ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.12 by dl, Mon Jan 12 17:16:18 2009 UTC vs.
Revision 1.78 by dl, Thu Sep 9 16:52:49 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import java.util.*;
13 < import java.io.*;
14 < import sun.misc.Unsafe;
15 < import java.lang.reflect.*;
10 >
11 > import java.util.AbstractQueue;
12 > import java.util.Collection;
13 > import java.util.ConcurrentModificationException;
14 > import java.util.Iterator;
15 > import java.util.NoSuchElementException;
16 > import java.util.Queue;
17 > import java.util.concurrent.locks.LockSupport;
18  
19   /**
20 < * An unbounded {@linkplain TransferQueue} based on linked nodes.
20 > * An unbounded {@link TransferQueue} based on linked nodes.
21   * This queue orders elements FIFO (first-in-first-out) with respect
22   * to any given producer.  The <em>head</em> of the queue is that
23   * element that has been on the queue the longest time for some
# Line 44 | Line 47 | import java.lang.reflect.*;
47   * @since 1.7
48   * @author Doug Lea
49   * @param <E> the type of elements held in this collection
47 *
50   */
51   public class LinkedTransferQueue<E> extends AbstractQueue<E>
52      implements TransferQueue<E>, java.io.Serializable {
53      private static final long serialVersionUID = -3223113410248163686L;
54  
55      /*
56 <     * This class extends the approach used in FIFO-mode
57 <     * SynchronousQueues. See the internal documentation, as well as
58 <     * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
59 <     * Lea & Scott
60 <     * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
56 >     * *** Overview of Dual Queues with Slack ***
57 >     *
58 >     * Dual Queues, introduced by Scherer and Scott
59 >     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
60 >     * (linked) queues in which nodes may represent either data or
61 >     * requests.  When a thread tries to enqueue a data node, but
62 >     * encounters a request node, it instead "matches" and removes it;
63 >     * and vice versa for enqueuing requests. Blocking Dual Queues
64 >     * arrange that threads enqueuing unmatched requests block until
65 >     * other threads provide the match. Dual Synchronous Queues (see
66 >     * Scherer, Lea, & Scott
67 >     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
68 >     * additionally arrange that threads enqueuing unmatched data also
69 >     * block.  Dual Transfer Queues support all of these modes, as
70 >     * dictated by callers.
71 >     *
72 >     * A FIFO dual queue may be implemented using a variation of the
73 >     * Michael & Scott (M&S) lock-free queue algorithm
74 >     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
75 >     * It maintains two pointer fields, "head", pointing to a
76 >     * (matched) node that in turn points to the first actual
77 >     * (unmatched) queue node (or null if empty); and "tail" that
78 >     * points to the last node on the queue (or again null if
79 >     * empty). For example, here is a possible queue with four data
80 >     * elements:
81 >     *
82 >     *  head                tail
83 >     *    |                   |
84 >     *    v                   v
85 >     *    M -> U -> U -> U -> U
86 >     *
87 >     * The M&S queue algorithm is known to be prone to scalability and
88 >     * overhead limitations when maintaining (via CAS) these head and
89 >     * tail pointers. This has led to the development of
90 >     * contention-reducing variants such as elimination arrays (see
91 >     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
92 >     * optimistic back pointers (see Ladan-Mozes & Shavit
93 >     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
94 >     * However, the nature of dual queues enables a simpler tactic for
95 >     * improving M&S-style implementations when dual-ness is needed.
96 >     *
97 >     * In a dual queue, each node must atomically maintain its match
98 >     * status. While there are other possible variants, we implement
99 >     * this here as: for a data-mode node, matching entails CASing an
100 >     * "item" field from a non-null data value to null upon match, and
101 >     * vice-versa for request nodes, CASing from null to a data
102 >     * value. (Note that the linearization properties of this style of
103 >     * queue are easy to verify -- elements are made available by
104 >     * linking, and unavailable by matching.) Compared to plain M&S
105 >     * queues, this property of dual queues requires one additional
106 >     * successful atomic operation per enq/deq pair. But it also
107 >     * enables lower cost variants of queue maintenance mechanics. (A
108 >     * variation of this idea applies even for non-dual queues that
109 >     * support deletion of interior elements, such as
110 >     * j.u.c.ConcurrentLinkedQueue.)
111 >     *
112 >     * Once a node is matched, its match status can never again
113 >     * change.  We may thus arrange that the linked list of them
114 >     * contain a prefix of zero or more matched nodes, followed by a
115 >     * suffix of zero or more unmatched nodes. (Note that we allow
116 >     * both the prefix and suffix to be zero length, which in turn
117 >     * means that we do not use a dummy header.)  If we were not
118 >     * concerned with either time or space efficiency, we could
119 >     * correctly perform enqueue and dequeue operations by traversing
120 >     * from a pointer to the initial node; CASing the item of the
121 >     * first unmatched node on match and CASing the next field of the
122 >     * trailing node on appends. (Plus some special-casing when
123 >     * initially empty).  While this would be a terrible idea in
124 >     * itself, it does have the benefit of not requiring ANY atomic
125 >     * updates on head/tail fields.
126 >     *
127 >     * We introduce here an approach that lies between the extremes of
128 >     * never versus always updating queue (head and tail) pointers.
129 >     * This offers a tradeoff between sometimes requiring extra
130 >     * traversal steps to locate the first and/or last unmatched
131 >     * nodes, versus the reduced overhead and contention of fewer
132 >     * updates to queue pointers. For example, a possible snapshot of
133 >     * a queue is:
134 >     *
135 >     *  head           tail
136 >     *    |              |
137 >     *    v              v
138 >     *    M -> M -> U -> U -> U -> U
139 >     *
140 >     * The best value for this "slack" (the targeted maximum distance
141 >     * between the value of "head" and the first unmatched node, and
142 >     * similarly for "tail") is an empirical matter. We have found
143 >     * that using very small constants in the range of 1-3 work best
144 >     * over a range of platforms. Larger values introduce increasing
145 >     * costs of cache misses and risks of long traversal chains, while
146 >     * smaller values increase CAS contention and overhead.
147 >     *
148 >     * Dual queues with slack differ from plain M&S dual queues by
149 >     * virtue of only sometimes updating head or tail pointers when
150 >     * matching, appending, or even traversing nodes; in order to
151 >     * maintain a targeted slack.  The idea of "sometimes" may be
152 >     * operationalized in several ways. The simplest is to use a
153 >     * per-operation counter incremented on each traversal step, and
154 >     * to try (via CAS) to update the associated queue pointer
155 >     * whenever the count exceeds a threshold. Another, that requires
156 >     * more overhead, is to use random number generators to update
157 >     * with a given probability per traversal step.
158 >     *
159 >     * In any strategy along these lines, because CASes updating
160 >     * fields may fail, the actual slack may exceed targeted
161 >     * slack. However, they may be retried at any time to maintain
162 >     * targets.  Even when using very small slack values, this
163 >     * approach works well for dual queues because it allows all
164 >     * operations up to the point of matching or appending an item
165 >     * (hence potentially allowing progress by another thread) to be
166 >     * read-only, thus not introducing any further contention. As
167 >     * described below, we implement this by performing slack
168 >     * maintenance retries only after these points.
169 >     *
170 >     * As an accompaniment to such techniques, traversal overhead can
171 >     * be further reduced without increasing contention of head
172 >     * pointer updates: Threads may sometimes shortcut the "next" link
173 >     * path from the current "head" node to be closer to the currently
174 >     * known first unmatched node, and similarly for tail. Again, this
175 >     * may be triggered with using thresholds or randomization.
176 >     *
177 >     * These ideas must be further extended to avoid unbounded amounts
178 >     * of costly-to-reclaim garbage caused by the sequential "next"
179 >     * links of nodes starting at old forgotten head nodes: As first
180 >     * described in detail by Boehm
181 >     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
182 >     * delays noticing that any arbitrarily old node has become
183 >     * garbage, all newer dead nodes will also be unreclaimed.
184 >     * (Similar issues arise in non-GC environments.)  To cope with
185 >     * this in our implementation, upon CASing to advance the head
186 >     * pointer, we set the "next" link of the previous head to point
187 >     * only to itself; thus limiting the length of connected dead lists.
188 >     * (We also take similar care to wipe out possibly garbage
189 >     * retaining values held in other Node fields.)  However, doing so
190 >     * adds some further complexity to traversal: If any "next"
191 >     * pointer links to itself, it indicates that the current thread
192 >     * has lagged behind a head-update, and so the traversal must
193 >     * continue from the "head".  Traversals trying to find the
194 >     * current tail starting from "tail" may also encounter
195 >     * self-links, in which case they also continue at "head".
196 >     *
197 >     * It is tempting in slack-based scheme to not even use CAS for
198 >     * updates (similarly to Ladan-Mozes & Shavit). However, this
199 >     * cannot be done for head updates under the above link-forgetting
200 >     * mechanics because an update may leave head at a detached node.
201 >     * And while direct writes are possible for tail updates, they
202 >     * increase the risk of long retraversals, and hence long garbage
203 >     * chains, which can be much more costly than is worthwhile
204 >     * considering that the cost difference of performing a CAS vs
205 >     * write is smaller when they are not triggered on each operation
206 >     * (especially considering that writes and CASes equally require
207 >     * additional GC bookkeeping ("write barriers") that are sometimes
208 >     * more costly than the writes themselves because of contention).
209 >     *
210 >     * *** Overview of implementation ***
211 >     *
212 >     * We use a threshold-based approach to updates, with a slack
213 >     * threshold of two -- that is, we update head/tail when the
214 >     * current pointer appears to be two or more steps away from the
215 >     * first/last node. The slack value is hard-wired: a path greater
216 >     * than one is naturally implemented by checking equality of
217 >     * traversal pointers except when the list has only one element,
218 >     * in which case we keep slack threshold at one. Avoiding tracking
219 >     * explicit counts across method calls slightly simplifies an
220 >     * already-messy implementation. Using randomization would
221 >     * probably work better if there were a low-quality dirt-cheap
222 >     * per-thread one available, but even ThreadLocalRandom is too
223 >     * heavy for these purposes.
224 >     *
225 >     * With such a small slack threshold value, it is not worthwhile
226 >     * to augment this with path short-circuiting (i.e., unsplicing
227 >     * interior nodes) except in the case of cancellation/removal (see
228 >     * below).
229 >     *
230 >     * We allow both the head and tail fields to be null before any
231 >     * nodes are enqueued; initializing upon first append.  This
232 >     * simplifies some other logic, as well as providing more
233 >     * efficient explicit control paths instead of letting JVMs insert
234 >     * implicit NullPointerExceptions when they are null.  While not
235 >     * currently fully implemented, we also leave open the possibility
236 >     * of re-nulling these fields when empty (which is complicated to
237 >     * arrange, for little benefit.)
238 >     *
239 >     * All enqueue/dequeue operations are handled by the single method
240 >     * "xfer" with parameters indicating whether to act as some form
241 >     * of offer, put, poll, take, or transfer (each possibly with
242 >     * timeout). The relative complexity of using one monolithic
243 >     * method outweighs the code bulk and maintenance problems of
244 >     * using separate methods for each case.
245 >     *
246 >     * Operation consists of up to three phases. The first is
247 >     * implemented within method xfer, the second in tryAppend, and
248 >     * the third in method awaitMatch.
249 >     *
250 >     * 1. Try to match an existing node
251 >     *
252 >     *    Starting at head, skip already-matched nodes until finding
253 >     *    an unmatched node of opposite mode, if one exists, in which
254 >     *    case matching it and returning, also if necessary updating
255 >     *    head to one past the matched node (or the node itself if the
256 >     *    list has no other unmatched nodes). If the CAS misses, then
257 >     *    a loop retries advancing head by two steps until either
258 >     *    success or the slack is at most two. By requiring that each
259 >     *    attempt advances head by two (if applicable), we ensure that
260 >     *    the slack does not grow without bound. Traversals also check
261 >     *    if the initial head is now off-list, in which case they
262 >     *    start at the new head.
263 >     *
264 >     *    If no candidates are found and the call was untimed
265 >     *    poll/offer, (argument "how" is NOW) return.
266 >     *
267 >     * 2. Try to append a new node (method tryAppend)
268 >     *
269 >     *    Starting at current tail pointer, find the actual last node
270 >     *    and try to append a new node (or if head was null, establish
271 >     *    the first node). Nodes can be appended only if their
272 >     *    predecessors are either already matched or are of the same
273 >     *    mode. If we detect otherwise, then a new node with opposite
274 >     *    mode must have been appended during traversal, so we must
275 >     *    restart at phase 1. The traversal and update steps are
276 >     *    otherwise similar to phase 1: Retrying upon CAS misses and
277 >     *    checking for staleness.  In particular, if a self-link is
278 >     *    encountered, then we can safely jump to a node on the list
279 >     *    by continuing the traversal at current head.
280 >     *
281 >     *    On successful append, if the call was ASYNC, return.
282 >     *
283 >     * 3. Await match or cancellation (method awaitMatch)
284 >     *
285 >     *    Wait for another thread to match node; instead cancelling if
286 >     *    the current thread was interrupted or the wait timed out. On
287 >     *    multiprocessors, we use front-of-queue spinning: If a node
288 >     *    appears to be the first unmatched node in the queue, it
289 >     *    spins a bit before blocking. In either case, before blocking
290 >     *    it tries to unsplice any nodes between the current "head"
291 >     *    and the first unmatched node.
292 >     *
293 >     *    Front-of-queue spinning vastly improves performance of
294 >     *    heavily contended queues. And so long as it is relatively
295 >     *    brief and "quiet", spinning does not much impact performance
296 >     *    of less-contended queues.  During spins threads check their
297 >     *    interrupt status and generate a thread-local random number
298 >     *    to decide to occasionally perform a Thread.yield. While
299 >     *    yield has underdefined specs, we assume that might it help,
300 >     *    and will not hurt in limiting impact of spinning on busy
301 >     *    systems.  We also use smaller (1/2) spins for nodes that are
302 >     *    not known to be front but whose predecessors have not
303 >     *    blocked -- these "chained" spins avoid artifacts of
304 >     *    front-of-queue rules which otherwise lead to alternating
305 >     *    nodes spinning vs blocking. Further, front threads that
306 >     *    represent phase changes (from data to request node or vice
307 >     *    versa) compared to their predecessors receive additional
308 >     *    chained spins, reflecting longer paths typically required to
309 >     *    unblock threads during phase changes.
310 >     *
311 >     *
312 >     * ** Unlinking removed interior nodes **
313 >     *
314 >     * In addition to minimizing garbage retention via self-linking
315 >     * described above, we also unlink removed interior nodes. These
316 >     * may arise due to timed out or interrupted waits, or calls to
317 >     * remove(x) or Iterator.remove.  Normally, given a node that was
318 >     * at one time known to be the predecessor of some node s that is
319 >     * to be removed, we can unsplice s by CASing the next field of
320 >     * its predecessor if it still points to s (otherwise s must
321 >     * already have been removed or is now offlist). But there are two
322 >     * situations in which we cannot guarantee to make node s
323 >     * unreachable in this way: (1) If s is the trailing node of list
324 >     * (i.e., with null next), then it is pinned as the target node
325 >     * for appends, so can only be removed later after other nodes are
326 >     * appended. (2) We cannot necessarily unlink s given a
327 >     * predecessor node that is matched (including the case of being
328 >     * cancelled): the predecessor may already be unspliced, in which
329 >     * case some previous reachable node may still point to s.
330 >     * (For further explanation see Herlihy & Shavit "The Art of
331 >     * Multiprocessor Programming" chapter 9).  Although, in both
332 >     * cases, we can rule out the need for further action if either s
333 >     * or its predecessor are (or can be made to be) at, or fall off
334 >     * from, the head of list.
335 >     *
336 >     * Without taking these into account, it would be possible for an
337 >     * unbounded number of supposedly removed nodes to remain
338 >     * reachable.  Situations leading to such buildup are uncommon but
339 >     * can occur in practice; for example when a series of short timed
340 >     * calls to poll repeatedly time out but never otherwise fall off
341 >     * the list because of an untimed call to take at the front of the
342 >     * queue.
343       *
344 <     * The main extension is to provide different Wait modes for the
345 <     * main "xfer" method that puts or takes items.  These don't
346 <     * impact the basic dual-queue logic, but instead control whether
347 <     * or how threads block upon insertion of request or data nodes
348 <     * into the dual queue. It also uses slightly different
349 <     * conventions for tracking whether nodes are off-list or
350 <     * cancelled.
344 >     * When these cases arise, rather than always retraversing the
345 >     * entire list to find an actual predecessor to unlink (which
346 >     * won't help for case (1) anyway), we record a conservative
347 >     * estimate of possible unsplice failures (in "sweepVotes").
348 >     * We trigger a full sweep when the estimate exceeds a threshold
349 >     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
350 >     * removal failures to tolerate before sweeping through, unlinking
351 >     * cancelled nodes that were not unlinked upon initial removal.
352 >     * We perform sweeps by the thread hitting threshold (rather than
353 >     * background threads or by spreading work to other threads)
354 >     * because in the main contexts in which removal occurs, the
355 >     * caller is already timed-out, cancelled, or performing a
356 >     * potentially O(n) operation (e.g. remove(x)), none of which are
357 >     * time-critical enough to warrant the overhead that alternatives
358 >     * would impose on other threads.
359 >     *
360 >     * Because the sweepVotes estimate is conservative, and because
361 >     * nodes become unlinked "naturally" as they fall off the head of
362 >     * the queue, and because we allow votes to accumulate even while
363 >     * sweeps are in progress, there are typically significantly fewer
364 >     * such nodes than estimated.  Choice of a threshold value
365 >     * balances the likelihood of wasted effort and contention, versus
366 >     * providing a worst-case bound on retention of interior nodes in
367 >     * quiescent queues. The value defined below was chosen
368 >     * empirically to balance these under various timeout scenarios.
369 >     *
370 >     * Note that we cannot self-link unlinked interior nodes during
371 >     * sweeps. However, the associated garbage chains terminate when
372 >     * some successor ultimately falls off the head of the list and is
373 >     * self-linked.
374       */
375  
376 <    // Wait modes for xfer method
377 <    static final int NOWAIT  = 0;
378 <    static final int TIMEOUT = 1;
72 <    static final int WAIT    = 2;
73 <
74 <    /** The number of CPUs, for spin control */
75 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
376 >    /** True if on multiprocessor */
377 >    private static final boolean MP =
378 >        Runtime.getRuntime().availableProcessors() > 1;
379  
380      /**
381 <     * The number of times to spin before blocking in timed waits.
382 <     * The value is empirically derived -- it works well across a
383 <     * variety of processors and OSes. Empirically, the best value
384 <     * seems not to vary with number of CPUs (beyond 2) so is just
385 <     * a constant.
381 >     * The number of times to spin (with randomly interspersed calls
382 >     * to Thread.yield) on multiprocessor before blocking when a node
383 >     * is apparently the first waiter in the queue.  See above for
384 >     * explanation. Must be a power of two. The value is empirically
385 >     * derived -- it works pretty well across a variety of processors,
386 >     * numbers of CPUs, and OSes.
387       */
388 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
388 >    private static final int FRONT_SPINS   = 1 << 7;
389  
390      /**
391 <     * The number of times to spin before blocking in untimed waits.
392 <     * This is greater than timed value because untimed waits spin
393 <     * faster since they don't need to check times on each spin.
391 >     * The number of times to spin before blocking when a node is
392 >     * preceded by another node that is apparently spinning.  Also
393 >     * serves as an increment to FRONT_SPINS on phase changes, and as
394 >     * base average frequency for yielding during spins. Must be a
395 >     * power of two.
396       */
397 <    static final int maxUntimedSpins = maxTimedSpins * 16;
397 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
398  
399      /**
400 <     * The number of nanoseconds for which it is faster to spin
401 <     * rather than to use timed park. A rough estimate suffices.
400 >     * The maximum number of estimated removal failures (sweepVotes)
401 >     * to tolerate before sweeping through the queue unlinking
402 >     * cancelled nodes that were not unlinked upon initial
403 >     * removal. See above for explanation. The value must be at least
404 >     * two to avoid useless sweeps when removing trailing nodes.
405       */
406 <    static final long spinForTimeoutThreshold = 1000L;
406 >    static final int SWEEP_THRESHOLD = 32;
407  
408      /**
409 <     * Node class for LinkedTransferQueue. Opportunistically
410 <     * subclasses from AtomicReference to represent item. Uses Object,
411 <     * not E, to allow setting item to "this" after use, to avoid
412 <     * garbage retention. Similarly, setting the next field to this is
413 <     * used as sentinel that node is off list.
414 <     */
415 <    static final class QNode extends AtomicReference<Object> {
416 <        volatile QNode next;
417 <        volatile Thread waiter;       // to control park/unpark
418 <        final boolean isData;
419 <        QNode(Object item, boolean isData) {
420 <            super(item);
409 >     * Queue nodes. Uses Object, not E, for items to allow forgetting
410 >     * them after use.  Relies heavily on Unsafe mechanics to minimize
411 >     * unnecessary ordering constraints: Writes that are intrinsically
412 >     * ordered wrt other accesses or CASes use simple relaxed forms.
413 >     */
414 >    static final class Node {
415 >        final boolean isData;   // false if this is a request node
416 >        volatile Object item;   // initially non-null if isData; CASed to match
417 >        volatile Node next;
418 >        volatile Thread waiter; // null until waiting
419 >
420 >        // CAS methods for fields
421 >        final boolean casNext(Node cmp, Node val) {
422 >            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
423 >        }
424 >
425 >        final boolean casItem(Object cmp, Object val) {
426 >            //            assert cmp == null || cmp.getClass() != Node.class;
427 >            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
428 >        }
429 >
430 >        /**
431 >         * Constructs a new node.  Uses relaxed write because item can
432 >         * only be seen after publication via casNext.
433 >         */
434 >        Node(Object item, boolean isData) {
435 >            UNSAFE.putObject(this, itemOffset, item); // relaxed write
436              this.isData = isData;
437          }
438  
439 <        static final AtomicReferenceFieldUpdater<QNode, QNode>
440 <            nextUpdater = AtomicReferenceFieldUpdater.newUpdater
441 <            (QNode.class, QNode.class, "next");
439 >        /**
440 >         * Links node to itself to avoid garbage retention.  Called
441 >         * only after CASing head field, so uses relaxed write.
442 >         */
443 >        final void forgetNext() {
444 >            UNSAFE.putObject(this, nextOffset, this);
445 >        }
446  
447 <        boolean casNext(QNode cmp, QNode val) {
448 <            return nextUpdater.compareAndSet(this, cmp, val);
447 >        /**
448 >         * Sets item to self and waiter to null, to avoid garbage
449 >         * retention after matching or cancelling. Uses relaxed writes
450 >         * because order is already constrained in the only calling
451 >         * contexts: item is forgotten only after volatile/atomic
452 >         * mechanics that extract items.  Similarly, clearing waiter
453 >         * follows either CAS or return from park (if ever parked;
454 >         * else we don't care).
455 >         */
456 >        final void forgetContents() {
457 >            UNSAFE.putObject(this, itemOffset, this);
458 >            UNSAFE.putObject(this, waiterOffset, null);
459          }
122    }
460  
461 <    /**
462 <     * Padded version of AtomicReference used for head, tail and
463 <     * cleanMe, to alleviate contention across threads CASing one vs
464 <     * the other.
465 <     */
466 <    static final class PaddedAtomicReference<T> extends AtomicReference<T> {
467 <        // enough padding for 64bytes with 4byte refs
468 <        Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
469 <        PaddedAtomicReference(T r) { super(r); }
461 >        /**
462 >         * Returns true if this node has been matched, including the
463 >         * case of artificial matches due to cancellation.
464 >         */
465 >        final boolean isMatched() {
466 >            Object x = item;
467 >            return (x == this) || ((x == null) == isData);
468 >        }
469 >
470 >        /**
471 >         * Returns true if this is an unmatched request node.
472 >         */
473 >        final boolean isUnmatchedRequest() {
474 >            return !isData && item == null;
475 >        }
476 >
477 >        /**
478 >         * Returns true if a node with the given mode cannot be
479 >         * appended to this node because this node is unmatched and
480 >         * has opposite data mode.
481 >         */
482 >        final boolean cannotPrecede(boolean haveData) {
483 >            boolean d = isData;
484 >            Object x;
485 >            return d != haveData && (x = item) != this && (x != null) == d;
486 >        }
487 >
488 >        /**
489 >         * Tries to artificially match a data node -- used by remove.
490 >         */
491 >        final boolean tryMatchData() {
492 >            //            assert isData;
493 >            Object x = item;
494 >            if (x != null && x != this && casItem(x, null)) {
495 >                LockSupport.unpark(waiter);
496 >                return true;
497 >            }
498 >            return false;
499 >        }
500 >
501 >        // Unsafe mechanics
502 >        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
503 >        private static final long nextOffset =
504 >            objectFieldOffset(UNSAFE, "next", Node.class);
505 >        private static final long itemOffset =
506 >            objectFieldOffset(UNSAFE, "item", Node.class);
507 >        private static final long waiterOffset =
508 >            objectFieldOffset(UNSAFE, "waiter", Node.class);
509 >
510 >        private static final long serialVersionUID = -3375979862319811754L;
511      }
512  
513 +    /** head of the queue; null until first enqueue */
514 +    transient volatile Node head;
515  
516 <    /** head of the queue */
517 <    private transient final PaddedAtomicReference<QNode> head;
138 <    /** tail of the queue */
139 <    private transient final PaddedAtomicReference<QNode> tail;
516 >    /** tail of the queue; null until first append */
517 >    private transient volatile Node tail;
518  
519 <    /**
520 <     * Reference to a cancelled node that might not yet have been
143 <     * unlinked from queue because it was the last inserted node
144 <     * when it cancelled.
145 <     */
146 <    private transient final PaddedAtomicReference<QNode> cleanMe;
519 >    /** The number of apparent failures to unsplice removed nodes */
520 >    private transient volatile int sweepVotes;
521  
522 <    /**
523 <     * Tries to cas nh as new head; if successful, unlink
524 <     * old head's next node to avoid garbage retention.
522 >    // CAS methods for fields
523 >    private boolean casTail(Node cmp, Node val) {
524 >        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
525 >    }
526 >
527 >    private boolean casHead(Node cmp, Node val) {
528 >        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
529 >    }
530 >
531 >    private boolean casSweepVotes(int cmp, int val) {
532 >        return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
533 >    }
534 >
535 >    /*
536 >     * Possible values for "how" argument in xfer method.
537       */
538 <    private boolean advanceHead(QNode h, QNode nh) {
539 <        if (h == head.get() && head.compareAndSet(h, nh)) {
540 <            h.next = h; // forget old next
541 <            return true;
542 <        }
543 <        return false;
538 >    private static final int NOW   = 0; // for untimed poll, tryTransfer
539 >    private static final int ASYNC = 1; // for offer, put, add
540 >    private static final int SYNC  = 2; // for transfer, take
541 >    private static final int TIMED = 3; // for timed poll, tryTransfer
542 >
543 >    @SuppressWarnings("unchecked")
544 >    static <E> E cast(Object item) {
545 >        //        assert item == null || item.getClass() != Node.class;
546 >        return (E) item;
547      }
548  
549      /**
550 <     * Puts or takes an item. Used for most queue operations (except
551 <     * poll() and tryTransfer()). See the similar code in
552 <     * SynchronousQueue for detailed explanation.
553 <     * @param e the item or if null, signifies that this is a take
554 <     * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
555 <     * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
556 <     * @return an item, or null on failure
557 <     */
558 <    private Object xfer(Object e, int mode, long nanos) {
559 <        boolean isData = (e != null);
560 <        QNode s = null;
561 <        final PaddedAtomicReference<QNode> head = this.head;
562 <        final PaddedAtomicReference<QNode> tail = this.tail;
550 >     * Implements all queuing methods. See above for explanation.
551 >     *
552 >     * @param e the item or null for take
553 >     * @param haveData true if this is a put, else a take
554 >     * @param how NOW, ASYNC, SYNC, or TIMED
555 >     * @param nanos timeout in nanosecs, used only if mode is TIMED
556 >     * @return an item if matched, else e
557 >     * @throws NullPointerException if haveData mode but e is null
558 >     */
559 >    private E xfer(E e, boolean haveData, int how, long nanos) {
560 >        if (haveData && (e == null))
561 >            throw new NullPointerException();
562 >        Node s = null;                        // the node to append, if needed
563  
564 <        for (;;) {
176 <            QNode t = tail.get();
177 <            QNode h = head.get();
564 >        retry: for (;;) {                     // restart on append race
565  
566 <            if (t != null && (t == h || t.isData == isData)) {
567 <                if (s == null)
568 <                    s = new QNode(e, isData);
569 <                QNode last = t.next;
570 <                if (last != null) {
571 <                    if (t == tail.get())
572 <                        tail.compareAndSet(t, last);
573 <                }
574 <                else if (t.casNext(null, s)) {
575 <                    tail.compareAndSet(t, s);
576 <                    return awaitFulfill(t, s, e, mode, nanos);
566 >            for (Node h = head, p = h; p != null;) { // find & match first node
567 >                boolean isData = p.isData;
568 >                Object item = p.item;
569 >                if (item != p && (item != null) == isData) { // unmatched
570 >                    if (isData == haveData)   // can't match
571 >                        break;
572 >                    if (p.casItem(item, e)) { // match
573 >                        for (Node q = p; q != h;) {
574 >                            Node n = q.next;  // update by 2 unless singleton
575 >                            if (head == h && casHead(h, n == null? q : n)) {
576 >                                h.forgetNext();
577 >                                break;
578 >                            }                 // advance and retry
579 >                            if ((h = head)   == null ||
580 >                                (q = h.next) == null || !q.isMatched())
581 >                                break;        // unless slack < 2
582 >                        }
583 >                        LockSupport.unpark(p.waiter);
584 >                        return this.<E>cast(item);
585 >                    }
586                  }
587 +                Node n = p.next;
588 +                p = (p != n) ? n : (h = head); // Use head if p offlist
589              }
590  
591 <            else if (h != null) {
592 <                QNode first = h.next;
593 <                if (t == tail.get() && first != null &&
594 <                    advanceHead(h, first)) {
595 <                    Object x = first.get();
596 <                    if (x != first && first.compareAndSet(x, e)) {
597 <                        LockSupport.unpark(first.waiter);
598 <                        return isData? e : x;
201 <                    }
202 <                }
591 >            if (how != NOW) {                 // No matches available
592 >                if (s == null)
593 >                    s = new Node(e, haveData);
594 >                Node pred = tryAppend(s, haveData);
595 >                if (pred == null)
596 >                    continue retry;           // lost race vs opposite mode
597 >                if (how != ASYNC)
598 >                    return awaitMatch(s, pred, e, (how == TIMED), nanos);
599              }
600 +            return e; // not waiting
601          }
602      }
603  
207
604      /**
605 <     * Version of xfer for poll() and tryTransfer, which
606 <     * simplifies control paths both here and in xfer
607 <     */
608 <    private Object fulfill(Object e) {
609 <        boolean isData = (e != null);
610 <        final PaddedAtomicReference<QNode> head = this.head;
611 <        final PaddedAtomicReference<QNode> tail = this.tail;
612 <
613 <        for (;;) {
614 <            QNode t = tail.get();
615 <            QNode h = head.get();
616 <
617 <            if (t != null && (t == h || t.isData == isData)) {
618 <                QNode last = t.next;
223 <                if (t == tail.get()) {
224 <                    if (last != null)
225 <                        tail.compareAndSet(t, last);
226 <                    else
227 <                        return null;
228 <                }
605 >     * Tries to append node s as tail.
606 >     *
607 >     * @param s the node to append
608 >     * @param haveData true if appending in data mode
609 >     * @return null on failure due to losing race with append in
610 >     * different mode, else s's predecessor, or s itself if no
611 >     * predecessor
612 >     */
613 >    private Node tryAppend(Node s, boolean haveData) {
614 >        for (Node t = tail, p = t;;) {        // move p to last node and append
615 >            Node n, u;                        // temps for reads of next & tail
616 >            if (p == null && (p = head) == null) {
617 >                if (casHead(null, s))
618 >                    return s;                 // initialize
619              }
620 <            else if (h != null) {
621 <                QNode first = h.next;
622 <                if (t == tail.get() &&
623 <                    first != null &&
624 <                    advanceHead(h, first)) {
625 <                    Object x = first.get();
626 <                    if (x != first && first.compareAndSet(x, e)) {
627 <                        LockSupport.unpark(first.waiter);
628 <                        return isData? e : x;
629 <                    }
620 >            else if (p.cannotPrecede(haveData))
621 >                return null;                  // lost race vs opposite mode
622 >            else if ((n = p.next) != null)    // not last; keep traversing
623 >                p = p != t && t != (u = tail) ? (t = u) : // stale tail
624 >                    (p != n) ? n : null;      // restart if off list
625 >            else if (!p.casNext(null, s))
626 >                p = p.next;                   // re-read on CAS failure
627 >            else {
628 >                if (p != t) {                 // update if slack now >= 2
629 >                    while ((tail != t || !casTail(t, s)) &&
630 >                           (t = tail)   != null &&
631 >                           (s = t.next) != null && // advance and retry
632 >                           (s = s.next) != null && s != t);
633                  }
634 +                return p;
635              }
636          }
637      }
638  
639      /**
640 <     * Spins/blocks until node s is fulfilled or caller gives up,
247 <     * depending on wait mode.
640 >     * Spins/yields/blocks until node s is matched or caller gives up.
641       *
249     * @param pred the predecessor of waiting node
642       * @param s the waiting node
643 +     * @param pred the predecessor of s, or s itself if it has no
644 +     * predecessor, or null if unknown (the null case does not occur
645 +     * in any current calls but may in possible future extensions)
646       * @param e the comparison value for checking match
647 <     * @param mode mode
648 <     * @param nanos timeout value
649 <     * @return matched item, or s if cancelled
650 <     */
651 <    private Object awaitFulfill(QNode pred, QNode s, Object e,
652 <                                int mode, long nanos) {
258 <        if (mode == NOWAIT)
259 <            return null;
260 <
261 <        long lastTime = (mode == TIMEOUT)? System.nanoTime() : 0;
647 >     * @param timed if true, wait only until timeout elapses
648 >     * @param nanos timeout in nanosecs, used only if timed is true
649 >     * @return matched item, or e if unmatched on interrupt or timeout
650 >     */
651 >    private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
652 >        long lastTime = timed ? System.nanoTime() : 0L;
653          Thread w = Thread.currentThread();
654 <        int spins = -1; // set to desired spin count below
654 >        int spins = -1; // initialized after first item and cancel checks
655 >        ThreadLocalRandom randomYields = null; // bound if needed
656 >
657          for (;;) {
658 <            if (w.isInterrupted())
659 <                s.compareAndSet(e, s);
660 <            Object x = s.get();
661 <            if (x != e) {                 // Node was matched or cancelled
662 <                advanceHead(pred, s);     // unlink if head
270 <                if (x == s) {              // was cancelled
271 <                    clean(pred, s);
272 <                    return null;
273 <                }
274 <                else if (x != null) {
275 <                    s.set(s);             // avoid garbage retention
276 <                    return x;
277 <                }
278 <                else
279 <                    return e;
658 >            Object item = s.item;
659 >            if (item != e) {                  // matched
660 >                //                assert item != s;
661 >                s.forgetContents();           // avoid garbage
662 >                return this.<E>cast(item);
663              }
664 <            if (mode == TIMEOUT) {
665 <                long now = System.nanoTime();
666 <                nanos -= now - lastTime;
667 <                lastTime = now;
285 <                if (nanos <= 0) {
286 <                    s.compareAndSet(e, s); // try to cancel
287 <                    continue;
288 <                }
664 >            if ((w.isInterrupted() || (timed && nanos <= 0)) &&
665 >                    s.casItem(e, s)) {        // cancel
666 >                unsplice(pred, s);
667 >                return e;
668              }
669 <            if (spins < 0) {
670 <                QNode h = head.get(); // only spin if at head
671 <                spins = ((h != null && h.next == s) ?
672 <                         (mode == TIMEOUT?
294 <                          maxTimedSpins : maxUntimedSpins) : 0);
669 >
670 >            if (spins < 0) {                  // establish spins at/near front
671 >                if ((spins = spinsFor(pred, s.isData)) > 0)
672 >                    randomYields = ThreadLocalRandom.current();
673              }
674 <            if (spins > 0)
674 >            else if (spins > 0) {             // spin
675                  --spins;
676 <            else if (s.waiter == null)
677 <                s.waiter = w;
678 <            else if (mode != TIMEOUT) {
679 <                LockSupport.park(this);
680 <                s.waiter = null;
303 <                spins = -1;
676 >                if (randomYields.nextInt(CHAINED_SPINS) == 0)
677 >                    Thread.yield();           // occasionally yield
678 >            }
679 >            else if (s.waiter == null) {
680 >                s.waiter = w;                 // request unpark then recheck
681              }
682 <            else if (nanos > spinForTimeoutThreshold) {
683 <                LockSupport.parkNanos(this, nanos);
684 <                s.waiter = null;
685 <                spins = -1;
682 >            else if (timed) {
683 >                long now = System.nanoTime();
684 >                if ((nanos -= now - lastTime) > 0)
685 >                    LockSupport.parkNanos(this, nanos);
686 >                lastTime = now;
687 >            }
688 >            else {
689 >                LockSupport.park(this);
690              }
691          }
692      }
693  
694      /**
695 <     * Returns validated tail for use in cleaning methods
695 >     * Returns spin/yield value for a node with given predecessor and
696 >     * data mode. See above for explanation.
697       */
698 <    private QNode getValidatedTail() {
699 <        for (;;) {
700 <            QNode h = head.get();
701 <            QNode first = h.next;
702 <            if (first != null && first.next == first) { // help advance
703 <                advanceHead(h, first);
704 <                continue;
705 <            }
706 <            QNode t = tail.get();
707 <            QNode last = t.next;
708 <            if (t == tail.get()) {
709 <                if (last != null)
710 <                    tail.compareAndSet(t, last); // help advance
711 <                else
712 <                    return t;
698 >    private static int spinsFor(Node pred, boolean haveData) {
699 >        if (MP && pred != null) {
700 >            if (pred.isData != haveData)      // phase change
701 >                return FRONT_SPINS + CHAINED_SPINS;
702 >            if (pred.isMatched())             // probably at front
703 >                return FRONT_SPINS;
704 >            if (pred.waiter == null)          // pred apparently spinning
705 >                return CHAINED_SPINS;
706 >        }
707 >        return 0;
708 >    }
709 >
710 >    /* -------------- Traversal methods -------------- */
711 >
712 >    /**
713 >     * Returns the successor of p, or the head node if p.next has been
714 >     * linked to self, which will only be true if traversing with a
715 >     * stale pointer that is now off the list.
716 >     */
717 >    final Node succ(Node p) {
718 >        Node next = p.next;
719 >        return (p == next) ? head : next;
720 >    }
721 >
722 >    /**
723 >     * Returns the first unmatched node of the given mode, or null if
724 >     * none.  Used by methods isEmpty, hasWaitingConsumer.
725 >     */
726 >    private Node firstOfMode(boolean isData) {
727 >        for (Node p = head; p != null; p = succ(p)) {
728 >            if (!p.isMatched())
729 >                return (p.isData == isData) ? p : null;
730 >        }
731 >        return null;
732 >    }
733 >
734 >    /**
735 >     * Returns the item in the first unmatched node with isData; or
736 >     * null if none.  Used by peek.
737 >     */
738 >    private E firstDataItem() {
739 >        for (Node p = head; p != null; p = succ(p)) {
740 >            Object item = p.item;
741 >            if (p.isData) {
742 >                if (item != null && item != p)
743 >                    return this.<E>cast(item);
744              }
745 +            else if (item == null)
746 +                return null;
747          }
748 +        return null;
749      }
750  
751      /**
752 <     * Gets rid of cancelled node s with original predecessor pred.
753 <     * @param pred predecessor of cancelled node
754 <     * @param s the cancelled node
755 <     */
756 <    private void clean(QNode pred, QNode s) {
757 <        Thread w = s.waiter;
758 <        if (w != null) {             // Wake up thread
759 <            s.waiter = null;
760 <            if (w != Thread.currentThread())
761 <                LockSupport.unpark(w);
752 >     * Traverses and counts unmatched nodes of the given mode.
753 >     * Used by methods size and getWaitingConsumerCount.
754 >     */
755 >    private int countOfMode(boolean data) {
756 >        int count = 0;
757 >        for (Node p = head; p != null; ) {
758 >            if (!p.isMatched()) {
759 >                if (p.isData != data)
760 >                    return 0;
761 >                if (++count == Integer.MAX_VALUE) // saturated
762 >                    break;
763 >            }
764 >            Node n = p.next;
765 >            if (n != p)
766 >                p = n;
767 >            else {
768 >                count = 0;
769 >                p = head;
770 >            }
771          }
772 <        /*
773 <         * At any given time, exactly one node on list cannot be
774 <         * deleted -- the last inserted node. To accommodate this, if
775 <         * we cannot delete s, we save its predecessor as "cleanMe",
776 <         * processing the previously saved version first. At least one
777 <         * of node s or the node previously saved can always be
778 <         * processed, so this always terminates.
772 >        return count;
773 >    }
774 >
775 >    final class Itr implements Iterator<E> {
776 >        private Node nextNode;   // next node to return item for
777 >        private E nextItem;      // the corresponding item
778 >        private Node lastRet;    // last returned node, to support remove
779 >        private Node lastPred;   // predecessor to unlink lastRet
780 >
781 >        /**
782 >         * Moves to next node after prev, or first node if prev null.
783           */
784 <        while (pred.next == s) {
785 <            QNode oldpred = reclean();  // First, help get rid of cleanMe
786 <            QNode t = getValidatedTail();
787 <            if (s != t) {               // If not tail, try to unsplice
788 <                QNode sn = s.next;      // s.next == s means s already off list
789 <                if (sn == s || pred.casNext(s, sn))
784 >        private void advance(Node prev) {
785 >            lastPred = lastRet;
786 >            lastRet = prev;
787 >            for (Node p = (prev == null) ? head : succ(prev);
788 >                 p != null; p = succ(p)) {
789 >                Object item = p.item;
790 >                if (p.isData) {
791 >                    if (item != null && item != p) {
792 >                        nextItem = LinkedTransferQueue.this.<E>cast(item);
793 >                        nextNode = p;
794 >                        return;
795 >                    }
796 >                }
797 >                else if (item == null)
798                      break;
799              }
800 <            else if (oldpred == pred || // Already saved
801 <                     (oldpred == null && cleanMe.compareAndSet(null, pred)))
802 <                break;                  // Postpone cleaning
800 >            nextNode = null;
801 >        }
802 >
803 >        Itr() {
804 >            advance(null);
805 >        }
806 >
807 >        public final boolean hasNext() {
808 >            return nextNode != null;
809 >        }
810 >
811 >        public final E next() {
812 >            Node p = nextNode;
813 >            if (p == null) throw new NoSuchElementException();
814 >            E e = nextItem;
815 >            advance(p);
816 >            return e;
817 >        }
818 >
819 >        public final void remove() {
820 >            Node p = lastRet;
821 >            if (p == null) throw new IllegalStateException();
822 >            if (p.tryMatchData())
823 >                unsplice(lastPred, p);
824          }
825      }
826  
827 +    /* -------------- Removal methods -------------- */
828 +
829      /**
830 <     * Tries to unsplice the cancelled node held in cleanMe that was
831 <     * previously uncleanable because it was at tail.
832 <     * @return current cleanMe node (or null)
830 >     * Unsplices (now or later) the given deleted/cancelled node with
831 >     * the given predecessor.
832 >     *
833 >     * @param pred a node that was at one time known to be the
834 >     * predecessor of s, or null or s itself if s is/was at head
835 >     * @param s the node to be unspliced
836       */
837 <    private QNode reclean() {
837 >    final void unsplice(Node pred, Node s) {
838 >        s.forgetContents(); // forget unneeded fields
839          /*
840 <         * cleanMe is, or at one time was, predecessor of cancelled
841 <         * node s that was the tail so could not be unspliced.  If s
842 <         * is no longer the tail, try to unsplice if necessary and
843 <         * make cleanMe slot available.  This differs from similar
844 <         * code in clean() because we must check that pred still
381 <         * points to a cancelled node that must be unspliced -- if
382 <         * not, we can (must) clear cleanMe without unsplicing.
383 <         * This can loop only due to contention on casNext or
384 <         * clearing cleanMe.
840 >         * See above for rationale. Briefly: if pred still points to
841 >         * s, try to unlink s.  If s cannot be unlinked, because it is
842 >         * trailing node or pred might be unlinked, and neither pred
843 >         * nor s are head or offlist, add to sweepVotes, and if enough
844 >         * votes have accumulated, sweep.
845           */
846 <        QNode pred;
847 <        while ((pred = cleanMe.get()) != null) {
848 <            QNode t = getValidatedTail();
849 <            QNode s = pred.next;
850 <            if (s != t) {
851 <                QNode sn;
852 <                if (s == null || s == pred || s.get() != s ||
853 <                    (sn = s.next) == s || pred.casNext(s, sn))
854 <                    cleanMe.compareAndSet(pred, null);
846 >        if (pred != null && pred != s && pred.next == s) {
847 >            Node n = s.next;
848 >            if (n == null ||
849 >                (n != s && pred.casNext(s, n) && pred.isMatched())) {
850 >                for (;;) {               // check if at, or could be, head
851 >                    Node h = head;
852 >                    if (h == pred || h == s || h == null)
853 >                        return;          // at head or list empty
854 >                    if (!h.isMatched())
855 >                        break;
856 >                    Node hn = h.next;
857 >                    if (hn == null)
858 >                        return;          // now empty
859 >                    if (hn != h && casHead(h, hn))
860 >                        h.forgetNext();  // advance head
861 >                }
862 >                if (pred.next != pred && s.next != s) { // recheck if offlist
863 >                    for (;;) {           // sweep now if enough votes
864 >                        int v = sweepVotes;
865 >                        if (v < SWEEP_THRESHOLD) {
866 >                            if (casSweepVotes(v, v + 1))
867 >                                break;
868 >                        }
869 >                        else if (casSweepVotes(v, 0)) {
870 >                            sweep();
871 >                            break;
872 >                        }
873 >                    }
874 >                }
875              }
876 <            else // s is still tail; cannot clean
876 >        }
877 >    }
878 >
879 >    /**
880 >     * Unlinks matched (typically cancelled) nodes encountered in a
881 >     * traversal from head.
882 >     */
883 >    private void sweep() {
884 >        for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
885 >            if (p == s)                    // stale
886 >                p = head;
887 >            else if (!s.isMatched())
888 >                p = s;
889 >            else if ((n = s.next) == null || s == n) // trailing node is pinned
890                  break;
891 +            else
892 +                p.casNext(s, n);
893 +        }
894 +    }
895 +
896 +    /**
897 +     * Main implementation of remove(Object)
898 +     */
899 +    private boolean findAndRemove(Object e) {
900 +        if (e != null) {
901 +            for (Node pred = null, p = head; p != null; ) {
902 +                Object item = p.item;
903 +                if (p.isData) {
904 +                    if (item != null && item != p && e.equals(item) &&
905 +                        p.tryMatchData()) {
906 +                        unsplice(pred, p);
907 +                        return true;
908 +                    }
909 +                }
910 +                else if (item == null)
911 +                    break;
912 +                pred = p;
913 +                if ((p = p.next) == pred) { // stale
914 +                    pred = null;
915 +                    p = head;
916 +                }
917 +            }
918          }
919 <        return pred;
919 >        return false;
920      }
921  
922 +
923      /**
924       * Creates an initially empty {@code LinkedTransferQueue}.
925       */
926      public LinkedTransferQueue() {
406        QNode dummy = new QNode(null, false);
407        head = new PaddedAtomicReference<QNode>(dummy);
408        tail = new PaddedAtomicReference<QNode>(dummy);
409        cleanMe = new PaddedAtomicReference<QNode>(null);
927      }
928  
929      /**
930       * Creates a {@code LinkedTransferQueue}
931       * initially containing the elements of the given collection,
932       * added in traversal order of the collection's iterator.
933 +     *
934       * @param c the collection of elements to initially contain
935       * @throws NullPointerException if the specified collection or any
936       *         of its elements are null
# Line 422 | Line 940 | public class LinkedTransferQueue<E> exte
940          addAll(c);
941      }
942  
943 <    public void put(E e) throws InterruptedException {
944 <        if (e == null) throw new NullPointerException();
945 <        if (Thread.interrupted()) throw new InterruptedException();
946 <        xfer(e, NOWAIT, 0);
943 >    /**
944 >     * Inserts the specified element at the tail of this queue.
945 >     * As the queue is unbounded, this method will never block.
946 >     *
947 >     * @throws NullPointerException if the specified element is null
948 >     */
949 >    public void put(E e) {
950 >        xfer(e, true, ASYNC, 0);
951      }
952  
953 <    public boolean offer(E e, long timeout, TimeUnit unit)
954 <        throws InterruptedException {
955 <        if (e == null) throw new NullPointerException();
956 <        if (Thread.interrupted()) throw new InterruptedException();
957 <        xfer(e, NOWAIT, 0);
953 >    /**
954 >     * Inserts the specified element at the tail of this queue.
955 >     * As the queue is unbounded, this method will never block or
956 >     * return {@code false}.
957 >     *
958 >     * @return {@code true} (as specified by
959 >     *  {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
960 >     * @throws NullPointerException if the specified element is null
961 >     */
962 >    public boolean offer(E e, long timeout, TimeUnit unit) {
963 >        xfer(e, true, ASYNC, 0);
964          return true;
965      }
966  
967 +    /**
968 +     * Inserts the specified element at the tail of this queue.
969 +     * As the queue is unbounded, this method will never return {@code false}.
970 +     *
971 +     * @return {@code true} (as specified by
972 +     *         {@link BlockingQueue#offer(Object) BlockingQueue.offer})
973 +     * @throws NullPointerException if the specified element is null
974 +     */
975      public boolean offer(E e) {
976 <        if (e == null) throw new NullPointerException();
977 <        xfer(e, NOWAIT, 0);
976 >        xfer(e, true, ASYNC, 0);
977 >        return true;
978 >    }
979 >
980 >    /**
981 >     * Inserts the specified element at the tail of this queue.
982 >     * As the queue is unbounded, this method will never throw
983 >     * {@link IllegalStateException} or return {@code false}.
984 >     *
985 >     * @return {@code true} (as specified by {@link Collection#add})
986 >     * @throws NullPointerException if the specified element is null
987 >     */
988 >    public boolean add(E e) {
989 >        xfer(e, true, ASYNC, 0);
990          return true;
991      }
992  
993 +    /**
994 +     * Transfers the element to a waiting consumer immediately, if possible.
995 +     *
996 +     * <p>More precisely, transfers the specified element immediately
997 +     * if there exists a consumer already waiting to receive it (in
998 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
999 +     * otherwise returning {@code false} without enqueuing the element.
1000 +     *
1001 +     * @throws NullPointerException if the specified element is null
1002 +     */
1003 +    public boolean tryTransfer(E e) {
1004 +        return xfer(e, true, NOW, 0) == null;
1005 +    }
1006 +
1007 +    /**
1008 +     * Transfers the element to a consumer, waiting if necessary to do so.
1009 +     *
1010 +     * <p>More precisely, transfers the specified element immediately
1011 +     * if there exists a consumer already waiting to receive it (in
1012 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1013 +     * else inserts the specified element at the tail of this queue
1014 +     * and waits until the element is received by a consumer.
1015 +     *
1016 +     * @throws NullPointerException if the specified element is null
1017 +     */
1018      public void transfer(E e) throws InterruptedException {
1019 <        if (e == null) throw new NullPointerException();
1020 <        if (xfer(e, WAIT, 0) == null) {
448 <            Thread.interrupted();
1019 >        if (xfer(e, true, SYNC, 0) != null) {
1020 >            Thread.interrupted(); // failure possible only due to interrupt
1021              throw new InterruptedException();
1022          }
1023      }
1024  
1025 +    /**
1026 +     * Transfers the element to a consumer if it is possible to do so
1027 +     * before the timeout elapses.
1028 +     *
1029 +     * <p>More precisely, transfers the specified element immediately
1030 +     * if there exists a consumer already waiting to receive it (in
1031 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1032 +     * else inserts the specified element at the tail of this queue
1033 +     * and waits until the element is received by a consumer,
1034 +     * returning {@code false} if the specified wait time elapses
1035 +     * before the element can be transferred.
1036 +     *
1037 +     * @throws NullPointerException if the specified element is null
1038 +     */
1039      public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1040          throws InterruptedException {
1041 <        if (e == null) throw new NullPointerException();
456 <        if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
1041 >        if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1042              return true;
1043          if (!Thread.interrupted())
1044              return false;
1045          throw new InterruptedException();
1046      }
1047  
463    public boolean tryTransfer(E e) {
464        if (e == null) throw new NullPointerException();
465        return fulfill(e) != null;
466    }
467
1048      public E take() throws InterruptedException {
1049 <        Object e = xfer(null, WAIT, 0);
1049 >        E e = xfer(null, false, SYNC, 0);
1050          if (e != null)
1051 <            return (E)e;
1051 >            return e;
1052          Thread.interrupted();
1053          throw new InterruptedException();
1054      }
1055  
1056      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1057 <        Object e = xfer(null, TIMEOUT, unit.toNanos(timeout));
1057 >        E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1058          if (e != null || !Thread.interrupted())
1059 <            return (E)e;
1059 >            return e;
1060          throw new InterruptedException();
1061      }
1062  
1063      public E poll() {
1064 <        return (E)fulfill(null);
1064 >        return xfer(null, false, NOW, 0);
1065      }
1066  
1067 +    /**
1068 +     * @throws NullPointerException     {@inheritDoc}
1069 +     * @throws IllegalArgumentException {@inheritDoc}
1070 +     */
1071      public int drainTo(Collection<? super E> c) {
1072          if (c == null)
1073              throw new NullPointerException();
# Line 498 | Line 1082 | public class LinkedTransferQueue<E> exte
1082          return n;
1083      }
1084  
1085 +    /**
1086 +     * @throws NullPointerException     {@inheritDoc}
1087 +     * @throws IllegalArgumentException {@inheritDoc}
1088 +     */
1089      public int drainTo(Collection<? super E> c, int maxElements) {
1090          if (c == null)
1091              throw new NullPointerException();
# Line 512 | Line 1100 | public class LinkedTransferQueue<E> exte
1100          return n;
1101      }
1102  
515    // Traversal-based methods
516
1103      /**
1104 <     * Return head after performing any outstanding helping steps
1104 >     * Returns an iterator over the elements in this queue in proper
1105 >     * sequence, from head to tail.
1106 >     *
1107 >     * <p>The returned iterator is a "weakly consistent" iterator that
1108 >     * will never throw
1109 >     * {@link ConcurrentModificationException ConcurrentModificationException},
1110 >     * and guarantees to traverse elements as they existed upon
1111 >     * construction of the iterator, and may (but is not guaranteed
1112 >     * to) reflect any modifications subsequent to construction.
1113 >     *
1114 >     * @return an iterator over the elements in this queue in proper sequence
1115       */
520    private QNode traversalHead() {
521        for (;;) {
522            QNode t = tail.get();
523            QNode h = head.get();
524            if (h != null && t != null) {
525                QNode last = t.next;
526                QNode first = h.next;
527                if (t == tail.get()) {
528                    if (last != null)
529                        tail.compareAndSet(t, last);
530                    else if (first != null) {
531                        Object x = first.get();
532                        if (x == first)
533                            advanceHead(h, first);
534                        else
535                            return h;
536                    }
537                    else
538                        return h;
539                }
540            }
541        }
542    }
543
544
1116      public Iterator<E> iterator() {
1117          return new Itr();
1118      }
1119  
549    /**
550     * Iterators. Basic strategy is to traverse list, treating
551     * non-data (i.e., request) nodes as terminating list.
552     * Once a valid data node is found, the item is cached
553     * so that the next call to next() will return it even
554     * if subsequently removed.
555     */
556    class Itr implements Iterator<E> {
557        QNode nextNode;    // Next node to return next
558        QNode currentNode; // last returned node, for remove()
559        QNode prevNode;    // predecessor of last returned node
560        E nextItem;        // Cache of next item, once commited to in next
561
562        Itr() {
563            nextNode = traversalHead();
564            advance();
565        }
566
567        E advance() {
568            prevNode = currentNode;
569            currentNode = nextNode;
570            E x = nextItem;
571
572            QNode p = nextNode.next;
573            for (;;) {
574                if (p == null || !p.isData) {
575                    nextNode = null;
576                    nextItem = null;
577                    return x;
578                }
579                Object item = p.get();
580                if (item != p && item != null) {
581                    nextNode = p;
582                    nextItem = (E)item;
583                    return x;
584                }
585                prevNode = p;
586                p = p.next;
587            }
588        }
589
590        public boolean hasNext() {
591            return nextNode != null;
592        }
593
594        public E next() {
595            if (nextNode == null) throw new NoSuchElementException();
596            return advance();
597        }
598
599        public void remove() {
600            QNode p = currentNode;
601            QNode prev = prevNode;
602            if (prev == null || p == null)
603                throw new IllegalStateException();
604            Object x = p.get();
605            if (x != null && x != p && p.compareAndSet(x, p))
606                clean(prev, p);
607        }
608    }
609
1120      public E peek() {
1121 <        for (;;) {
612 <            QNode h = traversalHead();
613 <            QNode p = h.next;
614 <            if (p == null)
615 <                return null;
616 <            Object x = p.get();
617 <            if (p != x) {
618 <                if (!p.isData)
619 <                    return null;
620 <                if (x != null)
621 <                    return (E)x;
622 <            }
623 <        }
1121 >        return firstDataItem();
1122      }
1123  
1124 +    /**
1125 +     * Returns {@code true} if this queue contains no elements.
1126 +     *
1127 +     * @return {@code true} if this queue contains no elements
1128 +     */
1129      public boolean isEmpty() {
1130 <        for (;;) {
1131 <            QNode h = traversalHead();
1132 <            QNode p = h.next;
630 <            if (p == null)
631 <                return true;
632 <            Object x = p.get();
633 <            if (p != x) {
634 <                if (!p.isData)
635 <                    return true;
636 <                if (x != null)
637 <                    return false;
638 <            }
1130 >        for (Node p = head; p != null; p = succ(p)) {
1131 >            if (!p.isMatched())
1132 >                return !p.isData;
1133          }
1134 +        return true;
1135      }
1136  
1137      public boolean hasWaitingConsumer() {
1138 <        for (;;) {
644 <            QNode h = traversalHead();
645 <            QNode p = h.next;
646 <            if (p == null)
647 <                return false;
648 <            Object x = p.get();
649 <            if (p != x)
650 <                return !p.isData;
651 <        }
1138 >        return firstOfMode(false) != null;
1139      }
1140  
1141      /**
# Line 664 | Line 1151 | public class LinkedTransferQueue<E> exte
1151       * @return the number of elements in this queue
1152       */
1153      public int size() {
1154 <        int count = 0;
668 <        QNode h = traversalHead();
669 <        for (QNode p = h.next; p != null && p.isData; p = p.next) {
670 <            Object x = p.get();
671 <            if (x != null && x != p) {
672 <                if (++count == Integer.MAX_VALUE) // saturated
673 <                    break;
674 <            }
675 <        }
676 <        return count;
1154 >        return countOfMode(true);
1155      }
1156  
1157      public int getWaitingConsumerCount() {
1158 <        int count = 0;
681 <        QNode h = traversalHead();
682 <        for (QNode p = h.next; p != null && !p.isData; p = p.next) {
683 <            if (p.get() == null) {
684 <                if (++count == Integer.MAX_VALUE)
685 <                    break;
686 <            }
687 <        }
688 <        return count;
1158 >        return countOfMode(false);
1159      }
1160  
1161 +    /**
1162 +     * Removes a single instance of the specified element from this queue,
1163 +     * if it is present.  More formally, removes an element {@code e} such
1164 +     * that {@code o.equals(e)}, if this queue contains one or more such
1165 +     * elements.
1166 +     * Returns {@code true} if this queue contained the specified element
1167 +     * (or equivalently, if this queue changed as a result of the call).
1168 +     *
1169 +     * @param o element to be removed from this queue, if present
1170 +     * @return {@code true} if this queue changed as a result of the call
1171 +     */
1172 +    public boolean remove(Object o) {
1173 +        return findAndRemove(o);
1174 +    }
1175 +
1176 +    /**
1177 +     * Always returns {@code Integer.MAX_VALUE} because a
1178 +     * {@code LinkedTransferQueue} is not capacity constrained.
1179 +     *
1180 +     * @return {@code Integer.MAX_VALUE} (as specified by
1181 +     *         {@link BlockingQueue#remainingCapacity()})
1182 +     */
1183      public int remainingCapacity() {
1184          return Integer.MAX_VALUE;
1185      }
1186  
1187      /**
1188 <     * Save the state to a stream (that is, serialize it).
1188 >     * Saves the state to a stream (that is, serializes it).
1189       *
1190       * @serialData All of the elements (each an {@code E}) in
1191       * the proper order, followed by a null
# Line 702 | Line 1194 | public class LinkedTransferQueue<E> exte
1194      private void writeObject(java.io.ObjectOutputStream s)
1195          throws java.io.IOException {
1196          s.defaultWriteObject();
1197 <        for (Iterator<E> it = iterator(); it.hasNext(); )
1198 <            s.writeObject(it.next());
1197 >        for (E e : this)
1198 >            s.writeObject(e);
1199          // Use trailing null as sentinel
1200          s.writeObject(null);
1201      }
1202  
1203      /**
1204 <     * Reconstitute the Queue instance from a stream (that is,
1205 <     * deserialize it).
1204 >     * Reconstitutes the Queue instance from a stream (that is,
1205 >     * deserializes it).
1206 >     *
1207       * @param s the stream
1208       */
1209      private void readObject(java.io.ObjectInputStream s)
1210          throws java.io.IOException, ClassNotFoundException {
1211          s.defaultReadObject();
719        resetHeadAndTail();
1212          for (;;) {
1213 <            E item = (E)s.readObject();
1213 >            @SuppressWarnings("unchecked") E item = (E) s.readObject();
1214              if (item == null)
1215                  break;
1216              else
# Line 726 | Line 1218 | public class LinkedTransferQueue<E> exte
1218          }
1219      }
1220  
1221 +    // Unsafe mechanics
1222 +
1223 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1224 +    private static final long headOffset =
1225 +        objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1226 +    private static final long tailOffset =
1227 +        objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1228 +    private static final long sweepVotesOffset =
1229 +        objectFieldOffset(UNSAFE, "sweepVotes", LinkedTransferQueue.class);
1230  
1231 <    // Support for resetting head/tail while deserializing
1232 <    private void resetHeadAndTail() {
732 <        QNode dummy = new QNode(null, false);
733 <        _unsafe.putObjectVolatile(this, headOffset,
734 <                                  new PaddedAtomicReference<QNode>(dummy));
735 <        _unsafe.putObjectVolatile(this, tailOffset,
736 <                                  new PaddedAtomicReference<QNode>(dummy));
737 <        _unsafe.putObjectVolatile(this, cleanMeOffset,
738 <                                  new PaddedAtomicReference<QNode>(null));
739 <    }
740 <
741 <    // Temporary Unsafe mechanics for preliminary release
742 <    private static final Unsafe _unsafe;
743 <    private static final long headOffset;
744 <    private static final long tailOffset;
745 <    private static final long cleanMeOffset;
746 <    static {
1231 >    static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1232 >                                  String field, Class<?> klazz) {
1233          try {
1234 <            if (LinkedTransferQueue.class.getClassLoader() != null) {
1235 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1236 <                f.setAccessible(true);
1237 <                _unsafe = (Unsafe)f.get(null);
1234 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1235 >        } catch (NoSuchFieldException e) {
1236 >            // Convert Exception to corresponding Error
1237 >            NoSuchFieldError error = new NoSuchFieldError(field);
1238 >            error.initCause(e);
1239 >            throw error;
1240 >        }
1241 >    }
1242 >
1243 >    /**
1244 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1245 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1246 >     * into a jdk.
1247 >     *
1248 >     * @return a sun.misc.Unsafe
1249 >     */
1250 >    static sun.misc.Unsafe getUnsafe() {
1251 >        try {
1252 >            return sun.misc.Unsafe.getUnsafe();
1253 >        } catch (SecurityException se) {
1254 >            try {
1255 >                return java.security.AccessController.doPrivileged
1256 >                    (new java.security
1257 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1258 >                        public sun.misc.Unsafe run() throws Exception {
1259 >                            java.lang.reflect.Field f = sun.misc
1260 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1261 >                            f.setAccessible(true);
1262 >                            return (sun.misc.Unsafe) f.get(null);
1263 >                        }});
1264 >            } catch (java.security.PrivilegedActionException e) {
1265 >                throw new RuntimeException("Could not initialize intrinsics",
1266 >                                           e.getCause());
1267              }
753            else
754                _unsafe = Unsafe.getUnsafe();
755            headOffset = _unsafe.objectFieldOffset
756                (LinkedTransferQueue.class.getDeclaredField("head"));
757            tailOffset = _unsafe.objectFieldOffset
758                (LinkedTransferQueue.class.getDeclaredField("tail"));
759            cleanMeOffset = _unsafe.objectFieldOffset
760                (LinkedTransferQueue.class.getDeclaredField("cleanMe"));
761        } catch (Exception e) {
762            throw new RuntimeException("Could not initialize intrinsics", e);
1268          }
1269      }
1270  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines