ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.47 by jsr166, Thu Oct 22 09:06:38 2009 UTC vs.
Revision 1.62 by jsr166, Mon Nov 2 03:01:10 2009 UTC

# Line 105 | Line 105 | public class LinkedTransferQueue<E> exte
105       * successful atomic operation per enq/deq pair. But it also
106       * enables lower cost variants of queue maintenance mechanics. (A
107       * variation of this idea applies even for non-dual queues that
108 <     * support deletion of embedded elements, such as
108 >     * support deletion of interior elements, such as
109       * j.u.c.ConcurrentLinkedQueue.)
110       *
111 <     * Once a node is matched, its item can never again change.  We
112 <     * may thus arrange that the linked list of them contains a prefix
113 <     * of zero or more matched nodes, followed by a suffix of zero or
114 <     * more unmatched nodes. (Note that we allow both the prefix and
115 <     * suffix to be zero length, which in turn means that we do not
116 <     * use a dummy header.)  If we were not concerned with either time
117 <     * or space efficiency, we could correctly perform enqueue and
118 <     * dequeue operations by traversing from a pointer to the initial
119 <     * node; CASing the item of the first unmatched node on match and
120 <     * CASing the next field of the trailing node on appends.  While
121 <     * this would be a terrible idea in itself, it does have the
122 <     * benefit of not requiring ANY atomic updates on head/tail
123 <     * fields.
111 >     * Once a node is matched, its match status can never again
112 >     * change.  We may thus arrange that the linked list of them
113 >     * contain a prefix of zero or more matched nodes, followed by a
114 >     * suffix of zero or more unmatched nodes. (Note that we allow
115 >     * both the prefix and suffix to be zero length, which in turn
116 >     * means that we do not use a dummy header.)  If we were not
117 >     * concerned with either time or space efficiency, we could
118 >     * correctly perform enqueue and dequeue operations by traversing
119 >     * from a pointer to the initial node; CASing the item of the
120 >     * first unmatched node on match and CASing the next field of the
121 >     * trailing node on appends. (Plus some special-casing when
122 >     * initially empty).  While this would be a terrible idea in
123 >     * itself, it does have the benefit of not requiring ANY atomic
124 >     * updates on head/tail fields.
125       *
126       * We introduce here an approach that lies between the extremes of
127 <     * never versus always updating queue (head and tail) pointers
128 <     * that reflects the tradeoff of sometimes requiring extra traversal
129 <     * steps to locate the first and/or last unmatched nodes, versus
130 <     * the reduced overhead and contention of fewer updates to queue
131 <     * pointers. For example, a possible snapshot of a queue is:
127 >     * never versus always updating queue (head and tail) pointers.
128 >     * This offers a tradeoff between sometimes requiring extra
129 >     * traversal steps to locate the first and/or last unmatched
130 >     * nodes, versus the reduced overhead and contention of fewer
131 >     * updates to queue pointers. For example, a possible snapshot of
132 >     * a queue is:
133       *
134       *  head           tail
135       *    |              |
# Line 139 | Line 141 | public class LinkedTransferQueue<E> exte
141       * similarly for "tail") is an empirical matter. We have found
142       * that using very small constants in the range of 1-3 work best
143       * over a range of platforms. Larger values introduce increasing
144 <     * costs of cache misses and risks of long traversal chains.
144 >     * costs of cache misses and risks of long traversal chains, while
145 >     * smaller values increase CAS contention and overhead.
146       *
147       * Dual queues with slack differ from plain M&S dual queues by
148       * virtue of only sometimes updating head or tail pointers when
# Line 158 | Line 161 | public class LinkedTransferQueue<E> exte
161       * targets.  Even when using very small slack values, this
162       * approach works well for dual queues because it allows all
163       * operations up to the point of matching or appending an item
164 <     * (hence potentially releasing another thread) to be read-only,
165 <     * thus not introducing any further contention. As described
166 <     * below, we implement this by performing slack maintenance
167 <     * retries only after these points.
164 >     * (hence potentially allowing progress by another thread) to be
165 >     * read-only, thus not introducing any further contention. As
166 >     * described below, we implement this by performing slack
167 >     * maintenance retries only after these points.
168       *
169       * As an accompaniment to such techniques, traversal overhead can
170       * be further reduced without increasing contention of head
171 <     * pointer updates.  During traversals, threads may sometimes
172 <     * shortcut the "next" link path from the current "head" node to
173 <     * be closer to the currently known first unmatched node. Again,
174 <     * this may be triggered with using thresholds or randomization.
171 >     * pointer updates: Threads may sometimes shortcut the "next" link
172 >     * path from the current "head" node to be closer to the currently
173 >     * known first unmatched node, and similarly for tail. Again, this
174 >     * may be triggered with using thresholds or randomization.
175       *
176       * These ideas must be further extended to avoid unbounded amounts
177       * of costly-to-reclaim garbage caused by the sequential "next"
# Line 196 | Line 199 | public class LinkedTransferQueue<E> exte
199       * mechanics because an update may leave head at a detached node.
200       * And while direct writes are possible for tail updates, they
201       * increase the risk of long retraversals, and hence long garbage
202 <     * chains which can be much more costly than is worthwhile
202 >     * chains, which can be much more costly than is worthwhile
203       * considering that the cost difference of performing a CAS vs
204       * write is smaller when they are not triggered on each operation
205       * (especially considering that writes and CASes equally require
206       * additional GC bookkeeping ("write barriers") that are sometimes
207       * more costly than the writes themselves because of contention).
208       *
209 <     * Removal of internal nodes (due to timed out or interrupted
210 <     * waits, or calls to remove or Iterator.remove) uses a scheme
211 <     * roughly similar to that in Scherer, Lea, and Scott
212 <     * SynchronousQueue. Given a predecessor, we can unsplice any node
213 <     * except the (actual) tail of the queue. To avoid build-up of
214 <     * cancelled trailing nodes, upon a request to remove a trailing
215 <     * node, it is placed in field "cleanMe" to be unspliced later.
209 >     * Removal of interior nodes (due to timed out or interrupted
210 >     * waits, or calls to remove(x) or Iterator.remove) can use a
211 >     * scheme roughly similar to that described in Scherer, Lea, and
212 >     * Scott's SynchronousQueue. Given a predecessor, we can unsplice
213 >     * any node except the (actual) tail of the queue. To avoid
214 >     * build-up of cancelled trailing nodes, upon a request to remove
215 >     * a trailing node, it is placed in field "cleanMe" to be
216 >     * unspliced upon the next call to unsplice any other node.
217 >     * Situations needing such mechanics are not common but do occur
218 >     * in practice; for example when an unbounded series of short
219 >     * timed calls to poll repeatedly time out but never otherwise
220 >     * fall off the list because of an untimed call to take at the
221 >     * front of the queue. Note that maintaining field cleanMe does
222 >     * not otherwise much impact garbage retention even if never
223 >     * cleared by some other call because the held node will
224 >     * eventually either directly or indirectly lead to a self-link
225 >     * once off the list.
226       *
227       * *** Overview of implementation ***
228       *
229 <     * We use a threshold-based approach to updates, with a target
230 <     * slack of two.  The slack value is hard-wired: a path greater
229 >     * We use a threshold-based approach to updates, with a slack
230 >     * threshold of two -- that is, we update head/tail when the
231 >     * current pointer appears to be two or more steps away from the
232 >     * first/last node. The slack value is hard-wired: a path greater
233       * than one is naturally implemented by checking equality of
234       * traversal pointers except when the list has only one element,
235 <     * in which case we keep max slack at one. Avoiding tracking
236 <     * explicit counts across situations slightly simplifies an
235 >     * in which case we keep slack threshold at one. Avoiding tracking
236 >     * explicit counts across method calls slightly simplifies an
237       * already-messy implementation. Using randomization would
238       * probably work better if there were a low-quality dirt-cheap
239       * per-thread one available, but even ThreadLocalRandom is too
240       * heavy for these purposes.
241       *
242 <     * With such a small slack value, path short-circuiting is rarely
243 <     * worthwhile. However, it is used (in awaitMatch) immediately
244 <     * before a waiting thread starts to block, as a final bit of
245 <     * helping at a point when contention with others is extremely
246 <     * unlikely (since if other threads that could release it are
247 <     * operating, then the current thread wouldn't be blocking).
242 >     * With such a small slack threshold value, it is rarely
243 >     * worthwhile to augment this with path short-circuiting; i.e.,
244 >     * unsplicing nodes between head and the first unmatched node, or
245 >     * similarly for tail, rather than advancing head or tail
246 >     * proper. However, it is used (in awaitMatch) immediately before
247 >     * a waiting thread starts to block, as a final bit of helping at
248 >     * a point when contention with others is extremely unlikely
249 >     * (since if other threads that could release it are operating,
250 >     * then the current thread wouldn't be blocking).
251 >     *
252 >     * We allow both the head and tail fields to be null before any
253 >     * nodes are enqueued; initializing upon first append.  This
254 >     * simplifies some other logic, as well as providing more
255 >     * efficient explicit control paths instead of letting JVMs insert
256 >     * implicit NullPointerExceptions when they are null.  While not
257 >     * currently fully implemented, we also leave open the possibility
258 >     * of re-nulling these fields when empty (which is complicated to
259 >     * arrange, for little benefit.)
260       *
261       * All enqueue/dequeue operations are handled by the single method
262       * "xfer" with parameters indicating whether to act as some form
263       * of offer, put, poll, take, or transfer (each possibly with
264       * timeout). The relative complexity of using one monolithic
265       * method outweighs the code bulk and maintenance problems of
266 <     * using nine separate methods.
266 >     * using separate methods for each case.
267       *
268       * Operation consists of up to three phases. The first is
269       * implemented within method xfer, the second in tryAppend, and
# Line 249 | Line 276 | public class LinkedTransferQueue<E> exte
276       *    case matching it and returning, also if necessary updating
277       *    head to one past the matched node (or the node itself if the
278       *    list has no other unmatched nodes). If the CAS misses, then
279 <     *    a retry loops until the slack is at most two. Traversals
280 <     *    also check if the initial head is now off-list, in which
281 <     *    case they start at the new head.
279 >     *    a loop retries advancing head by two steps until either
280 >     *    success or the slack is at most two. By requiring that each
281 >     *    attempt advances head by two (if applicable), we ensure that
282 >     *    the slack does not grow without bound. Traversals also check
283 >     *    if the initial head is now off-list, in which case they
284 >     *    start at the new head.
285       *
286       *    If no candidates are found and the call was untimed
287       *    poll/offer, (argument "how" is NOW) return.
288       *
289       * 2. Try to append a new node (method tryAppend)
290       *
291 <     *    Starting at current tail pointer, try to append a new node
292 <     *    to the list (or if head was null, establish the first
293 <     *    node). Nodes can be appended only if their predecessors are
294 <     *    either already matched or are of the same mode. If we detect
295 <     *    otherwise, then a new node with opposite mode must have been
296 <     *    appended during traversal, so must restart at phase 1. The
297 <     *    traversal and update steps are otherwise similar to phase 1:
298 <     *    Retrying upon CAS misses and checking for staleness.  In
299 <     *    particular, if a self-link is encountered, then we can
300 <     *    safely jump to a node on the list by continuing the
301 <     *    traversal at current head.
291 >     *    Starting at current tail pointer, find the actual last node
292 >     *    and try to append a new node (or if head was null, establish
293 >     *    the first node). Nodes can be appended only if their
294 >     *    predecessors are either already matched or are of the same
295 >     *    mode. If we detect otherwise, then a new node with opposite
296 >     *    mode must have been appended during traversal, so we must
297 >     *    restart at phase 1. The traversal and update steps are
298 >     *    otherwise similar to phase 1: Retrying upon CAS misses and
299 >     *    checking for staleness.  In particular, if a self-link is
300 >     *    encountered, then we can safely jump to a node on the list
301 >     *    by continuing the traversal at current head.
302       *
303       *    On successful append, if the call was ASYNC, return.
304       *
305       * 3. Await match or cancellation (method awaitMatch)
306       *
307       *    Wait for another thread to match node; instead cancelling if
308 <     *    current thread was interrupted or the wait timed out. On
308 >     *    the current thread was interrupted or the wait timed out. On
309       *    multiprocessors, we use front-of-queue spinning: If a node
310       *    appears to be the first unmatched node in the queue, it
311       *    spins a bit before blocking. In either case, before blocking
# Line 290 | Line 320 | public class LinkedTransferQueue<E> exte
320       *    to decide to occasionally perform a Thread.yield. While
321       *    yield has underdefined specs, we assume that might it help,
322       *    and will not hurt in limiting impact of spinning on busy
323 <     *    systems.  We also use much smaller (1/4) spins for nodes
324 <     *    that are not known to be front but whose predecessors have
325 <     *    not blocked -- these "chained" spins avoid artifacts of
323 >     *    systems.  We also use smaller (1/2) spins for nodes that are
324 >     *    not known to be front but whose predecessors have not
325 >     *    blocked -- these "chained" spins avoid artifacts of
326       *    front-of-queue rules which otherwise lead to alternating
327       *    nodes spinning vs blocking. Further, front threads that
328       *    represent phase changes (from data to request node or vice
329       *    versa) compared to their predecessors receive additional
330 <     *    spins, reflecting the longer code path lengths necessary to
331 <     *    release them under contention.
330 >     *    chained spins, reflecting longer paths typically required to
331 >     *    unblock threads during phase changes.
332       */
333  
334      /** True if on multiprocessor */
# Line 306 | Line 336 | public class LinkedTransferQueue<E> exte
336          Runtime.getRuntime().availableProcessors() > 1;
337  
338      /**
339 <     * The number of times to spin (with on average one randomly
340 <     * interspersed call to Thread.yield) on multiprocessor before
341 <     * blocking when a node is apparently the first waiter in the
342 <     * queue.  See above for explanation. Must be a power of two. The
343 <     * value is empirically derived -- it works pretty well across a
344 <     * variety of processors, numbers of CPUs, and OSes.
339 >     * The number of times to spin (with randomly interspersed calls
340 >     * to Thread.yield) on multiprocessor before blocking when a node
341 >     * is apparently the first waiter in the queue.  See above for
342 >     * explanation. Must be a power of two. The value is empirically
343 >     * derived -- it works pretty well across a variety of processors,
344 >     * numbers of CPUs, and OSes.
345       */
346      private static final int FRONT_SPINS   = 1 << 7;
347  
348      /**
349       * The number of times to spin before blocking when a node is
350 <     * preceded by another node that is apparently spinning.
350 >     * preceded by another node that is apparently spinning.  Also
351 >     * serves as an increment to FRONT_SPINS on phase changes, and as
352 >     * base average frequency for yielding during spins. Must be a
353 >     * power of two.
354       */
355 <    private static final int CHAINED_SPINS = FRONT_SPINS >>> 2;
355 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
356  
357      /**
358       * Queue nodes. Uses Object, not E, for items to allow forgetting
# Line 340 | Line 373 | public class LinkedTransferQueue<E> exte
373          }
374  
375          final boolean casItem(Object cmp, Object val) {
376 +            assert cmp == null || cmp.getClass() != Node.class;
377              return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
378          }
379  
# Line 376 | Line 410 | public class LinkedTransferQueue<E> exte
410           */
411          final boolean isMatched() {
412              Object x = item;
413 <            return x == this || (x != null) != isData;
413 >            return (x == this) || ((x == null) == isData);
414 >        }
415 >
416 >        /**
417 >         * Returns true if this is an unmatched request node.
418 >         */
419 >        final boolean isUnmatchedRequest() {
420 >            return !isData && item == null;
421          }
422  
423          /**
# Line 394 | Line 435 | public class LinkedTransferQueue<E> exte
435           * Tries to artificially match a data node -- used by remove.
436           */
437          final boolean tryMatchData() {
438 +            assert isData;
439              Object x = item;
440              if (x != null && x != this && casItem(x, null)) {
441                  LockSupport.unpark(waiter);
# Line 415 | Line 457 | public class LinkedTransferQueue<E> exte
457      }
458  
459      /** head of the queue; null until first enqueue */
460 <    private transient volatile Node head;
460 >    transient volatile Node head;
461  
462      /** predecessor of dangling unspliceable node */
463 <    private transient volatile Node cleanMe; // decl here to reduce contention
463 >    private transient volatile Node cleanMe; // decl here reduces contention
464  
465      /** tail of the queue; null until first append */
466      private transient volatile Node tail;
# Line 445 | Line 487 | public class LinkedTransferQueue<E> exte
487      private static final int SYNC    = 2; // for transfer, take
488      private static final int TIMEOUT = 3; // for timed poll, tryTransfer
489  
490 +    @SuppressWarnings("unchecked")
491 +    static <E> E cast(Object item) {
492 +        assert item == null || item.getClass() != Node.class;
493 +        return (E) item;
494 +    }
495 +
496      /**
497       * Implements all queuing methods. See above for explanation.
498       *
# Line 455 | Line 503 | public class LinkedTransferQueue<E> exte
503       * @return an item if matched, else e
504       * @throws NullPointerException if haveData mode but e is null
505       */
506 <    private Object xfer(Object e, boolean haveData, int how, long nanos) {
506 >    private E xfer(E e, boolean haveData, int how, long nanos) {
507          if (haveData && (e == null))
508              throw new NullPointerException();
509          Node s = null;                        // the node to append, if needed
# Line 469 | Line 517 | public class LinkedTransferQueue<E> exte
517                      if (isData == haveData)   // can't match
518                          break;
519                      if (p.casItem(item, e)) { // match
520 <                        Thread w = p.waiter;
521 <                        while (p != h) {      // update head
522 <                            Node n = p.next;  // by 2 unless singleton
523 <                            if (n != null)
524 <                                p = n;
477 <                            if (head == h && casHead(h, p)) {
520 >                        for (Node q = p; q != h;) {
521 >                            Node n = q.next;  // update head by 2
522 >                            if (n != null)    // unless singleton
523 >                                q = n;
524 >                            if (head == h && casHead(h, q)) {
525                                  h.forgetNext();
526                                  break;
527                              }                 // advance and retry
528                              if ((h = head)   == null ||
529 <                                (p = h.next) == null || !p.isMatched())
529 >                                (q = h.next) == null || !q.isMatched())
530                                  break;        // unless slack < 2
531                          }
532 <                        LockSupport.unpark(w);
533 <                        return item;
532 >                        LockSupport.unpark(p.waiter);
533 >                        return this.<E>cast(item);
534                      }
535                  }
536                  Node n = p.next;
# Line 497 | Line 544 | public class LinkedTransferQueue<E> exte
544                  if (pred == null)
545                      continue retry;           // lost race vs opposite mode
546                  if (how >= SYNC)
547 <                    return awaitMatch(pred, s, e, how, nanos);
547 >                    return awaitMatch(s, pred, e, how, nanos);
548              }
549              return e; // not waiting
550          }
# Line 506 | Line 553 | public class LinkedTransferQueue<E> exte
553      /**
554       * Tries to append node s as tail.
555       *
509     * @param haveData true if appending in data mode
556       * @param s the node to append
557 +     * @param haveData true if appending in data mode
558       * @return null on failure due to losing race with append in
559       * different mode, else s's predecessor, or s itself if no
560       * predecessor
561       */
562      private Node tryAppend(Node s, boolean haveData) {
563 <        for (Node t = tail, p = t;;) { // move p to actual tail and append
563 >        for (Node t = tail, p = t;;) {        // move p to last node and append
564              Node n, u;                        // temps for reads of next & tail
565              if (p == null && (p = head) == null) {
566                  if (casHead(null, s))
# Line 521 | Line 568 | public class LinkedTransferQueue<E> exte
568              }
569              else if (p.cannotPrecede(haveData))
570                  return null;                  // lost race vs opposite mode
571 <            else if ((n = p.next) != null)    // Not tail; keep traversing
571 >            else if ((n = p.next) != null)    // not last; keep traversing
572                  p = p != t && t != (u = tail) ? (t = u) : // stale tail
573                      (p != n) ? n : null;      // restart if off list
574              else if (!p.casNext(null, s))
575                  p = p.next;                   // re-read on CAS failure
576              else {
577 <                if (p != t) {                 // Update if slack now >= 2
577 >                if (p != t) {                 // update if slack now >= 2
578                      while ((tail != t || !casTail(t, s)) &&
579                             (t = tail)   != null &&
580                             (s = t.next) != null && // advance and retry
# Line 541 | Line 588 | public class LinkedTransferQueue<E> exte
588      /**
589       * Spins/yields/blocks until node s is matched or caller gives up.
590       *
544     * @param pred the predecessor of s or s or null if none
591       * @param s the waiting node
592 +     * @param pred the predecessor of s, or s itself if it has no
593 +     * predecessor, or null if unknown (the null case does not occur
594 +     * in any current calls but may in possible future extensions)
595       * @param e the comparison value for checking match
596       * @param how either SYNC or TIMEOUT
597       * @param nanos timeout value
598       * @return matched item, or e if unmatched on interrupt or timeout
599       */
600 <    private Object awaitMatch(Node pred, Node s, Object e,
552 <                              int how, long nanos) {
600 >    private E awaitMatch(Node s, Node pred, E e, int how, long nanos) {
601          long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
602          Thread w = Thread.currentThread();
603          int spins = -1; // initialized after first item and cancel checks
# Line 558 | Line 606 | public class LinkedTransferQueue<E> exte
606          for (;;) {
607              Object item = s.item;
608              if (item != e) {                  // matched
609 +                assert item != s;
610                  s.forgetContents();           // avoid garbage
611 <                return item;
611 >                return this.<E>cast(item);
612              }
613              if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
614 <                     s.casItem(e, s)) {       // cancel
614 >                    s.casItem(e, s)) {       // cancel
615                  unsplice(pred, s);
616                  return e;
617              }
# Line 571 | Line 620 | public class LinkedTransferQueue<E> exte
620                  if ((spins = spinsFor(pred, s.isData)) > 0)
621                      randomYields = ThreadLocalRandom.current();
622              }
623 <            else if (spins > 0) {             // spin, occasionally yield
624 <                if (randomYields.nextInt(FRONT_SPINS) == 0)
625 <                    Thread.yield();
626 <                --spins;
623 >            else if (spins > 0) {             // spin
624 >                if (--spins == 0)
625 >                    shortenHeadPath();        // reduce slack before blocking
626 >                else if (randomYields.nextInt(CHAINED_SPINS) == 0)
627 >                    Thread.yield();           // occasionally yield
628              }
629              else if (s.waiter == null) {
630 <                shortenHeadPath();            // reduce slack before blocking
581 <                s.waiter = w;                 // request unpark
630 >                s.waiter = w;                 // request unpark then recheck
631              }
632              else if (how == TIMEOUT) {
633                  long now = System.nanoTime();
# Line 588 | Line 637 | public class LinkedTransferQueue<E> exte
637              }
638              else {
639                  LockSupport.park(this);
640 +                s.waiter = null;
641                  spins = -1;                   // spin if front upon wakeup
642              }
643          }
# Line 599 | Line 649 | public class LinkedTransferQueue<E> exte
649       */
650      private static int spinsFor(Node pred, boolean haveData) {
651          if (MP && pred != null) {
652 <            boolean predData = pred.isData;
653 <            if (predData != haveData)         // front and phase change
654 <                return FRONT_SPINS + (FRONT_SPINS >>> 1);
605 <            if (predData != (pred.item != null)) // probably at front
652 >            if (pred.isData != haveData)      // phase change
653 >                return FRONT_SPINS + CHAINED_SPINS;
654 >            if (pred.isMatched())             // probably at front
655                  return FRONT_SPINS;
656              if (pred.waiter == null)          // pred apparently spinning
657                  return CHAINED_SPINS;
# Line 634 | Line 683 | public class LinkedTransferQueue<E> exte
683      /* -------------- Traversal methods -------------- */
684  
685      /**
686 +     * Returns the successor of p, or the head node if p.next has been
687 +     * linked to self, which will only be true if traversing with a
688 +     * stale pointer that is now off the list.
689 +     */
690 +    final Node succ(Node p) {
691 +        Node next = p.next;
692 +        return (p == next) ? head : next;
693 +    }
694 +
695 +    /**
696       * Returns the first unmatched node of the given mode, or null if
697       * none.  Used by methods isEmpty, hasWaitingConsumer.
698       */
699 <    private Node firstOfMode(boolean data) {
700 <        for (Node p = head; p != null; ) {
699 >    private Node firstOfMode(boolean isData) {
700 >        for (Node p = head; p != null; p = succ(p)) {
701              if (!p.isMatched())
702 <                return (p.isData == data) ? p : null;
644 <            Node n = p.next;
645 <            p = (n != p) ? n : head;
702 >                return (p.isData == isData) ? p : null;
703          }
704          return null;
705      }
706  
707      /**
708       * Returns the item in the first unmatched node with isData; or
709 <     * null if none. Used by peek.
709 >     * null if none.  Used by peek.
710       */
711 <    private Object firstDataItem() {
712 <        for (Node p = head; p != null; ) {
656 <            boolean isData = p.isData;
711 >    private E firstDataItem() {
712 >        for (Node p = head; p != null; p = succ(p)) {
713              Object item = p.item;
714 <            if (item != p && (item != null) == isData)
715 <                return isData ? item : null;
716 <            Node n = p.next;
717 <            p = (n != p) ? n : head;
714 >            if (p.isData) {
715 >                if (item != null && item != p)
716 >                    return this.<E>cast(item);
717 >            }
718 >            else if (item == null)
719 >                return null;
720          }
721          return null;
722      }
# Line 689 | Line 747 | public class LinkedTransferQueue<E> exte
747  
748      final class Itr implements Iterator<E> {
749          private Node nextNode;   // next node to return item for
750 <        private Object nextItem; // the corresponding item
750 >        private E nextItem;      // the corresponding item
751          private Node lastRet;    // last returned node, to support remove
752 +        private Node lastPred;   // predecessor to unlink lastRet
753  
754          /**
755           * Moves to next node after prev, or first node if prev null.
756           */
757          private void advance(Node prev) {
758 +            lastPred = lastRet;
759              lastRet = prev;
760 <            Node p;
761 <            if (prev == null || (p = prev.next) == prev)
702 <                p = head;
703 <            while (p != null) {
760 >            for (Node p = (prev == null) ? head : succ(prev);
761 >                 p != null; p = succ(p)) {
762                  Object item = p.item;
763                  if (p.isData) {
764                      if (item != null && item != p) {
765 <                        nextItem = item;
765 >                        nextItem = LinkedTransferQueue.this.<E>cast(item);
766                          nextNode = p;
767                          return;
768                      }
769                  }
770                  else if (item == null)
771                      break;
714                Node n = p.next;
715                p = (n != p) ? n : head;
772              }
773              nextNode = null;
774          }
# Line 728 | Line 784 | public class LinkedTransferQueue<E> exte
784          public final E next() {
785              Node p = nextNode;
786              if (p == null) throw new NoSuchElementException();
787 <            Object e = nextItem;
787 >            E e = nextItem;
788              advance(p);
789 <            return (E) e;
789 >            return e;
790          }
791  
792          public final void remove() {
793              Node p = lastRet;
794              if (p == null) throw new IllegalStateException();
795 <            lastRet = null;
740 <            findAndRemoveNode(p);
795 >            findAndRemoveDataNode(lastPred, p);
796          }
797      }
798  
# Line 754 | Line 809 | public class LinkedTransferQueue<E> exte
809          s.forgetContents(); // clear unneeded fields
810          /*
811           * At any given time, exactly one node on list cannot be
812 <         * deleted -- the last inserted node. To accommodate this, if
813 <         * we cannot delete s, we save its predecessor as "cleanMe",
812 >         * unlinked -- the last inserted node. To accommodate this, if
813 >         * we cannot unlink s, we save its predecessor as "cleanMe",
814           * processing the previously saved version first. Because only
815           * one node in the list can have a null next, at least one of
816           * node s or the node previously saved can always be
# Line 771 | Line 826 | public class LinkedTransferQueue<E> exte
826                      break;
827                  }
828                  if (oldpred == pred ||      // Already saved
829 <                    (oldpred == null && casCleanMe(null, pred)))
830 <                    break;                  // Postpone cleaning
829 >                    ((oldpred == null || oldpred.next == s) &&
830 >                     casCleanMe(oldpred, pred))) {
831 >                    break;
832 >                }
833              }
834          }
835      }
# Line 813 | Line 870 | public class LinkedTransferQueue<E> exte
870  
871      /**
872       * Main implementation of Iterator.remove(). Find
873 <     * and unsplice the given node.
873 >     * and unsplice the given data node.
874 >     * @param possiblePred possible predecessor of s
875 >     * @param s the node to remove
876       */
877 <    final void findAndRemoveNode(Node s) {
877 >    final void findAndRemoveDataNode(Node possiblePred, Node s) {
878 >        assert s.isData;
879          if (s.tryMatchData()) {
880 <            Node pred = null;
881 <            Node p = head;
882 <            while (p != null) {
883 <                if (p == s) {
884 <                    unsplice(pred, p);
885 <                    break;
886 <                }
887 <                if (!p.isData && !p.isMatched())
888 <                    break;
889 <                pred = p;
890 <                if ((p = p.next) == pred) { // stale
891 <                    pred = null;
892 <                    p = head;
880 >            if (possiblePred != null && possiblePred.next == s)
881 >                unsplice(possiblePred, s); // was actual predecessor
882 >            else {
883 >                for (Node pred = null, p = head; p != null; ) {
884 >                    if (p == s) {
885 >                        unsplice(pred, p);
886 >                        break;
887 >                    }
888 >                    if (p.isUnmatchedRequest())
889 >                        break;
890 >                    pred = p;
891 >                    if ((p = p.next) == pred) { // stale
892 >                        pred = null;
893 >                        p = head;
894 >                    }
895                  }
896              }
897          }
# Line 840 | Line 902 | public class LinkedTransferQueue<E> exte
902       */
903      private boolean findAndRemove(Object e) {
904          if (e != null) {
905 <            Node pred = null;
844 <            Node p = head;
845 <            while (p != null) {
905 >            for (Node pred = null, p = head; p != null; ) {
906                  Object item = p.item;
907                  if (p.isData) {
908                      if (item != null && item != p && e.equals(item) &&
# Line 854 | Line 914 | public class LinkedTransferQueue<E> exte
914                  else if (item == null)
915                      break;
916                  pred = p;
917 <                if ((p = p.next) == pred) {
917 >                if ((p = p.next) == pred) { // stale
918                      pred = null;
919                      p = head;
920                  }
# Line 990 | Line 1050 | public class LinkedTransferQueue<E> exte
1050      }
1051  
1052      public E take() throws InterruptedException {
1053 <        Object e = xfer(null, false, SYNC, 0);
1053 >        E e = xfer(null, false, SYNC, 0);
1054          if (e != null)
1055 <            return (E)e;
1055 >            return e;
1056          Thread.interrupted();
1057          throw new InterruptedException();
1058      }
1059  
1060      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1061 <        Object e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1061 >        E e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1062          if (e != null || !Thread.interrupted())
1063 <            return (E)e;
1063 >            return e;
1064          throw new InterruptedException();
1065      }
1066  
1067      public E poll() {
1068 <        return (E)xfer(null, false, NOW, 0);
1068 >        return xfer(null, false, NOW, 0);
1069      }
1070  
1071      /**
# Line 1062 | Line 1122 | public class LinkedTransferQueue<E> exte
1122      }
1123  
1124      public E peek() {
1125 <        return (E) firstDataItem();
1125 >        return firstDataItem();
1126      }
1127  
1128      /**
# Line 1158 | Line 1218 | public class LinkedTransferQueue<E> exte
1218          }
1219      }
1220  
1161
1221      // Unsafe mechanics
1222  
1223      private static final sun.misc.Unsafe UNSAFE = getUnsafe();
# Line 1181 | Line 1240 | public class LinkedTransferQueue<E> exte
1240          }
1241      }
1242  
1243 <    private static sun.misc.Unsafe getUnsafe() {
1243 >    /**
1244 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1245 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1246 >     * into a jdk.
1247 >     *
1248 >     * @return a sun.misc.Unsafe
1249 >     */
1250 >    static sun.misc.Unsafe getUnsafe() {
1251          try {
1252              return sun.misc.Unsafe.getUnsafe();
1253          } catch (SecurityException se) {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines