ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.8 by dl, Fri Oct 3 00:39:48 2008 UTC vs.
Revision 1.22 by jsr166, Thu Jul 23 19:25:45 2009 UTC

# Line 21 | Line 21 | import java.lang.reflect.*;
21   * producer.  The <em>tail</em> of the queue is that element that has
22   * been on the queue the shortest time for some producer.
23   *
24 < * <p>Beware that, unlike in most collections, the <tt>size</tt>
24 > * <p>Beware that, unlike in most collections, the {@code size}
25   * method is <em>NOT</em> a constant-time operation. Because of the
26   * asynchronous nature of these queues, determining the current number
27   * of elements requires a traversal of the elements.
# Line 44 | Line 44 | import java.lang.reflect.*;
44   * @since 1.7
45   * @author Doug Lea
46   * @param <E> the type of elements held in this collection
47 *
47   */
48   public class LinkedTransferQueue<E> extends AbstractQueue<E>
49      implements TransferQueue<E>, java.io.Serializable {
50      private static final long serialVersionUID = -3223113410248163686L;
51  
52      /*
54     * This is still a work in progress...
55     *
53       * This class extends the approach used in FIFO-mode
54       * SynchronousQueues. See the internal documentation, as well as
55       * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
56       * Lea & Scott
57       * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
58       *
59 <     * The main extension is to provide different Wait modes
60 <     * for the main "xfer" method that puts or takes items.
61 <     * These don't impact the basic dual-queue logic, but instead
62 <     * control whether or how threads block upon insertion
63 <     * of request or data nodes into the dual queue.
59 >     * The main extension is to provide different Wait modes for the
60 >     * main "xfer" method that puts or takes items.  These don't
61 >     * impact the basic dual-queue logic, but instead control whether
62 >     * or how threads block upon insertion of request or data nodes
63 >     * into the dual queue. It also uses slightly different
64 >     * conventions for tracking whether nodes are off-list or
65 >     * cancelled.
66       */
67  
68      // Wait modes for xfer method
# Line 81 | Line 80 | public class LinkedTransferQueue<E> exte
80       * seems not to vary with number of CPUs (beyond 2) so is just
81       * a constant.
82       */
83 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
83 >    static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
84  
85      /**
86       * The number of times to spin before blocking in untimed waits.
# Line 97 | Line 96 | public class LinkedTransferQueue<E> exte
96      static final long spinForTimeoutThreshold = 1000L;
97  
98      /**
99 <     * Node class for LinkedTransferQueue. Opportunistically subclasses from
100 <     * AtomicReference to represent item. Uses Object, not E, to allow
101 <     * setting item to "this" after use, to avoid garbage
102 <     * retention. Similarly, setting the next field to this is used as
103 <     * sentinel that node is off list.
99 >     * Node class for LinkedTransferQueue. Opportunistically
100 >     * subclasses from AtomicReference to represent item. Uses Object,
101 >     * not E, to allow setting item to "this" after use, to avoid
102 >     * garbage retention. Similarly, setting the next field to this is
103 >     * used as sentinel that node is off list.
104       */
105      static final class QNode extends AtomicReference<Object> {
106          volatile QNode next;
# Line 116 | Line 115 | public class LinkedTransferQueue<E> exte
115              nextUpdater = AtomicReferenceFieldUpdater.newUpdater
116              (QNode.class, QNode.class, "next");
117  
118 <        boolean casNext(QNode cmp, QNode val) {
118 >        final boolean casNext(QNode cmp, QNode val) {
119              return nextUpdater.compareAndSet(this, cmp, val);
120          }
121 +
122 +        final void clearNext() {
123 +            nextUpdater.lazySet(this, this);
124 +        }
125 +
126      }
127  
128      /**
# Line 151 | Line 155 | public class LinkedTransferQueue<E> exte
155       */
156      private boolean advanceHead(QNode h, QNode nh) {
157          if (h == head.get() && head.compareAndSet(h, nh)) {
158 <            h.next = h; // forget old next
158 >            h.clearNext(); // forget old next
159              return true;
160          }
161          return false;
# Line 159 | Line 163 | public class LinkedTransferQueue<E> exte
163  
164      /**
165       * Puts or takes an item. Used for most queue operations (except
166 <     * poll() and tryTransfer())
166 >     * poll() and tryTransfer()). See the similar code in
167 >     * SynchronousQueue for detailed explanation.
168 >     *
169       * @param e the item or if null, signifies that this is a take
170       * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
171       * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
# Line 196 | Line 202 | public class LinkedTransferQueue<E> exte
202                      Object x = first.get();
203                      if (x != first && first.compareAndSet(x, e)) {
204                          LockSupport.unpark(first.waiter);
205 <                        return isData? e : x;
205 >                        return isData ? e : x;
206                      }
207                  }
208              }
# Line 206 | Line 212 | public class LinkedTransferQueue<E> exte
212  
213      /**
214       * Version of xfer for poll() and tryTransfer, which
215 <     * simplifies control paths both here and in xfer
215 >     * simplifies control paths both here and in xfer.
216       */
217      private Object fulfill(Object e) {
218          boolean isData = (e != null);
# Line 234 | Line 240 | public class LinkedTransferQueue<E> exte
240                      Object x = first.get();
241                      if (x != first && first.compareAndSet(x, e)) {
242                          LockSupport.unpark(first.waiter);
243 <                        return isData? e : x;
243 >                        return isData ? e : x;
244                      }
245                  }
246              }
# Line 257 | Line 263 | public class LinkedTransferQueue<E> exte
263          if (mode == NOWAIT)
264              return null;
265  
266 <        long lastTime = (mode == TIMEOUT)? System.nanoTime() : 0;
266 >        long lastTime = (mode == TIMEOUT) ? System.nanoTime() : 0;
267          Thread w = Thread.currentThread();
268          int spins = -1; // set to desired spin count below
269          for (;;) {
# Line 266 | Line 272 | public class LinkedTransferQueue<E> exte
272              Object x = s.get();
273              if (x != e) {                 // Node was matched or cancelled
274                  advanceHead(pred, s);     // unlink if head
275 <                if (x == s)               // was cancelled
276 <                    return clean(pred, s);
275 >                if (x == s) {             // was cancelled
276 >                    clean(pred, s);
277 >                    return null;
278 >                }
279                  else if (x != null) {
280                      s.set(s);             // avoid garbage retention
281                      return x;
# Line 275 | Line 283 | public class LinkedTransferQueue<E> exte
283                  else
284                      return e;
285              }
278
286              if (mode == TIMEOUT) {
287                  long now = System.nanoTime();
288                  nanos -= now - lastTime;
# Line 288 | Line 295 | public class LinkedTransferQueue<E> exte
295              if (spins < 0) {
296                  QNode h = head.get(); // only spin if at head
297                  spins = ((h != null && h.next == s) ?
298 <                         (mode == TIMEOUT?
298 >                         ((mode == TIMEOUT) ?
299                            maxTimedSpins : maxUntimedSpins) : 0);
300              }
301              if (spins > 0)
# Line 296 | Line 303 | public class LinkedTransferQueue<E> exte
303              else if (s.waiter == null)
304                  s.waiter = w;
305              else if (mode != TIMEOUT) {
306 <                //                LockSupport.park(this);
300 <                LockSupport.park(); // allows run on java5
306 >                LockSupport.park(this);
307                  s.waiter = null;
308                  spins = -1;
309              }
310              else if (nanos > spinForTimeoutThreshold) {
311 <                //                LockSupport.parkNanos(this, nanos);
306 <                LockSupport.parkNanos(nanos);
311 >                LockSupport.parkNanos(this, nanos);
312                  s.waiter = null;
313                  spins = -1;
314              }
# Line 311 | Line 316 | public class LinkedTransferQueue<E> exte
316      }
317  
318      /**
319 +     * Returns validated tail for use in cleaning methods.
320 +     */
321 +    private QNode getValidatedTail() {
322 +        for (;;) {
323 +            QNode h = head.get();
324 +            QNode first = h.next;
325 +            if (first != null && first.next == first) { // help advance
326 +                advanceHead(h, first);
327 +                continue;
328 +            }
329 +            QNode t = tail.get();
330 +            QNode last = t.next;
331 +            if (t == tail.get()) {
332 +                if (last != null)
333 +                    tail.compareAndSet(t, last); // help advance
334 +                else
335 +                    return t;
336 +            }
337 +        }
338 +    }
339 +
340 +    /**
341       * Gets rid of cancelled node s with original predecessor pred.
342 <     * @return null (to simplify use by callers)
342 >     *
343 >     * @param pred predecessor of cancelled node
344 >     * @param s the cancelled node
345       */
346 <    private Object clean(QNode pred, QNode s) {
346 >    private void clean(QNode pred, QNode s) {
347          Thread w = s.waiter;
348          if (w != null) {             // Wake up thread
349              s.waiter = null;
# Line 322 | Line 351 | public class LinkedTransferQueue<E> exte
351                  LockSupport.unpark(w);
352          }
353  
354 <        for (;;) {
355 <            if (pred.next != s) // already cleaned
356 <                return null;
357 <            QNode h = head.get();
358 <            QNode hn = h.next;   // Absorb cancelled first node as head
359 <            if (hn != null && hn.next == hn) {
360 <                advanceHead(h, hn);
361 <                continue;
362 <            }
363 <            QNode t = tail.get();      // Ensure consistent read for tail
364 <            if (t == h)
365 <                return null;
366 <            QNode tn = t.next;
367 <            if (t != tail.get())
368 <                continue;
369 <            if (tn != null) {          // Help advance tail
341 <                tail.compareAndSet(t, tn);
342 <                continue;
343 <            }
344 <            if (s != t) {             // If not tail, try to unsplice
345 <                QNode sn = s.next;
354 >        if (pred == null)
355 >            return;
356 >
357 >        /*
358 >         * At any given time, exactly one node on list cannot be
359 >         * deleted -- the last inserted node. To accommodate this, if
360 >         * we cannot delete s, we save its predecessor as "cleanMe",
361 >         * processing the previously saved version first. At least one
362 >         * of node s or the node previously saved can always be
363 >         * processed, so this always terminates.
364 >         */
365 >        while (pred.next == s) {
366 >            QNode oldpred = reclean();  // First, help get rid of cleanMe
367 >            QNode t = getValidatedTail();
368 >            if (s != t) {               // If not tail, try to unsplice
369 >                QNode sn = s.next;      // s.next == s means s already off list
370                  if (sn == s || pred.casNext(s, sn))
371 <                    return null;
371 >                    break;
372              }
373 <            QNode dp = cleanMe.get();
374 <            if (dp != null) {    // Try unlinking previous cancelled node
375 <                QNode d = dp.next;
376 <                QNode dn;
377 <                if (d == null ||               // d is gone or
378 <                    d == dp ||                 // d is off list or
379 <                    d.get() != d ||            // d not cancelled or
380 <                    (d != t &&                 // d not tail and
381 <                     (dn = d.next) != null &&  //   has successor
382 <                     dn != d &&                //   that is on list
383 <                     dp.casNext(d, dn)))       // d unspliced
384 <                    cleanMe.compareAndSet(dp, null);
385 <                if (dp == pred)
386 <                    return null;      // s is already saved node
373 >            else if (oldpred == pred || // Already saved
374 >                     (oldpred == null && cleanMe.compareAndSet(null, pred)))
375 >                break;                  // Postpone cleaning
376 >        }
377 >    }
378 >
379 >    /**
380 >     * Tries to unsplice the cancelled node held in cleanMe that was
381 >     * previously uncleanable because it was at tail.
382 >     *
383 >     * @return current cleanMe node (or null)
384 >     */
385 >    private QNode reclean() {
386 >        /*
387 >         * cleanMe is, or at one time was, predecessor of cancelled
388 >         * node s that was the tail so could not be unspliced.  If s
389 >         * is no longer the tail, try to unsplice if necessary and
390 >         * make cleanMe slot available.  This differs from similar
391 >         * code in clean() because we must check that pred still
392 >         * points to a cancelled node that must be unspliced -- if
393 >         * not, we can (must) clear cleanMe without unsplicing.
394 >         * This can loop only due to contention on casNext or
395 >         * clearing cleanMe.
396 >         */
397 >        QNode pred;
398 >        while ((pred = cleanMe.get()) != null) {
399 >            QNode t = getValidatedTail();
400 >            QNode s = pred.next;
401 >            if (s != t) {
402 >                QNode sn;
403 >                if (s == null || s == pred || s.get() != s ||
404 >                    (sn = s.next) == s || pred.casNext(s, sn))
405 >                    cleanMe.compareAndSet(pred, null);
406              }
407 <            else if (cleanMe.compareAndSet(null, pred))
408 <                return null;          // Postpone cleaning s
407 >            else // s is still tail; cannot clean
408 >                break;
409          }
410 +        return pred;
411      }
412  
413      /**
414 <     * Creates an initially empty <tt>LinkedTransferQueue</tt>.
414 >     * Creates an initially empty {@code LinkedTransferQueue}.
415       */
416      public LinkedTransferQueue() {
417          QNode dummy = new QNode(null, false);
# Line 377 | Line 421 | public class LinkedTransferQueue<E> exte
421      }
422  
423      /**
424 <     * Creates a <tt>LinkedTransferQueue</tt>
424 >     * Creates a {@code LinkedTransferQueue}
425       * initially containing the elements of the given collection,
426       * added in traversal order of the collection's iterator.
427 +     *
428       * @param c the collection of elements to initially contain
429       * @throws NullPointerException if the specified collection or any
430       *         of its elements are null
# Line 409 | Line 454 | public class LinkedTransferQueue<E> exte
454          return true;
455      }
456  
457 +    public boolean add(E e) {
458 +        if (e == null) throw new NullPointerException();
459 +        xfer(e, NOWAIT, 0);
460 +        return true;
461 +    }
462 +
463      public void transfer(E e) throws InterruptedException {
464          if (e == null) throw new NullPointerException();
465          if (xfer(e, WAIT, 0) == null) {
# Line 435 | Line 486 | public class LinkedTransferQueue<E> exte
486      public E take() throws InterruptedException {
487          Object e = xfer(null, WAIT, 0);
488          if (e != null)
489 <            return (E)e;
489 >            return (E) e;
490          Thread.interrupted();
491          throw new InterruptedException();
492      }
# Line 443 | Line 494 | public class LinkedTransferQueue<E> exte
494      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
495          Object e = xfer(null, TIMEOUT, unit.toNanos(timeout));
496          if (e != null || !Thread.interrupted())
497 <            return (E)e;
497 >            return (E) e;
498          throw new InterruptedException();
499      }
500  
501      public E poll() {
502 <        return (E)fulfill(null);
502 >        return (E) fulfill(null);
503      }
504  
505      public int drainTo(Collection<? super E> c) {
# Line 482 | Line 533 | public class LinkedTransferQueue<E> exte
533      // Traversal-based methods
534  
535      /**
536 <     * Return head after performing any outstanding helping steps
536 >     * Returns head after performing any outstanding helping steps.
537       */
538      private QNode traversalHead() {
539          for (;;) {
# Line 505 | Line 556 | public class LinkedTransferQueue<E> exte
556                          return h;
557                  }
558              }
559 +            reclean();
560          }
561      }
562  
# Line 521 | Line 573 | public class LinkedTransferQueue<E> exte
573       * if subsequently removed.
574       */
575      class Itr implements Iterator<E> {
576 <        QNode nextNode;    // Next node to return next
577 <        QNode currentNode; // last returned node, for remove()
578 <        QNode prevNode;    // predecessor of last returned node
579 <        E nextItem;        // Cache of next item, once commited to in next
576 >        QNode next;        // node to return next
577 >        QNode pnext;       // predecessor of next
578 >        QNode snext;       // successor of next
579 >        QNode curr;        // last returned node, for remove()
580 >        QNode pcurr;       // predecessor of curr, for remove()
581 >        E nextItem;        // Cache of next item, once committed to in next
582  
583          Itr() {
584 <            nextNode = traversalHead();
531 <            advance();
584 >            findNext();
585          }
586  
587 <        E advance() {
588 <            prevNode = currentNode;
589 <            currentNode = nextNode;
590 <            E x = nextItem;
538 <
539 <            QNode p = nextNode.next;
587 >        /**
588 >         * Ensures next points to next valid node, or null if none.
589 >         */
590 >        void findNext() {
591              for (;;) {
592 <                if (p == null || !p.isData) {
593 <                    nextNode = null;
594 <                    nextItem = null;
595 <                    return x;
592 >                QNode pred = pnext;
593 >                QNode q = next;
594 >                if (pred == null || pred == q) {
595 >                    pred = traversalHead();
596 >                    q = pred.next;
597                  }
598 <                Object item = p.get();
599 <                if (item != p && item != null) {
600 <                    nextNode = p;
601 <                    nextItem = (E)item;
602 <                    return x;
598 >                if (q == null || !q.isData) {
599 >                    next = null;
600 >                    return;
601 >                }
602 >                Object x = q.get();
603 >                QNode s = q.next;
604 >                if (x != null && q != x && q != s) {
605 >                    nextItem = (E) x;
606 >                    snext = s;
607 >                    pnext = pred;
608 >                    next = q;
609 >                    return;
610                  }
611 <                prevNode = p;
612 <                p = p.next;
611 >                pnext = q;
612 >                next = s;
613              }
614          }
615  
616          public boolean hasNext() {
617 <            return nextNode != null;
617 >            return next != null;
618          }
619  
620          public E next() {
621 <            if (nextNode == null) throw new NoSuchElementException();
622 <            return advance();
621 >            if (next == null) throw new NoSuchElementException();
622 >            pcurr = pnext;
623 >            curr = next;
624 >            pnext = next;
625 >            next = snext;
626 >            E x = nextItem;
627 >            findNext();
628 >            return x;
629          }
630  
631          public void remove() {
632 <            QNode p = currentNode;
633 <            QNode prev = prevNode;
569 <            if (prev == null || p == null)
632 >            QNode p = curr;
633 >            if (p == null)
634                  throw new IllegalStateException();
635              Object x = p.get();
636              if (x != null && x != p && p.compareAndSet(x, p))
637 <                clean(prev, p);
637 >                clean(pcurr, p);
638          }
639      }
640  
# Line 585 | Line 649 | public class LinkedTransferQueue<E> exte
649                  if (!p.isData)
650                      return null;
651                  if (x != null)
652 <                    return (E)x;
652 >                    return (E) x;
653              }
654          }
655      }
# Line 620 | Line 684 | public class LinkedTransferQueue<E> exte
684  
685      /**
686       * Returns the number of elements in this queue.  If this queue
687 <     * contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
688 <     * <tt>Integer.MAX_VALUE</tt>.
687 >     * contains more than {@code Integer.MAX_VALUE} elements, returns
688 >     * {@code Integer.MAX_VALUE}.
689       *
690       * <p>Beware that, unlike in most collections, this method is
691       * <em>NOT</em> a constant-time operation. Because of the
# Line 659 | Line 723 | public class LinkedTransferQueue<E> exte
723          return Integer.MAX_VALUE;
724      }
725  
726 +    public boolean remove(Object o) {
727 +        if (o == null)
728 +            return false;
729 +        for (;;) {
730 +            QNode pred = traversalHead();
731 +            for (;;) {
732 +                QNode q = pred.next;
733 +                if (q == null || !q.isData)
734 +                    return false;
735 +                if (q == pred) // restart
736 +                    break;
737 +                Object x = q.get();
738 +                if (x != null && x != q && o.equals(x) &&
739 +                    q.compareAndSet(x, q)) {
740 +                    clean(pred, q);
741 +                    return true;
742 +                }
743 +                pred = q;
744 +            }
745 +        }
746 +    }
747 +
748      /**
749       * Save the state to a stream (that is, serialize it).
750       *
751 <     * @serialData All of the elements (each an <tt>E</tt>) in
751 >     * @serialData All of the elements (each an {@code E}) in
752       * the proper order, followed by a null
753       * @param s the stream
754       */
755      private void writeObject(java.io.ObjectOutputStream s)
756          throws java.io.IOException {
757          s.defaultWriteObject();
758 <        for (Iterator<E> it = iterator(); it.hasNext(); )
759 <            s.writeObject(it.next());
758 >        for (E e : this)
759 >            s.writeObject(e);
760          // Use trailing null as sentinel
761          s.writeObject(null);
762      }
# Line 678 | Line 764 | public class LinkedTransferQueue<E> exte
764      /**
765       * Reconstitute the Queue instance from a stream (that is,
766       * deserialize it).
767 +     *
768       * @param s the stream
769       */
770      private void readObject(java.io.ObjectInputStream s)
# Line 685 | Line 772 | public class LinkedTransferQueue<E> exte
772          s.defaultReadObject();
773          resetHeadAndTail();
774          for (;;) {
775 <            E item = (E)s.readObject();
775 >            E item = (E) s.readObject();
776              if (item == null)
777                  break;
778              else
# Line 695 | Line 782 | public class LinkedTransferQueue<E> exte
782  
783  
784      // Support for resetting head/tail while deserializing
785 +    private void resetHeadAndTail() {
786 +        QNode dummy = new QNode(null, false);
787 +        UNSAFE.putObjectVolatile(this, headOffset,
788 +                                  new PaddedAtomicReference<QNode>(dummy));
789 +        UNSAFE.putObjectVolatile(this, tailOffset,
790 +                                  new PaddedAtomicReference<QNode>(dummy));
791 +        UNSAFE.putObjectVolatile(this, cleanMeOffset,
792 +                                  new PaddedAtomicReference<QNode>(null));
793 +    }
794  
795      // Temporary Unsafe mechanics for preliminary release
796 <    private static final Unsafe _unsafe;
796 >    private static Unsafe getUnsafe() throws Throwable {
797 >        try {
798 >            return Unsafe.getUnsafe();
799 >        } catch (SecurityException se) {
800 >            try {
801 >                return java.security.AccessController.doPrivileged
802 >                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
803 >                        public Unsafe run() throws Exception {
804 >                            return getUnsafePrivileged();
805 >                        }});
806 >            } catch (java.security.PrivilegedActionException e) {
807 >                throw e.getCause();
808 >            }
809 >        }
810 >    }
811 >
812 >    private static Unsafe getUnsafePrivileged()
813 >            throws NoSuchFieldException, IllegalAccessException {
814 >        Field f = Unsafe.class.getDeclaredField("theUnsafe");
815 >        f.setAccessible(true);
816 >        return (Unsafe) f.get(null);
817 >    }
818 >
819 >    private static long fieldOffset(String fieldName)
820 >            throws NoSuchFieldException {
821 >        return UNSAFE.objectFieldOffset
822 >            (LinkedTransferQueue.class.getDeclaredField(fieldName));
823 >    }
824 >
825 >    private static final Unsafe UNSAFE;
826      private static final long headOffset;
827      private static final long tailOffset;
828      private static final long cleanMeOffset;
829      static {
830          try {
831 <            if (LinkedTransferQueue.class.getClassLoader() != null) {
832 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
833 <                f.setAccessible(true);
834 <                _unsafe = (Unsafe)f.get(null);
835 <            }
711 <            else
712 <                _unsafe = Unsafe.getUnsafe();
713 <            headOffset = _unsafe.objectFieldOffset
714 <                (LinkedTransferQueue.class.getDeclaredField("head"));
715 <            tailOffset = _unsafe.objectFieldOffset
716 <                (LinkedTransferQueue.class.getDeclaredField("tail"));
717 <            cleanMeOffset = _unsafe.objectFieldOffset
718 <                (LinkedTransferQueue.class.getDeclaredField("cleanMe"));
719 <        } catch (Exception e) {
831 >            UNSAFE = getUnsafe();
832 >            headOffset = fieldOffset("head");
833 >            tailOffset = fieldOffset("tail");
834 >            cleanMeOffset = fieldOffset("cleanMe");
835 >        } catch (Throwable e) {
836              throw new RuntimeException("Could not initialize intrinsics", e);
837          }
838      }
839  
724    private void resetHeadAndTail() {
725        QNode dummy = new QNode(null, false);
726        _unsafe.putObjectVolatile(this, headOffset,
727                                  new PaddedAtomicReference<QNode>(dummy));
728        _unsafe.putObjectVolatile(this, tailOffset,
729                                  new PaddedAtomicReference<QNode>(dummy));
730        _unsafe.putObjectVolatile(this, cleanMeOffset,
731                                  new PaddedAtomicReference<QNode>(null));
732
733    }
734
840   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines