ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/jsr166y/LinkedTransferQueue.java (file contents):
Revision 1.11 by jsr166, Mon Jan 5 03:53:26 2009 UTC vs.
Revision 1.82 by jsr166, Mon Nov 29 20:58:06 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.concurrent.*;
9 < import java.util.concurrent.locks.*;
10 < import java.util.concurrent.atomic.*;
11 < import java.util.*;
12 < import java.io.*;
13 < import sun.misc.Unsafe;
14 < import java.lang.reflect.*;
8 >
9 > import java.util.AbstractQueue;
10 > import java.util.Collection;
11 > import java.util.ConcurrentModificationException;
12 > import java.util.Iterator;
13 > import java.util.NoSuchElementException;
14 > import java.util.Queue;
15 > import java.util.concurrent.TimeUnit;
16 > import java.util.concurrent.locks.LockSupport;
17  
18   /**
19 < * An unbounded {@linkplain TransferQueue} based on linked nodes.
19 > * An unbounded {@link TransferQueue} based on linked nodes.
20   * This queue orders elements FIFO (first-in-first-out) with respect
21   * to any given producer.  The <em>head</em> of the queue is that
22   * element that has been on the queue the longest time for some
# Line 44 | Line 46 | import java.lang.reflect.*;
46   * @since 1.7
47   * @author Doug Lea
48   * @param <E> the type of elements held in this collection
47 *
49   */
50   public class LinkedTransferQueue<E> extends AbstractQueue<E>
51      implements TransferQueue<E>, java.io.Serializable {
52      private static final long serialVersionUID = -3223113410248163686L;
53  
54      /*
55 <     * This class extends the approach used in FIFO-mode
56 <     * SynchronousQueues. See the internal documentation, as well as
57 <     * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
58 <     * Lea & Scott
59 <     * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
55 >     * *** Overview of Dual Queues with Slack ***
56 >     *
57 >     * Dual Queues, introduced by Scherer and Scott
58 >     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 >     * (linked) queues in which nodes may represent either data or
60 >     * requests.  When a thread tries to enqueue a data node, but
61 >     * encounters a request node, it instead "matches" and removes it;
62 >     * and vice versa for enqueuing requests. Blocking Dual Queues
63 >     * arrange that threads enqueuing unmatched requests block until
64 >     * other threads provide the match. Dual Synchronous Queues (see
65 >     * Scherer, Lea, & Scott
66 >     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 >     * additionally arrange that threads enqueuing unmatched data also
68 >     * block.  Dual Transfer Queues support all of these modes, as
69 >     * dictated by callers.
70 >     *
71 >     * A FIFO dual queue may be implemented using a variation of the
72 >     * Michael & Scott (M&S) lock-free queue algorithm
73 >     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 >     * It maintains two pointer fields, "head", pointing to a
75 >     * (matched) node that in turn points to the first actual
76 >     * (unmatched) queue node (or null if empty); and "tail" that
77 >     * points to the last node on the queue (or again null if
78 >     * empty). For example, here is a possible queue with four data
79 >     * elements:
80 >     *
81 >     *  head                tail
82 >     *    |                   |
83 >     *    v                   v
84 >     *    M -> U -> U -> U -> U
85 >     *
86 >     * The M&S queue algorithm is known to be prone to scalability and
87 >     * overhead limitations when maintaining (via CAS) these head and
88 >     * tail pointers. This has led to the development of
89 >     * contention-reducing variants such as elimination arrays (see
90 >     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 >     * optimistic back pointers (see Ladan-Mozes & Shavit
92 >     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 >     * However, the nature of dual queues enables a simpler tactic for
94 >     * improving M&S-style implementations when dual-ness is needed.
95 >     *
96 >     * In a dual queue, each node must atomically maintain its match
97 >     * status. While there are other possible variants, we implement
98 >     * this here as: for a data-mode node, matching entails CASing an
99 >     * "item" field from a non-null data value to null upon match, and
100 >     * vice-versa for request nodes, CASing from null to a data
101 >     * value. (Note that the linearization properties of this style of
102 >     * queue are easy to verify -- elements are made available by
103 >     * linking, and unavailable by matching.) Compared to plain M&S
104 >     * queues, this property of dual queues requires one additional
105 >     * successful atomic operation per enq/deq pair. But it also
106 >     * enables lower cost variants of queue maintenance mechanics. (A
107 >     * variation of this idea applies even for non-dual queues that
108 >     * support deletion of interior elements, such as
109 >     * j.u.c.ConcurrentLinkedQueue.)
110 >     *
111 >     * Once a node is matched, its match status can never again
112 >     * change.  We may thus arrange that the linked list of them
113 >     * contain a prefix of zero or more matched nodes, followed by a
114 >     * suffix of zero or more unmatched nodes. (Note that we allow
115 >     * both the prefix and suffix to be zero length, which in turn
116 >     * means that we do not use a dummy header.)  If we were not
117 >     * concerned with either time or space efficiency, we could
118 >     * correctly perform enqueue and dequeue operations by traversing
119 >     * from a pointer to the initial node; CASing the item of the
120 >     * first unmatched node on match and CASing the next field of the
121 >     * trailing node on appends. (Plus some special-casing when
122 >     * initially empty).  While this would be a terrible idea in
123 >     * itself, it does have the benefit of not requiring ANY atomic
124 >     * updates on head/tail fields.
125 >     *
126 >     * We introduce here an approach that lies between the extremes of
127 >     * never versus always updating queue (head and tail) pointers.
128 >     * This offers a tradeoff between sometimes requiring extra
129 >     * traversal steps to locate the first and/or last unmatched
130 >     * nodes, versus the reduced overhead and contention of fewer
131 >     * updates to queue pointers. For example, a possible snapshot of
132 >     * a queue is:
133 >     *
134 >     *  head           tail
135 >     *    |              |
136 >     *    v              v
137 >     *    M -> M -> U -> U -> U -> U
138 >     *
139 >     * The best value for this "slack" (the targeted maximum distance
140 >     * between the value of "head" and the first unmatched node, and
141 >     * similarly for "tail") is an empirical matter. We have found
142 >     * that using very small constants in the range of 1-3 work best
143 >     * over a range of platforms. Larger values introduce increasing
144 >     * costs of cache misses and risks of long traversal chains, while
145 >     * smaller values increase CAS contention and overhead.
146 >     *
147 >     * Dual queues with slack differ from plain M&S dual queues by
148 >     * virtue of only sometimes updating head or tail pointers when
149 >     * matching, appending, or even traversing nodes; in order to
150 >     * maintain a targeted slack.  The idea of "sometimes" may be
151 >     * operationalized in several ways. The simplest is to use a
152 >     * per-operation counter incremented on each traversal step, and
153 >     * to try (via CAS) to update the associated queue pointer
154 >     * whenever the count exceeds a threshold. Another, that requires
155 >     * more overhead, is to use random number generators to update
156 >     * with a given probability per traversal step.
157 >     *
158 >     * In any strategy along these lines, because CASes updating
159 >     * fields may fail, the actual slack may exceed targeted
160 >     * slack. However, they may be retried at any time to maintain
161 >     * targets.  Even when using very small slack values, this
162 >     * approach works well for dual queues because it allows all
163 >     * operations up to the point of matching or appending an item
164 >     * (hence potentially allowing progress by another thread) to be
165 >     * read-only, thus not introducing any further contention. As
166 >     * described below, we implement this by performing slack
167 >     * maintenance retries only after these points.
168 >     *
169 >     * As an accompaniment to such techniques, traversal overhead can
170 >     * be further reduced without increasing contention of head
171 >     * pointer updates: Threads may sometimes shortcut the "next" link
172 >     * path from the current "head" node to be closer to the currently
173 >     * known first unmatched node, and similarly for tail. Again, this
174 >     * may be triggered with using thresholds or randomization.
175 >     *
176 >     * These ideas must be further extended to avoid unbounded amounts
177 >     * of costly-to-reclaim garbage caused by the sequential "next"
178 >     * links of nodes starting at old forgotten head nodes: As first
179 >     * described in detail by Boehm
180 >     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181 >     * delays noticing that any arbitrarily old node has become
182 >     * garbage, all newer dead nodes will also be unreclaimed.
183 >     * (Similar issues arise in non-GC environments.)  To cope with
184 >     * this in our implementation, upon CASing to advance the head
185 >     * pointer, we set the "next" link of the previous head to point
186 >     * only to itself; thus limiting the length of connected dead lists.
187 >     * (We also take similar care to wipe out possibly garbage
188 >     * retaining values held in other Node fields.)  However, doing so
189 >     * adds some further complexity to traversal: If any "next"
190 >     * pointer links to itself, it indicates that the current thread
191 >     * has lagged behind a head-update, and so the traversal must
192 >     * continue from the "head".  Traversals trying to find the
193 >     * current tail starting from "tail" may also encounter
194 >     * self-links, in which case they also continue at "head".
195 >     *
196 >     * It is tempting in slack-based scheme to not even use CAS for
197 >     * updates (similarly to Ladan-Mozes & Shavit). However, this
198 >     * cannot be done for head updates under the above link-forgetting
199 >     * mechanics because an update may leave head at a detached node.
200 >     * And while direct writes are possible for tail updates, they
201 >     * increase the risk of long retraversals, and hence long garbage
202 >     * chains, which can be much more costly than is worthwhile
203 >     * considering that the cost difference of performing a CAS vs
204 >     * write is smaller when they are not triggered on each operation
205 >     * (especially considering that writes and CASes equally require
206 >     * additional GC bookkeeping ("write barriers") that are sometimes
207 >     * more costly than the writes themselves because of contention).
208 >     *
209 >     * *** Overview of implementation ***
210 >     *
211 >     * We use a threshold-based approach to updates, with a slack
212 >     * threshold of two -- that is, we update head/tail when the
213 >     * current pointer appears to be two or more steps away from the
214 >     * first/last node. The slack value is hard-wired: a path greater
215 >     * than one is naturally implemented by checking equality of
216 >     * traversal pointers except when the list has only one element,
217 >     * in which case we keep slack threshold at one. Avoiding tracking
218 >     * explicit counts across method calls slightly simplifies an
219 >     * already-messy implementation. Using randomization would
220 >     * probably work better if there were a low-quality dirt-cheap
221 >     * per-thread one available, but even ThreadLocalRandom is too
222 >     * heavy for these purposes.
223 >     *
224 >     * With such a small slack threshold value, it is not worthwhile
225 >     * to augment this with path short-circuiting (i.e., unsplicing
226 >     * interior nodes) except in the case of cancellation/removal (see
227 >     * below).
228       *
229 <     * The main extension is to provide different Wait modes for the
230 <     * main "xfer" method that puts or takes items.  These don't
231 <     * impact the basic dual-queue logic, but instead control whether
232 <     * or how threads block upon insertion of request or data nodes
233 <     * into the dual queue. It also uses slightly different
234 <     * conventions for tracking whether nodes are off-list or
235 <     * cancelled.
229 >     * We allow both the head and tail fields to be null before any
230 >     * nodes are enqueued; initializing upon first append.  This
231 >     * simplifies some other logic, as well as providing more
232 >     * efficient explicit control paths instead of letting JVMs insert
233 >     * implicit NullPointerExceptions when they are null.  While not
234 >     * currently fully implemented, we also leave open the possibility
235 >     * of re-nulling these fields when empty (which is complicated to
236 >     * arrange, for little benefit.)
237 >     *
238 >     * All enqueue/dequeue operations are handled by the single method
239 >     * "xfer" with parameters indicating whether to act as some form
240 >     * of offer, put, poll, take, or transfer (each possibly with
241 >     * timeout). The relative complexity of using one monolithic
242 >     * method outweighs the code bulk and maintenance problems of
243 >     * using separate methods for each case.
244 >     *
245 >     * Operation consists of up to three phases. The first is
246 >     * implemented within method xfer, the second in tryAppend, and
247 >     * the third in method awaitMatch.
248 >     *
249 >     * 1. Try to match an existing node
250 >     *
251 >     *    Starting at head, skip already-matched nodes until finding
252 >     *    an unmatched node of opposite mode, if one exists, in which
253 >     *    case matching it and returning, also if necessary updating
254 >     *    head to one past the matched node (or the node itself if the
255 >     *    list has no other unmatched nodes). If the CAS misses, then
256 >     *    a loop retries advancing head by two steps until either
257 >     *    success or the slack is at most two. By requiring that each
258 >     *    attempt advances head by two (if applicable), we ensure that
259 >     *    the slack does not grow without bound. Traversals also check
260 >     *    if the initial head is now off-list, in which case they
261 >     *    start at the new head.
262 >     *
263 >     *    If no candidates are found and the call was untimed
264 >     *    poll/offer, (argument "how" is NOW) return.
265 >     *
266 >     * 2. Try to append a new node (method tryAppend)
267 >     *
268 >     *    Starting at current tail pointer, find the actual last node
269 >     *    and try to append a new node (or if head was null, establish
270 >     *    the first node). Nodes can be appended only if their
271 >     *    predecessors are either already matched or are of the same
272 >     *    mode. If we detect otherwise, then a new node with opposite
273 >     *    mode must have been appended during traversal, so we must
274 >     *    restart at phase 1. The traversal and update steps are
275 >     *    otherwise similar to phase 1: Retrying upon CAS misses and
276 >     *    checking for staleness.  In particular, if a self-link is
277 >     *    encountered, then we can safely jump to a node on the list
278 >     *    by continuing the traversal at current head.
279 >     *
280 >     *    On successful append, if the call was ASYNC, return.
281 >     *
282 >     * 3. Await match or cancellation (method awaitMatch)
283 >     *
284 >     *    Wait for another thread to match node; instead cancelling if
285 >     *    the current thread was interrupted or the wait timed out. On
286 >     *    multiprocessors, we use front-of-queue spinning: If a node
287 >     *    appears to be the first unmatched node in the queue, it
288 >     *    spins a bit before blocking. In either case, before blocking
289 >     *    it tries to unsplice any nodes between the current "head"
290 >     *    and the first unmatched node.
291 >     *
292 >     *    Front-of-queue spinning vastly improves performance of
293 >     *    heavily contended queues. And so long as it is relatively
294 >     *    brief and "quiet", spinning does not much impact performance
295 >     *    of less-contended queues.  During spins threads check their
296 >     *    interrupt status and generate a thread-local random number
297 >     *    to decide to occasionally perform a Thread.yield. While
298 >     *    yield has underdefined specs, we assume that might it help,
299 >     *    and will not hurt in limiting impact of spinning on busy
300 >     *    systems.  We also use smaller (1/2) spins for nodes that are
301 >     *    not known to be front but whose predecessors have not
302 >     *    blocked -- these "chained" spins avoid artifacts of
303 >     *    front-of-queue rules which otherwise lead to alternating
304 >     *    nodes spinning vs blocking. Further, front threads that
305 >     *    represent phase changes (from data to request node or vice
306 >     *    versa) compared to their predecessors receive additional
307 >     *    chained spins, reflecting longer paths typically required to
308 >     *    unblock threads during phase changes.
309 >     *
310 >     *
311 >     * ** Unlinking removed interior nodes **
312 >     *
313 >     * In addition to minimizing garbage retention via self-linking
314 >     * described above, we also unlink removed interior nodes. These
315 >     * may arise due to timed out or interrupted waits, or calls to
316 >     * remove(x) or Iterator.remove.  Normally, given a node that was
317 >     * at one time known to be the predecessor of some node s that is
318 >     * to be removed, we can unsplice s by CASing the next field of
319 >     * its predecessor if it still points to s (otherwise s must
320 >     * already have been removed or is now offlist). But there are two
321 >     * situations in which we cannot guarantee to make node s
322 >     * unreachable in this way: (1) If s is the trailing node of list
323 >     * (i.e., with null next), then it is pinned as the target node
324 >     * for appends, so can only be removed later after other nodes are
325 >     * appended. (2) We cannot necessarily unlink s given a
326 >     * predecessor node that is matched (including the case of being
327 >     * cancelled): the predecessor may already be unspliced, in which
328 >     * case some previous reachable node may still point to s.
329 >     * (For further explanation see Herlihy & Shavit "The Art of
330 >     * Multiprocessor Programming" chapter 9).  Although, in both
331 >     * cases, we can rule out the need for further action if either s
332 >     * or its predecessor are (or can be made to be) at, or fall off
333 >     * from, the head of list.
334 >     *
335 >     * Without taking these into account, it would be possible for an
336 >     * unbounded number of supposedly removed nodes to remain
337 >     * reachable.  Situations leading to such buildup are uncommon but
338 >     * can occur in practice; for example when a series of short timed
339 >     * calls to poll repeatedly time out but never otherwise fall off
340 >     * the list because of an untimed call to take at the front of the
341 >     * queue.
342 >     *
343 >     * When these cases arise, rather than always retraversing the
344 >     * entire list to find an actual predecessor to unlink (which
345 >     * won't help for case (1) anyway), we record a conservative
346 >     * estimate of possible unsplice failures (in "sweepVotes").
347 >     * We trigger a full sweep when the estimate exceeds a threshold
348 >     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
349 >     * removal failures to tolerate before sweeping through, unlinking
350 >     * cancelled nodes that were not unlinked upon initial removal.
351 >     * We perform sweeps by the thread hitting threshold (rather than
352 >     * background threads or by spreading work to other threads)
353 >     * because in the main contexts in which removal occurs, the
354 >     * caller is already timed-out, cancelled, or performing a
355 >     * potentially O(n) operation (e.g. remove(x)), none of which are
356 >     * time-critical enough to warrant the overhead that alternatives
357 >     * would impose on other threads.
358 >     *
359 >     * Because the sweepVotes estimate is conservative, and because
360 >     * nodes become unlinked "naturally" as they fall off the head of
361 >     * the queue, and because we allow votes to accumulate even while
362 >     * sweeps are in progress, there are typically significantly fewer
363 >     * such nodes than estimated.  Choice of a threshold value
364 >     * balances the likelihood of wasted effort and contention, versus
365 >     * providing a worst-case bound on retention of interior nodes in
366 >     * quiescent queues. The value defined below was chosen
367 >     * empirically to balance these under various timeout scenarios.
368 >     *
369 >     * Note that we cannot self-link unlinked interior nodes during
370 >     * sweeps. However, the associated garbage chains terminate when
371 >     * some successor ultimately falls off the head of the list and is
372 >     * self-linked.
373       */
374  
375 <    // Wait modes for xfer method
376 <    static final int NOWAIT  = 0;
377 <    static final int TIMEOUT = 1;
72 <    static final int WAIT    = 2;
73 <
74 <    /** The number of CPUs, for spin control */
75 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
375 >    /** True if on multiprocessor */
376 >    private static final boolean MP =
377 >        Runtime.getRuntime().availableProcessors() > 1;
378  
379      /**
380 <     * The number of times to spin before blocking in timed waits.
381 <     * The value is empirically derived -- it works well across a
382 <     * variety of processors and OSes. Empirically, the best value
383 <     * seems not to vary with number of CPUs (beyond 2) so is just
384 <     * a constant.
380 >     * The number of times to spin (with randomly interspersed calls
381 >     * to Thread.yield) on multiprocessor before blocking when a node
382 >     * is apparently the first waiter in the queue.  See above for
383 >     * explanation. Must be a power of two. The value is empirically
384 >     * derived -- it works pretty well across a variety of processors,
385 >     * numbers of CPUs, and OSes.
386       */
387 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
387 >    private static final int FRONT_SPINS   = 1 << 7;
388  
389      /**
390 <     * The number of times to spin before blocking in untimed waits.
391 <     * This is greater than timed value because untimed waits spin
392 <     * faster since they don't need to check times on each spin.
390 >     * The number of times to spin before blocking when a node is
391 >     * preceded by another node that is apparently spinning.  Also
392 >     * serves as an increment to FRONT_SPINS on phase changes, and as
393 >     * base average frequency for yielding during spins. Must be a
394 >     * power of two.
395       */
396 <    static final int maxUntimedSpins = maxTimedSpins * 16;
396 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
397  
398      /**
399 <     * The number of nanoseconds for which it is faster to spin
400 <     * rather than to use timed park. A rough estimate suffices.
399 >     * The maximum number of estimated removal failures (sweepVotes)
400 >     * to tolerate before sweeping through the queue unlinking
401 >     * cancelled nodes that were not unlinked upon initial
402 >     * removal. See above for explanation. The value must be at least
403 >     * two to avoid useless sweeps when removing trailing nodes.
404       */
405 <    static final long spinForTimeoutThreshold = 1000L;
405 >    static final int SWEEP_THRESHOLD = 32;
406  
407      /**
408 <     * Node class for LinkedTransferQueue. Opportunistically
409 <     * subclasses from AtomicReference to represent item. Uses Object,
410 <     * not E, to allow setting item to "this" after use, to avoid
411 <     * garbage retention. Similarly, setting the next field to this is
412 <     * used as sentinel that node is off list.
413 <     */
414 <    static final class QNode extends AtomicReference<Object> {
415 <        volatile QNode next;
416 <        volatile Thread waiter;       // to control park/unpark
417 <        final boolean isData;
418 <        QNode(Object item, boolean isData) {
419 <            super(item);
408 >     * Queue nodes. Uses Object, not E, for items to allow forgetting
409 >     * them after use.  Relies heavily on Unsafe mechanics to minimize
410 >     * unnecessary ordering constraints: Writes that are intrinsically
411 >     * ordered wrt other accesses or CASes use simple relaxed forms.
412 >     */
413 >    static final class Node {
414 >        final boolean isData;   // false if this is a request node
415 >        volatile Object item;   // initially non-null if isData; CASed to match
416 >        volatile Node next;
417 >        volatile Thread waiter; // null until waiting
418 >
419 >        // CAS methods for fields
420 >        final boolean casNext(Node cmp, Node val) {
421 >            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
422 >        }
423 >
424 >        final boolean casItem(Object cmp, Object val) {
425 >            // assert cmp == null || cmp.getClass() != Node.class;
426 >            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
427 >        }
428 >
429 >        /**
430 >         * Constructs a new node.  Uses relaxed write because item can
431 >         * only be seen after publication via casNext.
432 >         */
433 >        Node(Object item, boolean isData) {
434 >            UNSAFE.putObject(this, itemOffset, item); // relaxed write
435              this.isData = isData;
436          }
437  
438 <        static final AtomicReferenceFieldUpdater<QNode, QNode>
439 <            nextUpdater = AtomicReferenceFieldUpdater.newUpdater
440 <            (QNode.class, QNode.class, "next");
438 >        /**
439 >         * Links node to itself to avoid garbage retention.  Called
440 >         * only after CASing head field, so uses relaxed write.
441 >         */
442 >        final void forgetNext() {
443 >            UNSAFE.putObject(this, nextOffset, this);
444 >        }
445  
446 <        boolean casNext(QNode cmp, QNode val) {
447 <            return nextUpdater.compareAndSet(this, cmp, val);
446 >        /**
447 >         * Sets item to self and waiter to null, to avoid garbage
448 >         * retention after matching or cancelling. Uses relaxed writes
449 >         * because order is already constrained in the only calling
450 >         * contexts: item is forgotten only after volatile/atomic
451 >         * mechanics that extract items.  Similarly, clearing waiter
452 >         * follows either CAS or return from park (if ever parked;
453 >         * else we don't care).
454 >         */
455 >        final void forgetContents() {
456 >            UNSAFE.putObject(this, itemOffset, this);
457 >            UNSAFE.putObject(this, waiterOffset, null);
458          }
122    }
459  
460 <    /**
461 <     * Padded version of AtomicReference used for head, tail and
462 <     * cleanMe, to alleviate contention across threads CASing one vs
463 <     * the other.
464 <     */
465 <    static final class PaddedAtomicReference<T> extends AtomicReference<T> {
466 <        // enough padding for 64bytes with 4byte refs
467 <        Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
468 <        PaddedAtomicReference(T r) { super(r); }
460 >        /**
461 >         * Returns true if this node has been matched, including the
462 >         * case of artificial matches due to cancellation.
463 >         */
464 >        final boolean isMatched() {
465 >            Object x = item;
466 >            return (x == this) || ((x == null) == isData);
467 >        }
468 >
469 >        /**
470 >         * Returns true if this is an unmatched request node.
471 >         */
472 >        final boolean isUnmatchedRequest() {
473 >            return !isData && item == null;
474 >        }
475 >
476 >        /**
477 >         * Returns true if a node with the given mode cannot be
478 >         * appended to this node because this node is unmatched and
479 >         * has opposite data mode.
480 >         */
481 >        final boolean cannotPrecede(boolean haveData) {
482 >            boolean d = isData;
483 >            Object x;
484 >            return d != haveData && (x = item) != this && (x != null) == d;
485 >        }
486 >
487 >        /**
488 >         * Tries to artificially match a data node -- used by remove.
489 >         */
490 >        final boolean tryMatchData() {
491 >            // assert isData;
492 >            Object x = item;
493 >            if (x != null && x != this && casItem(x, null)) {
494 >                LockSupport.unpark(waiter);
495 >                return true;
496 >            }
497 >            return false;
498 >        }
499 >
500 >        // Unsafe mechanics
501 >        private static final sun.misc.Unsafe UNSAFE = getUnsafe();
502 >        private static final long nextOffset =
503 >            objectFieldOffset(UNSAFE, "next", Node.class);
504 >        private static final long itemOffset =
505 >            objectFieldOffset(UNSAFE, "item", Node.class);
506 >        private static final long waiterOffset =
507 >            objectFieldOffset(UNSAFE, "waiter", Node.class);
508 >
509 >        private static final long serialVersionUID = -3375979862319811754L;
510      }
511  
512 +    /** head of the queue; null until first enqueue */
513 +    transient volatile Node head;
514  
515 <    /** head of the queue */
516 <    private transient final PaddedAtomicReference<QNode> head;
138 <    /** tail of the queue */
139 <    private transient final PaddedAtomicReference<QNode> tail;
515 >    /** tail of the queue; null until first append */
516 >    private transient volatile Node tail;
517  
518 <    /**
519 <     * Reference to a cancelled node that might not yet have been
143 <     * unlinked from queue because it was the last inserted node
144 <     * when it cancelled.
145 <     */
146 <    private transient final PaddedAtomicReference<QNode> cleanMe;
518 >    /** The number of apparent failures to unsplice removed nodes */
519 >    private transient volatile int sweepVotes;
520  
521 <    /**
522 <     * Tries to cas nh as new head; if successful, unlink
523 <     * old head's next node to avoid garbage retention.
521 >    // CAS methods for fields
522 >    private boolean casTail(Node cmp, Node val) {
523 >        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
524 >    }
525 >
526 >    private boolean casHead(Node cmp, Node val) {
527 >        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
528 >    }
529 >
530 >    private boolean casSweepVotes(int cmp, int val) {
531 >        return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
532 >    }
533 >
534 >    /*
535 >     * Possible values for "how" argument in xfer method.
536       */
537 <    private boolean advanceHead(QNode h, QNode nh) {
538 <        if (h == head.get() && head.compareAndSet(h, nh)) {
539 <            h.next = h; // forget old next
540 <            return true;
541 <        }
542 <        return false;
537 >    private static final int NOW   = 0; // for untimed poll, tryTransfer
538 >    private static final int ASYNC = 1; // for offer, put, add
539 >    private static final int SYNC  = 2; // for transfer, take
540 >    private static final int TIMED = 3; // for timed poll, tryTransfer
541 >
542 >    @SuppressWarnings("unchecked")
543 >    static <E> E cast(Object item) {
544 >        // assert item == null || item.getClass() != Node.class;
545 >        return (E) item;
546      }
547  
548      /**
549 <     * Puts or takes an item. Used for most queue operations (except
550 <     * poll() and tryTransfer()). See the similar code in
551 <     * SynchronousQueue for detailed explanation.
552 <     * @param e the item or if null, signifies that this is a take
553 <     * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
554 <     * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
555 <     * @return an item, or null on failure
556 <     */
557 <    private Object xfer(Object e, int mode, long nanos) {
558 <        boolean isData = (e != null);
559 <        QNode s = null;
560 <        final PaddedAtomicReference<QNode> head = this.head;
561 <        final PaddedAtomicReference<QNode> tail = this.tail;
549 >     * Implements all queuing methods. See above for explanation.
550 >     *
551 >     * @param e the item or null for take
552 >     * @param haveData true if this is a put, else a take
553 >     * @param how NOW, ASYNC, SYNC, or TIMED
554 >     * @param nanos timeout in nanosecs, used only if mode is TIMED
555 >     * @return an item if matched, else e
556 >     * @throws NullPointerException if haveData mode but e is null
557 >     */
558 >    private E xfer(E e, boolean haveData, int how, long nanos) {
559 >        if (haveData && (e == null))
560 >            throw new NullPointerException();
561 >        Node s = null;                        // the node to append, if needed
562  
563 <        for (;;) {
564 <            QNode t = tail.get();
177 <            QNode h = head.get();
563 >        retry:
564 >        for (;;) {                            // restart on append race
565  
566 <            if (t != null && (t == h || t.isData == isData)) {
567 <                if (s == null)
568 <                    s = new QNode(e, isData);
569 <                QNode last = t.next;
570 <                if (last != null) {
571 <                    if (t == tail.get())
572 <                        tail.compareAndSet(t, last);
573 <                }
574 <                else if (t.casNext(null, s)) {
575 <                    tail.compareAndSet(t, s);
576 <                    return awaitFulfill(t, s, e, mode, nanos);
566 >            for (Node h = head, p = h; p != null;) { // find & match first node
567 >                boolean isData = p.isData;
568 >                Object item = p.item;
569 >                if (item != p && (item != null) == isData) { // unmatched
570 >                    if (isData == haveData)   // can't match
571 >                        break;
572 >                    if (p.casItem(item, e)) { // match
573 >                        for (Node q = p; q != h;) {
574 >                            Node n = q.next;  // update by 2 unless singleton
575 >                            if (head == h && casHead(h, n == null ? q : n)) {
576 >                                h.forgetNext();
577 >                                break;
578 >                            }                 // advance and retry
579 >                            if ((h = head)   == null ||
580 >                                (q = h.next) == null || !q.isMatched())
581 >                                break;        // unless slack < 2
582 >                        }
583 >                        LockSupport.unpark(p.waiter);
584 >                        return this.<E>cast(item);
585 >                    }
586                  }
587 +                Node n = p.next;
588 +                p = (p != n) ? n : (h = head); // Use head if p offlist
589              }
590  
591 <            else if (h != null) {
592 <                QNode first = h.next;
593 <                if (t == tail.get() && first != null &&
594 <                    advanceHead(h, first)) {
595 <                    Object x = first.get();
596 <                    if (x != first && first.compareAndSet(x, e)) {
597 <                        LockSupport.unpark(first.waiter);
598 <                        return isData? e : x;
201 <                    }
202 <                }
591 >            if (how != NOW) {                 // No matches available
592 >                if (s == null)
593 >                    s = new Node(e, haveData);
594 >                Node pred = tryAppend(s, haveData);
595 >                if (pred == null)
596 >                    continue retry;           // lost race vs opposite mode
597 >                if (how != ASYNC)
598 >                    return awaitMatch(s, pred, e, (how == TIMED), nanos);
599              }
600 +            return e; // not waiting
601          }
602      }
603  
207
604      /**
605 <     * Version of xfer for poll() and tryTransfer, which
606 <     * simplifies control paths both here and in xfer
607 <     */
608 <    private Object fulfill(Object e) {
609 <        boolean isData = (e != null);
610 <        final PaddedAtomicReference<QNode> head = this.head;
611 <        final PaddedAtomicReference<QNode> tail = this.tail;
612 <
613 <        for (;;) {
614 <            QNode t = tail.get();
615 <            QNode h = head.get();
616 <
617 <            if (t != null && (t == h || t.isData == isData)) {
618 <                QNode last = t.next;
223 <                if (t == tail.get()) {
224 <                    if (last != null)
225 <                        tail.compareAndSet(t, last);
226 <                    else
227 <                        return null;
228 <                }
605 >     * Tries to append node s as tail.
606 >     *
607 >     * @param s the node to append
608 >     * @param haveData true if appending in data mode
609 >     * @return null on failure due to losing race with append in
610 >     * different mode, else s's predecessor, or s itself if no
611 >     * predecessor
612 >     */
613 >    private Node tryAppend(Node s, boolean haveData) {
614 >        for (Node t = tail, p = t;;) {        // move p to last node and append
615 >            Node n, u;                        // temps for reads of next & tail
616 >            if (p == null && (p = head) == null) {
617 >                if (casHead(null, s))
618 >                    return s;                 // initialize
619              }
620 <            else if (h != null) {
621 <                QNode first = h.next;
622 <                if (t == tail.get() &&
623 <                    first != null &&
624 <                    advanceHead(h, first)) {
625 <                    Object x = first.get();
626 <                    if (x != first && first.compareAndSet(x, e)) {
627 <                        LockSupport.unpark(first.waiter);
628 <                        return isData? e : x;
629 <                    }
620 >            else if (p.cannotPrecede(haveData))
621 >                return null;                  // lost race vs opposite mode
622 >            else if ((n = p.next) != null)    // not last; keep traversing
623 >                p = p != t && t != (u = tail) ? (t = u) : // stale tail
624 >                    (p != n) ? n : null;      // restart if off list
625 >            else if (!p.casNext(null, s))
626 >                p = p.next;                   // re-read on CAS failure
627 >            else {
628 >                if (p != t) {                 // update if slack now >= 2
629 >                    while ((tail != t || !casTail(t, s)) &&
630 >                           (t = tail)   != null &&
631 >                           (s = t.next) != null && // advance and retry
632 >                           (s = s.next) != null && s != t);
633                  }
634 +                return p;
635              }
636          }
637      }
638  
639      /**
640 <     * Spins/blocks until node s is fulfilled or caller gives up,
247 <     * depending on wait mode.
640 >     * Spins/yields/blocks until node s is matched or caller gives up.
641       *
249     * @param pred the predecessor of waiting node
642       * @param s the waiting node
643 +     * @param pred the predecessor of s, or s itself if it has no
644 +     * predecessor, or null if unknown (the null case does not occur
645 +     * in any current calls but may in possible future extensions)
646       * @param e the comparison value for checking match
647 <     * @param mode mode
648 <     * @param nanos timeout value
649 <     * @return matched item, or s if cancelled
650 <     */
651 <    private Object awaitFulfill(QNode pred, QNode s, Object e,
652 <                                int mode, long nanos) {
258 <        if (mode == NOWAIT)
259 <            return null;
260 <
261 <        long lastTime = (mode == TIMEOUT)? System.nanoTime() : 0;
647 >     * @param timed if true, wait only until timeout elapses
648 >     * @param nanos timeout in nanosecs, used only if timed is true
649 >     * @return matched item, or e if unmatched on interrupt or timeout
650 >     */
651 >    private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
652 >        long lastTime = timed ? System.nanoTime() : 0L;
653          Thread w = Thread.currentThread();
654 <        int spins = -1; // set to desired spin count below
654 >        int spins = -1; // initialized after first item and cancel checks
655 >        ThreadLocalRandom randomYields = null; // bound if needed
656 >
657          for (;;) {
658 <            if (w.isInterrupted())
659 <                s.compareAndSet(e, s);
660 <            Object x = s.get();
661 <            if (x != e) {                 // Node was matched or cancelled
662 <                advanceHead(pred, s);     // unlink if head
270 <                if (x == s) {              // was cancelled
271 <                    clean(pred, s);
272 <                    return null;
273 <                }
274 <                else if (x != null) {
275 <                    s.set(s);             // avoid garbage retention
276 <                    return x;
277 <                }
278 <                else
279 <                    return e;
658 >            Object item = s.item;
659 >            if (item != e) {                  // matched
660 >                // assert item != s;
661 >                s.forgetContents();           // avoid garbage
662 >                return this.<E>cast(item);
663              }
664 <            if (mode == TIMEOUT) {
665 <                long now = System.nanoTime();
666 <                nanos -= now - lastTime;
667 <                lastTime = now;
285 <                if (nanos <= 0) {
286 <                    s.compareAndSet(e, s); // try to cancel
287 <                    continue;
288 <                }
664 >            if ((w.isInterrupted() || (timed && nanos <= 0)) &&
665 >                    s.casItem(e, s)) {        // cancel
666 >                unsplice(pred, s);
667 >                return e;
668              }
669 <            if (spins < 0) {
670 <                QNode h = head.get(); // only spin if at head
671 <                spins = ((h != null && h.next == s) ?
672 <                         (mode == TIMEOUT?
294 <                          maxTimedSpins : maxUntimedSpins) : 0);
669 >
670 >            if (spins < 0) {                  // establish spins at/near front
671 >                if ((spins = spinsFor(pred, s.isData)) > 0)
672 >                    randomYields = ThreadLocalRandom.current();
673              }
674 <            if (spins > 0)
674 >            else if (spins > 0) {             // spin
675                  --spins;
676 <            else if (s.waiter == null)
677 <                s.waiter = w;
300 <            else if (mode != TIMEOUT) {
301 <                //                LockSupport.park(this);
302 <                LockSupport.park(); // allows run on java5
303 <                s.waiter = null;
304 <                spins = -1;
676 >                if (randomYields.nextInt(CHAINED_SPINS) == 0)
677 >                    Thread.yield();           // occasionally yield
678              }
679 <            else if (nanos > spinForTimeoutThreshold) {
680 <                //                LockSupport.parkNanos(this, nanos);
681 <                LockSupport.parkNanos(nanos);
682 <                s.waiter = null;
683 <                spins = -1;
679 >            else if (s.waiter == null) {
680 >                s.waiter = w;                 // request unpark then recheck
681 >            }
682 >            else if (timed) {
683 >                long now = System.nanoTime();
684 >                if ((nanos -= now - lastTime) > 0)
685 >                    LockSupport.parkNanos(this, nanos);
686 >                lastTime = now;
687 >            }
688 >            else {
689 >                LockSupport.park(this);
690              }
691          }
692      }
693  
694      /**
695 <     * Returns validated tail for use in cleaning methods
695 >     * Returns spin/yield value for a node with given predecessor and
696 >     * data mode. See above for explanation.
697       */
698 <    private QNode getValidatedTail() {
699 <        for (;;) {
700 <            QNode h = head.get();
701 <            QNode first = h.next;
702 <            if (first != null && first.next == first) { // help advance
703 <                advanceHead(h, first);
704 <                continue;
705 <            }
706 <            QNode t = tail.get();
707 <            QNode last = t.next;
708 <            if (t == tail.get()) {
709 <                if (last != null)
710 <                    tail.compareAndSet(t, last); // help advance
711 <                else
712 <                    return t;
698 >    private static int spinsFor(Node pred, boolean haveData) {
699 >        if (MP && pred != null) {
700 >            if (pred.isData != haveData)      // phase change
701 >                return FRONT_SPINS + CHAINED_SPINS;
702 >            if (pred.isMatched())             // probably at front
703 >                return FRONT_SPINS;
704 >            if (pred.waiter == null)          // pred apparently spinning
705 >                return CHAINED_SPINS;
706 >        }
707 >        return 0;
708 >    }
709 >
710 >    /* -------------- Traversal methods -------------- */
711 >
712 >    /**
713 >     * Returns the successor of p, or the head node if p.next has been
714 >     * linked to self, which will only be true if traversing with a
715 >     * stale pointer that is now off the list.
716 >     */
717 >    final Node succ(Node p) {
718 >        Node next = p.next;
719 >        return (p == next) ? head : next;
720 >    }
721 >
722 >    /**
723 >     * Returns the first unmatched node of the given mode, or null if
724 >     * none.  Used by methods isEmpty, hasWaitingConsumer.
725 >     */
726 >    private Node firstOfMode(boolean isData) {
727 >        for (Node p = head; p != null; p = succ(p)) {
728 >            if (!p.isMatched())
729 >                return (p.isData == isData) ? p : null;
730 >        }
731 >        return null;
732 >    }
733 >
734 >    /**
735 >     * Returns the item in the first unmatched node with isData; or
736 >     * null if none.  Used by peek.
737 >     */
738 >    private E firstDataItem() {
739 >        for (Node p = head; p != null; p = succ(p)) {
740 >            Object item = p.item;
741 >            if (p.isData) {
742 >                if (item != null && item != p)
743 >                    return this.<E>cast(item);
744              }
745 +            else if (item == null)
746 +                return null;
747          }
748 +        return null;
749      }
750  
751      /**
752 <     * Gets rid of cancelled node s with original predecessor pred.
753 <     * @param pred predecessor of cancelled node
340 <     * @param s the cancelled node
752 >     * Traverses and counts unmatched nodes of the given mode.
753 >     * Used by methods size and getWaitingConsumerCount.
754       */
755 <    private void clean(QNode pred, QNode s) {
756 <        Thread w = s.waiter;
757 <        if (w != null) {             // Wake up thread
758 <            s.waiter = null;
759 <            if (w != Thread.currentThread())
760 <                LockSupport.unpark(w);
755 >    private int countOfMode(boolean data) {
756 >        int count = 0;
757 >        for (Node p = head; p != null; ) {
758 >            if (!p.isMatched()) {
759 >                if (p.isData != data)
760 >                    return 0;
761 >                if (++count == Integer.MAX_VALUE) // saturated
762 >                    break;
763 >            }
764 >            Node n = p.next;
765 >            if (n != p)
766 >                p = n;
767 >            else {
768 >                count = 0;
769 >                p = head;
770 >            }
771          }
772 <        /*
773 <         * At any given time, exactly one node on list cannot be
774 <         * deleted -- the last inserted node. To accommodate this, if
775 <         * we cannot delete s, we save its predecessor as "cleanMe",
776 <         * processing the previously saved version first. At least one
777 <         * of node s or the node previously saved can always be
778 <         * processed, so this always terminates.
772 >        return count;
773 >    }
774 >
775 >    final class Itr implements Iterator<E> {
776 >        private Node nextNode;   // next node to return item for
777 >        private E nextItem;      // the corresponding item
778 >        private Node lastRet;    // last returned node, to support remove
779 >        private Node lastPred;   // predecessor to unlink lastRet
780 >
781 >        /**
782 >         * Moves to next node after prev, or first node if prev null.
783           */
784 <        while (pred.next == s) {
785 <            QNode oldpred = reclean();  // First, help get rid of cleanMe
786 <            QNode t = getValidatedTail();
787 <            if (s != t) {               // If not tail, try to unsplice
788 <                QNode sn = s.next;      // s.next == s means s already off list
789 <                if (sn == s || pred.casNext(s, sn))
784 >        private void advance(Node prev) {
785 >            /*
786 >             * To track and avoid buildup of deleted nodes in the face
787 >             * of calls to both Queue.remove and Itr.remove, we must
788 >             * include variants of unsplice and sweep upon each
789 >             * advance: Upon Itr.remove, we may need to catch up links
790 >             * from lastPred, and upon other removes, we might need to
791 >             * skip ahead from stale nodes and unsplice deleted ones
792 >             * found while advancing.
793 >             */
794 >
795 >            Node r, b; // reset lastPred upon possible deletion of lastRet
796 >            if ((r = lastRet) != null && !r.isMatched())
797 >                lastPred = r;    // next lastPred is old lastRet
798 >            else if ((b = lastPred) == null || b.isMatched())
799 >                lastPred = null; // at start of list
800 >            else {
801 >                Node s, n;       // help with removal of lastPred.next
802 >                while ((s = b.next) != null &&
803 >                       s != b && s.isMatched() &&
804 >                       (n = s.next) != null && n != s)
805 >                    b.casNext(s, n);
806 >            }
807 >
808 >            this.lastRet = prev;
809 >            for (Node p = prev, s, n;;) {
810 >                s = (p == null) ? head : p.next;
811 >                if (s == null)
812 >                    break;
813 >                else if (s == p) {
814 >                    p = null;
815 >                    continue;
816 >                }
817 >                Object item = s.item;
818 >                if (s.isData) {
819 >                    if (item != null && item != s) {
820 >                        nextItem = LinkedTransferQueue.<E>cast(item);
821 >                        nextNode = s;
822 >                        return;
823 >                    }
824 >                }
825 >                else if (item == null)
826 >                    break;
827 >                // assert s.isMatched();
828 >                if (p == null)
829 >                    p = s;
830 >                else if ((n = s.next) == null)
831                      break;
832 +                else if (s == n)
833 +                    p = null;
834 +                else
835 +                    p.casNext(s, n);
836              }
837 <            else if (oldpred == pred || // Already saved
838 <                     (oldpred == null && cleanMe.compareAndSet(null, pred)))
839 <                break;                  // Postpone cleaning
837 >            nextNode = null;
838 >            nextItem = null;
839 >        }
840 >
841 >        Itr() {
842 >            advance(null);
843 >        }
844 >
845 >        public final boolean hasNext() {
846 >            return nextNode != null;
847 >        }
848 >
849 >        public final E next() {
850 >            Node p = nextNode;
851 >            if (p == null) throw new NoSuchElementException();
852 >            E e = nextItem;
853 >            advance(p);
854 >            return e;
855 >        }
856 >
857 >        public final void remove() {
858 >            final Node lastRet = this.lastRet;
859 >            if (lastRet == null)
860 >                throw new IllegalStateException();
861 >            this.lastRet = null;
862 >            if (lastRet.tryMatchData())
863 >                unsplice(lastPred, lastRet);
864          }
865      }
866  
867 +    /* -------------- Removal methods -------------- */
868 +
869      /**
870 <     * Tries to unsplice the cancelled node held in cleanMe that was
871 <     * previously uncleanable because it was at tail.
872 <     * @return current cleanMe node (or null)
870 >     * Unsplices (now or later) the given deleted/cancelled node with
871 >     * the given predecessor.
872 >     *
873 >     * @param pred a node that was at one time known to be the
874 >     * predecessor of s, or null or s itself if s is/was at head
875 >     * @param s the node to be unspliced
876       */
877 <    private QNode reclean() {
877 >    final void unsplice(Node pred, Node s) {
878 >        s.forgetContents(); // forget unneeded fields
879          /*
880 <         * cleanMe is, or at one time was, predecessor of cancelled
881 <         * node s that was the tail so could not be unspliced.  If s
882 <         * is no longer the tail, try to unsplice if necessary and
883 <         * make cleanMe slot available.  This differs from similar
884 <         * code in clean() because we must check that pred still
383 <         * points to a cancelled node that must be unspliced -- if
384 <         * not, we can (must) clear cleanMe without unsplicing.
385 <         * This can loop only due to contention on casNext or
386 <         * clearing cleanMe.
880 >         * See above for rationale. Briefly: if pred still points to
881 >         * s, try to unlink s.  If s cannot be unlinked, because it is
882 >         * trailing node or pred might be unlinked, and neither pred
883 >         * nor s are head or offlist, add to sweepVotes, and if enough
884 >         * votes have accumulated, sweep.
885           */
886 <        QNode pred;
887 <        while ((pred = cleanMe.get()) != null) {
888 <            QNode t = getValidatedTail();
889 <            QNode s = pred.next;
890 <            if (s != t) {
891 <                QNode sn;
892 <                if (s == null || s == pred || s.get() != s ||
893 <                    (sn = s.next) == s || pred.casNext(s, sn))
894 <                    cleanMe.compareAndSet(pred, null);
886 >        if (pred != null && pred != s && pred.next == s) {
887 >            Node n = s.next;
888 >            if (n == null ||
889 >                (n != s && pred.casNext(s, n) && pred.isMatched())) {
890 >                for (;;) {               // check if at, or could be, head
891 >                    Node h = head;
892 >                    if (h == pred || h == s || h == null)
893 >                        return;          // at head or list empty
894 >                    if (!h.isMatched())
895 >                        break;
896 >                    Node hn = h.next;
897 >                    if (hn == null)
898 >                        return;          // now empty
899 >                    if (hn != h && casHead(h, hn))
900 >                        h.forgetNext();  // advance head
901 >                }
902 >                if (pred.next != pred && s.next != s) { // recheck if offlist
903 >                    for (;;) {           // sweep now if enough votes
904 >                        int v = sweepVotes;
905 >                        if (v < SWEEP_THRESHOLD) {
906 >                            if (casSweepVotes(v, v + 1))
907 >                                break;
908 >                        }
909 >                        else if (casSweepVotes(v, 0)) {
910 >                            sweep();
911 >                            break;
912 >                        }
913 >                    }
914 >                }
915              }
916 <            else // s is still tail; cannot clean
916 >        }
917 >    }
918 >
919 >    /**
920 >     * Unlinks matched (typically cancelled) nodes encountered in a
921 >     * traversal from head.
922 >     */
923 >    private void sweep() {
924 >        for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
925 >            if (!s.isMatched())
926 >                // Unmatched nodes are never self-linked
927 >                p = s;
928 >            else if ((n = s.next) == null) // trailing node is pinned
929                  break;
930 +            else if (s == n)    // stale
931 +                // No need to also check for p == s, since that implies s == n
932 +                p = head;
933 +            else
934 +                p.casNext(s, n);
935 +        }
936 +    }
937 +
938 +    /**
939 +     * Main implementation of remove(Object)
940 +     */
941 +    private boolean findAndRemove(Object e) {
942 +        if (e != null) {
943 +            for (Node pred = null, p = head; p != null; ) {
944 +                Object item = p.item;
945 +                if (p.isData) {
946 +                    if (item != null && item != p && e.equals(item) &&
947 +                        p.tryMatchData()) {
948 +                        unsplice(pred, p);
949 +                        return true;
950 +                    }
951 +                }
952 +                else if (item == null)
953 +                    break;
954 +                pred = p;
955 +                if ((p = p.next) == pred) { // stale
956 +                    pred = null;
957 +                    p = head;
958 +                }
959 +            }
960          }
961 <        return pred;
961 >        return false;
962      }
963  
964 +
965      /**
966       * Creates an initially empty {@code LinkedTransferQueue}.
967       */
968      public LinkedTransferQueue() {
408        QNode dummy = new QNode(null, false);
409        head = new PaddedAtomicReference<QNode>(dummy);
410        tail = new PaddedAtomicReference<QNode>(dummy);
411        cleanMe = new PaddedAtomicReference<QNode>(null);
969      }
970  
971      /**
972       * Creates a {@code LinkedTransferQueue}
973       * initially containing the elements of the given collection,
974       * added in traversal order of the collection's iterator.
975 +     *
976       * @param c the collection of elements to initially contain
977       * @throws NullPointerException if the specified collection or any
978       *         of its elements are null
# Line 424 | Line 982 | public class LinkedTransferQueue<E> exte
982          addAll(c);
983      }
984  
985 <    public void put(E e) throws InterruptedException {
986 <        if (e == null) throw new NullPointerException();
987 <        if (Thread.interrupted()) throw new InterruptedException();
988 <        xfer(e, NOWAIT, 0);
985 >    /**
986 >     * Inserts the specified element at the tail of this queue.
987 >     * As the queue is unbounded, this method will never block.
988 >     *
989 >     * @throws NullPointerException if the specified element is null
990 >     */
991 >    public void put(E e) {
992 >        xfer(e, true, ASYNC, 0);
993      }
994  
995 <    public boolean offer(E e, long timeout, TimeUnit unit)
996 <        throws InterruptedException {
997 <        if (e == null) throw new NullPointerException();
998 <        if (Thread.interrupted()) throw new InterruptedException();
999 <        xfer(e, NOWAIT, 0);
995 >    /**
996 >     * Inserts the specified element at the tail of this queue.
997 >     * As the queue is unbounded, this method will never block or
998 >     * return {@code false}.
999 >     *
1000 >     * @return {@code true} (as specified by
1001 >     *  {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
1002 >     * @throws NullPointerException if the specified element is null
1003 >     */
1004 >    public boolean offer(E e, long timeout, TimeUnit unit) {
1005 >        xfer(e, true, ASYNC, 0);
1006          return true;
1007      }
1008  
1009 +    /**
1010 +     * Inserts the specified element at the tail of this queue.
1011 +     * As the queue is unbounded, this method will never return {@code false}.
1012 +     *
1013 +     * @return {@code true} (as specified by {@link Queue#offer})
1014 +     * @throws NullPointerException if the specified element is null
1015 +     */
1016      public boolean offer(E e) {
1017 <        if (e == null) throw new NullPointerException();
1018 <        xfer(e, NOWAIT, 0);
1017 >        xfer(e, true, ASYNC, 0);
1018 >        return true;
1019 >    }
1020 >
1021 >    /**
1022 >     * Inserts the specified element at the tail of this queue.
1023 >     * As the queue is unbounded, this method will never throw
1024 >     * {@link IllegalStateException} or return {@code false}.
1025 >     *
1026 >     * @return {@code true} (as specified by {@link Collection#add})
1027 >     * @throws NullPointerException if the specified element is null
1028 >     */
1029 >    public boolean add(E e) {
1030 >        xfer(e, true, ASYNC, 0);
1031          return true;
1032      }
1033  
1034 +    /**
1035 +     * Transfers the element to a waiting consumer immediately, if possible.
1036 +     *
1037 +     * <p>More precisely, transfers the specified element immediately
1038 +     * if there exists a consumer already waiting to receive it (in
1039 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1040 +     * otherwise returning {@code false} without enqueuing the element.
1041 +     *
1042 +     * @throws NullPointerException if the specified element is null
1043 +     */
1044 +    public boolean tryTransfer(E e) {
1045 +        return xfer(e, true, NOW, 0) == null;
1046 +    }
1047 +
1048 +    /**
1049 +     * Transfers the element to a consumer, waiting if necessary to do so.
1050 +     *
1051 +     * <p>More precisely, transfers the specified element immediately
1052 +     * if there exists a consumer already waiting to receive it (in
1053 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1054 +     * else inserts the specified element at the tail of this queue
1055 +     * and waits until the element is received by a consumer.
1056 +     *
1057 +     * @throws NullPointerException if the specified element is null
1058 +     */
1059      public void transfer(E e) throws InterruptedException {
1060 <        if (e == null) throw new NullPointerException();
1061 <        if (xfer(e, WAIT, 0) == null) {
450 <            Thread.interrupted();
1060 >        if (xfer(e, true, SYNC, 0) != null) {
1061 >            Thread.interrupted(); // failure possible only due to interrupt
1062              throw new InterruptedException();
1063          }
1064      }
1065  
1066 +    /**
1067 +     * Transfers the element to a consumer if it is possible to do so
1068 +     * before the timeout elapses.
1069 +     *
1070 +     * <p>More precisely, transfers the specified element immediately
1071 +     * if there exists a consumer already waiting to receive it (in
1072 +     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1073 +     * else inserts the specified element at the tail of this queue
1074 +     * and waits until the element is received by a consumer,
1075 +     * returning {@code false} if the specified wait time elapses
1076 +     * before the element can be transferred.
1077 +     *
1078 +     * @throws NullPointerException if the specified element is null
1079 +     */
1080      public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1081          throws InterruptedException {
1082 <        if (e == null) throw new NullPointerException();
458 <        if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
1082 >        if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1083              return true;
1084          if (!Thread.interrupted())
1085              return false;
1086          throw new InterruptedException();
1087      }
1088  
465    public boolean tryTransfer(E e) {
466        if (e == null) throw new NullPointerException();
467        return fulfill(e) != null;
468    }
469
1089      public E take() throws InterruptedException {
1090 <        Object e = xfer(null, WAIT, 0);
1090 >        E e = xfer(null, false, SYNC, 0);
1091          if (e != null)
1092 <            return (E)e;
1092 >            return e;
1093          Thread.interrupted();
1094          throw new InterruptedException();
1095      }
1096  
1097      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1098 <        Object e = xfer(null, TIMEOUT, unit.toNanos(timeout));
1098 >        E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1099          if (e != null || !Thread.interrupted())
1100 <            return (E)e;
1100 >            return e;
1101          throw new InterruptedException();
1102      }
1103  
1104      public E poll() {
1105 <        return (E)fulfill(null);
1105 >        return xfer(null, false, NOW, 0);
1106      }
1107  
1108 +    /**
1109 +     * @throws NullPointerException     {@inheritDoc}
1110 +     * @throws IllegalArgumentException {@inheritDoc}
1111 +     */
1112      public int drainTo(Collection<? super E> c) {
1113          if (c == null)
1114              throw new NullPointerException();
# Line 500 | Line 1123 | public class LinkedTransferQueue<E> exte
1123          return n;
1124      }
1125  
1126 +    /**
1127 +     * @throws NullPointerException     {@inheritDoc}
1128 +     * @throws IllegalArgumentException {@inheritDoc}
1129 +     */
1130      public int drainTo(Collection<? super E> c, int maxElements) {
1131          if (c == null)
1132              throw new NullPointerException();
# Line 514 | Line 1141 | public class LinkedTransferQueue<E> exte
1141          return n;
1142      }
1143  
517    // Traversal-based methods
518
1144      /**
1145 <     * Return head after performing any outstanding helping steps
1145 >     * Returns an iterator over the elements in this queue in proper
1146 >     * sequence, from head to tail.
1147 >     *
1148 >     * <p>The returned iterator is a "weakly consistent" iterator that
1149 >     * will never throw
1150 >     * {@link ConcurrentModificationException ConcurrentModificationException},
1151 >     * and guarantees to traverse elements as they existed upon
1152 >     * construction of the iterator, and may (but is not guaranteed
1153 >     * to) reflect any modifications subsequent to construction.
1154 >     *
1155 >     * @return an iterator over the elements in this queue in proper sequence
1156       */
522    private QNode traversalHead() {
523        for (;;) {
524            QNode t = tail.get();
525            QNode h = head.get();
526            if (h != null && t != null) {
527                QNode last = t.next;
528                QNode first = h.next;
529                if (t == tail.get()) {
530                    if (last != null)
531                        tail.compareAndSet(t, last);
532                    else if (first != null) {
533                        Object x = first.get();
534                        if (x == first)
535                            advanceHead(h, first);
536                        else
537                            return h;
538                    }
539                    else
540                        return h;
541                }
542            }
543        }
544    }
545
546
1157      public Iterator<E> iterator() {
1158          return new Itr();
1159      }
1160  
551    /**
552     * Iterators. Basic strategy is to traverse list, treating
553     * non-data (i.e., request) nodes as terminating list.
554     * Once a valid data node is found, the item is cached
555     * so that the next call to next() will return it even
556     * if subsequently removed.
557     */
558    class Itr implements Iterator<E> {
559        QNode nextNode;    // Next node to return next
560        QNode currentNode; // last returned node, for remove()
561        QNode prevNode;    // predecessor of last returned node
562        E nextItem;        // Cache of next item, once commited to in next
563
564        Itr() {
565            nextNode = traversalHead();
566            advance();
567        }
568
569        E advance() {
570            prevNode = currentNode;
571            currentNode = nextNode;
572            E x = nextItem;
573
574            QNode p = nextNode.next;
575            for (;;) {
576                if (p == null || !p.isData) {
577                    nextNode = null;
578                    nextItem = null;
579                    return x;
580                }
581                Object item = p.get();
582                if (item != p && item != null) {
583                    nextNode = p;
584                    nextItem = (E)item;
585                    return x;
586                }
587                prevNode = p;
588                p = p.next;
589            }
590        }
591
592        public boolean hasNext() {
593            return nextNode != null;
594        }
595
596        public E next() {
597            if (nextNode == null) throw new NoSuchElementException();
598            return advance();
599        }
600
601        public void remove() {
602            QNode p = currentNode;
603            QNode prev = prevNode;
604            if (prev == null || p == null)
605                throw new IllegalStateException();
606            Object x = p.get();
607            if (x != null && x != p && p.compareAndSet(x, p))
608                clean(prev, p);
609        }
610    }
611
1161      public E peek() {
1162 <        for (;;) {
614 <            QNode h = traversalHead();
615 <            QNode p = h.next;
616 <            if (p == null)
617 <                return null;
618 <            Object x = p.get();
619 <            if (p != x) {
620 <                if (!p.isData)
621 <                    return null;
622 <                if (x != null)
623 <                    return (E)x;
624 <            }
625 <        }
1162 >        return firstDataItem();
1163      }
1164  
1165 +    /**
1166 +     * Returns {@code true} if this queue contains no elements.
1167 +     *
1168 +     * @return {@code true} if this queue contains no elements
1169 +     */
1170      public boolean isEmpty() {
1171 <        for (;;) {
1172 <            QNode h = traversalHead();
1173 <            QNode p = h.next;
632 <            if (p == null)
633 <                return true;
634 <            Object x = p.get();
635 <            if (p != x) {
636 <                if (!p.isData)
637 <                    return true;
638 <                if (x != null)
639 <                    return false;
640 <            }
1171 >        for (Node p = head; p != null; p = succ(p)) {
1172 >            if (!p.isMatched())
1173 >                return !p.isData;
1174          }
1175 +        return true;
1176      }
1177  
1178      public boolean hasWaitingConsumer() {
1179 <        for (;;) {
646 <            QNode h = traversalHead();
647 <            QNode p = h.next;
648 <            if (p == null)
649 <                return false;
650 <            Object x = p.get();
651 <            if (p != x)
652 <                return !p.isData;
653 <        }
1179 >        return firstOfMode(false) != null;
1180      }
1181  
1182      /**
# Line 666 | Line 1192 | public class LinkedTransferQueue<E> exte
1192       * @return the number of elements in this queue
1193       */
1194      public int size() {
1195 <        int count = 0;
670 <        QNode h = traversalHead();
671 <        for (QNode p = h.next; p != null && p.isData; p = p.next) {
672 <            Object x = p.get();
673 <            if (x != null && x != p) {
674 <                if (++count == Integer.MAX_VALUE) // saturated
675 <                    break;
676 <            }
677 <        }
678 <        return count;
1195 >        return countOfMode(true);
1196      }
1197  
1198      public int getWaitingConsumerCount() {
1199 <        int count = 0;
1200 <        QNode h = traversalHead();
1201 <        for (QNode p = h.next; p != null && !p.isData; p = p.next) {
1202 <            if (p.get() == null) {
1203 <                if (++count == Integer.MAX_VALUE)
1204 <                    break;
1199 >        return countOfMode(false);
1200 >    }
1201 >
1202 >    /**
1203 >     * Removes a single instance of the specified element from this queue,
1204 >     * if it is present.  More formally, removes an element {@code e} such
1205 >     * that {@code o.equals(e)}, if this queue contains one or more such
1206 >     * elements.
1207 >     * Returns {@code true} if this queue contained the specified element
1208 >     * (or equivalently, if this queue changed as a result of the call).
1209 >     *
1210 >     * @param o element to be removed from this queue, if present
1211 >     * @return {@code true} if this queue changed as a result of the call
1212 >     */
1213 >    public boolean remove(Object o) {
1214 >        return findAndRemove(o);
1215 >    }
1216 >
1217 >    /**
1218 >     * Returns {@code true} if this queue contains the specified element.
1219 >     * More formally, returns {@code true} if and only if this queue contains
1220 >     * at least one element {@code e} such that {@code o.equals(e)}.
1221 >     *
1222 >     * @param o object to be checked for containment in this queue
1223 >     * @return {@code true} if this queue contains the specified element
1224 >     */
1225 >    public boolean contains(Object o) {
1226 >        if (o == null) return false;
1227 >        for (Node p = head; p != null; p = succ(p)) {
1228 >            Object item = p.item;
1229 >            if (p.isData) {
1230 >                if (item != null && item != p && o.equals(item))
1231 >                    return true;
1232              }
1233 +            else if (item == null)
1234 +                break;
1235          }
1236 <        return count;
1236 >        return false;
1237      }
1238  
1239 +    /**
1240 +     * Always returns {@code Integer.MAX_VALUE} because a
1241 +     * {@code LinkedTransferQueue} is not capacity constrained.
1242 +     *
1243 +     * @return {@code Integer.MAX_VALUE} (as specified by
1244 +     *         {@link BlockingQueue#remainingCapacity()})
1245 +     */
1246      public int remainingCapacity() {
1247          return Integer.MAX_VALUE;
1248      }
1249  
1250      /**
1251 <     * Save the state to a stream (that is, serialize it).
1251 >     * Saves the state to a stream (that is, serializes it).
1252       *
1253       * @serialData All of the elements (each an {@code E}) in
1254       * the proper order, followed by a null
# Line 704 | Line 1257 | public class LinkedTransferQueue<E> exte
1257      private void writeObject(java.io.ObjectOutputStream s)
1258          throws java.io.IOException {
1259          s.defaultWriteObject();
1260 <        for (Iterator<E> it = iterator(); it.hasNext(); )
1261 <            s.writeObject(it.next());
1260 >        for (E e : this)
1261 >            s.writeObject(e);
1262          // Use trailing null as sentinel
1263          s.writeObject(null);
1264      }
1265  
1266      /**
1267 <     * Reconstitute the Queue instance from a stream (that is,
1268 <     * deserialize it).
1267 >     * Reconstitutes the Queue instance from a stream (that is,
1268 >     * deserializes it).
1269 >     *
1270       * @param s the stream
1271       */
1272      private void readObject(java.io.ObjectInputStream s)
1273          throws java.io.IOException, ClassNotFoundException {
1274          s.defaultReadObject();
721        resetHeadAndTail();
1275          for (;;) {
1276 <            E item = (E)s.readObject();
1276 >            @SuppressWarnings("unchecked") E item = (E) s.readObject();
1277              if (item == null)
1278                  break;
1279              else
# Line 728 | Line 1281 | public class LinkedTransferQueue<E> exte
1281          }
1282      }
1283  
1284 +    // Unsafe mechanics
1285  
1286 <    // Support for resetting head/tail while deserializing
1286 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1287 >    private static final long headOffset =
1288 >        objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1289 >    private static final long tailOffset =
1290 >        objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1291 >    private static final long sweepVotesOffset =
1292 >        objectFieldOffset(UNSAFE, "sweepVotes", LinkedTransferQueue.class);
1293  
1294 <    // Temporary Unsafe mechanics for preliminary release
1295 <    private static final Unsafe _unsafe;
736 <    private static final long headOffset;
737 <    private static final long tailOffset;
738 <    private static final long cleanMeOffset;
739 <    static {
1294 >    static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1295 >                                  String field, Class<?> klazz) {
1296          try {
1297 <            if (LinkedTransferQueue.class.getClassLoader() != null) {
1298 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1299 <                f.setAccessible(true);
1300 <                _unsafe = (Unsafe)f.get(null);
1301 <            }
1302 <            else
747 <                _unsafe = Unsafe.getUnsafe();
748 <            headOffset = _unsafe.objectFieldOffset
749 <                (LinkedTransferQueue.class.getDeclaredField("head"));
750 <            tailOffset = _unsafe.objectFieldOffset
751 <                (LinkedTransferQueue.class.getDeclaredField("tail"));
752 <            cleanMeOffset = _unsafe.objectFieldOffset
753 <                (LinkedTransferQueue.class.getDeclaredField("cleanMe"));
754 <        } catch (Exception e) {
755 <            throw new RuntimeException("Could not initialize intrinsics", e);
1297 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1298 >        } catch (NoSuchFieldException e) {
1299 >            // Convert Exception to corresponding Error
1300 >            NoSuchFieldError error = new NoSuchFieldError(field);
1301 >            error.initCause(e);
1302 >            throw error;
1303          }
1304      }
1305  
1306 <    private void resetHeadAndTail() {
1307 <        QNode dummy = new QNode(null, false);
1308 <        _unsafe.putObjectVolatile(this, headOffset,
1309 <                                  new PaddedAtomicReference<QNode>(dummy));
1310 <        _unsafe.putObjectVolatile(this, tailOffset,
1311 <                                  new PaddedAtomicReference<QNode>(dummy));
1312 <        _unsafe.putObjectVolatile(this, cleanMeOffset,
1313 <                                  new PaddedAtomicReference<QNode>(null));
1314 <
1306 >    /**
1307 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1308 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1309 >     * into a jdk.
1310 >     *
1311 >     * @return a sun.misc.Unsafe
1312 >     */
1313 >    static sun.misc.Unsafe getUnsafe() {
1314 >        try {
1315 >            return sun.misc.Unsafe.getUnsafe();
1316 >        } catch (SecurityException se) {
1317 >            try {
1318 >                return java.security.AccessController.doPrivileged
1319 >                    (new java.security
1320 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1321 >                        public sun.misc.Unsafe run() throws Exception {
1322 >                            java.lang.reflect.Field f = sun.misc
1323 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1324 >                            f.setAccessible(true);
1325 >                            return (sun.misc.Unsafe) f.get(null);
1326 >                        }});
1327 >            } catch (java.security.PrivilegedActionException e) {
1328 >                throw new RuntimeException("Could not initialize intrinsics",
1329 >                                           e.getCause());
1330 >            }
1331 >        }
1332      }
1333  
1334   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines