ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.8 by dl, Fri Oct 3 00:39:48 2008 UTC vs.
Revision 1.64 by jsr166, Mon Nov 2 06:12:02 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.concurrent.*;
9 import java.util.concurrent.locks.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.*;
12 import java.io.*;
13 import sun.misc.Unsafe;
14 import java.lang.reflect.*;
10  
11 + import java.util.AbstractQueue;
12 + import java.util.Collection;
13 + import java.util.ConcurrentModificationException;
14 + import java.util.Iterator;
15 + import java.util.NoSuchElementException;
16 + import java.util.Queue;
17 + import java.util.concurrent.locks.LockSupport;
18   /**
19 < * An unbounded {@linkplain TransferQueue} based on linked nodes.
19 > * An unbounded {@link TransferQueue} based on linked nodes.
20   * This queue orders elements FIFO (first-in-first-out) with respect
21   * to any given producer.  The <em>head</em> of the queue is that
22   * element that has been on the queue the longest time for some
23   * producer.  The <em>tail</em> of the queue is that element that has
24   * been on the queue the shortest time for some producer.
25   *
26 < * <p>Beware that, unlike in most collections, the <tt>size</tt>
26 > * <p>Beware that, unlike in most collections, the {@code size}
27   * method is <em>NOT</em> a constant-time operation. Because of the
28   * asynchronous nature of these queues, determining the current number
29   * of elements requires a traversal of the elements.
# Line 44 | Line 46 | import java.lang.reflect.*;
46   * @since 1.7
47   * @author Doug Lea
48   * @param <E> the type of elements held in this collection
47 *
49   */
50   public class LinkedTransferQueue<E> extends AbstractQueue<E>
51      implements TransferQueue<E>, java.io.Serializable {
52      private static final long serialVersionUID = -3223113410248163686L;
53  
54      /*
55 <     * This is still a work in progress...
55 >     * *** Overview of Dual Queues with Slack ***
56 >     *
57 >     * Dual Queues, introduced by Scherer and Scott
58 >     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 >     * (linked) queues in which nodes may represent either data or
60 >     * requests.  When a thread tries to enqueue a data node, but
61 >     * encounters a request node, it instead "matches" and removes it;
62 >     * and vice versa for enqueuing requests. Blocking Dual Queues
63 >     * arrange that threads enqueuing unmatched requests block until
64 >     * other threads provide the match. Dual Synchronous Queues (see
65 >     * Scherer, Lea, & Scott
66 >     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 >     * additionally arrange that threads enqueuing unmatched data also
68 >     * block.  Dual Transfer Queues support all of these modes, as
69 >     * dictated by callers.
70 >     *
71 >     * A FIFO dual queue may be implemented using a variation of the
72 >     * Michael & Scott (M&S) lock-free queue algorithm
73 >     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 >     * It maintains two pointer fields, "head", pointing to a
75 >     * (matched) node that in turn points to the first actual
76 >     * (unmatched) queue node (or null if empty); and "tail" that
77 >     * points to the last node on the queue (or again null if
78 >     * empty). For example, here is a possible queue with four data
79 >     * elements:
80 >     *
81 >     *  head                tail
82 >     *    |                   |
83 >     *    v                   v
84 >     *    M -> U -> U -> U -> U
85 >     *
86 >     * The M&S queue algorithm is known to be prone to scalability and
87 >     * overhead limitations when maintaining (via CAS) these head and
88 >     * tail pointers. This has led to the development of
89 >     * contention-reducing variants such as elimination arrays (see
90 >     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 >     * optimistic back pointers (see Ladan-Mozes & Shavit
92 >     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 >     * However, the nature of dual queues enables a simpler tactic for
94 >     * improving M&S-style implementations when dual-ness is needed.
95 >     *
96 >     * In a dual queue, each node must atomically maintain its match
97 >     * status. While there are other possible variants, we implement
98 >     * this here as: for a data-mode node, matching entails CASing an
99 >     * "item" field from a non-null data value to null upon match, and
100 >     * vice-versa for request nodes, CASing from null to a data
101 >     * value. (Note that the linearization properties of this style of
102 >     * queue are easy to verify -- elements are made available by
103 >     * linking, and unavailable by matching.) Compared to plain M&S
104 >     * queues, this property of dual queues requires one additional
105 >     * successful atomic operation per enq/deq pair. But it also
106 >     * enables lower cost variants of queue maintenance mechanics. (A
107 >     * variation of this idea applies even for non-dual queues that
108 >     * support deletion of interior elements, such as
109 >     * j.u.c.ConcurrentLinkedQueue.)
110 >     *
111 >     * Once a node is matched, its match status can never again
112 >     * change.  We may thus arrange that the linked list of them
113 >     * contain a prefix of zero or more matched nodes, followed by a
114 >     * suffix of zero or more unmatched nodes. (Note that we allow
115 >     * both the prefix and suffix to be zero length, which in turn
116 >     * means that we do not use a dummy header.)  If we were not
117 >     * concerned with either time or space efficiency, we could
118 >     * correctly perform enqueue and dequeue operations by traversing
119 >     * from a pointer to the initial node; CASing the item of the
120 >     * first unmatched node on match and CASing the next field of the
121 >     * trailing node on appends. (Plus some special-casing when
122 >     * initially empty).  While this would be a terrible idea in
123 >     * itself, it does have the benefit of not requiring ANY atomic
124 >     * updates on head/tail fields.
125 >     *
126 >     * We introduce here an approach that lies between the extremes of
127 >     * never versus always updating queue (head and tail) pointers.
128 >     * This offers a tradeoff between sometimes requiring extra
129 >     * traversal steps to locate the first and/or last unmatched
130 >     * nodes, versus the reduced overhead and contention of fewer
131 >     * updates to queue pointers. For example, a possible snapshot of
132 >     * a queue is:
133 >     *
134 >     *  head           tail
135 >     *    |              |
136 >     *    v              v
137 >     *    M -> M -> U -> U -> U -> U
138 >     *
139 >     * The best value for this "slack" (the targeted maximum distance
140 >     * between the value of "head" and the first unmatched node, and
141 >     * similarly for "tail") is an empirical matter. We have found
142 >     * that using very small constants in the range of 1-3 work best
143 >     * over a range of platforms. Larger values introduce increasing
144 >     * costs of cache misses and risks of long traversal chains, while
145 >     * smaller values increase CAS contention and overhead.
146 >     *
147 >     * Dual queues with slack differ from plain M&S dual queues by
148 >     * virtue of only sometimes updating head or tail pointers when
149 >     * matching, appending, or even traversing nodes; in order to
150 >     * maintain a targeted slack.  The idea of "sometimes" may be
151 >     * operationalized in several ways. The simplest is to use a
152 >     * per-operation counter incremented on each traversal step, and
153 >     * to try (via CAS) to update the associated queue pointer
154 >     * whenever the count exceeds a threshold. Another, that requires
155 >     * more overhead, is to use random number generators to update
156 >     * with a given probability per traversal step.
157 >     *
158 >     * In any strategy along these lines, because CASes updating
159 >     * fields may fail, the actual slack may exceed targeted
160 >     * slack. However, they may be retried at any time to maintain
161 >     * targets.  Even when using very small slack values, this
162 >     * approach works well for dual queues because it allows all
163 >     * operations up to the point of matching or appending an item
164 >     * (hence potentially allowing progress by another thread) to be
165 >     * read-only, thus not introducing any further contention. As
166 >     * described below, we implement this by performing slack
167 >     * maintenance retries only after these points.
168 >     *
169 >     * As an accompaniment to such techniques, traversal overhead can
170 >     * be further reduced without increasing contention of head
171 >     * pointer updates: Threads may sometimes shortcut the "next" link
172 >     * path from the current "head" node to be closer to the currently
173 >     * known first unmatched node, and similarly for tail. Again, this
174 >     * may be triggered with using thresholds or randomization.
175 >     *
176 >     * These ideas must be further extended to avoid unbounded amounts
177 >     * of costly-to-reclaim garbage caused by the sequential "next"
178 >     * links of nodes starting at old forgotten head nodes: As first
179 >     * described in detail by Boehm
180 >     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181 >     * delays noticing that any arbitrarily old node has become
182 >     * garbage, all newer dead nodes will also be unreclaimed.
183 >     * (Similar issues arise in non-GC environments.)  To cope with
184 >     * this in our implementation, upon CASing to advance the head
185 >     * pointer, we set the "next" link of the previous head to point
186 >     * only to itself; thus limiting the length of connected dead lists.
187 >     * (We also take similar care to wipe out possibly garbage
188 >     * retaining values held in other Node fields.)  However, doing so
189 >     * adds some further complexity to traversal: If any "next"
190 >     * pointer links to itself, it indicates that the current thread
191 >     * has lagged behind a head-update, and so the traversal must
192 >     * continue from the "head".  Traversals trying to find the
193 >     * current tail starting from "tail" may also encounter
194 >     * self-links, in which case they also continue at "head".
195 >     *
196 >     * It is tempting in slack-based scheme to not even use CAS for
197 >     * updates (similarly to Ladan-Mozes & Shavit). However, this
198 >     * cannot be done for head updates under the above link-forgetting
199 >     * mechanics because an update may leave head at a detached node.
200 >     * And while direct writes are possible for tail updates, they
201 >     * increase the risk of long retraversals, and hence long garbage
202 >     * chains, which can be much more costly than is worthwhile
203 >     * considering that the cost difference of performing a CAS vs
204 >     * write is smaller when they are not triggered on each operation
205 >     * (especially considering that writes and CASes equally require
206 >     * additional GC bookkeeping ("write barriers") that are sometimes
207 >     * more costly than the writes themselves because of contention).
208 >     *
209 >     * Removal of interior nodes (due to timed out or interrupted
210 >     * waits, or calls to remove(x) or Iterator.remove) can use a
211 >     * scheme roughly similar to that described in Scherer, Lea, and
212 >     * Scott's SynchronousQueue. Given a predecessor, we can unsplice
213 >     * any node except the (actual) tail of the queue. To avoid
214 >     * build-up of cancelled trailing nodes, upon a request to remove
215 >     * a trailing node, it is placed in field "cleanMe" to be
216 >     * unspliced upon the next call to unsplice any other node.
217 >     * Situations needing such mechanics are not common but do occur
218 >     * in practice; for example when an unbounded series of short
219 >     * timed calls to poll repeatedly time out but never otherwise
220 >     * fall off the list because of an untimed call to take at the
221 >     * front of the queue. Note that maintaining field cleanMe does
222 >     * not otherwise much impact garbage retention even if never
223 >     * cleared by some other call because the held node will
224 >     * eventually either directly or indirectly lead to a self-link
225 >     * once off the list.
226 >     *
227 >     * *** Overview of implementation ***
228       *
229 <     * This class extends the approach used in FIFO-mode
230 <     * SynchronousQueues. See the internal documentation, as well as
231 <     * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
232 <     * Lea & Scott
233 <     * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
229 >     * We use a threshold-based approach to updates, with a slack
230 >     * threshold of two -- that is, we update head/tail when the
231 >     * current pointer appears to be two or more steps away from the
232 >     * first/last node. The slack value is hard-wired: a path greater
233 >     * than one is naturally implemented by checking equality of
234 >     * traversal pointers except when the list has only one element,
235 >     * in which case we keep slack threshold at one. Avoiding tracking
236 >     * explicit counts across method calls slightly simplifies an
237 >     * already-messy implementation. Using randomization would
238 >     * probably work better if there were a low-quality dirt-cheap
239 >     * per-thread one available, but even ThreadLocalRandom is too
240 >     * heavy for these purposes.
241       *
242 <     * The main extension is to provide different Wait modes
243 <     * for the main "xfer" method that puts or takes items.
244 <     * These don't impact the basic dual-queue logic, but instead
245 <     * control whether or how threads block upon insertion
246 <     * of request or data nodes into the dual queue.
242 >     * With such a small slack threshold value, it is rarely
243 >     * worthwhile to augment this with path short-circuiting; i.e.,
244 >     * unsplicing nodes between head and the first unmatched node, or
245 >     * similarly for tail, rather than advancing head or tail
246 >     * proper. However, it is used (in awaitMatch) immediately before
247 >     * a waiting thread starts to block, as a final bit of helping at
248 >     * a point when contention with others is extremely unlikely
249 >     * (since if other threads that could release it are operating,
250 >     * then the current thread wouldn't be blocking).
251 >     *
252 >     * We allow both the head and tail fields to be null before any
253 >     * nodes are enqueued; initializing upon first append.  This
254 >     * simplifies some other logic, as well as providing more
255 >     * efficient explicit control paths instead of letting JVMs insert
256 >     * implicit NullPointerExceptions when they are null.  While not
257 >     * currently fully implemented, we also leave open the possibility
258 >     * of re-nulling these fields when empty (which is complicated to
259 >     * arrange, for little benefit.)
260 >     *
261 >     * All enqueue/dequeue operations are handled by the single method
262 >     * "xfer" with parameters indicating whether to act as some form
263 >     * of offer, put, poll, take, or transfer (each possibly with
264 >     * timeout). The relative complexity of using one monolithic
265 >     * method outweighs the code bulk and maintenance problems of
266 >     * using separate methods for each case.
267 >     *
268 >     * Operation consists of up to three phases. The first is
269 >     * implemented within method xfer, the second in tryAppend, and
270 >     * the third in method awaitMatch.
271 >     *
272 >     * 1. Try to match an existing node
273 >     *
274 >     *    Starting at head, skip already-matched nodes until finding
275 >     *    an unmatched node of opposite mode, if one exists, in which
276 >     *    case matching it and returning, also if necessary updating
277 >     *    head to one past the matched node (or the node itself if the
278 >     *    list has no other unmatched nodes). If the CAS misses, then
279 >     *    a loop retries advancing head by two steps until either
280 >     *    success or the slack is at most two. By requiring that each
281 >     *    attempt advances head by two (if applicable), we ensure that
282 >     *    the slack does not grow without bound. Traversals also check
283 >     *    if the initial head is now off-list, in which case they
284 >     *    start at the new head.
285 >     *
286 >     *    If no candidates are found and the call was untimed
287 >     *    poll/offer, (argument "how" is NOW) return.
288 >     *
289 >     * 2. Try to append a new node (method tryAppend)
290 >     *
291 >     *    Starting at current tail pointer, find the actual last node
292 >     *    and try to append a new node (or if head was null, establish
293 >     *    the first node). Nodes can be appended only if their
294 >     *    predecessors are either already matched or are of the same
295 >     *    mode. If we detect otherwise, then a new node with opposite
296 >     *    mode must have been appended during traversal, so we must
297 >     *    restart at phase 1. The traversal and update steps are
298 >     *    otherwise similar to phase 1: Retrying upon CAS misses and
299 >     *    checking for staleness.  In particular, if a self-link is
300 >     *    encountered, then we can safely jump to a node on the list
301 >     *    by continuing the traversal at current head.
302 >     *
303 >     *    On successful append, if the call was ASYNC, return.
304 >     *
305 >     * 3. Await match or cancellation (method awaitMatch)
306 >     *
307 >     *    Wait for another thread to match node; instead cancelling if
308 >     *    the current thread was interrupted or the wait timed out. On
309 >     *    multiprocessors, we use front-of-queue spinning: If a node
310 >     *    appears to be the first unmatched node in the queue, it
311 >     *    spins a bit before blocking. In either case, before blocking
312 >     *    it tries to unsplice any nodes between the current "head"
313 >     *    and the first unmatched node.
314 >     *
315 >     *    Front-of-queue spinning vastly improves performance of
316 >     *    heavily contended queues. And so long as it is relatively
317 >     *    brief and "quiet", spinning does not much impact performance
318 >     *    of less-contended queues.  During spins threads check their
319 >     *    interrupt status and generate a thread-local random number
320 >     *    to decide to occasionally perform a Thread.yield. While
321 >     *    yield has underdefined specs, we assume that might it help,
322 >     *    and will not hurt in limiting impact of spinning on busy
323 >     *    systems.  We also use smaller (1/2) spins for nodes that are
324 >     *    not known to be front but whose predecessors have not
325 >     *    blocked -- these "chained" spins avoid artifacts of
326 >     *    front-of-queue rules which otherwise lead to alternating
327 >     *    nodes spinning vs blocking. Further, front threads that
328 >     *    represent phase changes (from data to request node or vice
329 >     *    versa) compared to their predecessors receive additional
330 >     *    chained spins, reflecting longer paths typically required to
331 >     *    unblock threads during phase changes.
332       */
333  
334 <    // Wait modes for xfer method
335 <    static final int NOWAIT  = 0;
336 <    static final int TIMEOUT = 1;
72 <    static final int WAIT    = 2;
73 <
74 <    /** The number of CPUs, for spin control */
75 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
334 >    /** True if on multiprocessor */
335 >    private static final boolean MP =
336 >        Runtime.getRuntime().availableProcessors() > 1;
337  
338      /**
339 <     * The number of times to spin before blocking in timed waits.
340 <     * The value is empirically derived -- it works well across a
341 <     * variety of processors and OSes. Empirically, the best value
342 <     * seems not to vary with number of CPUs (beyond 2) so is just
343 <     * a constant.
339 >     * The number of times to spin (with randomly interspersed calls
340 >     * to Thread.yield) on multiprocessor before blocking when a node
341 >     * is apparently the first waiter in the queue.  See above for
342 >     * explanation. Must be a power of two. The value is empirically
343 >     * derived -- it works pretty well across a variety of processors,
344 >     * numbers of CPUs, and OSes.
345       */
346 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
346 >    private static final int FRONT_SPINS   = 1 << 7;
347  
348      /**
349 <     * The number of times to spin before blocking in untimed waits.
350 <     * This is greater than timed value because untimed waits spin
351 <     * faster since they don't need to check times on each spin.
349 >     * The number of times to spin before blocking when a node is
350 >     * preceded by another node that is apparently spinning.  Also
351 >     * serves as an increment to FRONT_SPINS on phase changes, and as
352 >     * base average frequency for yielding during spins. Must be a
353 >     * power of two.
354       */
355 <    static final int maxUntimedSpins = maxTimedSpins * 16;
355 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
356  
357      /**
358 <     * The number of nanoseconds for which it is faster to spin
359 <     * rather than to use timed park. A rough estimate suffices.
358 >     * Queue nodes. Uses Object, not E, for items to allow forgetting
359 >     * them after use.  Relies heavily on Unsafe mechanics to minimize
360 >     * unnecessary ordering constraints: Writes that intrinsically
361 >     * precede or follow CASes use simple relaxed forms.  Other
362 >     * cleanups use releasing/lazy writes.
363       */
364 <    static final long spinForTimeoutThreshold = 1000L;
365 <
366 <    /**
367 <     * Node class for LinkedTransferQueue. Opportunistically subclasses from
368 <     * AtomicReference to represent item. Uses Object, not E, to allow
369 <     * setting item to "this" after use, to avoid garbage
370 <     * retention. Similarly, setting the next field to this is used as
371 <     * sentinel that node is off list.
372 <     */
373 <    static final class QNode extends AtomicReference<Object> {
374 <        volatile QNode next;
375 <        volatile Thread waiter;       // to control park/unpark
376 <        final boolean isData;
377 <        QNode(Object item, boolean isData) {
378 <            super(item);
364 >    static final class Node {
365 >        final boolean isData;   // false if this is a request node
366 >        volatile Object item;   // initially non-null if isData; CASed to match
367 >        volatile Node next;
368 >        volatile Thread waiter; // null until waiting
369 >
370 >        // CAS methods for fields
371 >        final boolean casNext(Node cmp, Node val) {
372 >            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
373 >        }
374 >
375 >        final boolean casItem(Object cmp, Object val) {
376 >            assert cmp == null || cmp.getClass() != Node.class;
377 >            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
378 >        }
379 >
380 >        /**
381 >         * Creates a new node. Uses relaxed write because item can only
382 >         * be seen if followed by CAS.
383 >         */
384 >        Node(Object item, boolean isData) {
385 >            UNSAFE.putObject(this, itemOffset, item); // relaxed write
386              this.isData = isData;
387          }
388  
389 <        static final AtomicReferenceFieldUpdater<QNode, QNode>
390 <            nextUpdater = AtomicReferenceFieldUpdater.newUpdater
391 <            (QNode.class, QNode.class, "next");
392 <
393 <        boolean casNext(QNode cmp, QNode val) {
394 <            return nextUpdater.compareAndSet(this, cmp, val);
389 >        /**
390 >         * Links node to itself to avoid garbage retention.  Called
391 >         * only after CASing head field, so uses relaxed write.
392 >         */
393 >        final void forgetNext() {
394 >            UNSAFE.putObject(this, nextOffset, this);
395 >        }
396 >
397 >        /**
398 >         * Sets item to self (using a releasing/lazy write) and waiter
399 >         * to null, to avoid garbage retention after extracting or
400 >         * cancelling.
401 >         */
402 >        final void forgetContents() {
403 >            UNSAFE.putOrderedObject(this, itemOffset, this);
404 >            UNSAFE.putOrderedObject(this, waiterOffset, null);
405 >        }
406 >
407 >        /**
408 >         * Returns true if this node has been matched, including the
409 >         * case of artificial matches due to cancellation.
410 >         */
411 >        final boolean isMatched() {
412 >            Object x = item;
413 >            return (x == this) || ((x == null) == isData);
414 >        }
415 >
416 >        /**
417 >         * Returns true if this is an unmatched request node.
418 >         */
419 >        final boolean isUnmatchedRequest() {
420 >            return !isData && item == null;
421 >        }
422 >
423 >        /**
424 >         * Returns true if a node with the given mode cannot be
425 >         * appended to this node because this node is unmatched and
426 >         * has opposite data mode.
427 >         */
428 >        final boolean cannotPrecede(boolean haveData) {
429 >            boolean d = isData;
430 >            Object x;
431 >            return d != haveData && (x = item) != this && (x != null) == d;
432 >        }
433 >
434 >        /**
435 >         * Tries to artificially match a data node -- used by remove.
436 >         */
437 >        final boolean tryMatchData() {
438 >            assert isData;
439 >            Object x = item;
440 >            if (x != null && x != this && casItem(x, null)) {
441 >                LockSupport.unpark(waiter);
442 >                return true;
443 >            }
444 >            return false;
445          }
122    }
446  
447 <    /**
448 <     * Padded version of AtomicReference used for head, tail and
449 <     * cleanMe, to alleviate contention across threads CASing one vs
450 <     * the other.
451 <     */
452 <    static final class PaddedAtomicReference<T> extends AtomicReference<T> {
453 <        // enough padding for 64bytes with 4byte refs
454 <        Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
455 <        PaddedAtomicReference(T r) { super(r); }
447 >        // Unsafe mechanics
448 >        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
449 >        private static final long nextOffset =
450 >            objectFieldOffset(UNSAFE, "next", Node.class);
451 >        private static final long itemOffset =
452 >            objectFieldOffset(UNSAFE, "item", Node.class);
453 >        private static final long waiterOffset =
454 >            objectFieldOffset(UNSAFE, "waiter", Node.class);
455 >
456 >        private static final long serialVersionUID = -3375979862319811754L;
457      }
458  
459 +    /** head of the queue; null until first enqueue */
460 +    transient volatile Node head;
461  
462 <    /** head of the queue */
463 <    private transient final PaddedAtomicReference<QNode> head;
138 <    /** tail of the queue */
139 <    private transient final PaddedAtomicReference<QNode> tail;
462 >    /** predecessor of dangling unspliceable node */
463 >    private transient volatile Node cleanMe; // decl here reduces contention
464  
465 <    /**
466 <     * Reference to a cancelled node that might not yet have been
143 <     * unlinked from queue because it was the last inserted node
144 <     * when it cancelled.
145 <     */
146 <    private transient final PaddedAtomicReference<QNode> cleanMe;
465 >    /** tail of the queue; null until first append */
466 >    private transient volatile Node tail;
467  
468 <    /**
469 <     * Tries to cas nh as new head; if successful, unlink
470 <     * old head's next node to avoid garbage retention.
468 >    // CAS methods for fields
469 >    private boolean casTail(Node cmp, Node val) {
470 >        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
471 >    }
472 >
473 >    private boolean casHead(Node cmp, Node val) {
474 >        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
475 >    }
476 >
477 >    private boolean casCleanMe(Node cmp, Node val) {
478 >        return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
479 >    }
480 >
481 >    /*
482 >     * Possible values for "how" argument in xfer method.
483       */
484 <    private boolean advanceHead(QNode h, QNode nh) {
485 <        if (h == head.get() && head.compareAndSet(h, nh)) {
486 <            h.next = h; // forget old next
487 <            return true;
488 <        }
489 <        return false;
484 >    private static final int NOW     = 0; // for untimed poll, tryTransfer
485 >    private static final int ASYNC   = 1; // for offer, put, add
486 >    private static final int SYNC    = 2; // for transfer, take
487 >    private static final int TIMEOUT = 3; // for timed poll, tryTransfer
488 >
489 >    @SuppressWarnings("unchecked")
490 >    static <E> E cast(Object item) {
491 >        assert item == null || item.getClass() != Node.class;
492 >        return (E) item;
493      }
494  
495      /**
496 <     * Puts or takes an item. Used for most queue operations (except
497 <     * poll() and tryTransfer())
498 <     * @param e the item or if null, signifies that this is a take
499 <     * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
496 >     * Implements all queuing methods. See above for explanation.
497 >     *
498 >     * @param e the item or null for take
499 >     * @param haveData true if this is a put, else a take
500 >     * @param how NOW, ASYNC, SYNC, or TIMEOUT
501       * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
502 <     * @return an item, or null on failure
502 >     * @return an item if matched, else e
503 >     * @throws NullPointerException if haveData mode but e is null
504       */
505 <    private Object xfer(Object e, int mode, long nanos) {
506 <        boolean isData = (e != null);
507 <        QNode s = null;
508 <        final PaddedAtomicReference<QNode> head = this.head;
172 <        final PaddedAtomicReference<QNode> tail = this.tail;
505 >    private E xfer(E e, boolean haveData, int how, long nanos) {
506 >        if (haveData && (e == null))
507 >            throw new NullPointerException();
508 >        Node s = null;                        // the node to append, if needed
509  
510 <        for (;;) {
175 <            QNode t = tail.get();
176 <            QNode h = head.get();
510 >        retry: for (;;) {                     // restart on append race
511  
512 <            if (t != null && (t == h || t.isData == isData)) {
513 <                if (s == null)
514 <                    s = new QNode(e, isData);
515 <                QNode last = t.next;
516 <                if (last != null) {
517 <                    if (t == tail.get())
518 <                        tail.compareAndSet(t, last);
519 <                }
520 <                else if (t.casNext(null, s)) {
521 <                    tail.compareAndSet(t, s);
522 <                    return awaitFulfill(t, s, e, mode, nanos);
512 >            for (Node h = head, p = h; p != null;) { // find & match first node
513 >                boolean isData = p.isData;
514 >                Object item = p.item;
515 >                if (item != p && (item != null) == isData) { // unmatched
516 >                    if (isData == haveData)   // can't match
517 >                        break;
518 >                    if (p.casItem(item, e)) { // match
519 >                        for (Node q = p; q != h;) {
520 >                            Node n = q.next;  // update head by 2
521 >                            if (n != null)    // unless singleton
522 >                                q = n;
523 >                            if (head == h && casHead(h, q)) {
524 >                                h.forgetNext();
525 >                                break;
526 >                            }                 // advance and retry
527 >                            if ((h = head)   == null ||
528 >                                (q = h.next) == null || !q.isMatched())
529 >                                break;        // unless slack < 2
530 >                        }
531 >                        LockSupport.unpark(p.waiter);
532 >                        return this.<E>cast(item);
533 >                    }
534                  }
535 +                Node n = p.next;
536 +                p = (p != n) ? n : (h = head); // Use head if p offlist
537              }
538  
539 <            else if (h != null) {
540 <                QNode first = h.next;
541 <                if (t == tail.get() && first != null &&
542 <                    advanceHead(h, first)) {
543 <                    Object x = first.get();
544 <                    if (x != first && first.compareAndSet(x, e)) {
545 <                        LockSupport.unpark(first.waiter);
546 <                        return isData? e : x;
200 <                    }
201 <                }
539 >            if (how != NOW) {                 // No matches available
540 >                if (s == null)
541 >                    s = new Node(e, haveData);
542 >                Node pred = tryAppend(s, haveData);
543 >                if (pred == null)
544 >                    continue retry;           // lost race vs opposite mode
545 >                if (how != ASYNC)
546 >                    return awaitMatch(s, pred, e, (how == TIMEOUT), nanos);
547              }
548 +            return e; // not waiting
549          }
550      }
551  
206
552      /**
553 <     * Version of xfer for poll() and tryTransfer, which
554 <     * simplifies control paths both here and in xfer
553 >     * Tries to append node s as tail.
554 >     *
555 >     * @param s the node to append
556 >     * @param haveData true if appending in data mode
557 >     * @return null on failure due to losing race with append in
558 >     * different mode, else s's predecessor, or s itself if no
559 >     * predecessor
560       */
561 <    private Object fulfill(Object e) {
562 <        boolean isData = (e != null);
563 <        final PaddedAtomicReference<QNode> head = this.head;
564 <        final PaddedAtomicReference<QNode> tail = this.tail;
565 <
566 <        for (;;) {
217 <            QNode t = tail.get();
218 <            QNode h = head.get();
219 <
220 <            if (t != null && (t == h || t.isData == isData)) {
221 <                QNode last = t.next;
222 <                if (t == tail.get()) {
223 <                    if (last != null)
224 <                        tail.compareAndSet(t, last);
225 <                    else
226 <                        return null;
227 <                }
561 >    private Node tryAppend(Node s, boolean haveData) {
562 >        for (Node t = tail, p = t;;) {        // move p to last node and append
563 >            Node n, u;                        // temps for reads of next & tail
564 >            if (p == null && (p = head) == null) {
565 >                if (casHead(null, s))
566 >                    return s;                 // initialize
567              }
568 <            else if (h != null) {
569 <                QNode first = h.next;
570 <                if (t == tail.get() &&
571 <                    first != null &&
572 <                    advanceHead(h, first)) {
573 <                    Object x = first.get();
574 <                    if (x != first && first.compareAndSet(x, e)) {
575 <                        LockSupport.unpark(first.waiter);
576 <                        return isData? e : x;
577 <                    }
568 >            else if (p.cannotPrecede(haveData))
569 >                return null;                  // lost race vs opposite mode
570 >            else if ((n = p.next) != null)    // not last; keep traversing
571 >                p = p != t && t != (u = tail) ? (t = u) : // stale tail
572 >                    (p != n) ? n : null;      // restart if off list
573 >            else if (!p.casNext(null, s))
574 >                p = p.next;                   // re-read on CAS failure
575 >            else {
576 >                if (p != t) {                 // update if slack now >= 2
577 >                    while ((tail != t || !casTail(t, s)) &&
578 >                           (t = tail)   != null &&
579 >                           (s = t.next) != null && // advance and retry
580 >                           (s = s.next) != null && s != t);
581                  }
582 +                return p;
583              }
584          }
585      }
586  
587      /**
588 <     * Spins/blocks until node s is fulfilled or caller gives up,
246 <     * depending on wait mode.
588 >     * Spins/yields/blocks until node s is matched or caller gives up.
589       *
248     * @param pred the predecessor of waiting node
590       * @param s the waiting node
591 +     * @param pred the predecessor of s, or s itself if it has no
592 +     * predecessor, or null if unknown (the null case does not occur
593 +     * in any current calls but may in possible future extensions)
594       * @param e the comparison value for checking match
595 <     * @param mode mode
595 >     * @param timed if true, wait only until timeout elapses
596       * @param nanos timeout value
597 <     * @return matched item, or s if cancelled
597 >     * @return matched item, or e if unmatched on interrupt or timeout
598       */
599 <    private Object awaitFulfill(QNode pred, QNode s, Object e,
600 <                                int mode, long nanos) {
257 <        if (mode == NOWAIT)
258 <            return null;
259 <
260 <        long lastTime = (mode == TIMEOUT)? System.nanoTime() : 0;
599 >    private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
600 >        long lastTime = timed ? System.nanoTime() : 0L;
601          Thread w = Thread.currentThread();
602 <        int spins = -1; // set to desired spin count below
602 >        int spins = -1; // initialized after first item and cancel checks
603 >        ThreadLocalRandom randomYields = null; // bound if needed
604 >
605          for (;;) {
606 <            if (w.isInterrupted())
607 <                s.compareAndSet(e, s);
608 <            Object x = s.get();
609 <            if (x != e) {                 // Node was matched or cancelled
610 <                advanceHead(pred, s);     // unlink if head
611 <                if (x == s)               // was cancelled
612 <                    return clean(pred, s);
613 <                else if (x != null) {
614 <                    s.set(s);             // avoid garbage retention
615 <                    return x;
274 <                }
275 <                else
276 <                    return e;
606 >            Object item = s.item;
607 >            if (item != e) {                  // matched
608 >                assert item != s;
609 >                s.forgetContents();           // avoid garbage
610 >                return this.<E>cast(item);
611 >            }
612 >            if ((w.isInterrupted() || (timed && nanos <= 0)) &&
613 >                    s.casItem(e, s)) {       // cancel
614 >                unsplice(pred, s);
615 >                return e;
616              }
617  
618 <            if (mode == TIMEOUT) {
618 >            if (spins < 0) {                  // establish spins at/near front
619 >                if ((spins = spinsFor(pred, s.isData)) > 0)
620 >                    randomYields = ThreadLocalRandom.current();
621 >            }
622 >            else if (spins > 0) {             // spin
623 >                if (--spins == 0)
624 >                    shortenHeadPath();        // reduce slack before blocking
625 >                else if (randomYields.nextInt(CHAINED_SPINS) == 0)
626 >                    Thread.yield();           // occasionally yield
627 >            }
628 >            else if (s.waiter == null) {
629 >                s.waiter = w;                 // request unpark then recheck
630 >            }
631 >            else if (timed) {
632                  long now = System.nanoTime();
633 <                nanos -= now - lastTime;
633 >                if ((nanos -= now - lastTime) > 0)
634 >                    LockSupport.parkNanos(this, nanos);
635                  lastTime = now;
283                if (nanos <= 0) {
284                    s.compareAndSet(e, s); // try to cancel
285                    continue;
286                }
636              }
637 <            if (spins < 0) {
638 <                QNode h = head.get(); // only spin if at head
290 <                spins = ((h != null && h.next == s) ?
291 <                         (mode == TIMEOUT?
292 <                          maxTimedSpins : maxUntimedSpins) : 0);
293 <            }
294 <            if (spins > 0)
295 <                --spins;
296 <            else if (s.waiter == null)
297 <                s.waiter = w;
298 <            else if (mode != TIMEOUT) {
299 <                //                LockSupport.park(this);
300 <                LockSupport.park(); // allows run on java5
637 >            else {
638 >                LockSupport.park(this);
639                  s.waiter = null;
640 <                spins = -1;
640 >                spins = -1;                   // spin if front upon wakeup
641              }
642 <            else if (nanos > spinForTimeoutThreshold) {
643 <                //                LockSupport.parkNanos(this, nanos);
644 <                LockSupport.parkNanos(nanos);
645 <                s.waiter = null;
646 <                spins = -1;
642 >        }
643 >    }
644 >
645 >    /**
646 >     * Returns spin/yield value for a node with given predecessor and
647 >     * data mode. See above for explanation.
648 >     */
649 >    private static int spinsFor(Node pred, boolean haveData) {
650 >        if (MP && pred != null) {
651 >            if (pred.isData != haveData)      // phase change
652 >                return FRONT_SPINS + CHAINED_SPINS;
653 >            if (pred.isMatched())             // probably at front
654 >                return FRONT_SPINS;
655 >            if (pred.waiter == null)          // pred apparently spinning
656 >                return CHAINED_SPINS;
657 >        }
658 >        return 0;
659 >    }
660 >
661 >    /**
662 >     * Tries (once) to unsplice nodes between head and first unmatched
663 >     * or trailing node; failing on contention.
664 >     */
665 >    private void shortenHeadPath() {
666 >        Node h, hn, p, q;
667 >        if ((p = h = head) != null && h.isMatched() &&
668 >            (q = hn = h.next) != null) {
669 >            Node n;
670 >            while ((n = q.next) != q) {
671 >                if (n == null || !q.isMatched()) {
672 >                    if (hn != q && h.next == hn)
673 >                        h.casNext(hn, q);
674 >                    break;
675 >                }
676 >                p = q;
677 >                q = n;
678              }
679          }
680      }
681  
682 +    /* -------------- Traversal methods -------------- */
683 +
684      /**
685 <     * Gets rid of cancelled node s with original predecessor pred.
686 <     * @return null (to simplify use by callers)
685 >     * Returns the successor of p, or the head node if p.next has been
686 >     * linked to self, which will only be true if traversing with a
687 >     * stale pointer that is now off the list.
688       */
689 <    private Object clean(QNode pred, QNode s) {
690 <        Thread w = s.waiter;
691 <        if (w != null) {             // Wake up thread
692 <            s.waiter = null;
693 <            if (w != Thread.currentThread())
694 <                LockSupport.unpark(w);
689 >    final Node succ(Node p) {
690 >        Node next = p.next;
691 >        return (p == next) ? head : next;
692 >    }
693 >
694 >    /**
695 >     * Returns the first unmatched node of the given mode, or null if
696 >     * none.  Used by methods isEmpty, hasWaitingConsumer.
697 >     */
698 >    private Node firstOfMode(boolean isData) {
699 >        for (Node p = head; p != null; p = succ(p)) {
700 >            if (!p.isMatched())
701 >                return (p.isData == isData) ? p : null;
702          }
703 +        return null;
704 +    }
705  
706 <        for (;;) {
707 <            if (pred.next != s) // already cleaned
708 <                return null;
709 <            QNode h = head.get();
710 <            QNode hn = h.next;   // Absorb cancelled first node as head
711 <            if (hn != null && hn.next == hn) {
712 <                advanceHead(h, hn);
713 <                continue;
706 >    /**
707 >     * Returns the item in the first unmatched node with isData; or
708 >     * null if none.  Used by peek.
709 >     */
710 >    private E firstDataItem() {
711 >        for (Node p = head; p != null; p = succ(p)) {
712 >            Object item = p.item;
713 >            if (p.isData) {
714 >                if (item != null && item != p)
715 >                    return this.<E>cast(item);
716              }
717 <            QNode t = tail.get();      // Ensure consistent read for tail
335 <            if (t == h)
717 >            else if (item == null)
718                  return null;
719 <            QNode tn = t.next;
720 <            if (t != tail.get())
721 <                continue;
722 <            if (tn != null) {          // Help advance tail
723 <                tail.compareAndSet(t, tn);
724 <                continue;
725 <            }
726 <            if (s != t) {             // If not tail, try to unsplice
727 <                QNode sn = s.next;
728 <                if (sn == s || pred.casNext(s, sn))
729 <                    return null;
730 <            }
731 <            QNode dp = cleanMe.get();
732 <            if (dp != null) {    // Try unlinking previous cancelled node
733 <                QNode d = dp.next;
734 <                QNode dn;
735 <                if (d == null ||               // d is gone or
736 <                    d == dp ||                 // d is off list or
737 <                    d.get() != d ||            // d not cancelled or
738 <                    (d != t &&                 // d not tail and
739 <                     (dn = d.next) != null &&  //   has successor
740 <                     dn != d &&                //   that is on list
741 <                     dp.casNext(d, dn)))       // d unspliced
360 <                    cleanMe.compareAndSet(dp, null);
361 <                if (dp == pred)
362 <                    return null;      // s is already saved node
719 >        }
720 >        return null;
721 >    }
722 >
723 >    /**
724 >     * Traverses and counts unmatched nodes of the given mode.
725 >     * Used by methods size and getWaitingConsumerCount.
726 >     */
727 >    private int countOfMode(boolean data) {
728 >        int count = 0;
729 >        for (Node p = head; p != null; ) {
730 >            if (!p.isMatched()) {
731 >                if (p.isData != data)
732 >                    return 0;
733 >                if (++count == Integer.MAX_VALUE) // saturated
734 >                    break;
735 >            }
736 >            Node n = p.next;
737 >            if (n != p)
738 >                p = n;
739 >            else {
740 >                count = 0;
741 >                p = head;
742              }
364            else if (cleanMe.compareAndSet(null, pred))
365                return null;          // Postpone cleaning s
743          }
744 +        return count;
745      }
746  
747 +    final class Itr implements Iterator<E> {
748 +        private Node nextNode;   // next node to return item for
749 +        private E nextItem;      // the corresponding item
750 +        private Node lastRet;    // last returned node, to support remove
751 +        private Node lastPred;   // predecessor to unlink lastRet
752 +
753 +        /**
754 +         * Moves to next node after prev, or first node if prev null.
755 +         */
756 +        private void advance(Node prev) {
757 +            lastPred = lastRet;
758 +            lastRet = prev;
759 +            for (Node p = (prev == null) ? head : succ(prev);
760 +                 p != null; p = succ(p)) {
761 +                Object item = p.item;
762 +                if (p.isData) {
763 +                    if (item != null && item != p) {
764 +                        nextItem = LinkedTransferQueue.this.<E>cast(item);
765 +                        nextNode = p;
766 +                        return;
767 +                    }
768 +                }
769 +                else if (item == null)
770 +                    break;
771 +            }
772 +            nextNode = null;
773 +        }
774 +
775 +        Itr() {
776 +            advance(null);
777 +        }
778 +
779 +        public final boolean hasNext() {
780 +            return nextNode != null;
781 +        }
782 +
783 +        public final E next() {
784 +            Node p = nextNode;
785 +            if (p == null) throw new NoSuchElementException();
786 +            E e = nextItem;
787 +            advance(p);
788 +            return e;
789 +        }
790 +
791 +        public final void remove() {
792 +            Node p = lastRet;
793 +            if (p == null) throw new IllegalStateException();
794 +            findAndRemoveDataNode(lastPred, p);
795 +        }
796 +    }
797 +
798 +    /* -------------- Removal methods -------------- */
799 +
800      /**
801 <     * Creates an initially empty <tt>LinkedTransferQueue</tt>.
801 >     * Unsplices (now or later) the given deleted/cancelled node with
802 >     * the given predecessor.
803 >     *
804 >     * @param pred predecessor of node to be unspliced
805 >     * @param s the node to be unspliced
806 >     */
807 >    private void unsplice(Node pred, Node s) {
808 >        s.forgetContents(); // clear unneeded fields
809 >        /*
810 >         * At any given time, exactly one node on list cannot be
811 >         * unlinked -- the last inserted node. To accommodate this, if
812 >         * we cannot unlink s, we save its predecessor as "cleanMe",
813 >         * processing the previously saved version first. Because only
814 >         * one node in the list can have a null next, at least one of
815 >         * node s or the node previously saved can always be
816 >         * processed, so this always terminates.
817 >         */
818 >        if (pred != null && pred != s) {
819 >            while (pred.next == s) {
820 >                Node oldpred = (cleanMe == null) ? null : reclean();
821 >                Node n = s.next;
822 >                if (n != null) {
823 >                    if (n != s)
824 >                        pred.casNext(s, n);
825 >                    break;
826 >                }
827 >                if (oldpred == pred ||      // Already saved
828 >                    ((oldpred == null || oldpred.next == s) &&
829 >                     casCleanMe(oldpred, pred))) {
830 >                    break;
831 >                }
832 >            }
833 >        }
834 >    }
835 >
836 >    /**
837 >     * Tries to unsplice the deleted/cancelled node held in cleanMe
838 >     * that was previously uncleanable because it was at tail.
839 >     *
840 >     * @return current cleanMe node (or null)
841 >     */
842 >    private Node reclean() {
843 >        /*
844 >         * cleanMe is, or at one time was, predecessor of a cancelled
845 >         * node s that was the tail so could not be unspliced.  If it
846 >         * is no longer the tail, try to unsplice if necessary and
847 >         * make cleanMe slot available.  This differs from similar
848 >         * code in unsplice() because we must check that pred still
849 >         * points to a matched node that can be unspliced -- if not,
850 >         * we can (must) clear cleanMe without unsplicing.  This can
851 >         * loop only due to contention.
852 >         */
853 >        Node pred;
854 >        while ((pred = cleanMe) != null) {
855 >            Node s = pred.next;
856 >            Node n;
857 >            if (s == null || s == pred || !s.isMatched())
858 >                casCleanMe(pred, null); // already gone
859 >            else if ((n = s.next) != null) {
860 >                if (n != s)
861 >                    pred.casNext(s, n);
862 >                casCleanMe(pred, null);
863 >            }
864 >            else
865 >                break;
866 >        }
867 >        return pred;
868 >    }
869 >
870 >    /**
871 >     * Main implementation of Iterator.remove(). Find
872 >     * and unsplice the given data node.
873 >     * @param possiblePred possible predecessor of s
874 >     * @param s the node to remove
875 >     */
876 >    final void findAndRemoveDataNode(Node possiblePred, Node s) {
877 >        assert s.isData;
878 >        if (s.tryMatchData()) {
879 >            if (possiblePred != null && possiblePred.next == s)
880 >                unsplice(possiblePred, s); // was actual predecessor
881 >            else {
882 >                for (Node pred = null, p = head; p != null; ) {
883 >                    if (p == s) {
884 >                        unsplice(pred, p);
885 >                        break;
886 >                    }
887 >                    if (p.isUnmatchedRequest())
888 >                        break;
889 >                    pred = p;
890 >                    if ((p = p.next) == pred) { // stale
891 >                        pred = null;
892 >                        p = head;
893 >                    }
894 >                }
895 >            }
896 >        }
897 >    }
898 >
899 >    /**
900 >     * Main implementation of remove(Object)
901 >     */
902 >    private boolean findAndRemove(Object e) {
903 >        if (e != null) {
904 >            for (Node pred = null, p = head; p != null; ) {
905 >                Object item = p.item;
906 >                if (p.isData) {
907 >                    if (item != null && item != p && e.equals(item) &&
908 >                        p.tryMatchData()) {
909 >                        unsplice(pred, p);
910 >                        return true;
911 >                    }
912 >                }
913 >                else if (item == null)
914 >                    break;
915 >                pred = p;
916 >                if ((p = p.next) == pred) { // stale
917 >                    pred = null;
918 >                    p = head;
919 >                }
920 >            }
921 >        }
922 >        return false;
923 >    }
924 >
925 >
926 >    /**
927 >     * Creates an initially empty {@code LinkedTransferQueue}.
928       */
929      public LinkedTransferQueue() {
373        QNode dummy = new QNode(null, false);
374        head = new PaddedAtomicReference<QNode>(dummy);
375        tail = new PaddedAtomicReference<QNode>(dummy);
376        cleanMe = new PaddedAtomicReference<QNode>(null);
930      }
931  
932      /**
933 <     * Creates a <tt>LinkedTransferQueue</tt>
933 >     * Creates a {@code LinkedTransferQueue}
934       * initially containing the elements of the given collection,
935       * added in traversal order of the collection's iterator.
936 +     *
937       * @param c the collection of elements to initially contain
938       * @throws NullPointerException if the specified collection or any
939       *         of its elements are null
# Line 389 | Line 943 | public class LinkedTransferQueue<E> exte
943          addAll(c);
944      }
945  
946 <    public void put(E e) throws InterruptedException {
947 <        if (e == null) throw new NullPointerException();
948 <        if (Thread.interrupted()) throw new InterruptedException();
949 <        xfer(e, NOWAIT, 0);
946 >    /**
947 >     * Inserts the specified element at the tail of this queue.
948 >     * As the queue is unbounded, this method will never block.
949 >     *
950 >     * @throws NullPointerException if the specified element is null
951 >     */
952 >    public void put(E e) {
953 >        xfer(e, true, ASYNC, 0);
954      }
955  
956 <    public boolean offer(E e, long timeout, TimeUnit unit)
957 <        throws InterruptedException {
958 <        if (e == null) throw new NullPointerException();
959 <        if (Thread.interrupted()) throw new InterruptedException();
960 <        xfer(e, NOWAIT, 0);
956 >    /**
957 >     * Inserts the specified element at the tail of this queue.
958 >     * As the queue is unbounded, this method will never block or
959 >     * return {@code false}.
960 >     *
961 >     * @return {@code true} (as specified by
962 >     *  {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
963 >     * @throws NullPointerException if the specified element is null
964 >     */
965 >    public boolean offer(E e, long timeout, TimeUnit unit) {
966 >        xfer(e, true, ASYNC, 0);
967          return true;
968      }
969  
970 +    /**
971 +     * Inserts the specified element at the tail of this queue.
972 +     * As the queue is unbounded, this method will never return {@code false}.
973 +     *
974 +     * @return {@code true} (as specified by
975 +     *         {@link BlockingQueue#offer(Object) BlockingQueue.offer})
976 +     * @throws NullPointerException if the specified element is null
977 +     */
978      public boolean offer(E e) {
979 <        if (e == null) throw new NullPointerException();
980 <        xfer(e, NOWAIT, 0);
979 >        xfer(e, true, ASYNC, 0);
980 >        return true;
981 >    }
982 >
983 >    /**
984 >     * Inserts the specified element at the tail of this queue.
985 >     * As the queue is unbounded, this method will never throw
986 >     * {@link IllegalStateException} or return {@code false}.
987 >     *
988 >     * @return {@code true} (as specified by {@link Collection#add})
989 >     * @throws NullPointerException if the specified element is null
990 >     */
991 >    public boolean add(E e) {
992 >        xfer(e, true, ASYNC, 0);
993          return true;
994      }
995  
996 +    /**
997 +     * Transfers the element to a waiting consumer immediately, if possible.
998 +     *
999 +     * <p>More precisely, transfers the specified element immediately
1000 +     * if there exists a consumer already waiting to receive it (in
1001 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1002 +     * otherwise returning {@code false} without enqueuing the element.
1003 +     *
1004 +     * @throws NullPointerException if the specified element is null
1005 +     */
1006 +    public boolean tryTransfer(E e) {
1007 +        return xfer(e, true, NOW, 0) == null;
1008 +    }
1009 +
1010 +    /**
1011 +     * Transfers the element to a consumer, waiting if necessary to do so.
1012 +     *
1013 +     * <p>More precisely, transfers the specified element immediately
1014 +     * if there exists a consumer already waiting to receive it (in
1015 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1016 +     * else inserts the specified element at the tail of this queue
1017 +     * and waits until the element is received by a consumer.
1018 +     *
1019 +     * @throws NullPointerException if the specified element is null
1020 +     */
1021      public void transfer(E e) throws InterruptedException {
1022 <        if (e == null) throw new NullPointerException();
1023 <        if (xfer(e, WAIT, 0) == null) {
415 <            Thread.interrupted();
1022 >        if (xfer(e, true, SYNC, 0) != null) {
1023 >            Thread.interrupted(); // failure possible only due to interrupt
1024              throw new InterruptedException();
1025          }
1026      }
1027  
1028 +    /**
1029 +     * Transfers the element to a consumer if it is possible to do so
1030 +     * before the timeout elapses.
1031 +     *
1032 +     * <p>More precisely, transfers the specified element immediately
1033 +     * if there exists a consumer already waiting to receive it (in
1034 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1035 +     * else inserts the specified element at the tail of this queue
1036 +     * and waits until the element is received by a consumer,
1037 +     * returning {@code false} if the specified wait time elapses
1038 +     * before the element can be transferred.
1039 +     *
1040 +     * @throws NullPointerException if the specified element is null
1041 +     */
1042      public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1043          throws InterruptedException {
1044 <        if (e == null) throw new NullPointerException();
423 <        if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
1044 >        if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1045              return true;
1046          if (!Thread.interrupted())
1047              return false;
1048          throw new InterruptedException();
1049      }
1050  
430    public boolean tryTransfer(E e) {
431        if (e == null) throw new NullPointerException();
432        return fulfill(e) != null;
433    }
434
1051      public E take() throws InterruptedException {
1052 <        Object e = xfer(null, WAIT, 0);
1052 >        E e = xfer(null, false, SYNC, 0);
1053          if (e != null)
1054 <            return (E)e;
1054 >            return e;
1055          Thread.interrupted();
1056          throw new InterruptedException();
1057      }
1058  
1059      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1060 <        Object e = xfer(null, TIMEOUT, unit.toNanos(timeout));
1060 >        E e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1061          if (e != null || !Thread.interrupted())
1062 <            return (E)e;
1062 >            return e;
1063          throw new InterruptedException();
1064      }
1065  
1066      public E poll() {
1067 <        return (E)fulfill(null);
1067 >        return xfer(null, false, NOW, 0);
1068      }
1069  
1070 +    /**
1071 +     * @throws NullPointerException     {@inheritDoc}
1072 +     * @throws IllegalArgumentException {@inheritDoc}
1073 +     */
1074      public int drainTo(Collection<? super E> c) {
1075          if (c == null)
1076              throw new NullPointerException();
# Line 465 | Line 1085 | public class LinkedTransferQueue<E> exte
1085          return n;
1086      }
1087  
1088 +    /**
1089 +     * @throws NullPointerException     {@inheritDoc}
1090 +     * @throws IllegalArgumentException {@inheritDoc}
1091 +     */
1092      public int drainTo(Collection<? super E> c, int maxElements) {
1093          if (c == null)
1094              throw new NullPointerException();
# Line 479 | Line 1103 | public class LinkedTransferQueue<E> exte
1103          return n;
1104      }
1105  
482    // Traversal-based methods
483
1106      /**
1107 <     * Return head after performing any outstanding helping steps
1107 >     * Returns an iterator over the elements in this queue in proper
1108 >     * sequence, from head to tail.
1109 >     *
1110 >     * <p>The returned iterator is a "weakly consistent" iterator that
1111 >     * will never throw
1112 >     * {@link ConcurrentModificationException ConcurrentModificationException},
1113 >     * and guarantees to traverse elements as they existed upon
1114 >     * construction of the iterator, and may (but is not guaranteed
1115 >     * to) reflect any modifications subsequent to construction.
1116 >     *
1117 >     * @return an iterator over the elements in this queue in proper sequence
1118       */
487    private QNode traversalHead() {
488        for (;;) {
489            QNode t = tail.get();
490            QNode h = head.get();
491            if (h != null && t != null) {
492                QNode last = t.next;
493                QNode first = h.next;
494                if (t == tail.get()) {
495                    if (last != null)
496                        tail.compareAndSet(t, last);
497                    else if (first != null) {
498                        Object x = first.get();
499                        if (x == first)
500                            advanceHead(h, first);
501                        else
502                            return h;
503                    }
504                    else
505                        return h;
506                }
507            }
508        }
509    }
510
511
1119      public Iterator<E> iterator() {
1120          return new Itr();
1121      }
1122  
516    /**
517     * Iterators. Basic strategy is to traverse list, treating
518     * non-data (i.e., request) nodes as terminating list.
519     * Once a valid data node is found, the item is cached
520     * so that the next call to next() will return it even
521     * if subsequently removed.
522     */
523    class Itr implements Iterator<E> {
524        QNode nextNode;    // Next node to return next
525        QNode currentNode; // last returned node, for remove()
526        QNode prevNode;    // predecessor of last returned node
527        E nextItem;        // Cache of next item, once commited to in next
528
529        Itr() {
530            nextNode = traversalHead();
531            advance();
532        }
533
534        E advance() {
535            prevNode = currentNode;
536            currentNode = nextNode;
537            E x = nextItem;
538
539            QNode p = nextNode.next;
540            for (;;) {
541                if (p == null || !p.isData) {
542                    nextNode = null;
543                    nextItem = null;
544                    return x;
545                }
546                Object item = p.get();
547                if (item != p && item != null) {
548                    nextNode = p;
549                    nextItem = (E)item;
550                    return x;
551                }
552                prevNode = p;
553                p = p.next;
554            }
555        }
556
557        public boolean hasNext() {
558            return nextNode != null;
559        }
560
561        public E next() {
562            if (nextNode == null) throw new NoSuchElementException();
563            return advance();
564        }
565
566        public void remove() {
567            QNode p = currentNode;
568            QNode prev = prevNode;
569            if (prev == null || p == null)
570                throw new IllegalStateException();
571            Object x = p.get();
572            if (x != null && x != p && p.compareAndSet(x, p))
573                clean(prev, p);
574        }
575    }
576
1123      public E peek() {
1124 <        for (;;) {
579 <            QNode h = traversalHead();
580 <            QNode p = h.next;
581 <            if (p == null)
582 <                return null;
583 <            Object x = p.get();
584 <            if (p != x) {
585 <                if (!p.isData)
586 <                    return null;
587 <                if (x != null)
588 <                    return (E)x;
589 <            }
590 <        }
1124 >        return firstDataItem();
1125      }
1126  
1127 +    /**
1128 +     * Returns {@code true} if this queue contains no elements.
1129 +     *
1130 +     * @return {@code true} if this queue contains no elements
1131 +     */
1132      public boolean isEmpty() {
1133 <        for (;;) {
595 <            QNode h = traversalHead();
596 <            QNode p = h.next;
597 <            if (p == null)
598 <                return true;
599 <            Object x = p.get();
600 <            if (p != x) {
601 <                if (!p.isData)
602 <                    return true;
603 <                if (x != null)
604 <                    return false;
605 <            }
606 <        }
1133 >        return firstOfMode(true) == null;
1134      }
1135  
1136      public boolean hasWaitingConsumer() {
1137 <        for (;;) {
611 <            QNode h = traversalHead();
612 <            QNode p = h.next;
613 <            if (p == null)
614 <                return false;
615 <            Object x = p.get();
616 <            if (p != x)
617 <                return !p.isData;
618 <        }
1137 >        return firstOfMode(false) != null;
1138      }
1139  
1140      /**
1141       * Returns the number of elements in this queue.  If this queue
1142 <     * contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
1143 <     * <tt>Integer.MAX_VALUE</tt>.
1142 >     * contains more than {@code Integer.MAX_VALUE} elements, returns
1143 >     * {@code Integer.MAX_VALUE}.
1144       *
1145       * <p>Beware that, unlike in most collections, this method is
1146       * <em>NOT</em> a constant-time operation. Because of the
# Line 631 | Line 1150 | public class LinkedTransferQueue<E> exte
1150       * @return the number of elements in this queue
1151       */
1152      public int size() {
1153 <        int count = 0;
635 <        QNode h = traversalHead();
636 <        for (QNode p = h.next; p != null && p.isData; p = p.next) {
637 <            Object x = p.get();
638 <            if (x != null && x != p) {
639 <                if (++count == Integer.MAX_VALUE) // saturated
640 <                    break;
641 <            }
642 <        }
643 <        return count;
1153 >        return countOfMode(true);
1154      }
1155  
1156      public int getWaitingConsumerCount() {
1157 <        int count = 0;
648 <        QNode h = traversalHead();
649 <        for (QNode p = h.next; p != null && !p.isData; p = p.next) {
650 <            if (p.get() == null) {
651 <                if (++count == Integer.MAX_VALUE)
652 <                    break;
653 <            }
654 <        }
655 <        return count;
1157 >        return countOfMode(false);
1158      }
1159  
1160 +    /**
1161 +     * Removes a single instance of the specified element from this queue,
1162 +     * if it is present.  More formally, removes an element {@code e} such
1163 +     * that {@code o.equals(e)}, if this queue contains one or more such
1164 +     * elements.
1165 +     * Returns {@code true} if this queue contained the specified element
1166 +     * (or equivalently, if this queue changed as a result of the call).
1167 +     *
1168 +     * @param o element to be removed from this queue, if present
1169 +     * @return {@code true} if this queue changed as a result of the call
1170 +     */
1171 +    public boolean remove(Object o) {
1172 +        return findAndRemove(o);
1173 +    }
1174 +
1175 +    /**
1176 +     * Always returns {@code Integer.MAX_VALUE} because a
1177 +     * {@code LinkedTransferQueue} is not capacity constrained.
1178 +     *
1179 +     * @return {@code Integer.MAX_VALUE} (as specified by
1180 +     *         {@link BlockingQueue#remainingCapacity()})
1181 +     */
1182      public int remainingCapacity() {
1183          return Integer.MAX_VALUE;
1184      }
1185  
1186      /**
1187 <     * Save the state to a stream (that is, serialize it).
1187 >     * Saves the state to a stream (that is, serializes it).
1188       *
1189 <     * @serialData All of the elements (each an <tt>E</tt>) in
1189 >     * @serialData All of the elements (each an {@code E}) in
1190       * the proper order, followed by a null
1191       * @param s the stream
1192       */
1193      private void writeObject(java.io.ObjectOutputStream s)
1194          throws java.io.IOException {
1195          s.defaultWriteObject();
1196 <        for (Iterator<E> it = iterator(); it.hasNext(); )
1197 <            s.writeObject(it.next());
1196 >        for (E e : this)
1197 >            s.writeObject(e);
1198          // Use trailing null as sentinel
1199          s.writeObject(null);
1200      }
1201  
1202      /**
1203 <     * Reconstitute the Queue instance from a stream (that is,
1204 <     * deserialize it).
1203 >     * Reconstitutes the Queue instance from a stream (that is,
1204 >     * deserializes it).
1205 >     *
1206       * @param s the stream
1207       */
1208      private void readObject(java.io.ObjectInputStream s)
1209          throws java.io.IOException, ClassNotFoundException {
1210          s.defaultReadObject();
686        resetHeadAndTail();
1211          for (;;) {
1212 <            E item = (E)s.readObject();
1212 >            @SuppressWarnings("unchecked") E item = (E) s.readObject();
1213              if (item == null)
1214                  break;
1215              else
# Line 693 | Line 1217 | public class LinkedTransferQueue<E> exte
1217          }
1218      }
1219  
1220 +    // Unsafe mechanics
1221  
1222 <    // Support for resetting head/tail while deserializing
1222 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1223 >    private static final long headOffset =
1224 >        objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1225 >    private static final long tailOffset =
1226 >        objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1227 >    private static final long cleanMeOffset =
1228 >        objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1229  
1230 <    // Temporary Unsafe mechanics for preliminary release
1231 <    private static final Unsafe _unsafe;
701 <    private static final long headOffset;
702 <    private static final long tailOffset;
703 <    private static final long cleanMeOffset;
704 <    static {
1230 >    static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1231 >                                  String field, Class<?> klazz) {
1232          try {
1233 <            if (LinkedTransferQueue.class.getClassLoader() != null) {
1234 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1235 <                f.setAccessible(true);
1236 <                _unsafe = (Unsafe)f.get(null);
1237 <            }
1238 <            else
712 <                _unsafe = Unsafe.getUnsafe();
713 <            headOffset = _unsafe.objectFieldOffset
714 <                (LinkedTransferQueue.class.getDeclaredField("head"));
715 <            tailOffset = _unsafe.objectFieldOffset
716 <                (LinkedTransferQueue.class.getDeclaredField("tail"));
717 <            cleanMeOffset = _unsafe.objectFieldOffset
718 <                (LinkedTransferQueue.class.getDeclaredField("cleanMe"));
719 <        } catch (Exception e) {
720 <            throw new RuntimeException("Could not initialize intrinsics", e);
1233 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1234 >        } catch (NoSuchFieldException e) {
1235 >            // Convert Exception to corresponding Error
1236 >            NoSuchFieldError error = new NoSuchFieldError(field);
1237 >            error.initCause(e);
1238 >            throw error;
1239          }
1240      }
1241  
1242 <    private void resetHeadAndTail() {
1243 <        QNode dummy = new QNode(null, false);
1244 <        _unsafe.putObjectVolatile(this, headOffset,
1245 <                                  new PaddedAtomicReference<QNode>(dummy));
1246 <        _unsafe.putObjectVolatile(this, tailOffset,
1247 <                                  new PaddedAtomicReference<QNode>(dummy));
1248 <        _unsafe.putObjectVolatile(this, cleanMeOffset,
1249 <                                  new PaddedAtomicReference<QNode>(null));
1250 <
1242 >    /**
1243 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1244 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1245 >     * into a jdk.
1246 >     *
1247 >     * @return a sun.misc.Unsafe
1248 >     */
1249 >    static sun.misc.Unsafe getUnsafe() {
1250 >        try {
1251 >            return sun.misc.Unsafe.getUnsafe();
1252 >        } catch (SecurityException se) {
1253 >            try {
1254 >                return java.security.AccessController.doPrivileged
1255 >                    (new java.security
1256 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1257 >                        public sun.misc.Unsafe run() throws Exception {
1258 >                            java.lang.reflect.Field f = sun.misc
1259 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1260 >                            f.setAccessible(true);
1261 >                            return (sun.misc.Unsafe) f.get(null);
1262 >                        }});
1263 >            } catch (java.security.PrivilegedActionException e) {
1264 >                throw new RuntimeException("Could not initialize intrinsics",
1265 >                                           e.getCause());
1266 >            }
1267 >        }
1268      }
1269  
1270   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines