229 >     * We use a threshold-based approach to updates, with a slack
230 >     * threshold of two -- that is, we update head/tail when the
231 >     * current pointer appears to be two or more steps away from the
232 >     * first/last node. The slack value is hard-wired: a path greater
233 >     * than one is naturally implemented by checking equality of
234 >     * traversal pointers except when the list has only one element,
235 >     * in which case we keep slack threshold at one. Avoiding tracking
236 >     * explicit counts across method calls slightly simplifies an
237 >     * already-messy implementation. Using randomization would
238 >     * probably work better if there were a low-quality dirt-cheap
239 >     * per-thread one available, but even ThreadLocalRandom is too
240 >     * heavy for these purposes.
241 >     *
242 >     * With such a small slack threshold value, it is rarely
243 >     * worthwhile to augment this with path short-circuiting; i.e.,
244 >     * unsplicing nodes between head and the first unmatched node, or
245 >     * similarly for tail, rather than advancing head or tail
246 >     * proper. However, it is used (in awaitMatch) immediately before
247 >     * a waiting thread starts to block, as a final bit of helping at
248 >     * a point when contention with others is extremely unlikely
249 >     * (since if other threads that could release it are operating,
250 >     * then the current thread wouldn't be blocking).
251 >     *
252 >     * We allow both the head and tail fields to be null before any
253 >     * nodes are enqueued; initializing upon first append.  This
254 >     * simplifies some other logic, as well as providing more
255 >     * efficient explicit control paths instead of letting JVMs insert
256 >     * implicit NullPointerExceptions when they are null.  While not
257 >     * currently fully implemented, we also leave open the possibility
258 >     * of re-nulling these fields when empty (which is complicated to
259 >     * arrange, for little benefit.)
260 >     *
261 >     * All enqueue/dequeue operations are handled by the single method
262 >     * "xfer" with parameters indicating whether to act as some form
263 >     * of offer, put, poll, take, or transfer (each possibly with
264 >     * timeout). The relative complexity of using one monolithic
265 >     * method outweighs the code bulk and maintenance problems of
266 >     * using separate methods for each case.
267 >     *
268 >     * Operation consists of up to three phases. The first is
269 >     * implemented within method xfer, the second in tryAppend, and
270 >     * the third in method awaitMatch.
271 >     *
272 >     * 1. Try to match an existing node
273 >     *
274 >     *    Starting at head, skip already-matched nodes until finding
275 >     *    an unmatched node of opposite mode, if one exists, in which
276 >     *    case matching it and returning, also if necessary updating
277 >     *    head to one past the matched node (or the node itself if the
278 >     *    list has no other unmatched nodes). If the CAS misses, then
279 >     *    a loop retries advancing head by two steps until either
280 >     *    success or the slack is at most two. By requiring that each
281 >     *    attempt advances head by two (if applicable), we ensure that
282 >     *    the slack does not grow without bound. Traversals also check
283 >     *    if the initial head is now off-list, in which case they
284 >     *    start at the new head.
285 >     *
286 >     *    If no candidates are found and the call was untimed
287 >     *    poll/offer, (argument "how" is NOW) return.
288 >     *
289 >     * 2. Try to append a new node (method tryAppend)
290 >     *
291 >     *    Starting at current tail pointer, find the actual last node
292 >     *    and try to append a new node (or if head was null, establish
293 >     *    the first node). Nodes can be appended only if their
294 >     *    predecessors are either already matched or are of the same
295 >     *    mode. If we detect otherwise, then a new node with opposite
296 >     *    mode must have been appended during traversal, so we must
297 >     *    restart at phase 1. The traversal and update steps are
298 >     *    otherwise similar to phase 1: Retrying upon CAS misses and
299 >     *    checking for staleness.  In particular, if a self-link is
300 >     *    encountered, then we can safely jump to a node on the list
301 >     *    by continuing the traversal at current head.
302 >     *
303 >     *    On successful append, if the call was ASYNC, return.
304 >     *
305 >     * 3. Await match or cancellation (method awaitMatch)
306 >     *
307 >     *    Wait for another thread to match node; instead cancelling if
308 >     *    the current thread was interrupted or the wait timed out. On
309 >     *    multiprocessors, we use front-of-queue spinning: If a node
310 >     *    appears to be the first unmatched node in the queue, it
311 >     *    spins a bit before blocking. In either case, before blocking
312 >     *    it tries to unsplice any nodes between the current "head"
313 >     *    and the first unmatched node.
314 >     *
315 >     *    Front-of-queue spinning vastly improves performance of
316 >     *    heavily contended queues. And so long as it is relatively
317 >     *    brief and "quiet", spinning does not much impact performance
318 >     *    of less-contended queues.  During spins threads check their
319 >     *    interrupt status and generate a thread-local random number
320 >     *    to decide to occasionally perform a Thread.yield. While
321 >     *    yield has underdefined specs, we assume that might it help,
322 >     *    and will not hurt in limiting impact of spinning on busy
323 >     *    systems.  We also use smaller (1/2) spins for nodes that are
324 >     *    not known to be front but whose predecessors have not
325 >     *    blocked -- these "chained" spins avoid artifacts of
326 >     *    front-of-queue rules which otherwise lead to alternating
327 >     *    nodes spinning vs blocking. Further, front threads that
328 >     *    represent phase changes (from data to request node or vice
329 >     *    versa) compared to their predecessors receive additional
330 >     *    chained spins, reflecting longer paths typically required to
331 >     *    unblock threads during phase changes.
332 >     */
333 >
334 >    /** True if on multiprocessor */
335 >    private static final boolean MP =
336 >        Runtime.getRuntime().availableProcessors() > 1;
337  
338      /**
339 <     * The number of times to spin before blocking in untimed waits.
340 <     * This is greater than timed value because untimed waits spin
341 <     * faster since they don't need to check times on each spin.
339 >     * The number of times to spin (with randomly interspersed calls
340 >     * to Thread.yield) on multiprocessor before blocking when a node
341 >     * is apparently the first waiter in the queue.  See above for
342 >     * explanation. Must be a power of two. The value is empirically
343 >     * derived -- it works pretty well across a variety of processors,
344 >     * numbers of CPUs, and OSes.
345       */
346 <    static final int maxUntimedSpins = maxTimedSpins * 16;
346 >    private static final int FRONT_SPINS   = 1 << 7;
347  
348      /**
349 <     * The number of nanoseconds for which it is faster to spin
350 <     * rather than to use timed park. A rough estimate suffices.
349 >     * The number of times to spin before blocking when a node is
350 >     * preceded by another node that is apparently spinning.  Also
351 >     * serves as an increment to FRONT_SPINS on phase changes, and as
352 >     * base average frequency for yielding during spins. Must be a
353 >     * power of two.
354       */
355 <    static final long spinForTimeoutThreshold = 1000L;
355 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
356  
357      /**
358 <     * Node class for LinkedTransferQueue. Opportunistically
359 <     * subclasses from AtomicReference to represent item. Uses Object,
360 <     * not E, to allow setting item to "this" after use, to avoid
361 <     * garbage retention. Similarly, setting the next field to this is
362 <     * used as sentinel that node is off list.
363 <     */
364 <    static final class QNode extends AtomicReference<Object> {
365 <        volatile QNode next;
366 <        volatile Thread waiter;       // to control park/unpark
367 <        final boolean isData;
368 <        QNode(Object item, boolean isData) {
369 <            super(item);
358 >     * Queue nodes. Uses Object, not E, for items to allow forgetting
359 >     * them after use.  Relies heavily on Unsafe mechanics to minimize
360 >     * unnecessary ordering constraints: Writes that intrinsically
361 >     * precede or follow CASes use simple relaxed forms.  Other
362 >     * cleanups use releasing/lazy writes.
363 >     */
364 >    static final class Node<E> {
365 >        final boolean isData;   // false if this is a request node
366 >        volatile Object item;   // initially non-null if isData; CASed to match
367 >        volatile Node<E> next;
368 >        volatile Thread waiter; // null until waiting
369 >
370 >        // CAS methods for fields
371 >        final boolean casNext(Node<E> cmp, Node<E> val) {
372 >            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
373 >        }
374 >
375 >        final boolean casItem(Object cmp, Object val) {
376 >            assert cmp == null || cmp.getClass() != Node.class;
377 >            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
378 >        }
379 >
380 >        /**
381 >         * Creates a new node. Uses relaxed write because item can only
382 >         * be seen if followed by CAS.
383 >         */
384 >        Node(E item, boolean isData) {
385 >            UNSAFE.putObject(this, itemOffset, item); // relaxed write
386              this.isData = isData;
387          }
388  
389 <        static final AtomicReferenceFieldUpdater<QNode, QNode>
390 <            nextUpdater = AtomicReferenceFieldUpdater.newUpdater
391 <            (QNode.class, QNode.class, "next");
389 >        /**
390 >         * Links node to itself to avoid garbage retention.  Called
391 >         * only after CASing head field, so uses relaxed write.
392 >         */
393 >        final void forgetNext() {
394 >            UNSAFE.putObject(this, nextOffset, this);
395 >        }
396  
397 <        boolean casNext(QNode cmp, QNode val) {
398 <            return nextUpdater.compareAndSet(this, cmp, val);
397 >        /**
398 >         * Sets item to self (using a releasing/lazy write) and waiter
399 >         * to null, to avoid garbage retention after extracting or
400 >         * cancelling.
401 >         */
402 >        final void forgetContents() {
403 >            UNSAFE.putOrderedObject(this, itemOffset, this);
404 >            UNSAFE.putOrderedObject(this, waiterOffset, null);
405          }
122    }
406  
407 <    /**
408 <     * Padded version of AtomicReference used for head, tail and
409 <     * cleanMe, to alleviate contention across threads CASing one vs
410 <     * the other.
411 <     */
412 <    static final class PaddedAtomicReference<T> extends AtomicReference<T> {
413 <        // enough padding for 64bytes with 4byte refs
414 <        Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
415 <        PaddedAtomicReference(T r) { super(r); }
407 >        /**
408 >         * Returns true if this node has been matched, including the
409 >         * case of artificial matches due to cancellation.
410 >         */
411 >        final boolean isMatched() {
412 >            Object x = item;
413 >            return (x == this) || ((x == null) == isData);
414 >        }
415 >
416 >        /**
417 >         * Returns true if this is an unmatched request node.
418 >         */
419 >        final boolean isUnmatchedRequest() {
420 >            return !isData && item == null;
421 >        }
422 >
423 >        /**
424 >         * Returns true if a node with the given mode cannot be
425 >         * appended to this node because this node is unmatched and
426 >         * has opposite data mode.
427 >         */
428 >        final boolean cannotPrecede(boolean haveData) {
429 >            boolean d = isData;
430 >            Object x;
431 >            return d != haveData && (x = item) != this && (x != null) == d;
432 >        }
433 >
434 >        /**
435 >         * Tries to artificially match a data node -- used by remove.
436 >         */
437 >        final boolean tryMatchData() {
438 >            assert isData;
439 >            Object x = item;
440 >            if (x != null && x != this && casItem(x, null)) {
441 >                LockSupport.unpark(waiter);
442 >                return true;
443 >            }
444 >            return false;
445 >        }
446 >
447 >        // Unsafe mechanics
448 >        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
449 >        private static final long nextOffset =
450 >            objectFieldOffset(UNSAFE, "next", Node.class);
451 >        private static final long itemOffset =
452 >            objectFieldOffset(UNSAFE, "item", Node.class);
453 >        private static final long waiterOffset =
454 >            objectFieldOffset(UNSAFE, "waiter", Node.class);
455 >
456 >        private static final long serialVersionUID = -3375979862319811754L;
457      }
458  
459 +    /** head of the queue; null until first enqueue */
460 +    transient volatile Node<E> head;
461  
462 <    /** head of the queue */
463 <    private transient final PaddedAtomicReference<QNode> head;
138 <    /** tail of the queue */
139 <    private transient final PaddedAtomicReference<QNode> tail;
462 >    /** predecessor of dangling unspliceable node */
463 >    private transient volatile Node<E> cleanMe; // decl here reduces contention
464  
465 <    /**
466 <     * Reference to a cancelled node that might not yet have been
143 <     * unlinked from queue because it was the last inserted node
144 <     * when it cancelled.
145 <     */
146 <    private transient final PaddedAtomicReference<QNode> cleanMe;
465 >    /** tail of the queue; null until first append */
466 >    private transient volatile Node<E> tail;
467  
468 <    /**
469 <     * Tries to cas nh as new head; if successful, unlink
470 <     * old head's next node to avoid garbage retention.
468 >    // CAS methods for fields
469 >    private boolean casTail(Node<E> cmp, Node<E> val) {
470 >        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
471 >    }
472 >
473 >    private boolean casHead(Node<E> cmp, Node<E> val) {
474 >        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
475 >    }
476 >
477 >    private boolean casCleanMe(Node<E> cmp, Node<E> val) {
478 >        return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
479 >    }
480 >
481 >    /*
482 >     * Possible values for "how" argument in xfer method. Beware that
483 >     * the order of assigned numerical values matters.
484       */
485 <    private boolean advanceHead(QNode h, QNode nh) {
486 <        if (h == head.get() && head.compareAndSet(h, nh)) {
487 <            h.next = h; // forget old next
488 <            return true;
489 <        }
490 <        return false;
485 >    private static final int NOW     = 0; // for untimed poll, tryTransfer
486 >    private static final int ASYNC   = 1; // for offer, put, add
487 >    private static final int SYNC    = 2; // for transfer, take
488 >    private static final int TIMEOUT = 3; // for timed poll, tryTransfer
489 >
490 >    @SuppressWarnings("unchecked")
491 >    static <E> E cast(Object item) {
492 >        assert item == null || item.getClass() != Node.class;
493 >        return (E) item;
494      }
495  
496      /**
497 <     * Puts or takes an item. Used for most queue operations (except
498 <     * poll() and tryTransfer()). See the similar code in
499 <     * SynchronousQueue for detailed explanation.
500 <     * @param e the item or if null, signifies that this is a take
501 <     * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
497 >     * Implements all queuing methods. See above for explanation.
498 >     *
499 >     * @param e the item or null for take
500 >     * @param haveData true if this is a put, else a take
501 >     * @param how NOW, ASYNC, SYNC, or TIMEOUT
502       * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
503 <     * @return an item, or null on failure
503 >     * @return an item if matched, else e
504 >     * @throws NullPointerException if haveData mode but e is null
505       */
506 <    private Object xfer(Object e, int mode, long nanos) {
507 <        boolean isData = (e != null);
508 <        QNode s = null;
509 <        final PaddedAtomicReference<QNode> head = this.head;
173 <        final PaddedAtomicReference<QNode> tail = this.tail;
506 >    private E xfer(E e, boolean haveData, int how, long nanos) {
507 >        if (haveData && (e == null))
508 >            throw new NullPointerException();
509 >        Node<E> s = null;                     // the node to append, if needed
510  
511 <        for (;;) {
176 <            QNode t = tail.get();
177 <            QNode h = head.get();
511 >        retry: for (;;) {                     // restart on append race
512  
513 <            if (t != null && (t == h || t.isData == isData)) {
514 <                if (s == null)
515 <                    s = new QNode(e, isData);
516 <                QNode last = t.next;
517 <                if (last != null) {
518 <                    if (t == tail.get())
519 <                        tail.compareAndSet(t, last);
520 <                }
521 <                else if (t.casNext(null, s)) {
522 <                    tail.compareAndSet(t, s);
523 <                    return awaitFulfill(t, s, e, mode, nanos);
513 >            for (Node<E> h = head, p = h; p != null;) {
514 >                // find & match first node
515 >                boolean isData = p.isData;
516 >                Object item = p.item;
517 >                if (item != p && (item != null) == isData) { // unmatched
518 >                    if (isData == haveData)   // can't match
519 >                        break;
520 >                    if (p.casItem(item, e)) { // match
521 >                        for (Node<E> q = p; q != h;) {
522 >                            Node<E> n = q.next; // update head by 2
523 >                            if (n != null)    // unless singleton
524 >                                q = n;
525 >                            if (head == h && casHead(h, q)) {
526 >                                h.forgetNext();
527 >                                break;
528 >                            }                 // advance and retry
529 >                            if ((h = head)   == null ||
530 >                                (q = h.next) == null || !q.isMatched())
531 >                                break;        // unless slack < 2
532 >                        }
533 >                        LockSupport.unpark(p.waiter);
534 >                        return this.<E>cast(item);
535 >                    }
536                  }
537 +                Node<E> n = p.next;
538 +                p = (p != n) ? n : (h = head); // Use head if p offlist
539              }
540  
541 <            else if (h != null) {
542 <                QNode first = h.next;
543 <                if (t == tail.get() && first != null &&
544 <                    advanceHead(h, first)) {
545 <                    Object x = first.get();
546 <                    if (x != first && first.compareAndSet(x, e)) {
547 <                        LockSupport.unpark(first.waiter);
548 <                        return isData? e : x;
201 <                    }
202 <                }
541 >            if (how >= ASYNC) {               // No matches available
542 >                if (s == null)
543 >                    s = new Node<E>(e, haveData);
544 >                Node<E> pred = tryAppend(s, haveData);
545 >                if (pred == null)
546 >                    continue retry;           // lost race vs opposite mode
547 >                if (how >= SYNC)
548 >                    return awaitMatch(s, pred, e, how, nanos);
549              }
550 +            return e; // not waiting
551          }
552      }
553  
207
554      /**
555 <     * Version of xfer for poll() and tryTransfer, which
556 <     * simplifies control paths both here and in xfer
557 <     */
558 <    private Object fulfill(Object e) {
559 <        boolean isData = (e != null);
560 <        final PaddedAtomicReference<QNode> head = this.head;
561 <        final PaddedAtomicReference<QNode> tail = this.tail;
562 <
563 <        for (;;) {
564 <            QNode t = tail.get();
565 <            QNode h = head.get();
566 <
567 <            if (t != null && (t == h || t.isData == isData)) {
568 <                QNode last = t.next;
223 <                if (t == tail.get()) {
224 <                    if (last != null)
225 <                        tail.compareAndSet(t, last);
226 <                    else
227 <                        return null;
228 <                }
555 >     * Tries to append node s as tail.
556 >     *
557 >     * @param s the node to append
558 >     * @param haveData true if appending in data mode
559 >     * @return null on failure due to losing race with append in
560 >     * different mode, else s's predecessor, or s itself if no
561 >     * predecessor
562 >     */
563 >    private Node<E> tryAppend(Node<E> s, boolean haveData) {
564 >        for (Node<E> t = tail, p = t;;) { // move p to last node and append
565 >            Node<E> n, u;                     // temps for reads of next & tail
566 >            if (p == null && (p = head) == null) {
567 >                if (casHead(null, s))
568 >                    return s;                 // initialize
569              }
570 <            else if (h != null) {
571 <                QNode first = h.next;
572 <                if (t == tail.get() &&
573 <                    first != null &&
574 <                    advanceHead(h, first)) {
575 <                    Object x = first.get();
576 <                    if (x != first && first.compareAndSet(x, e)) {
577 <                        LockSupport.unpark(first.waiter);
578 <                        return isData? e : x;
579 <                    }
570 >            else if (p.cannotPrecede(haveData))
571 >                return null;                  // lost race vs opposite mode
572 >            else if ((n = p.next) != null)    // not last; keep traversing
573 >                p = p != t && t != (u = tail) ? (t = u) : // stale tail
574 >                    (p != n) ? n : null;      // restart if off list
575 >            else if (!p.casNext(null, s))
576 >                p = p.next;                   // re-read on CAS failure
577 >            else {
578 >                if (p != t) {                 // update if slack now >= 2
579 >                    while ((tail != t || !casTail(t, s)) &&
580 >                           (t = tail)   != null &&
581 >                           (s = t.next) != null && // advance and retry
582 >                           (s = s.next) != null && s != t);
583                  }
584 +                return p;
585              }
586          }
587      }
588  
589      /**
590 <     * Spins/blocks until node s is fulfilled or caller gives up,
247 <     * depending on wait mode.
590 >     * Spins/yields/blocks until node s is matched or caller gives up.
591       *
249     * @param pred the predecessor of waiting node
592       * @param s the waiting node
593 +     * @param pred the predecessor of s, or s itself if it has no
594 +     * predecessor, or null if unknown (the null case does not occur
595 +     * in any current calls but may in possible future extensions)
596       * @param e the comparison value for checking match
597 <     * @param mode mode
597 >     * @param how either SYNC or TIMEOUT
598       * @param nanos timeout value
599 <     * @return matched item, or s if cancelled
599 >     * @return matched item, or e if unmatched on interrupt or timeout
600       */
601 <    private Object awaitFulfill(QNode pred, QNode s, Object e,
602 <                                int mode, long nanos) {
258 <        if (mode == NOWAIT)
259 <            return null;
260 <
261 <        long lastTime = (mode == TIMEOUT)? System.nanoTime() : 0;
601 >    private E awaitMatch(Node<E> s, Node<E> pred, E e, int how, long nanos) {
602 >        long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
603          Thread w = Thread.currentThread();
604 <        int spins = -1; // set to desired spin count below
604 >        int spins = -1; // initialized after first item and cancel checks
605 >        ThreadLocalRandom randomYields = null; // bound if needed
606 >
607          for (;;) {
608 <            if (w.isInterrupted())
609 <                s.compareAndSet(e, s);
610 <            Object x = s.get();
611 <            if (x != e) {                 // Node was matched or cancelled
612 <                advanceHead(pred, s);     // unlink if head
613 <                if (x == s) {              // was cancelled
614 <                    clean(pred, s);
615 <                    return null;
616 <                }
617 <                else if (x != null) {
618 <                    s.set(s);             // avoid garbage retention
619 <                    return x;
620 <                }
621 <                else
622 <                    return e;
608 >            Object item = s.item;
609 >            if (item != e) {                  // matched
610 >                assert item != s;
611 >                s.forgetContents();           // avoid garbage
612 >                return this.<E>cast(item);
613 >            }
614 >            if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
615 >                    s.casItem(e, s)) {       // cancel
616 >                unsplice(pred, s);
617 >                return e;
618 >            }
619 >
620 >            if (spins < 0) {                  // establish spins at/near front
621 >                if ((spins = spinsFor(pred, s.isData)) > 0)
622 >                    randomYields = ThreadLocalRandom.current();
623 >            }
624 >            else if (spins > 0) {             // spin
625 >                if (--spins == 0)
626 >                    shortenHeadPath();        // reduce slack before blocking
627 >                else if (randomYields.nextInt(CHAINED_SPINS) == 0)
628 >                    Thread.yield();           // occasionally yield
629              }
630 <            if (mode == TIMEOUT) {
630 >            else if (s.waiter == null) {
631 >                s.waiter = w;                 // request unpark then recheck
632 >            }
633 >            else if (how == TIMEOUT) {
634                  long now = System.nanoTime();
635 <                nanos -= now - lastTime;
635 >                if ((nanos -= now - lastTime) > 0)
636 >                    LockSupport.parkNanos(this, nanos);
637                  lastTime = now;
285                if (nanos <= 0) {
286                    s.compareAndSet(e, s); // try to cancel
287                    continue;
288                }
638              }
639 <            if (spins < 0) {
291 <                QNode h = head.get(); // only spin if at head
292 <                spins = ((h != null && h.next == s) ?
293 <                         (mode == TIMEOUT?
294 <                          maxTimedSpins : maxUntimedSpins) : 0);
295 <            }
296 <            if (spins > 0)
297 <                --spins;
298 <            else if (s.waiter == null)
299 <                s.waiter = w;
300 <            else if (mode != TIMEOUT) {
639 >            else {
640                  LockSupport.park(this);
641                  s.waiter = null;
642 <                spins = -1;
304 <            }
305 <            else if (nanos > spinForTimeoutThreshold) {
306 <                LockSupport.parkNanos(this, nanos);
307 <                s.waiter = null;
308 <                spins = -1;
642 >                spins = -1;                   // spin if front upon wakeup
643              }
644          }
645      }
646  
647      /**
648 <     * Returns validated tail for use in cleaning methods
648 >     * Returns spin/yield value for a node with given predecessor and
649 >     * data mode. See above for explanation.
650       */
651 <    private QNode getValidatedTail() {
652 <        for (;;) {
653 <            QNode h = head.get();
654 <            QNode first = h.next;
655 <            if (first != null && first.next == first) { // help advance
656 <                advanceHead(h, first);
657 <                continue;
658 <            }
659 <            QNode t = tail.get();
660 <            QNode last = t.next;
661 <            if (t == tail.get()) {
662 <                if (last != null)
663 <                    tail.compareAndSet(t, last); // help advance
664 <                else
665 <                    return t;
651 >    private static int spinsFor(Node<?> pred, boolean haveData) {
652 >        if (MP && pred != null) {
653 >            if (pred.isData != haveData)      // phase change
654 >                return FRONT_SPINS + CHAINED_SPINS;
655 >            if (pred.isMatched())             // probably at front
656 >                return FRONT_SPINS;
657 >            if (pred.waiter == null)          // pred apparently spinning
658 >                return CHAINED_SPINS;
659 >        }
660 >        return 0;
661 >    }
662 >
663 >    /**
664 >     * Tries (once) to unsplice nodes between head and first unmatched
665 >     * or trailing node; failing on contention.
666 >     */
667 >    private void shortenHeadPath() {
668 >        Node<E> h, hn, p, q;
669 >        if ((p = h = head) != null && h.isMatched() &&
670 >            (q = hn = h.next) != null) {
671 >            Node<E> n;
672 >            while ((n = q.next) != q) {
673 >                if (n == null || !q.isMatched()) {
674 >                    if (hn != q && h.next == hn)
675 >                        h.casNext(hn, q);
676 >                    break;
677 >                }
678 >                p = q;
679 >                q = n;
680              }
681          }
682      }
683  
684 +    /* -------------- Traversal methods -------------- */
685 +
686 +    /**
687 +     * Returns the first unmatched node of the given mode, or null if
688 +     * none.  Used by methods isEmpty, hasWaitingConsumer.
689 +     */
690 +    private Node<E> firstOfMode(boolean data) {
691 +        for (Node<E> p = head; p != null; ) {
692 +            if (!p.isMatched())
693 +                return (p.isData == data) ? p : null;
694 +            Node<E> n = p.next;
695 +            p = (n != p) ? n : head;
696 +        }
697 +        return null;
698 +    }
699 +
700      /**
701 <     * Gets rid of cancelled node s with original predecessor pred.
702 <     * @param pred predecessor of cancelled node
703 <     * @param s the cancelled node
704 <     */
705 <    private void clean(QNode pred, QNode s) {
706 <        Thread w = s.waiter;
707 <        if (w != null) {             // Wake up thread
708 <            s.waiter = null;
709 <            if (w != Thread.currentThread())
710 <                LockSupport.unpark(w);
701 >     * Returns the item in the first unmatched node with isData; or
702 >     * null if none.  Used by peek.
703 >     */
704 >    private E firstDataItem() {
705 >        for (Node<E> p = head; p != null; ) {
706 >            boolean isData = p.isData;
707 >            Object item = p.item;
708 >            if (item != p && (item != null) == isData)
709 >                return isData ? this.<E>cast(item) : null;
710 >            Node<E> n = p.next;
711 >            p = (n != p) ? n : head;
712 >        }
713 >        return null;
714 >    }
715 >
716 >    /**
717 >     * Traverses and counts unmatched nodes of the given mode.
718 >     * Used by methods size and getWaitingConsumerCount.
719 >     */
720 >    private int countOfMode(boolean data) {
721 >        int count = 0;
722 >        for (Node<E> p = head; p != null; ) {
723 >            if (!p.isMatched()) {
724 >                if (p.isData != data)
725 >                    return 0;
726 >                if (++count == Integer.MAX_VALUE) // saturated
727 >                    break;
728 >            }
729 >            Node<E> n = p.next;
730 >            if (n != p)
731 >                p = n;
732 >            else {
733 >                count = 0;
734 >                p = head;
735 >            }
736 >        }
737 >        return count;
738 >    }
739 >
740 >    final class Itr implements Iterator<E> {
741 >        private Node<E> nextNode;   // next node to return item for
742 >        private E nextItem;         // the corresponding item
743 >        private Node<E> lastRet;    // last returned node, to support remove
744 >        private Node<E> lastPred;   // predecessor to unlink lastRet
745 >
746 >        /**
747 >         * Moves to next node after prev, or first node if prev null.
748 >         */
749 >        private void advance(Node<E> prev) {
750 >            lastPred = lastRet;
751 >            lastRet = prev;
752 >            Node<E> p;
753 >            if (prev == null || (p = prev.next) == prev)
754 >                p = head;
755 >            while (p != null) {
756 >                Object item = p.item;
757 >                if (p.isData) {
758 >                    if (item != null && item != p) {
759 >                        nextItem = LinkedTransferQueue.this.<E>cast(item);
760 >                        nextNode = p;
761 >                        return;
762 >                    }
763 >                }
764 >                else if (item == null)
765 >                    break;
766 >                Node<E> n = p.next;
767 >                p = (n != p) ? n : head;
768 >            }
769 >            nextNode = null;
770 >        }
771 >
772 >        Itr() {
773 >            advance(null);
774 >        }
775 >
776 >        public final boolean hasNext() {
777 >            return nextNode != null;
778          }
779 +
780 +        public final E next() {
781 +            Node<E> p = nextNode;
782 +            if (p == null) throw new NoSuchElementException();
783 +            E e = nextItem;
784 +            advance(p);
785 +            return e;
786 +        }
787 +
788 +        public final void remove() {
789 +            Node<E> p = lastRet;
790 +            if (p == null) throw new IllegalStateException();
791 +            findAndRemoveDataNode(lastPred, p);
792 +        }
793 +    }
794 +
795 +    /* -------------- Removal methods -------------- */
796 +
797 +    /**
798 +     * Unsplices (now or later) the given deleted/cancelled node with
799 +     * the given predecessor.
800 +     *
801 +     * @param pred predecessor of node to be unspliced
802 +     * @param s the node to be unspliced
803 +     */
804 +    private void unsplice(Node<E> pred, Node<E> s) {
805 +        s.forgetContents(); // clear unneeded fields
806          /*
807           * At any given time, exactly one node on list cannot be
808 <         * deleted -- the last inserted node. To accommodate this, if
809 <         * we cannot delete s, we save its predecessor as "cleanMe",
810 <         * processing the previously saved version first. At least one
811 <         * of node s or the node previously saved can always be
808 >         * unlinked -- the last inserted node. To accommodate this, if
809 >         * we cannot unlink s, we save its predecessor as "cleanMe",
810 >         * processing the previously saved version first. Because only
811 >         * one node in the list can have a null next, at least one of
812 >         * node s or the node previously saved can always be
813           * processed, so this always terminates.
814           */
815 <        while (pred.next == s) {
816 <            QNode oldpred = reclean();  // First, help get rid of cleanMe
817 <            QNode t = getValidatedTail();
818 <            if (s != t) {               // If not tail, try to unsplice
819 <                QNode sn = s.next;      // s.next == s means s already off list
820 <                if (sn == s || pred.casNext(s, sn))
815 >        if (pred != null && pred != s) {
816 >            while (pred.next == s) {
817 >                Node<E> oldpred = (cleanMe == null) ? null : reclean();
818 >                Node<E> n = s.next;
819 >                if (n != null) {
820 >                    if (n != s)
821 >                        pred.casNext(s, n);
822 >                    break;
823 >                }
824 >                if (oldpred == pred ||      // Already saved
825 >                    ((oldpred == null || oldpred.next == s) &&
826 >                     casCleanMe(oldpred, pred))) {
827                      break;
828 +                }
829              }
363            else if (oldpred == pred || // Already saved
364                     (oldpred == null && cleanMe.compareAndSet(null, pred)))
365                break;                  // Postpone cleaning
830          }
831      }
832  
833      /**
834 <     * Tries to unsplice the cancelled node held in cleanMe that was
835 <     * previously uncleanable because it was at tail.
834 >     * Tries to unsplice the deleted/cancelled node held in cleanMe
835 >     * that was previously uncleanable because it was at tail.
836 >     *
837       * @return current cleanMe node (or null)
838       */
839 <    private QNode reclean() {
839 >    private Node<E> reclean() {
840          /*
841 <         * cleanMe is, or at one time was, predecessor of cancelled
842 <         * node s that was the tail so could not be unspliced.  If s
841 >         * cleanMe is, or at one time was, predecessor of a cancelled
842 >         * node s that was the tail so could not be unspliced.  If it
843           * is no longer the tail, try to unsplice if necessary and
844           * make cleanMe slot available.  This differs from similar
845 <         * code in clean() because we must check that pred still
846 <         * points to a cancelled node that must be unspliced -- if
847 <         * not, we can (must) clear cleanMe without unsplicing.
848 <         * This can loop only due to contention on casNext or
384 <         * clearing cleanMe.
845 >         * code in unsplice() because we must check that pred still
846 >         * points to a matched node that can be unspliced -- if not,
847 >         * we can (must) clear cleanMe without unsplicing.  This can
848 >         * loop only due to contention.
849           */
850 <        QNode pred;
851 <        while ((pred = cleanMe.get()) != null) {
852 <            QNode t = getValidatedTail();
853 <            QNode s = pred.next;
854 <            if (s != t) {
855 <                QNode sn;
856 <                if (s == null || s == pred || s.get() != s ||
857 <                    (sn = s.next) == s || pred.casNext(s, sn))
858 <                    cleanMe.compareAndSet(pred, null);
850 >        Node<E> pred;
851 >        while ((pred = cleanMe) != null) {
852 >            Node<E> s = pred.next;
853 >            Node<E> n;
854 >            if (s == null || s == pred || !s.isMatched())
855 >                casCleanMe(pred, null); // already gone
856 >            else if ((n = s.next) != null) {
857 >                if (n != s)
858 >                    pred.casNext(s, n);
859 >                casCleanMe(pred, null);
860              }
861 <            else // s is still tail; cannot clean
861 >            else
862                  break;
863          }
864          return pred;
865      }
866  
867      /**
868 +     * Main implementation of Iterator.remove(). Find
869 +     * and unsplice the given data node.
870 +     * @param possiblePred possible predecessor of s
871 +     * @param s the node to remove
872 +     */
873 +    final void findAndRemoveDataNode(Node<E> possiblePred, Node<E> s) {
874 +        assert s.isData;
875 +        if (s.tryMatchData()) {
876 +            if (possiblePred != null && possiblePred.next == s)
877 +                unsplice(possiblePred, s); // was actual predecessor
878 +            else {
879 +                for (Node<E> pred = null, p = head; p != null; ) {
880 +                    if (p == s) {
881 +                        unsplice(pred, p);
882 +                        break;
883 +                    }
884 +                    if (p.isUnmatchedRequest())
885 +                        break;
886 +                    pred = p;
887 +                    if ((p = p.next) == pred) { // stale
888 +                        pred = null;
889 +                        p = head;
890 +                    }
891 +                }
892 +            }
893 +        }
894 +    }
895 +
896 +    /**
897 +     * Main implementation of remove(Object)
898 +     */
899 +    private boolean findAndRemove(Object e) {
900 +        if (e != null) {
901 +            for (Node<E> pred = null, p = head; p != null; ) {
902 +                Object item = p.item;
903 +                if (p.isData) {
904 +                    if (item != null && item != p && e.equals(item) &&
905 +                        p.tryMatchData()) {
906 +                        unsplice(pred, p);
907 +                        return true;
908 +                    }
909 +                }
910 +                else if (item == null)
911 +                    break;
912 +                pred = p;
913 +                if ((p = p.next) == pred) { // stale
914 +                    pred = null;
915 +                    p = head;
916 +                }
917 +            }
918 +        }
919 +        return false;
920 +    }
921 +
922 +
923 +    /**
924       * Creates an initially empty {@code LinkedTransferQueue}.
925       */
926      public LinkedTransferQueue() {
406        QNode dummy = new QNode(null, false);
407        head = new PaddedAtomicReference<QNode>(dummy);
408        tail = new PaddedAtomicReference<QNode>(dummy);
409        cleanMe = new PaddedAtomicReference<QNode>(null);
927      }
928  
929      /**
930       * Creates a {@code LinkedTransferQueue}
931       * initially containing the elements of the given collection,
932       * added in traversal order of the collection's iterator.
933 +     *
934       * @param c the collection of elements to initially contain
935       * @throws NullPointerException if the specified collection or any
936       *         of its elements are null
# Line 422 | Line 940 | public class LinkedTransferQueue<E> exte
940          addAll(c);
941      }
942  
943 <    public void put(E e) throws InterruptedException {
944 <        if (e == null) throw new NullPointerException();
945 <        if (Thread.interrupted()) throw new InterruptedException();
946 <        xfer(e, NOWAIT, 0);
943 >    /**
944 >     * Inserts the specified element at the tail of this queue.
945 >     * As the queue is unbounded, this method will never block.
946 >     *
947 >     * @throws NullPointerException if the specified element is null
948 >     */
949 >    public void put(E e) {
950 >        xfer(e, true, ASYNC, 0);
951      }
952  
953 <    public boolean offer(E e, long timeout, TimeUnit unit)
954 <        throws InterruptedException {
955 <        if (e == null) throw new NullPointerException();
956 <        if (Thread.interrupted()) throw new InterruptedException();
957 <        xfer(e, NOWAIT, 0);
953 >    /**
954 >     * Inserts the specified element at the tail of this queue.
955 >     * As the queue is unbounded, this method will never block or
956 >     * return {@code false}.
957 >     *
958 >     * @return {@code true} (as specified by
959 >     *  {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
960 >     * @throws NullPointerException if the specified element is null
961 >     */
962 >    public boolean offer(E e, long timeout, TimeUnit unit) {
963 >        xfer(e, true, ASYNC, 0);
964          return true;
965      }
966  
967 +    /**
968 +     * Inserts the specified element at the tail of this queue.
969 +     * As the queue is unbounded, this method will never return {@code false}.
970 +     *
971 +     * @return {@code true} (as specified by
972 +     *         {@link BlockingQueue#offer(Object) BlockingQueue.offer})
973 +     * @throws NullPointerException if the specified element is null
974 +     */
975      public boolean offer(E e) {
976 <        if (e == null) throw new NullPointerException();
441 <        xfer(e, NOWAIT, 0);
976 >        xfer(e, true, ASYNC, 0);
977          return true;
978      }
979  
980 +    /**
981 +     * Inserts the specified element at the tail of this queue.
982 +     * As the queue is unbounded, this method will never throw
983 +     * {@link IllegalStateException} or return {@code false}.
984 +     *
985 +     * @return {@code true} (as specified by {@link Collection#add})
986 +     * @throws NullPointerException if the specified element is null
987 +     */
988 +    public boolean add(E e) {
989 +        xfer(e, true, ASYNC, 0);
990 +        return true;
991 +    }
992 +
993 +    /**
994 +     * Transfers the element to a waiting consumer immediately, if possible.
995 +     *
996 +     * <p>More precisely, transfers the specified element immediately
997 +     * if there exists a consumer already waiting to receive it (in
998 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
999 +     * otherwise returning {@code false} without enqueuing the element.
1000 +     *
1001 +     * @throws NullPointerException if the specified element is null
1002 +     */
1003 +    public boolean tryTransfer(E e) {
1004 +        return xfer(e, true, NOW, 0) == null;
1005 +    }
1006 +
1007 +    /**
1008 +     * Transfers the element to a consumer, waiting if necessary to do so.
1009 +     *
1010 +     * <p>More precisely, transfers the specified element immediately
1011 +     * if there exists a consumer already waiting to receive it (in
1012 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1013 +     * else inserts the specified element at the tail of this queue
1014 +     * and waits until the element is received by a consumer.
1015 +     *
1016 +     * @throws NullPointerException if the specified element is null
1017 +     */
1018      public void transfer(E e) throws InterruptedException {
1019 <        if (e == null) throw new NullPointerException();
1020 <        if (xfer(e, WAIT, 0) == null) {
448 <            Thread.interrupted();
1019 >        if (xfer(e, true, SYNC, 0) != null) {
1020 >            Thread.interrupted(); // failure possible only due to interrupt
1021              throw new InterruptedException();
1022          }
1023      }
1024  
1025 +    /**
1026 +     * Transfers the element to a consumer if it is possible to do so
1027 +     * before the timeout elapses.
1028 +     *
1029 +     * <p>More precisely, transfers the specified element immediately
1030 +     * if there exists a consumer already waiting to receive it (in
1031 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1032 +     * else inserts the specified element at the tail of this queue
1033 +     * and waits until the element is received by a consumer,
1034 +     * returning {@code false} if the specified wait time elapses
1035 +     * before the element can be transferred.
1036 +     *
1037 +     * @throws NullPointerException if the specified element is null
1038 +     */
1039      public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1040          throws InterruptedException {
1041 <        if (e == null) throw new NullPointerException();
456 <        if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
1041 >        if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1042              return true;
1043          if (!Thread.interrupted())
1044              return false;
1045          throw new InterruptedException();
1046      }
1047  
463    public boolean tryTransfer(E e) {
464        if (e == null) throw new NullPointerException();
465        return fulfill(e) != null;
466    }
467
1048      public E take() throws InterruptedException {
1049 <        Object e = xfer(null, WAIT, 0);
1049 >        E e = xfer(null, false, SYNC, 0);
1050          if (e != null)
1051 <            return (E)e;
1051 >            return e;
1052          Thread.interrupted();
1053          throw new InterruptedException();
1054      }
1055  
1056      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1057 <        Object e = xfer(null, TIMEOUT, unit.toNanos(timeout));
1057 >        E e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1058          if (e != null || !Thread.interrupted())
1059 <            return (E)e;
1059 >            return e;
1060          throw new InterruptedException();
1061      }
1062  
1063      public E poll() {
1064 <        return (E)fulfill(null);
1064 >        return xfer(null, false, NOW, 0);
1065      }
1066  
1067 +    /**
1068 +     * @throws NullPointerException     {@inheritDoc}
1069 +     * @throws IllegalArgumentException {@inheritDoc}
1070 +     */
1071      public int drainTo(Collection<? super E> c) {
1072          if (c == null)
1073              throw new NullPointerException();
# Line 498 | Line 1082 | public class LinkedTransferQueue<E> exte
1082          return n;
1083      }
1084  
1085 +    /**
1086 +     * @throws NullPointerException     {@inheritDoc}
1087 +     * @throws IllegalArgumentException {@inheritDoc}
1088 +     */
1089      public int drainTo(Collection<? super E> c, int maxElements) {
1090          if (c == null)
1091              throw new NullPointerException();
# Line 512 | Line 1100 | public class LinkedTransferQueue<E> exte
1100          return n;
1101      }
1102  
515    // Traversal-based methods
516
1103      /**
1104 <     * Return head after performing any outstanding helping steps
1104 >     * Returns an iterator over the elements in this queue in proper
1105 >     * sequence, from head to tail.
1106 >     *
1107 >     * <p>The returned iterator is a "weakly consistent" iterator that
1108 >     * will never throw
1109 >     * {@link ConcurrentModificationException ConcurrentModificationException},
1110 >     * and guarantees to traverse elements as they existed upon
1111 >     * construction of the iterator, and may (but is not guaranteed
1112 >     * to) reflect any modifications subsequent to construction.
1113 >     *
1114 >     * @return an iterator over the elements in this queue in proper sequence
1115       */
520    private QNode traversalHead() {
521        for (;;) {
522            QNode t = tail.get();
523            QNode h = head.get();
524            if (h != null && t != null) {
525                QNode last = t.next;
526                QNode first = h.next;
527                if (t == tail.get()) {
528                    if (last != null)
529                        tail.compareAndSet(t, last);
530                    else if (first != null) {
531                        Object x = first.get();
532                        if (x == first)
533                            advanceHead(h, first);
534                        else
535                            return h;
536                    }
537                    else
538                        return h;
539                }
540            }
541        }
542    }
543
544
1116      public Iterator<E> iterator() {
1117          return new Itr();
1118      }
1119  
549    /**
550     * Iterators. Basic strategy is to traverse list, treating
551     * non-data (i.e., request) nodes as terminating list.
552     * Once a valid data node is found, the item is cached
553     * so that the next call to next() will return it even
554     * if subsequently removed.
555     */
556    class Itr implements Iterator<E> {
557        QNode nextNode;    // Next node to return next
558        QNode currentNode; // last returned node, for remove()
559        QNode prevNode;    // predecessor of last returned node
560        E nextItem;        // Cache of next item, once commited to in next
561
562        Itr() {
563            nextNode = traversalHead();
564            advance();
565        }
566
567        E advance() {
568            prevNode = currentNode;
569            currentNode = nextNode;
570            E x = nextItem;
571
572            QNode p = nextNode.next;
573            for (;;) {
574                if (p == null || !p.isData) {
575                    nextNode = null;
576                    nextItem = null;
577                    return x;
578                }
579                Object item = p.get();
580                if (item != p && item != null) {
581                    nextNode = p;
582                    nextItem = (E)item;
583                    return x;
584                }
585                prevNode = p;
586                p = p.next;
587            }
588        }
589
590        public boolean hasNext() {
591            return nextNode != null;
592        }
593
594        public E next() {
595            if (nextNode == null) throw new NoSuchElementException();
596            return advance();
597        }
598
599        public void remove() {
600            QNode p = currentNode;
601            QNode prev = prevNode;
602            if (prev == null || p == null)
603                throw new IllegalStateException();
604            Object x = p.get();
605            if (x != null && x != p && p.compareAndSet(x, p))
606                clean(prev, p);
607        }
608    }
609
1120      public E peek() {
1121 <        for (;;) {
612 <            QNode h = traversalHead();
613 <            QNode p = h.next;
614 <            if (p == null)
615 <                return null;
616 <            Object x = p.get();
617 <            if (p != x) {
618 <                if (!p.isData)
619 <                    return null;
620 <                if (x != null)
621 <                    return (E)x;
622 <            }
623 <        }
1121 >        return firstDataItem();
1122      }
1123  
1124 +    /**
1125 +     * Returns {@code true} if this queue contains no elements.
1126 +     *
1127 +     * @return {@code true} if this queue contains no elements
1128 +     */
1129      public boolean isEmpty() {
1130 <        for (;;) {
628 <            QNode h = traversalHead();
629 <            QNode p = h.next;
630 <            if (p == null)
631 <                return true;
632 <            Object x = p.get();
633 <            if (p != x) {
634 <                if (!p.isData)
635 <                    return true;
636 <                if (x != null)
637 <                    return false;
638 <            }
639 <        }
1130 >        return firstOfMode(true) == null;
1131      }
1132  
1133      public boolean hasWaitingConsumer() {
1134 <        for (;;) {
644 <            QNode h = traversalHead();
645 <            QNode p = h.next;
646 <            if (p == null)
647 <                return false;
648 <            Object x = p.get();
649 <            if (p != x)
650 <                return !p.isData;
651 <        }
1134 >        return firstOfMode(false) != null;
1135      }
1136  
1137      /**
# Line 664 | Line 1147 | public class LinkedTransferQueue<E> exte
1147       * @return the number of elements in this queue
1148       */
1149      public int size() {
1150 <        int count = 0;
668 <        QNode h = traversalHead();
669 <        for (QNode p = h.next; p != null && p.isData; p = p.next) {
670 <            Object x = p.get();
671 <            if (x != null && x != p) {
672 <                if (++count == Integer.MAX_VALUE) // saturated
673 <                    break;
674 <            }
675 <        }
676 <        return count;
1150 >        return countOfMode(true);
1151      }
1152  
1153      public int getWaitingConsumerCount() {
1154 <        int count = 0;
681 <        QNode h = traversalHead();
682 <        for (QNode p = h.next; p != null && !p.isData; p = p.next) {
683 <            if (p.get() == null) {
684 <                if (++count == Integer.MAX_VALUE)
685 <                    break;
686 <            }
687 <        }
688 <        return count;
1154 >        return countOfMode(false);
1155      }
1156  
1157 +    /**
1158 +     * Removes a single instance of the specified element from this queue,
1159 +     * if it is present.  More formally, removes an element {@code e} such
1160 +     * that {@code o.equals(e)}, if this queue contains one or more such
1161 +     * elements.
1162 +     * Returns {@code true} if this queue contained the specified element
1163 +     * (or equivalently, if this queue changed as a result of the call).
1164 +     *
1165 +     * @param o element to be removed from this queue, if present
1166 +     * @return {@code true} if this queue changed as a result of the call
1167 +     */
1168 +    public boolean remove(Object o) {
1169 +        return findAndRemove(o);
1170 +    }
1171 +
1172 +    /**
1173 +     * Always returns {@code Integer.MAX_VALUE} because a
1174 +     * {@code LinkedTransferQueue} is not capacity constrained.
1175 +     *
1176 +     * @return {@code Integer.MAX_VALUE} (as specified by
1177 +     *         {@link BlockingQueue#remainingCapacity()})
1178 +     */
1179      public int remainingCapacity() {
1180          return Integer.MAX_VALUE;
1181      }
1182  
1183      /**
1184 <     * Save the state to a stream (that is, serialize it).
1184 >     * Saves the state to a stream (that is, serializes it).
1185       *
1186       * @serialData All of the elements (each an {@code E}) in
1187       * the proper order, followed by a null
# Line 702 | Line 1190 | public class LinkedTransferQueue<E> exte
1190      private void writeObject(java.io.ObjectOutputStream s)
1191          throws java.io.IOException {
1192          s.defaultWriteObject();
1193 <        for (Iterator<E> it = iterator(); it.hasNext(); )
1194 <            s.writeObject(it.next());
1193 >        for (E e : this)
1194 >            s.writeObject(e);
1195          // Use trailing null as sentinel
1196          s.writeObject(null);
1197      }
1198  
1199      /**
1200 <     * Reconstitute the Queue instance from a stream (that is,
1201 <     * deserialize it).
1200 >     * Reconstitutes the Queue instance from a stream (that is,
1201 >     * deserializes it).
1202 >     *
1203       * @param s the stream
1204       */
1205      private void readObject(java.io.ObjectInputStream s)
1206          throws java.io.IOException, ClassNotFoundException {
1207          s.defaultReadObject();
719        resetHeadAndTail();
1208          for (;;) {
1209 <            E item = (E)s.readObject();
1209 >            @SuppressWarnings("unchecked") E item = (E) s.readObject();
1210              if (item == null)
1211                  break;
1212              else
# Line 726 | Line 1214 | public class LinkedTransferQueue<E> exte
1214          }
1215      }
1216  
1217 +    // Unsafe mechanics
1218  
1219 <    // Support for resetting head/tail while deserializing
1220 <    private void resetHeadAndTail() {
1221 <        QNode dummy = new QNode(null, false);
1222 <        _unsafe.putObjectVolatile(this, headOffset,
1223 <                                  new PaddedAtomicReference<QNode>(dummy));
1224 <        _unsafe.putObjectVolatile(this, tailOffset,
1225 <                                  new PaddedAtomicReference<QNode>(dummy));
1226 <        _unsafe.putObjectVolatile(this, cleanMeOffset,
1227 <                                  new PaddedAtomicReference<QNode>(null));
1228 <    }
740 <
741 <    // Temporary Unsafe mechanics for preliminary release
742 <    private static final Unsafe _unsafe;
743 <    private static final long headOffset;
744 <    private static final long tailOffset;
745 <    private static final long cleanMeOffset;
746 <    static {
1219 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1220 >    private static final long headOffset =
1221 >        objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1222 >    private static final long tailOffset =
1223 >        objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1224 >    private static final long cleanMeOffset =
1225 >        objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1226 >
1227 >    static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1228 >                                  String field, Class<?> klazz) {
1229          try {
1230 <            if (LinkedTransferQueue.class.getClassLoader() != null) {
1231 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1232 <                f.setAccessible(true);
1233 <                _unsafe = (Unsafe)f.get(null);
1230 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1231 >        } catch (NoSuchFieldException e) {
1232 >            // Convert Exception to corresponding Error
1233 >            NoSuchFieldError error = new NoSuchFieldError(field);
1234 >            error.initCause(e);
1235 >            throw error;
1236 >        }
1237 >    }
1238 >
1239 >    /**
1240 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1241 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1242 >     * into a jdk.
1243 >     *
1244 >     * @return a sun.misc.Unsafe
1245 >     */
1246 >    static sun.misc.Unsafe getUnsafe() {
1247 >        try {
1248 >            return sun.misc.Unsafe.getUnsafe();
1249 >        } catch (SecurityException se) {
1250 >            try {
1251 >                return java.security.AccessController.doPrivileged
1252 >                    (new java.security
1253 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1254 >                        public sun.misc.Unsafe run() throws Exception {
1255 >                            java.lang.reflect.Field f = sun.misc
1256 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1257 >                            f.setAccessible(true);
1258 >                            return (sun.misc.Unsafe) f.get(null);
1259 >                        }});
1260 >            } catch (java.security.PrivilegedActionException e) {
1261 >                throw new RuntimeException("Could not initialize intrinsics",
1262 >                                           e.getCause());
1263              }
753            else
754                _unsafe = Unsafe.getUnsafe();
755            headOffset = _unsafe.objectFieldOffset
756                (LinkedTransferQueue.class.getDeclaredField("head"));
757            tailOffset = _unsafe.objectFieldOffset
758                (LinkedTransferQueue.class.getDeclaredField("tail"));
759            cleanMeOffset = _unsafe.objectFieldOffset
760                (LinkedTransferQueue.class.getDeclaredField("cleanMe"));
761        } catch (Exception e) {
762            throw new RuntimeException("Could not initialize intrinsics", e);
1264          }
1265      }
1266  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines