ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.16
Committed: Mon Mar 30 04:32:23 2009 UTC (15 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.15: +2 -2 lines
Log Message:
enhanced for

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8 import java.util.concurrent.*;
9 import java.util.concurrent.locks.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.*;
12 import java.io.*;
13 import sun.misc.Unsafe;
14 import java.lang.reflect.*;
15
16 /**
17 * An unbounded {@linkplain TransferQueue} based on linked nodes.
18 * This queue orders elements FIFO (first-in-first-out) with respect
19 * to any given producer. The <em>head</em> of the queue is that
20 * element that has been on the queue the longest time for some
21 * producer. The <em>tail</em> of the queue is that element that has
22 * been on the queue the shortest time for some producer.
23 *
24 * <p>Beware that, unlike in most collections, the {@code size}
25 * method is <em>NOT</em> a constant-time operation. Because of the
26 * asynchronous nature of these queues, determining the current number
27 * of elements requires a traversal of the elements.
28 *
29 * <p>This class and its iterator implement all of the
30 * <em>optional</em> methods of the {@link Collection} and {@link
31 * Iterator} interfaces.
32 *
33 * <p>Memory consistency effects: As with other concurrent
34 * collections, actions in a thread prior to placing an object into a
35 * {@code LinkedTransferQueue}
36 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
37 * actions subsequent to the access or removal of that element from
38 * the {@code LinkedTransferQueue} in another thread.
39 *
40 * <p>This class is a member of the
41 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
42 * Java Collections Framework</a>.
43 *
44 * @since 1.7
45 * @author Doug Lea
46 * @param <E> the type of elements held in this collection
47 *
48 */
49 public class LinkedTransferQueue<E> extends AbstractQueue<E>
50 implements TransferQueue<E>, java.io.Serializable {
51 private static final long serialVersionUID = -3223113410248163686L;
52
53 /*
54 * This class extends the approach used in FIFO-mode
55 * SynchronousQueues. See the internal documentation, as well as
56 * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
57 * Lea & Scott
58 * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
59 *
60 * The main extension is to provide different Wait modes for the
61 * main "xfer" method that puts or takes items. These don't
62 * impact the basic dual-queue logic, but instead control whether
63 * or how threads block upon insertion of request or data nodes
64 * into the dual queue. It also uses slightly different
65 * conventions for tracking whether nodes are off-list or
66 * cancelled.
67 */
68
69 // Wait modes for xfer method
70 static final int NOWAIT = 0;
71 static final int TIMEOUT = 1;
72 static final int WAIT = 2;
73
74 /** The number of CPUs, for spin control */
75 static final int NCPUS = Runtime.getRuntime().availableProcessors();
76
77 /**
78 * The number of times to spin before blocking in timed waits.
79 * The value is empirically derived -- it works well across a
80 * variety of processors and OSes. Empirically, the best value
81 * seems not to vary with number of CPUs (beyond 2) so is just
82 * a constant.
83 */
84 static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
85
86 /**
87 * The number of times to spin before blocking in untimed waits.
88 * This is greater than timed value because untimed waits spin
89 * faster since they don't need to check times on each spin.
90 */
91 static final int maxUntimedSpins = maxTimedSpins * 16;
92
93 /**
94 * The number of nanoseconds for which it is faster to spin
95 * rather than to use timed park. A rough estimate suffices.
96 */
97 static final long spinForTimeoutThreshold = 1000L;
98
99 /**
100 * Node class for LinkedTransferQueue. Opportunistically
101 * subclasses from AtomicReference to represent item. Uses Object,
102 * not E, to allow setting item to "this" after use, to avoid
103 * garbage retention. Similarly, setting the next field to this is
104 * used as sentinel that node is off list.
105 */
106 static final class QNode extends AtomicReference<Object> {
107 volatile QNode next;
108 volatile Thread waiter; // to control park/unpark
109 final boolean isData;
110 QNode(Object item, boolean isData) {
111 super(item);
112 this.isData = isData;
113 }
114
115 static final AtomicReferenceFieldUpdater<QNode, QNode>
116 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
117 (QNode.class, QNode.class, "next");
118
119 final boolean casNext(QNode cmp, QNode val) {
120 return nextUpdater.compareAndSet(this, cmp, val);
121 }
122
123 final void clearNext() {
124 nextUpdater.lazySet(this, this);
125 }
126
127 }
128
129 /**
130 * Padded version of AtomicReference used for head, tail and
131 * cleanMe, to alleviate contention across threads CASing one vs
132 * the other.
133 */
134 static final class PaddedAtomicReference<T> extends AtomicReference<T> {
135 // enough padding for 64bytes with 4byte refs
136 Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
137 PaddedAtomicReference(T r) { super(r); }
138 }
139
140
141 /** head of the queue */
142 private transient final PaddedAtomicReference<QNode> head;
143 /** tail of the queue */
144 private transient final PaddedAtomicReference<QNode> tail;
145
146 /**
147 * Reference to a cancelled node that might not yet have been
148 * unlinked from queue because it was the last inserted node
149 * when it cancelled.
150 */
151 private transient final PaddedAtomicReference<QNode> cleanMe;
152
153 /**
154 * Tries to cas nh as new head; if successful, unlink
155 * old head's next node to avoid garbage retention.
156 */
157 private boolean advanceHead(QNode h, QNode nh) {
158 if (h == head.get() && head.compareAndSet(h, nh)) {
159 h.clearNext(); // forget old next
160 return true;
161 }
162 return false;
163 }
164
165 /**
166 * Puts or takes an item. Used for most queue operations (except
167 * poll() and tryTransfer()). See the similar code in
168 * SynchronousQueue for detailed explanation.
169 * @param e the item or if null, signifies that this is a take
170 * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
171 * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
172 * @return an item, or null on failure
173 */
174 private Object xfer(Object e, int mode, long nanos) {
175 boolean isData = (e != null);
176 QNode s = null;
177 final PaddedAtomicReference<QNode> head = this.head;
178 final PaddedAtomicReference<QNode> tail = this.tail;
179
180 for (;;) {
181 QNode t = tail.get();
182 QNode h = head.get();
183
184 if (t != null && (t == h || t.isData == isData)) {
185 if (s == null)
186 s = new QNode(e, isData);
187 QNode last = t.next;
188 if (last != null) {
189 if (t == tail.get())
190 tail.compareAndSet(t, last);
191 }
192 else if (t.casNext(null, s)) {
193 tail.compareAndSet(t, s);
194 return awaitFulfill(t, s, e, mode, nanos);
195 }
196 }
197
198 else if (h != null) {
199 QNode first = h.next;
200 if (t == tail.get() && first != null &&
201 advanceHead(h, first)) {
202 Object x = first.get();
203 if (x != first && first.compareAndSet(x, e)) {
204 LockSupport.unpark(first.waiter);
205 return isData? e : x;
206 }
207 }
208 }
209 }
210 }
211
212
213 /**
214 * Version of xfer for poll() and tryTransfer, which
215 * simplifies control paths both here and in xfer
216 */
217 private Object fulfill(Object e) {
218 boolean isData = (e != null);
219 final PaddedAtomicReference<QNode> head = this.head;
220 final PaddedAtomicReference<QNode> tail = this.tail;
221
222 for (;;) {
223 QNode t = tail.get();
224 QNode h = head.get();
225
226 if (t != null && (t == h || t.isData == isData)) {
227 QNode last = t.next;
228 if (t == tail.get()) {
229 if (last != null)
230 tail.compareAndSet(t, last);
231 else
232 return null;
233 }
234 }
235 else if (h != null) {
236 QNode first = h.next;
237 if (t == tail.get() &&
238 first != null &&
239 advanceHead(h, first)) {
240 Object x = first.get();
241 if (x != first && first.compareAndSet(x, e)) {
242 LockSupport.unpark(first.waiter);
243 return isData? e : x;
244 }
245 }
246 }
247 }
248 }
249
250 /**
251 * Spins/blocks until node s is fulfilled or caller gives up,
252 * depending on wait mode.
253 *
254 * @param pred the predecessor of waiting node
255 * @param s the waiting node
256 * @param e the comparison value for checking match
257 * @param mode mode
258 * @param nanos timeout value
259 * @return matched item, or s if cancelled
260 */
261 private Object awaitFulfill(QNode pred, QNode s, Object e,
262 int mode, long nanos) {
263 if (mode == NOWAIT)
264 return null;
265
266 long lastTime = (mode == TIMEOUT)? System.nanoTime() : 0;
267 Thread w = Thread.currentThread();
268 int spins = -1; // set to desired spin count below
269 for (;;) {
270 if (w.isInterrupted())
271 s.compareAndSet(e, s);
272 Object x = s.get();
273 if (x != e) { // Node was matched or cancelled
274 advanceHead(pred, s); // unlink if head
275 if (x == s) { // was cancelled
276 clean(pred, s);
277 return null;
278 }
279 else if (x != null) {
280 s.set(s); // avoid garbage retention
281 return x;
282 }
283 else
284 return e;
285 }
286 if (mode == TIMEOUT) {
287 long now = System.nanoTime();
288 nanos -= now - lastTime;
289 lastTime = now;
290 if (nanos <= 0) {
291 s.compareAndSet(e, s); // try to cancel
292 continue;
293 }
294 }
295 if (spins < 0) {
296 QNode h = head.get(); // only spin if at head
297 spins = ((h != null && h.next == s) ?
298 (mode == TIMEOUT?
299 maxTimedSpins : maxUntimedSpins) : 0);
300 }
301 if (spins > 0)
302 --spins;
303 else if (s.waiter == null)
304 s.waiter = w;
305 else if (mode != TIMEOUT) {
306 LockSupport.park(this);
307 s.waiter = null;
308 spins = -1;
309 }
310 else if (nanos > spinForTimeoutThreshold) {
311 LockSupport.parkNanos(this, nanos);
312 s.waiter = null;
313 spins = -1;
314 }
315 }
316 }
317
318 /**
319 * Returns validated tail for use in cleaning methods
320 */
321 private QNode getValidatedTail() {
322 for (;;) {
323 QNode h = head.get();
324 QNode first = h.next;
325 if (first != null && first.next == first) { // help advance
326 advanceHead(h, first);
327 continue;
328 }
329 QNode t = tail.get();
330 QNode last = t.next;
331 if (t == tail.get()) {
332 if (last != null)
333 tail.compareAndSet(t, last); // help advance
334 else
335 return t;
336 }
337 }
338 }
339
340 /**
341 * Gets rid of cancelled node s with original predecessor pred.
342 * @param pred predecessor of cancelled node
343 * @param s the cancelled node
344 */
345 private void clean(QNode pred, QNode s) {
346 Thread w = s.waiter;
347 if (w != null) { // Wake up thread
348 s.waiter = null;
349 if (w != Thread.currentThread())
350 LockSupport.unpark(w);
351 }
352
353 if (pred == null)
354 return;
355
356 /*
357 * At any given time, exactly one node on list cannot be
358 * deleted -- the last inserted node. To accommodate this, if
359 * we cannot delete s, we save its predecessor as "cleanMe",
360 * processing the previously saved version first. At least one
361 * of node s or the node previously saved can always be
362 * processed, so this always terminates.
363 */
364 while (pred.next == s) {
365 QNode oldpred = reclean(); // First, help get rid of cleanMe
366 QNode t = getValidatedTail();
367 if (s != t) { // If not tail, try to unsplice
368 QNode sn = s.next; // s.next == s means s already off list
369 if (sn == s || pred.casNext(s, sn))
370 break;
371 }
372 else if (oldpred == pred || // Already saved
373 (oldpred == null && cleanMe.compareAndSet(null, pred)))
374 break; // Postpone cleaning
375 }
376 }
377
378 /**
379 * Tries to unsplice the cancelled node held in cleanMe that was
380 * previously uncleanable because it was at tail.
381 * @return current cleanMe node (or null)
382 */
383 private QNode reclean() {
384 /*
385 * cleanMe is, or at one time was, predecessor of cancelled
386 * node s that was the tail so could not be unspliced. If s
387 * is no longer the tail, try to unsplice if necessary and
388 * make cleanMe slot available. This differs from similar
389 * code in clean() because we must check that pred still
390 * points to a cancelled node that must be unspliced -- if
391 * not, we can (must) clear cleanMe without unsplicing.
392 * This can loop only due to contention on casNext or
393 * clearing cleanMe.
394 */
395 QNode pred;
396 while ((pred = cleanMe.get()) != null) {
397 QNode t = getValidatedTail();
398 QNode s = pred.next;
399 if (s != t) {
400 QNode sn;
401 if (s == null || s == pred || s.get() != s ||
402 (sn = s.next) == s || pred.casNext(s, sn))
403 cleanMe.compareAndSet(pred, null);
404 }
405 else // s is still tail; cannot clean
406 break;
407 }
408 return pred;
409 }
410
411 /**
412 * Creates an initially empty {@code LinkedTransferQueue}.
413 */
414 public LinkedTransferQueue() {
415 QNode dummy = new QNode(null, false);
416 head = new PaddedAtomicReference<QNode>(dummy);
417 tail = new PaddedAtomicReference<QNode>(dummy);
418 cleanMe = new PaddedAtomicReference<QNode>(null);
419 }
420
421 /**
422 * Creates a {@code LinkedTransferQueue}
423 * initially containing the elements of the given collection,
424 * added in traversal order of the collection's iterator.
425 * @param c the collection of elements to initially contain
426 * @throws NullPointerException if the specified collection or any
427 * of its elements are null
428 */
429 public LinkedTransferQueue(Collection<? extends E> c) {
430 this();
431 addAll(c);
432 }
433
434 public void put(E e) throws InterruptedException {
435 if (e == null) throw new NullPointerException();
436 if (Thread.interrupted()) throw new InterruptedException();
437 xfer(e, NOWAIT, 0);
438 }
439
440 public boolean offer(E e, long timeout, TimeUnit unit)
441 throws InterruptedException {
442 if (e == null) throw new NullPointerException();
443 if (Thread.interrupted()) throw new InterruptedException();
444 xfer(e, NOWAIT, 0);
445 return true;
446 }
447
448 public boolean offer(E e) {
449 if (e == null) throw new NullPointerException();
450 xfer(e, NOWAIT, 0);
451 return true;
452 }
453
454 public boolean add(E e) {
455 if (e == null) throw new NullPointerException();
456 xfer(e, NOWAIT, 0);
457 return true;
458 }
459
460 public void transfer(E e) throws InterruptedException {
461 if (e == null) throw new NullPointerException();
462 if (xfer(e, WAIT, 0) == null) {
463 Thread.interrupted();
464 throw new InterruptedException();
465 }
466 }
467
468 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
469 throws InterruptedException {
470 if (e == null) throw new NullPointerException();
471 if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
472 return true;
473 if (!Thread.interrupted())
474 return false;
475 throw new InterruptedException();
476 }
477
478 public boolean tryTransfer(E e) {
479 if (e == null) throw new NullPointerException();
480 return fulfill(e) != null;
481 }
482
483 public E take() throws InterruptedException {
484 Object e = xfer(null, WAIT, 0);
485 if (e != null)
486 return (E)e;
487 Thread.interrupted();
488 throw new InterruptedException();
489 }
490
491 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
492 Object e = xfer(null, TIMEOUT, unit.toNanos(timeout));
493 if (e != null || !Thread.interrupted())
494 return (E)e;
495 throw new InterruptedException();
496 }
497
498 public E poll() {
499 return (E)fulfill(null);
500 }
501
502 public int drainTo(Collection<? super E> c) {
503 if (c == null)
504 throw new NullPointerException();
505 if (c == this)
506 throw new IllegalArgumentException();
507 int n = 0;
508 E e;
509 while ( (e = poll()) != null) {
510 c.add(e);
511 ++n;
512 }
513 return n;
514 }
515
516 public int drainTo(Collection<? super E> c, int maxElements) {
517 if (c == null)
518 throw new NullPointerException();
519 if (c == this)
520 throw new IllegalArgumentException();
521 int n = 0;
522 E e;
523 while (n < maxElements && (e = poll()) != null) {
524 c.add(e);
525 ++n;
526 }
527 return n;
528 }
529
530 // Traversal-based methods
531
532 /**
533 * Return head after performing any outstanding helping steps
534 */
535 private QNode traversalHead() {
536 for (;;) {
537 QNode t = tail.get();
538 QNode h = head.get();
539 if (h != null && t != null) {
540 QNode last = t.next;
541 QNode first = h.next;
542 if (t == tail.get()) {
543 if (last != null)
544 tail.compareAndSet(t, last);
545 else if (first != null) {
546 Object x = first.get();
547 if (x == first)
548 advanceHead(h, first);
549 else
550 return h;
551 }
552 else
553 return h;
554 }
555 }
556 reclean();
557 }
558 }
559
560
561 public Iterator<E> iterator() {
562 return new Itr();
563 }
564
565 /**
566 * Iterators. Basic strategy is to traverse list, treating
567 * non-data (i.e., request) nodes as terminating list.
568 * Once a valid data node is found, the item is cached
569 * so that the next call to next() will return it even
570 * if subsequently removed.
571 */
572 class Itr implements Iterator<E> {
573 QNode next; // node to return next
574 QNode pnext; // predecessor of next
575 QNode snext; // successor of next
576 QNode curr; // last returned node, for remove()
577 QNode pcurr; // predecessor of curr, for remove()
578 E nextItem; // Cache of next item, once commited to in next
579
580 Itr() {
581 findNext();
582 }
583
584 /**
585 * Ensure next points to next valid node, or null if none.
586 */
587 void findNext() {
588 for (;;) {
589 QNode pred = pnext;
590 QNode q = next;
591 if (pred == null || pred == q) {
592 pred = traversalHead();
593 q = pred.next;
594 }
595 if (q == null || !q.isData) {
596 next = null;
597 return;
598 }
599 Object x = q.get();
600 QNode s = q.next;
601 if (x != null && q != x && q != s) {
602 nextItem = (E)x;
603 snext = s;
604 pnext = pred;
605 next = q;
606 return;
607 }
608 pnext = q;
609 next = s;
610 }
611 }
612
613 public boolean hasNext() {
614 return next != null;
615 }
616
617 public E next() {
618 if (next == null) throw new NoSuchElementException();
619 pcurr = pnext;
620 curr = next;
621 pnext = next;
622 next = snext;
623 E x = nextItem;
624 findNext();
625 return x;
626 }
627
628 public void remove() {
629 QNode p = curr;
630 if (p == null)
631 throw new IllegalStateException();
632 Object x = p.get();
633 if (x != null && x != p && p.compareAndSet(x, p))
634 clean(pcurr, p);
635 }
636 }
637
638 public E peek() {
639 for (;;) {
640 QNode h = traversalHead();
641 QNode p = h.next;
642 if (p == null)
643 return null;
644 Object x = p.get();
645 if (p != x) {
646 if (!p.isData)
647 return null;
648 if (x != null)
649 return (E)x;
650 }
651 }
652 }
653
654 public boolean isEmpty() {
655 for (;;) {
656 QNode h = traversalHead();
657 QNode p = h.next;
658 if (p == null)
659 return true;
660 Object x = p.get();
661 if (p != x) {
662 if (!p.isData)
663 return true;
664 if (x != null)
665 return false;
666 }
667 }
668 }
669
670 public boolean hasWaitingConsumer() {
671 for (;;) {
672 QNode h = traversalHead();
673 QNode p = h.next;
674 if (p == null)
675 return false;
676 Object x = p.get();
677 if (p != x)
678 return !p.isData;
679 }
680 }
681
682 /**
683 * Returns the number of elements in this queue. If this queue
684 * contains more than {@code Integer.MAX_VALUE} elements, returns
685 * {@code Integer.MAX_VALUE}.
686 *
687 * <p>Beware that, unlike in most collections, this method is
688 * <em>NOT</em> a constant-time operation. Because of the
689 * asynchronous nature of these queues, determining the current
690 * number of elements requires an O(n) traversal.
691 *
692 * @return the number of elements in this queue
693 */
694 public int size() {
695 int count = 0;
696 QNode h = traversalHead();
697 for (QNode p = h.next; p != null && p.isData; p = p.next) {
698 Object x = p.get();
699 if (x != null && x != p) {
700 if (++count == Integer.MAX_VALUE) // saturated
701 break;
702 }
703 }
704 return count;
705 }
706
707 public int getWaitingConsumerCount() {
708 int count = 0;
709 QNode h = traversalHead();
710 for (QNode p = h.next; p != null && !p.isData; p = p.next) {
711 if (p.get() == null) {
712 if (++count == Integer.MAX_VALUE)
713 break;
714 }
715 }
716 return count;
717 }
718
719 public int remainingCapacity() {
720 return Integer.MAX_VALUE;
721 }
722
723 public boolean remove(Object o) {
724 if (o == null)
725 return false;
726 for (;;) {
727 QNode pred = traversalHead();
728 for (;;) {
729 QNode q = pred.next;
730 if (q == null || !q.isData)
731 return false;
732 if (q == pred) // restart
733 break;
734 Object x = q.get();
735 if (x != null && x != q && o.equals(x) &&
736 q.compareAndSet(x, q)) {
737 clean(pred, q);
738 return true;
739 }
740 pred = q;
741 }
742 }
743 }
744
745 /**
746 * Save the state to a stream (that is, serialize it).
747 *
748 * @serialData All of the elements (each an {@code E}) in
749 * the proper order, followed by a null
750 * @param s the stream
751 */
752 private void writeObject(java.io.ObjectOutputStream s)
753 throws java.io.IOException {
754 s.defaultWriteObject();
755 for (E e : this)
756 s.writeObject(e);
757 // Use trailing null as sentinel
758 s.writeObject(null);
759 }
760
761 /**
762 * Reconstitute the Queue instance from a stream (that is,
763 * deserialize it).
764 * @param s the stream
765 */
766 private void readObject(java.io.ObjectInputStream s)
767 throws java.io.IOException, ClassNotFoundException {
768 s.defaultReadObject();
769 resetHeadAndTail();
770 for (;;) {
771 E item = (E)s.readObject();
772 if (item == null)
773 break;
774 else
775 offer(item);
776 }
777 }
778
779
780 // Support for resetting head/tail while deserializing
781 private void resetHeadAndTail() {
782 QNode dummy = new QNode(null, false);
783 _unsafe.putObjectVolatile(this, headOffset,
784 new PaddedAtomicReference<QNode>(dummy));
785 _unsafe.putObjectVolatile(this, tailOffset,
786 new PaddedAtomicReference<QNode>(dummy));
787 _unsafe.putObjectVolatile(this, cleanMeOffset,
788 new PaddedAtomicReference<QNode>(null));
789 }
790
791 // Temporary Unsafe mechanics for preliminary release
792 private static Unsafe getUnsafe() throws Throwable {
793 try {
794 return Unsafe.getUnsafe();
795 } catch (SecurityException se) {
796 try {
797 return java.security.AccessController.doPrivileged
798 (new java.security.PrivilegedExceptionAction<Unsafe>() {
799 public Unsafe run() throws Exception {
800 return getUnsafePrivileged();
801 }});
802 } catch (java.security.PrivilegedActionException e) {
803 throw e.getCause();
804 }
805 }
806 }
807
808 private static Unsafe getUnsafePrivileged()
809 throws NoSuchFieldException, IllegalAccessException {
810 Field f = Unsafe.class.getDeclaredField("theUnsafe");
811 f.setAccessible(true);
812 return (Unsafe) f.get(null);
813 }
814
815 private static long fieldOffset(String fieldName)
816 throws NoSuchFieldException {
817 return _unsafe.objectFieldOffset
818 (LinkedTransferQueue.class.getDeclaredField(fieldName));
819 }
820
821 private static final Unsafe _unsafe;
822 private static final long headOffset;
823 private static final long tailOffset;
824 private static final long cleanMeOffset;
825 static {
826 try {
827 _unsafe = getUnsafe();
828 headOffset = fieldOffset("head");
829 tailOffset = fieldOffset("tail");
830 cleanMeOffset = fieldOffset("cleanMe");
831 } catch (Throwable e) {
832 throw new RuntimeException("Could not initialize intrinsics", e);
833 }
834 }
835
836 }