ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.37
Committed: Fri Jul 31 14:33:00 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.36: +1 -1 lines
Log Message:
typo fix

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.AbstractQueue;
12 import java.util.Collection;
13 import java.util.ConcurrentModificationException;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Queue;
17 import java.util.concurrent.locks.LockSupport;
18 import java.util.concurrent.atomic.AtomicReference;
19
20 /**
21 * An unbounded {@linkplain TransferQueue} based on linked nodes.
22 * This queue orders elements FIFO (first-in-first-out) with respect
23 * to any given producer. The <em>head</em> of the queue is that
24 * element that has been on the queue the longest time for some
25 * producer. The <em>tail</em> of the queue is that element that has
26 * been on the queue the shortest time for some producer.
27 *
28 * <p>Beware that, unlike in most collections, the {@code size}
29 * method is <em>NOT</em> a constant-time operation. Because of the
30 * asynchronous nature of these queues, determining the current number
31 * of elements requires a traversal of the elements.
32 *
33 * <p>This class and its iterator implement all of the
34 * <em>optional</em> methods of the {@link Collection} and {@link
35 * Iterator} interfaces.
36 *
37 * <p>Memory consistency effects: As with other concurrent
38 * collections, actions in a thread prior to placing an object into a
39 * {@code LinkedTransferQueue}
40 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
41 * actions subsequent to the access or removal of that element from
42 * the {@code LinkedTransferQueue} in another thread.
43 *
44 * <p>This class is a member of the
45 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
46 * Java Collections Framework</a>.
47 *
48 * @since 1.7
49 * @author Doug Lea
50 * @param <E> the type of elements held in this collection
51 */
52 public class LinkedTransferQueue<E> extends AbstractQueue<E>
53 implements TransferQueue<E>, java.io.Serializable {
54 private static final long serialVersionUID = -3223113410248163686L;
55
56 /*
57 * This class extends the approach used in FIFO-mode
58 * SynchronousQueues. See the internal documentation, as well as
59 * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
60 * Lea & Scott
61 * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
62 *
63 * The main extension is to provide different Wait modes for the
64 * main "xfer" method that puts or takes items. These don't
65 * impact the basic dual-queue logic, but instead control whether
66 * or how threads block upon insertion of request or data nodes
67 * into the dual queue. It also uses slightly different
68 * conventions for tracking whether nodes are off-list or
69 * cancelled.
70 */
71
72 // Wait modes for xfer method
73 static final int NOWAIT = 0;
74 static final int TIMEOUT = 1;
75 static final int WAIT = 2;
76
77 /** The number of CPUs, for spin control */
78 static final int NCPUS = Runtime.getRuntime().availableProcessors();
79
80 /**
81 * The number of times to spin before blocking in timed waits.
82 * The value is empirically derived -- it works well across a
83 * variety of processors and OSes. Empirically, the best value
84 * seems not to vary with number of CPUs (beyond 2) so is just
85 * a constant.
86 */
87 static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
88
89 /**
90 * The number of times to spin before blocking in untimed waits.
91 * This is greater than timed value because untimed waits spin
92 * faster since they don't need to check times on each spin.
93 */
94 static final int maxUntimedSpins = maxTimedSpins * 16;
95
96 /**
97 * The number of nanoseconds for which it is faster to spin
98 * rather than to use timed park. A rough estimate suffices.
99 */
100 static final long spinForTimeoutThreshold = 1000L;
101
102 /**
103 * Node class for LinkedTransferQueue. Opportunistically
104 * subclasses from AtomicReference to represent item. Uses Object,
105 * not E, to allow setting item to "this" after use, to avoid
106 * garbage retention. Similarly, setting the next field to this is
107 * used as sentinel that node is off list.
108 */
109 static final class Node<E> extends AtomicReference<Object> {
110 volatile Node<E> next;
111 volatile Thread waiter; // to control park/unpark
112 final boolean isData;
113
114 Node(E item, boolean isData) {
115 super(item);
116 this.isData = isData;
117 }
118
119 // Unsafe mechanics
120
121 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
122 private static final long nextOffset =
123 objectFieldOffset(UNSAFE, "next", Node.class);
124
125 final boolean casNext(Node<E> cmp, Node<E> val) {
126 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
127 }
128
129 final void clearNext() {
130 UNSAFE.putOrderedObject(this, nextOffset, this);
131 }
132
133 /**
134 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
135 * Replace with a simple call to Unsafe.getUnsafe when integrating
136 * into a jdk.
137 *
138 * @return a sun.misc.Unsafe
139 */
140 private static sun.misc.Unsafe getUnsafe() {
141 try {
142 return sun.misc.Unsafe.getUnsafe();
143 } catch (SecurityException se) {
144 try {
145 return java.security.AccessController.doPrivileged
146 (new java.security
147 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
148 public sun.misc.Unsafe run() throws Exception {
149 java.lang.reflect.Field f = sun.misc
150 .Unsafe.class.getDeclaredField("theUnsafe");
151 f.setAccessible(true);
152 return (sun.misc.Unsafe) f.get(null);
153 }});
154 } catch (java.security.PrivilegedActionException e) {
155 throw new RuntimeException("Could not initialize intrinsics",
156 e.getCause());
157 }
158 }
159 }
160
161 private static final long serialVersionUID = -3375979862319811754L;
162 }
163
164 /**
165 * Padded version of AtomicReference used for head, tail and
166 * cleanMe, to alleviate contention across threads CASing one vs
167 * the other.
168 */
169 static final class PaddedAtomicReference<T> extends AtomicReference<T> {
170 // enough padding for 64bytes with 4byte refs
171 Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
172 PaddedAtomicReference(T r) { super(r); }
173 private static final long serialVersionUID = 8170090609809740854L;
174 }
175
176
177 /** head of the queue */
178 private transient final PaddedAtomicReference<Node<E>> head;
179
180 /** tail of the queue */
181 private transient final PaddedAtomicReference<Node<E>> tail;
182
183 /**
184 * Reference to a cancelled node that might not yet have been
185 * unlinked from queue because it was the last inserted node
186 * when it cancelled.
187 */
188 private transient final PaddedAtomicReference<Node<E>> cleanMe;
189
190 /**
191 * Tries to cas nh as new head; if successful, unlink
192 * old head's next node to avoid garbage retention.
193 */
194 private boolean advanceHead(Node<E> h, Node<E> nh) {
195 if (h == head.get() && head.compareAndSet(h, nh)) {
196 h.clearNext(); // forget old next
197 return true;
198 }
199 return false;
200 }
201
202 /**
203 * Puts or takes an item. Used for most queue operations (except
204 * poll() and tryTransfer()). See the similar code in
205 * SynchronousQueue for detailed explanation.
206 *
207 * @param e the item or if null, signifies that this is a take
208 * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
209 * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
210 * @return an item, or null on failure
211 */
212 private E xfer(E e, int mode, long nanos) {
213 boolean isData = (e != null);
214 Node<E> s = null;
215 final PaddedAtomicReference<Node<E>> head = this.head;
216 final PaddedAtomicReference<Node<E>> tail = this.tail;
217
218 for (;;) {
219 Node<E> t = tail.get();
220 Node<E> h = head.get();
221
222 if (t != null && (t == h || t.isData == isData)) {
223 if (s == null)
224 s = new Node<E>(e, isData);
225 Node<E> last = t.next;
226 if (last != null) {
227 if (t == tail.get())
228 tail.compareAndSet(t, last);
229 }
230 else if (t.casNext(null, s)) {
231 tail.compareAndSet(t, s);
232 return awaitFulfill(t, s, e, mode, nanos);
233 }
234 }
235
236 else if (h != null) {
237 Node<E> first = h.next;
238 if (t == tail.get() && first != null &&
239 advanceHead(h, first)) {
240 Object x = first.get();
241 if (x != first && first.compareAndSet(x, e)) {
242 LockSupport.unpark(first.waiter);
243 return isData ? e : (E) x;
244 }
245 }
246 }
247 }
248 }
249
250
251 /**
252 * Version of xfer for poll() and tryTransfer, which
253 * simplifies control paths both here and in xfer.
254 */
255 private E fulfill(E e) {
256 boolean isData = (e != null);
257 final PaddedAtomicReference<Node<E>> head = this.head;
258 final PaddedAtomicReference<Node<E>> tail = this.tail;
259
260 for (;;) {
261 Node<E> t = tail.get();
262 Node<E> h = head.get();
263
264 if (t != null && (t == h || t.isData == isData)) {
265 Node<E> last = t.next;
266 if (t == tail.get()) {
267 if (last != null)
268 tail.compareAndSet(t, last);
269 else
270 return null;
271 }
272 }
273 else if (h != null) {
274 Node<E> first = h.next;
275 if (t == tail.get() &&
276 first != null &&
277 advanceHead(h, first)) {
278 Object x = first.get();
279 if (x != first && first.compareAndSet(x, e)) {
280 LockSupport.unpark(first.waiter);
281 return isData ? e : (E) x;
282 }
283 }
284 }
285 }
286 }
287
288 /**
289 * Spins/blocks until node s is fulfilled or caller gives up,
290 * depending on wait mode.
291 *
292 * @param pred the predecessor of waiting node
293 * @param s the waiting node
294 * @param e the comparison value for checking match
295 * @param mode mode
296 * @param nanos timeout value
297 * @return matched item, or s if cancelled
298 */
299 private E awaitFulfill(Node<E> pred, Node<E> s, E e,
300 int mode, long nanos) {
301 if (mode == NOWAIT)
302 return null;
303
304 long lastTime = (mode == TIMEOUT) ? System.nanoTime() : 0;
305 Thread w = Thread.currentThread();
306 int spins = -1; // set to desired spin count below
307 for (;;) {
308 if (w.isInterrupted())
309 s.compareAndSet(e, s);
310 Object x = s.get();
311 if (x != e) { // Node was matched or cancelled
312 advanceHead(pred, s); // unlink if head
313 if (x == s) { // was cancelled
314 clean(pred, s);
315 return null;
316 }
317 else if (x != null) {
318 s.set(s); // avoid garbage retention
319 return (E) x;
320 }
321 else
322 return e;
323 }
324 if (mode == TIMEOUT) {
325 long now = System.nanoTime();
326 nanos -= now - lastTime;
327 lastTime = now;
328 if (nanos <= 0) {
329 s.compareAndSet(e, s); // try to cancel
330 continue;
331 }
332 }
333 if (spins < 0) {
334 Node<E> h = head.get(); // only spin if at head
335 spins = ((h != null && h.next == s) ?
336 ((mode == TIMEOUT) ?
337 maxTimedSpins : maxUntimedSpins) : 0);
338 }
339 if (spins > 0)
340 --spins;
341 else if (s.waiter == null)
342 s.waiter = w;
343 else if (mode != TIMEOUT) {
344 LockSupport.park(this);
345 s.waiter = null;
346 spins = -1;
347 }
348 else if (nanos > spinForTimeoutThreshold) {
349 LockSupport.parkNanos(this, nanos);
350 s.waiter = null;
351 spins = -1;
352 }
353 }
354 }
355
356 /**
357 * Returns validated tail for use in cleaning methods.
358 */
359 private Node<E> getValidatedTail() {
360 for (;;) {
361 Node<E> h = head.get();
362 Node<E> first = h.next;
363 if (first != null && first.next == first) { // help advance
364 advanceHead(h, first);
365 continue;
366 }
367 Node<E> t = tail.get();
368 Node<E> last = t.next;
369 if (t == tail.get()) {
370 if (last != null)
371 tail.compareAndSet(t, last); // help advance
372 else
373 return t;
374 }
375 }
376 }
377
378 /**
379 * Gets rid of cancelled node s with original predecessor pred.
380 *
381 * @param pred predecessor of cancelled node
382 * @param s the cancelled node
383 */
384 private void clean(Node<E> pred, Node<E> s) {
385 Thread w = s.waiter;
386 if (w != null) { // Wake up thread
387 s.waiter = null;
388 if (w != Thread.currentThread())
389 LockSupport.unpark(w);
390 }
391
392 if (pred == null)
393 return;
394
395 /*
396 * At any given time, exactly one node on list cannot be
397 * deleted -- the last inserted node. To accommodate this, if
398 * we cannot delete s, we save its predecessor as "cleanMe",
399 * processing the previously saved version first. At least one
400 * of node s or the node previously saved can always be
401 * processed, so this always terminates.
402 */
403 while (pred.next == s) {
404 Node<E> oldpred = reclean(); // First, help get rid of cleanMe
405 Node<E> t = getValidatedTail();
406 if (s != t) { // If not tail, try to unsplice
407 Node<E> sn = s.next; // s.next == s means s already off list
408 if (sn == s || pred.casNext(s, sn))
409 break;
410 }
411 else if (oldpred == pred || // Already saved
412 (oldpred == null && cleanMe.compareAndSet(null, pred)))
413 break; // Postpone cleaning
414 }
415 }
416
417 /**
418 * Tries to unsplice the cancelled node held in cleanMe that was
419 * previously uncleanable because it was at tail.
420 *
421 * @return current cleanMe node (or null)
422 */
423 private Node<E> reclean() {
424 /*
425 * cleanMe is, or at one time was, predecessor of cancelled
426 * node s that was the tail so could not be unspliced. If s
427 * is no longer the tail, try to unsplice if necessary and
428 * make cleanMe slot available. This differs from similar
429 * code in clean() because we must check that pred still
430 * points to a cancelled node that must be unspliced -- if
431 * not, we can (must) clear cleanMe without unsplicing.
432 * This can loop only due to contention on casNext or
433 * clearing cleanMe.
434 */
435 Node<E> pred;
436 while ((pred = cleanMe.get()) != null) {
437 Node<E> t = getValidatedTail();
438 Node<E> s = pred.next;
439 if (s != t) {
440 Node<E> sn;
441 if (s == null || s == pred || s.get() != s ||
442 (sn = s.next) == s || pred.casNext(s, sn))
443 cleanMe.compareAndSet(pred, null);
444 }
445 else // s is still tail; cannot clean
446 break;
447 }
448 return pred;
449 }
450
451 /**
452 * Creates an initially empty {@code LinkedTransferQueue}.
453 */
454 public LinkedTransferQueue() {
455 Node<E> dummy = new Node<E>(null, false);
456 head = new PaddedAtomicReference<Node<E>>(dummy);
457 tail = new PaddedAtomicReference<Node<E>>(dummy);
458 cleanMe = new PaddedAtomicReference<Node<E>>(null);
459 }
460
461 /**
462 * Creates a {@code LinkedTransferQueue}
463 * initially containing the elements of the given collection,
464 * added in traversal order of the collection's iterator.
465 *
466 * @param c the collection of elements to initially contain
467 * @throws NullPointerException if the specified collection or any
468 * of its elements are null
469 */
470 public LinkedTransferQueue(Collection<? extends E> c) {
471 this();
472 addAll(c);
473 }
474
475 /**
476 * Inserts the specified element at the tail of this queue.
477 * As the queue is unbounded, this method will never block.
478 *
479 * @throws NullPointerException if the specified element is null
480 */
481 public void put(E e) {
482 offer(e);
483 }
484
485 /**
486 * Inserts the specified element at the tail of this queue.
487 * As the queue is unbounded, this method will never block or
488 * return {@code false}.
489 *
490 * @return {@code true} (as specified by
491 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
492 * @throws NullPointerException if the specified element is null
493 */
494 public boolean offer(E e, long timeout, TimeUnit unit) {
495 return offer(e);
496 }
497
498 /**
499 * Inserts the specified element at the tail of this queue.
500 * As the queue is unbounded, this method will never return {@code false}.
501 *
502 * @return {@code true} (as specified by
503 * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
504 * @throws NullPointerException if the specified element is null
505 */
506 public boolean offer(E e) {
507 if (e == null) throw new NullPointerException();
508 xfer(e, NOWAIT, 0);
509 return true;
510 }
511
512 /**
513 * Inserts the specified element at the tail of this queue.
514 * As the queue is unbounded, this method will never throw
515 * {@link IllegalStateException} or return {@code false}.
516 *
517 * @return {@code true} (as specified by {@link Collection#add})
518 * @throws NullPointerException if the specified element is null
519 */
520 public boolean add(E e) {
521 return offer(e);
522 }
523
524 /**
525 * Transfers the specified element immediately if there exists a
526 * consumer already waiting to receive it (in {@link #take} or
527 * timed {@link #poll(long,TimeUnit) poll}), otherwise
528 * returning {@code false} without enqueuing the element.
529 *
530 * @throws NullPointerException if the specified element is null
531 */
532 public boolean tryTransfer(E e) {
533 if (e == null) throw new NullPointerException();
534 return fulfill(e) != null;
535 }
536
537 /**
538 * Inserts the specified element at the tail of this queue,
539 * waiting if necessary for the element to be received by a
540 * consumer invoking {@code take} or {@code poll}.
541 *
542 * @throws NullPointerException if the specified element is null
543 */
544 public void transfer(E e) throws InterruptedException {
545 if (e == null) throw new NullPointerException();
546 if (xfer(e, WAIT, 0) == null) {
547 Thread.interrupted();
548 throw new InterruptedException();
549 }
550 }
551
552 /**
553 * Inserts the specified element at the tail of this queue,
554 * waiting up to the specified wait time for the element to be
555 * received by a consumer invoking {@code take} or {@code poll}.
556 *
557 * @throws NullPointerException if the specified element is null
558 */
559 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
560 throws InterruptedException {
561 if (e == null) throw new NullPointerException();
562 if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
563 return true;
564 if (!Thread.interrupted())
565 return false;
566 throw new InterruptedException();
567 }
568
569 public E take() throws InterruptedException {
570 E e = xfer(null, WAIT, 0);
571 if (e != null)
572 return e;
573 Thread.interrupted();
574 throw new InterruptedException();
575 }
576
577 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
578 E e = xfer(null, TIMEOUT, unit.toNanos(timeout));
579 if (e != null || !Thread.interrupted())
580 return e;
581 throw new InterruptedException();
582 }
583
584 public E poll() {
585 return fulfill(null);
586 }
587
588 /**
589 * @throws NullPointerException {@inheritDoc}
590 * @throws IllegalArgumentException {@inheritDoc}
591 */
592 public int drainTo(Collection<? super E> c) {
593 if (c == null)
594 throw new NullPointerException();
595 if (c == this)
596 throw new IllegalArgumentException();
597 int n = 0;
598 E e;
599 while ( (e = poll()) != null) {
600 c.add(e);
601 ++n;
602 }
603 return n;
604 }
605
606 /**
607 * @throws NullPointerException {@inheritDoc}
608 * @throws IllegalArgumentException {@inheritDoc}
609 */
610 public int drainTo(Collection<? super E> c, int maxElements) {
611 if (c == null)
612 throw new NullPointerException();
613 if (c == this)
614 throw new IllegalArgumentException();
615 int n = 0;
616 E e;
617 while (n < maxElements && (e = poll()) != null) {
618 c.add(e);
619 ++n;
620 }
621 return n;
622 }
623
624 // Traversal-based methods
625
626 /**
627 * Returns head after performing any outstanding helping steps.
628 */
629 private Node<E> traversalHead() {
630 for (;;) {
631 Node<E> t = tail.get();
632 Node<E> h = head.get();
633 if (h != null && t != null) {
634 Node<E> last = t.next;
635 Node<E> first = h.next;
636 if (t == tail.get()) {
637 if (last != null)
638 tail.compareAndSet(t, last);
639 else if (first != null) {
640 Object x = first.get();
641 if (x == first)
642 advanceHead(h, first);
643 else
644 return h;
645 }
646 else
647 return h;
648 }
649 }
650 reclean();
651 }
652 }
653
654 /**
655 * Returns an iterator over the elements in this queue in proper
656 * sequence, from head to tail.
657 *
658 * <p>The returned iterator is a "weakly consistent" iterator that
659 * will never throw
660 * {@link ConcurrentModificationException ConcurrentModificationException},
661 * and guarantees to traverse elements as they existed upon
662 * construction of the iterator, and may (but is not guaranteed
663 * to) reflect any modifications subsequent to construction.
664 *
665 * @return an iterator over the elements in this queue in proper sequence
666 */
667 public Iterator<E> iterator() {
668 return new Itr();
669 }
670
671 /**
672 * Iterators. Basic strategy is to traverse list, treating
673 * non-data (i.e., request) nodes as terminating list.
674 * Once a valid data node is found, the item is cached
675 * so that the next call to next() will return it even
676 * if subsequently removed.
677 */
678 class Itr implements Iterator<E> {
679 Node<E> next; // node to return next
680 Node<E> pnext; // predecessor of next
681 Node<E> curr; // last returned node, for remove()
682 Node<E> pcurr; // predecessor of curr, for remove()
683 E nextItem; // Cache of next item, once committed to in next
684
685 Itr() {
686 advance();
687 }
688
689 /**
690 * Moves to next valid node and returns item to return for
691 * next(), or null if no such.
692 */
693 private E advance() {
694 pcurr = pnext;
695 curr = next;
696 E item = nextItem;
697
698 for (;;) {
699 pnext = (next == null) ? traversalHead() : next;
700 next = pnext.next;
701 if (next == pnext) {
702 next = null;
703 continue; // restart
704 }
705 if (next == null)
706 break;
707 Object x = next.get();
708 if (x != null && x != next) {
709 nextItem = (E) x;
710 break;
711 }
712 }
713 return item;
714 }
715
716 public boolean hasNext() {
717 return next != null;
718 }
719
720 public E next() {
721 if (next == null)
722 throw new NoSuchElementException();
723 return advance();
724 }
725
726 public void remove() {
727 Node<E> p = curr;
728 if (p == null)
729 throw new IllegalStateException();
730 Object x = p.get();
731 if (x != null && x != p && p.compareAndSet(x, p))
732 clean(pcurr, p);
733 }
734 }
735
736 public E peek() {
737 for (;;) {
738 Node<E> h = traversalHead();
739 Node<E> p = h.next;
740 if (p == null)
741 return null;
742 Object x = p.get();
743 if (p != x) {
744 if (!p.isData)
745 return null;
746 if (x != null)
747 return (E) x;
748 }
749 }
750 }
751
752 public boolean isEmpty() {
753 for (;;) {
754 Node<E> h = traversalHead();
755 Node<E> p = h.next;
756 if (p == null)
757 return true;
758 Object x = p.get();
759 if (p != x) {
760 if (!p.isData)
761 return true;
762 if (x != null)
763 return false;
764 }
765 }
766 }
767
768 public boolean hasWaitingConsumer() {
769 for (;;) {
770 Node<E> h = traversalHead();
771 Node<E> p = h.next;
772 if (p == null)
773 return false;
774 Object x = p.get();
775 if (p != x)
776 return !p.isData;
777 }
778 }
779
780 /**
781 * Returns the number of elements in this queue. If this queue
782 * contains more than {@code Integer.MAX_VALUE} elements, returns
783 * {@code Integer.MAX_VALUE}.
784 *
785 * <p>Beware that, unlike in most collections, this method is
786 * <em>NOT</em> a constant-time operation. Because of the
787 * asynchronous nature of these queues, determining the current
788 * number of elements requires an O(n) traversal.
789 *
790 * @return the number of elements in this queue
791 */
792 public int size() {
793 for (;;) {
794 int count = 0;
795 Node<E> pred = traversalHead();
796 for (;;) {
797 Node<E> q = pred.next;
798 if (q == pred) // restart
799 break;
800 if (q == null || !q.isData)
801 return count;
802 Object x = q.get();
803 if (x != null && x != q) {
804 if (++count == Integer.MAX_VALUE) // saturated
805 return count;
806 }
807 pred = q;
808 }
809 }
810 }
811
812 public int getWaitingConsumerCount() {
813 // converse of size -- count valid non-data nodes
814 for (;;) {
815 int count = 0;
816 Node<E> pred = traversalHead();
817 for (;;) {
818 Node<E> q = pred.next;
819 if (q == pred) // restart
820 break;
821 if (q == null || q.isData)
822 return count;
823 Object x = q.get();
824 if (x == null) {
825 if (++count == Integer.MAX_VALUE) // saturated
826 return count;
827 }
828 pred = q;
829 }
830 }
831 }
832
833 public boolean remove(Object o) {
834 if (o == null)
835 return false;
836 for (;;) {
837 Node<E> pred = traversalHead();
838 for (;;) {
839 Node<E> q = pred.next;
840 if (q == pred) // restart
841 break;
842 if (q == null || !q.isData)
843 return false;
844 Object x = q.get();
845 if (x != null && x != q && o.equals(x) &&
846 q.compareAndSet(x, q)) {
847 clean(pred, q);
848 return true;
849 }
850 pred = q;
851 }
852 }
853 }
854
855 /**
856 * Always returns {@code Integer.MAX_VALUE} because a
857 * {@code LinkedTransferQueue} is not capacity constrained.
858 *
859 * @return {@code Integer.MAX_VALUE} (as specified by
860 * {@link BlockingQueue#remainingCapacity()})
861 */
862 public int remainingCapacity() {
863 return Integer.MAX_VALUE;
864 }
865
866 /**
867 * Save the state to a stream (that is, serialize it).
868 *
869 * @serialData All of the elements (each an {@code E}) in
870 * the proper order, followed by a null
871 * @param s the stream
872 */
873 private void writeObject(java.io.ObjectOutputStream s)
874 throws java.io.IOException {
875 s.defaultWriteObject();
876 for (E e : this)
877 s.writeObject(e);
878 // Use trailing null as sentinel
879 s.writeObject(null);
880 }
881
882 /**
883 * Reconstitute the Queue instance from a stream (that is,
884 * deserialize it).
885 *
886 * @param s the stream
887 */
888 private void readObject(java.io.ObjectInputStream s)
889 throws java.io.IOException, ClassNotFoundException {
890 s.defaultReadObject();
891 resetHeadAndTail();
892 for (;;) {
893 @SuppressWarnings("unchecked") E item = (E) s.readObject();
894 if (item == null)
895 break;
896 else
897 offer(item);
898 }
899 }
900
901 // Support for resetting head/tail while deserializing
902 private void resetHeadAndTail() {
903 Node<E> dummy = new Node<E>(null, false);
904 UNSAFE.putObjectVolatile(this, headOffset,
905 new PaddedAtomicReference<Node<E>>(dummy));
906 UNSAFE.putObjectVolatile(this, tailOffset,
907 new PaddedAtomicReference<Node<E>>(dummy));
908 UNSAFE.putObjectVolatile(this, cleanMeOffset,
909 new PaddedAtomicReference<Node<E>>(null));
910 }
911
912 // Unsafe mechanics
913
914 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
915 private static final long headOffset =
916 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
917 private static final long tailOffset =
918 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
919 private static final long cleanMeOffset =
920 objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
921
922
923 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
924 String field, Class<?> klazz) {
925 try {
926 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
927 } catch (NoSuchFieldException e) {
928 // Convert Exception to corresponding Error
929 NoSuchFieldError error = new NoSuchFieldError(field);
930 error.initCause(e);
931 throw error;
932 }
933 }
934
935 /**
936 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
937 * Replace with a simple call to Unsafe.getUnsafe when integrating
938 * into a jdk.
939 *
940 * @return a sun.misc.Unsafe
941 */
942 private static sun.misc.Unsafe getUnsafe() {
943 try {
944 return sun.misc.Unsafe.getUnsafe();
945 } catch (SecurityException se) {
946 try {
947 return java.security.AccessController.doPrivileged
948 (new java.security
949 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
950 public sun.misc.Unsafe run() throws Exception {
951 java.lang.reflect.Field f = sun.misc
952 .Unsafe.class.getDeclaredField("theUnsafe");
953 f.setAccessible(true);
954 return (sun.misc.Unsafe) f.get(null);
955 }});
956 } catch (java.security.PrivilegedActionException e) {
957 throw new RuntimeException("Could not initialize intrinsics",
958 e.getCause());
959 }
960 }
961 }
962 }