ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.45
Committed: Wed Oct 21 16:30:40 2009 UTC (14 years, 7 months ago) by dl
Branch: MAIN
Changes since 1.44: +733 -515 lines
Log Message:
Overhaul implementation

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.AbstractQueue;
12 import java.util.Collection;
13 import java.util.ConcurrentModificationException;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Queue;
17 import java.util.concurrent.locks.LockSupport;
18 /**
19 * An unbounded {@link TransferQueue} based on linked nodes.
20 * This queue orders elements FIFO (first-in-first-out) with respect
21 * to any given producer. The <em>head</em> of the queue is that
22 * element that has been on the queue the longest time for some
23 * producer. The <em>tail</em> of the queue is that element that has
24 * been on the queue the shortest time for some producer.
25 *
26 * <p>Beware that, unlike in most collections, the {@code size}
27 * method is <em>NOT</em> a constant-time operation. Because of the
28 * asynchronous nature of these queues, determining the current number
29 * of elements requires a traversal of the elements.
30 *
31 * <p>This class and its iterator implement all of the
32 * <em>optional</em> methods of the {@link Collection} and {@link
33 * Iterator} interfaces.
34 *
35 * <p>Memory consistency effects: As with other concurrent
36 * collections, actions in a thread prior to placing an object into a
37 * {@code LinkedTransferQueue}
38 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
39 * actions subsequent to the access or removal of that element from
40 * the {@code LinkedTransferQueue} in another thread.
41 *
42 * <p>This class is a member of the
43 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
44 * Java Collections Framework</a>.
45 *
46 * @since 1.7
47 * @author Doug Lea
48 * @param <E> the type of elements held in this collection
49 */
50 public class LinkedTransferQueue<E> extends AbstractQueue<E>
51 implements TransferQueue<E>, java.io.Serializable {
52 private static final long serialVersionUID = -3223113410248163686L;
53
54 /*
55 * *** Overview of Dual Queues with Slack ***
56 *
57 * Dual Queues, introduced by Scherer and Scott
58 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 * (linked) queues in which nodes may represent either data or
60 * requests. When a thread tries to enqueue a data node, but
61 * encounters a request node, it instead "matches" and removes it;
62 * and vice versa for enqueuing requests. Blocking Dual Queues
63 * arrange that threads enqueuing unmatched requests block until
64 * other threads provide the match. Dual Synchronous Queues (see
65 * Scherer, Lea, & Scott
66 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 * additionally arrange that threads enqueuing unmatched data also
68 * block. Dual Transfer Queues support all of these modes, as
69 * dictated by callers.
70 *
71 * A FIFO dual queue may be implemented using a variation of the
72 * Michael & Scott (M&S) lock-free queue algorithm
73 * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 * It maintains two pointer fields, "head", pointing to a
75 * (matched) node that in turn points to the first actual
76 * (unmatched) queue node (or null if empty); and "tail" that
77 * points to the last node on the queue (or again null if
78 * empty). For example, here is a possible queue with four data
79 * elements:
80 *
81 * head tail
82 * | |
83 * v v
84 * M -> U -> U -> U -> U
85 *
86 * The M&S queue algorithm is known to be prone to scalability and
87 * overhead limitations when maintaining (via CAS) these head and
88 * tail pointers. This has led to the development of
89 * contention-reducing variants such as elimination arrays (see
90 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 * optimistic back pointers (see Ladan-Mozes & Shavit
92 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 * However, the nature of dual queues enables a simpler tactic for
94 * improving M&S-style implementations when dual-ness is needed.
95 *
96 * In a dual queue, each node must atomically maintain its match
97 * status. While there are other possible variants, we implement
98 * this here as: for a data-mode node, matching entails CASing an
99 * "item" field from a non-null data value to null upon match, and
100 * vice-versa for request nodes, CASing from null to a data
101 * value. (Note that the linearization properties of this style of
102 * queue are easy to verify -- elements are made available by
103 * linking, and unavailable by matching.) Compared to plain M&S
104 * queues, this property of dual queues requires one additional
105 * successful atomic operation per enq/deq pair. But it also
106 * enables lower cost variants of queue maintenance mechanics. (A
107 * variation of this idea applies even for non-dual queues that
108 * support deletion of embedded elements, such as
109 * j.u.c.ConcurrentLinkedQueue.)
110 *
111 * Once a node is matched, its item can never again change. We
112 * may thus arrange that the linked list of them contains a prefix
113 * of zero or more matched nodes, followed by a suffix of zero or
114 * more unmatched nodes. (Note that we allow both the prefix and
115 * suffix to be zero length, which in turn means that we do not
116 * use a dummy header.) If we were not concerned with either time
117 * or space efficiency, we could correctly perform enqueue and
118 * dequeue operations by traversing from a pointer to the initial
119 * node; CASing the item of the first unmatched node on match and
120 * CASing the next field of the trailing node on appends. While
121 * this would be a terrible idea in itself, it does have the
122 * benefit of not requiring ANY atomic updates on head/tail
123 * fields.
124 *
125 * We introduce here an approach that lies between the extremes of
126 * never versus always updating queue (head and tail) pointers
127 * that reflects the tradeoff of sometimes require extra traversal
128 * steps to locate the first and/or last unmatched nodes, versus
129 * the reduced overhead and contention of fewer updates to queue
130 * pointers. For example, a possible snapshot of a queue is:
131 *
132 * head tail
133 * | |
134 * v v
135 * M -> M -> U -> U -> U -> U
136 *
137 * The best value for this "slack" (the targeted maximum distance
138 * between the value of "head" and the first unmatched node, and
139 * similarly for "tail") is an empirical matter. We have found
140 * that using very small constants in the range of 1-3 work best
141 * over a range of platforms. Larger values introduce increasing
142 * costs of cache misses and risks of long traversal chains.
143 *
144 * Dual queues with slack differ from plain M&S dual queues by
145 * virtue of only sometimes updating head or tail pointers when
146 * matching, appending, or even traversing nodes; in order to
147 * maintain a targeted slack. The idea of "sometimes" may be
148 * operationalized in several ways. The simplest is to use a
149 * per-operation counter incremented on each traversal step, and
150 * to try (via CAS) to update the associated queue pointer
151 * whenever the count exceeds a threshold. Another, that requires
152 * more overhead, is to use random number generators to update
153 * with a given probability per traversal step.
154 *
155 * In any strategy along these lines, because CASes updating
156 * fields may fail, the actual slack may exceed targeted
157 * slack. However, they may be retried at any time to maintain
158 * targets. Even when using very small slack values, this
159 * approach works well for dual queues because it allows all
160 * operations up to the point of matching or appending an item
161 * (hence potentially releasing another thread) to be read-only,
162 * thus not introducing any further contention. As described
163 * below, we implement this by performing slack maintenance
164 * retries only after these points.
165 *
166 * As an accompaniment to such techniques, traversal overhead can
167 * be further reduced without increasing contention of head
168 * pointer updates. During traversals, threads may sometimes
169 * shortcut the "next" link path from the current "head" node to
170 * be closer to the currently known first unmatched node. Again,
171 * this may be triggered with using thresholds or randomization.
172 *
173 * These ideas must be further extended to avoid unbounded amounts
174 * of costly-to-reclaim garbage caused by the sequential "next"
175 * links of nodes starting at old forgotten head nodes: As first
176 * described in detail by Boehm
177 * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
178 * delays noticing that any arbitrarily old node has become
179 * garbage, all newer dead nodes will also be unreclaimed.
180 * (Similar issues arise in non-GC environments.) To cope with
181 * this in our implementation, upon CASing to advance the head
182 * pointer, we set the "next" link of the previous head to point
183 * only to itself; thus limiting the length connected dead lists.
184 * (We also take similar care to wipe out possibly garbage
185 * retaining values held in other Node fields.) However, doing so
186 * adds some further complexity to traversal: If any "next"
187 * pointer links to itself, it indicates that the current thread
188 * has lagged behind a head-update, and so the traversal must
189 * continue from the "head". Traversals trying to find the
190 * current tail starting from "tail" may also encounter
191 * self-links, in which case they also continue at "head".
192 *
193 * It is tempting in slack-based scheme to not even use CAS for
194 * updates (similarly to Ladan-Mozes & Shavit). However, this
195 * cannot be done for head updates under the above link-forgetting
196 * mechanics because an update may leave head at a detached node.
197 * And while direct writes are possible for tail updates, they
198 * increase the risk of long retraversals, and hence long garbage
199 * chains which can be much more costly than is worthwhile
200 * considering that the cost difference of performing a CAS vs
201 * write is smaller when they are not triggered on each operation
202 * (especially considering that writes and CASes equally require
203 * additional GC bookkeeping ("write barriers") that are sometimes
204 * more costly than the writes themselves because of contention).
205 *
206 * Removal of internal nodes (due to timed out or interrupted
207 * waits, or calls to remove or Iterator.remove) uses a scheme
208 * roughly similar to that in Scherer, Lea, and Scott
209 * SynchronousQueue. Given a predecessor, we can unsplice any node
210 * except the (actual) tail of the queue. To avoid build-up of
211 * cancelled trailing nodes, upon a request to remove a trailing
212 * node, it is placed in field "cleanMe" to be unspliced later.
213 *
214 * *** Overview of implementation ***
215 *
216 * We use a threshold-based approach to updates, with a target
217 * slack of two. The slack value is hard-wired: a path greater
218 * than one is naturally implemented by checking equality of
219 * traversal pointers except when the list has only one element,
220 * in which case we keep max slack at one. Avoiding tracking
221 * explicit counts across situations slightly simplifies an
222 * already-messy implementation. Using randomization would
223 * probably work better if there were a low-quality dirt-cheap
224 * per-thread one available, but even ThreadLocalRandom is too
225 * heavy for these purposes.
226 *
227 * With such a small slack value, path short-circuiting is rarely
228 * worthwhile. However, it is used (in awaitMatch) immediately
229 * before a waiting thread starts to block, as a final bit of
230 * helping at a point when contention with others is extremely
231 * unlikely (since if other threads that could release it are
232 * operating, then the current thread wouldn't be blocking).
233 *
234 * All enqueue/dequeue operations are handled by the single method
235 * "xfer" with parameters indicating whether to act as some form
236 * of offer, put, poll, take, or transfer (each possibly with
237 * timeout). The relative complexity of using one monolithic
238 * method outweighs the code bulk and maintenance problems of
239 * using nine separate methods.
240 *
241 * Operation consists of up to three phases. The first is
242 * implemented within method xfer, the second in tryAppend, and
243 * the third in method awaitMatch.
244 *
245 * 1. Try to match an existing node
246 *
247 * Starting at head, skip already-matched nodes until finding
248 * an unmatched node of opposite mode, if one exists, in which
249 * case matching it and returning, also if necessary updating
250 * head to one past the matched node (or the node itself if the
251 * list has no other unmatched nodes). If the CAS misses, then
252 * a retry loops until the slack is at most two. Traversals
253 * also check if the initial head is now off-list, in which
254 * case they start at the new head.
255 *
256 * If no candidates are found and the call was untimed
257 * poll/offer, (argument "how" is NOW) return.
258 *
259 * 2. Try to append a new node (method tryAppend)
260 *
261 * Starting at current tail pointer, try to append a new node
262 * to the list (or if head was null, establish the first
263 * node). Nodes can be appended only if their predecessors are
264 * either already matched or are of the same mode. If we detect
265 * otherwise, then a new node with opposite mode must have been
266 * appended during traversal, so must restart at phase 1. The
267 * traversal and update steps are otherwise similar to phase 1:
268 * Retrying upon CAS misses and checking for staleness. In
269 * particular, if a self-link is encountered, then we can
270 * safely jump to a node on the list by continuing the
271 * traversal at current head.
272 *
273 * On successful append, if the call was ASYNC, return
274 *
275 * 3. Await match or cancellation (method awaitMatch)
276 *
277 * Wait for another thread to match node; instead cancelling if
278 * current thread was interrupted or the wait timed out. On
279 * multiprocessors, we use front-of-queue spinning: If a node
280 * appears to be the first unmatched node in the queue, it
281 * spins a bit before blocking. In either case, before blocking
282 * it tries to unsplice any nodes between the current "head"
283 * and the first unmatched node.
284 *
285 * Front-of-queue spinning vastly improves performance of
286 * heavily contended queues. And so long as it is relatively
287 * brief and "quiet", spinning does not much impact performance
288 * of less-contended queues. During spins threads check their
289 * interrupt status and generate a thread-local random number
290 * to decide to occasionally perform a Thread.yield. While
291 * yield has underdefined specs, we assume that might it help,
292 * and will not hurt in limiting impact of spinning on busy
293 * systems. We also use much smaller (1/4) spins for nodes
294 * that are not known to be front but whose predecessors have
295 * not blocked -- these "chained" spins avoid artifacts of
296 * front-of-queue rules which otherwise lead to alternating
297 * nodes spinning vs blocking. Further, front threads that
298 * represent phase changes (from data to request node or vice
299 * versa) compared to their predecessors receive additional
300 * spins, reflecting the longer code path lengths necessary to
301 * release them under contention.
302 */
303
304 /** True if on multiprocessor */
305 private static final boolean MP =
306 Runtime.getRuntime().availableProcessors() > 1;
307
308 /**
309 * The number of times to spin (with on average one randomly
310 * interspersed call to Thread.yield) on multiprocessor before
311 * blocking when a node is apparently the first waiter in the
312 * queue. See above for explanation. Must be a power of two. The
313 * value is empirically derived -- it works pretty well across a
314 * variety of processors, numbers of CPUs, and OSes.
315 */
316 private static final int FRONT_SPINS = 1 << 7;
317
318 /**
319 * The number of times to spin before blocking when a node is
320 * preceded by another node that is apparently spinning.
321 */
322 private static final int CHAINED_SPINS = FRONT_SPINS >>> 2;
323
324 /**
325 * Queue nodes. Uses Object, not E for items to allow forgetting
326 * them after use. Relies heavily on Unsafe mechanics to minimize
327 * unecessary ordering constraints: Writes that intrinsically
328 * precede or follow CASes use simple relaxed forms. Other
329 * cleanups use releasing/lazy writes.
330 */
331 static final class Node {
332 final boolean isData; // false if this is a request node
333 volatile Object item; // initially nonnull if isData; CASed to match
334 volatile Node next;
335 volatile Thread waiter; // null until waiting
336
337 // CAS methods for fields
338 final boolean casNext(Node cmp, Node val) {
339 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
340 }
341
342 final boolean casItem(Object cmp, Object val) {
343 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
344 }
345
346 /**
347 * Create a new node. Uses relaxed write because item can only
348 * be seen if followed by CAS
349 */
350 Node(Object item, boolean isData) {
351 UNSAFE.putObject(this, itemOffset, item); // relaxed write
352 this.isData = isData;
353 }
354
355 /**
356 * Links node to itself to avoid garbage retention. Called
357 * only after CASing head field, so uses relaxed write.
358 */
359 final void forgetNext() {
360 UNSAFE.putObject(this, nextOffset, this);
361 }
362
363 /**
364 * Sets item to self (using a releasing/lazy write) and waiter
365 * to null, to avoid garbage retention after extracting or
366 * cancelling.
367 */
368 final void forgetContents() {
369 UNSAFE.putOrderedObject(this, itemOffset, this);
370 UNSAFE.putOrderedObject(this, waiterOffset, null);
371 }
372
373 /**
374 * Returns true if this node has been matched, including the
375 * case of artificial matches due to cancellation.
376 */
377 final boolean isMatched() {
378 Object x = item;
379 return x == this || (x != null) != isData;
380 }
381
382 /**
383 * Returns true if a node with the given mode cannot be
384 * appended to this node because this node is unmatched and
385 * has opposite data mode.
386 */
387 final boolean cannotPrecede(boolean haveData) {
388 boolean d = isData;
389 Object x;
390 return d != haveData && (x = item) != this && (x != null) == d;
391 }
392
393 /**
394 * Tries to artifically match a data node -- used by remove.
395 */
396 final boolean tryMatchData() {
397 Object x = item;
398 if (x != null && x != this && casItem(x, null)) {
399 LockSupport.unpark(waiter);
400 return true;
401 }
402 return false;
403 }
404
405 // Unsafe mechanics
406 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
407 private static final long nextOffset =
408 objectFieldOffset(UNSAFE, "next", Node.class);
409 private static final long itemOffset =
410 objectFieldOffset(UNSAFE, "item", Node.class);
411 private static final long waiterOffset =
412 objectFieldOffset(UNSAFE, "waiter", Node.class);
413
414 private static final long serialVersionUID = -3375979862319811754L;
415 }
416
417 /** head of the queue; null until first enqueue */
418 private transient volatile Node head;
419
420 /** predecessor of dangling unspliceable node */
421 private transient volatile Node cleanMe; // decl here to reduce contention
422
423 /** tail of the queue; null until first append */
424 private transient volatile Node tail;
425
426 // CAS methods for fields
427 private boolean casTail(Node cmp, Node val) {
428 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
429 }
430
431 private boolean casHead(Node cmp, Node val) {
432 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
433 }
434
435 private boolean casCleanMe(Node cmp, Node val) {
436 return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
437 }
438
439 /*
440 * Possible values for "how" argument in xfer method. Beware that
441 * the order of assigned numerical values matters.
442 */
443 private static final int NOW = 0; // for untimed poll, tryTransfer
444 private static final int ASYNC = 1; // for offer, put, add
445 private static final int SYNC = 2; // for transfer, take
446 private static final int TIMEOUT = 3; // for timed poll, tryTransfer
447
448 /**
449 * Implements all queuing methods. See above for explanation.
450 *
451 * @param e the item or null for take
452 * @param haveData true if this is a put else a take
453 * @param how NOW, ASYNC, SYNC, or TIMEOUT
454 * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
455 * @return an item if matched, else e;
456 * @throws NullPointerException if haveData mode but e is null
457 */
458 private Object xfer(Object e, boolean haveData, int how, long nanos) {
459 if (haveData && (e == null))
460 throw new NullPointerException();
461 Node s = null; // the node to append, if needed
462
463 retry: for (;;) { // restart on append race
464
465 for (Node h = head, p = h; p != null;) { // find & match first node
466 boolean isData = p.isData;
467 Object item = p.item;
468 if (item != p && (item != null) == isData) { // unmatched
469 if (isData == haveData) // can't match
470 break;
471 if (p.casItem(item, e)) { // match
472 Thread w = p.waiter;
473 while (p != h) { // update head
474 Node n = p.next; // by 2 unless singleton
475 if (n != null)
476 p = n;
477 if (head == h && casHead(h, p)) {
478 h.forgetNext();
479 break;
480 } // advance and retry
481 if ((h = head) == null ||
482 (p = h.next) == null || !p.isMatched())
483 break; // unless slack < 2
484 }
485 LockSupport.unpark(w);
486 return item;
487 }
488 }
489 Node n = p.next;
490 p = p != n ? n : (h = head); // Use head if p offlist
491 }
492
493 if (how >= ASYNC) { // No matches available
494 if (s == null)
495 s = new Node(e, haveData);
496 Node pred = tryAppend(s, haveData);
497 if (pred == null)
498 continue retry; // lost race vs opposite mode
499 if (how >= SYNC)
500 return awaitMatch(pred, s, e, how, nanos);
501 }
502 return e; // not waiting
503 }
504 }
505
506 /**
507 * Tries to append node s as tail
508 * @param haveData true if appending in data mode
509 * @param s the node to append
510 * @return null on failure due to losing race with append in
511 * different mode, else s's predecessor, or s itself if no
512 * predecessor
513 */
514 private Node tryAppend(Node s, boolean haveData) {
515 for (Node t = tail, p = t;;) { // move p to actual tail and append
516 Node n, u; // temps for reads of next & tail
517 if (p == null && (p = head) == null) {
518 if (casHead(null, s))
519 return s; // initialize
520 }
521 else if (p.cannotPrecede(haveData))
522 return null; // lost race vs opposite mode
523 else if ((n = p.next) != null) // Not tail; keep traversing
524 p = p != t && t != (u = tail) ? (t = u) : // stale tail
525 p != n ? n : null; // restart if off list
526 else if (!p.casNext(null, s))
527 p = p.next; // re-read on CAS failure
528 else {
529 if (p != t) { // Update if slack now >= 2
530 while ((tail != t || !casTail(t, s)) &&
531 (t = tail) != null &&
532 (s = t.next) != null && // advance and retry
533 (s = s.next) != null && s != t);
534 }
535 return p;
536 }
537 }
538 }
539
540 /**
541 * Spins/yields/blocks until node s is matched or caller gives up.
542 *
543 * @param pred the predecessor of s or s or null if none
544 * @param s the waiting node
545 * @param e the comparison value for checking match
546 * @param how either SYNC or TIMEOUT
547 * @param nanos timeout value
548 * @return matched item, or e if unmatched on interrupt or timeout
549 */
550 private Object awaitMatch(Node pred, Node s, Object e,
551 int how, long nanos) {
552 long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
553 Thread w = Thread.currentThread();
554 int spins = -1; // initialized after first item and cancel checks
555 ThreadLocalRandom randomYields = null; // bound if needed
556
557 for (;;) {
558 Object item = s.item;
559 if (item != e) { // matched
560 s.forgetContents(); // avoid garbage
561 return item;
562 }
563 if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
564 s.casItem(e, s)) { // cancel
565 unsplice(pred, s);
566 return e;
567 }
568
569 if (spins < 0) { // establish spins at/near front
570 if ((spins = spinsFor(pred, s.isData)) > 0)
571 randomYields = ThreadLocalRandom.current();
572 }
573 else if (spins > 0) { // spin, occasionally yield
574 if (randomYields.nextInt(FRONT_SPINS) == 0)
575 Thread.yield();
576 --spins;
577 }
578 else if (s.waiter == null) {
579 shortenHeadPath(); // reduce slack before blocking
580 s.waiter = w; // request unpark
581 }
582 else if (how == TIMEOUT) {
583 long now = System.nanoTime();
584 if ((nanos -= now - lastTime) > 0)
585 LockSupport.parkNanos(this, nanos);
586 lastTime = now;
587 }
588 else {
589 LockSupport.park(this);
590 spins = -1; // spin if front upon wakeup
591 }
592 }
593 }
594
595 /**
596 * Return spin/yield value for a node with given predecessor and
597 * data mode. See above for explanation.
598 */
599 private static int spinsFor(Node pred, boolean haveData) {
600 if (MP && pred != null) {
601 boolean predData = pred.isData;
602 if (predData != haveData) // front and phase change
603 return FRONT_SPINS + (FRONT_SPINS >>> 1);
604 if (predData != (pred.item != null)) // probably at front
605 return FRONT_SPINS;
606 if (pred.waiter == null) // pred apparently spinning
607 return CHAINED_SPINS;
608 }
609 return 0;
610 }
611
612 /**
613 * Tries (once) to unsplice nodes between head and first unmatched
614 * or trailing node; failing on contention.
615 */
616 private void shortenHeadPath() {
617 Node h, hn, p, q;
618 if ((p = h = head) != null && h.isMatched() &&
619 (q = hn = h.next) != null) {
620 Node n;
621 while ((n = q.next) != q) {
622 if (n == null || !q.isMatched()) {
623 if (hn != q && h.next == hn)
624 h.casNext(hn, q);
625 break;
626 }
627 p = q;
628 q = n;
629 }
630 }
631 }
632
633 /* -------------- Traversal methods -------------- */
634
635 /**
636 * Return the first unmatched node of the given mode, or null if
637 * none. Used by methods isEmpty, hasWaitingConsumer.
638 */
639 private Node firstOfMode(boolean data) {
640 for (Node p = head; p != null; ) {
641 if (!p.isMatched())
642 return p.isData == data? p : null;
643 Node n = p.next;
644 p = n != p ? n : head;
645 }
646 return null;
647 }
648
649 /**
650 * Returns the item in the first unmatched node with isData; or
651 * null if none. Used by peek.
652 */
653 private Object firstDataItem() {
654 for (Node p = head; p != null; ) {
655 boolean isData = p.isData;
656 Object item = p.item;
657 if (item != p && (item != null) == isData)
658 return isData ? item : null;
659 Node n = p.next;
660 p = n != p ? n : head;
661 }
662 return null;
663 }
664
665 /**
666 * Traverse and count nodes of the given mode.
667 * Used by methds size and getWaitingConsumerCount.
668 */
669 private int countOfMode(boolean data) {
670 int count = 0;
671 for (Node p = head; p != null; ) {
672 if (!p.isMatched()) {
673 if (p.isData != data)
674 return 0;
675 if (++count == Integer.MAX_VALUE) // saturated
676 break;
677 }
678 Node n = p.next;
679 if (n != p)
680 p = n;
681 else {
682 count = 0;
683 p = head;
684 }
685 }
686 return count;
687 }
688
689 final class Itr implements Iterator<E> {
690 private Node nextNode; // next node to return item for
691 private Object nextItem; // the corresponding item
692 private Node lastRet; // last returned node, to support remove
693
694 /**
695 * Moves to next node after prev, or first node if prev null.
696 */
697 private void advance(Node prev) {
698 lastRet = prev;
699 Node p;
700 if (prev == null || (p = prev.next) == prev)
701 p = head;
702 while (p != null) {
703 Object item = p.item;
704 if (p.isData) {
705 if (item != null && item != p) {
706 nextItem = item;
707 nextNode = p;
708 return;
709 }
710 }
711 else if (item == null)
712 break;
713 Node n = p.next;
714 p = n != p ? n : head;
715 }
716 nextNode = null;
717 }
718
719 Itr() {
720 advance(null);
721 }
722
723 public final boolean hasNext() {
724 return nextNode != null;
725 }
726
727 public final E next() {
728 Node p = nextNode;
729 if (p == null) throw new NoSuchElementException();
730 Object e = nextItem;
731 advance(p);
732 return (E) e;
733 }
734
735 public final void remove() {
736 Node p = lastRet;
737 if (p == null) throw new IllegalStateException();
738 lastRet = null;
739 findAndRemoveNode(p);
740 }
741 }
742
743 /* -------------- Removal methods -------------- */
744
745 /**
746 * Unsplices (now or later) the given deleted/cancelled node with
747 * the given predecessor.
748 *
749 * @param pred predecessor of node to be unspliced
750 * @param s the node to be unspliced
751 */
752 private void unsplice(Node pred, Node s) {
753 s.forgetContents(); // clear unneeded fields
754 /*
755 * At any given time, exactly one node on list cannot be
756 * deleted -- the last inserted node. To accommodate this, if
757 * we cannot delete s, we save its predecessor as "cleanMe",
758 * processing the previously saved version first. Because only
759 * one node in the list can have a null next, at least one of
760 * node s or the node previously saved can always be
761 * processed, so this always terminates.
762 */
763 if (pred != null && pred != s) {
764 while (pred.next == s) {
765 Node oldpred = cleanMe == null? null : reclean();
766 Node n = s.next;
767 if (n != null) {
768 if (n != s)
769 pred.casNext(s, n);
770 break;
771 }
772 if (oldpred == pred || // Already saved
773 (oldpred == null && casCleanMe(null, pred)))
774 break; // Postpone cleaning
775 }
776 }
777 }
778
779 /**
780 * Tries to unsplice the deleted/cancelled node held in cleanMe
781 * that was previously uncleanable because it was at tail.
782 *
783 * @return current cleanMe node (or null)
784 */
785 private Node reclean() {
786 /*
787 * cleanMe is, or at one time was, predecessor of a cancelled
788 * node s that was the tail so could not be unspliced. If it
789 * is no longer the tail, try to unsplice if necessary and
790 * make cleanMe slot available. This differs from similar
791 * code in unsplice() because we must check that pred still
792 * points to a matched node that can be unspliced -- if not,
793 * we can (must) clear cleanMe without unsplicing. This can
794 * loop only due to contention.
795 */
796 Node pred;
797 while ((pred = cleanMe) != null) {
798 Node s = pred.next;
799 Node n;
800 if (s == null || s == pred || !s.isMatched())
801 casCleanMe(pred, null); // already gone
802 else if ((n = s.next) != null) {
803 if (n != s)
804 pred.casNext(s, n);
805 casCleanMe(pred, null);
806 }
807 else
808 break;
809 }
810 return pred;
811 }
812
813 /**
814 * Main implementation of Iterator.remove(). Find
815 * and unsplice the given node.
816 */
817 final void findAndRemoveNode(Node s) {
818 if (s.tryMatchData()) {
819 Node pred = null;
820 Node p = head;
821 while (p != null) {
822 if (p == s) {
823 unsplice(pred, p);
824 break;
825 }
826 if (!p.isData && !p.isMatched())
827 break;
828 pred = p;
829 if ((p = p.next) == pred) { // stale
830 pred = null;
831 p = head;
832 }
833 }
834 }
835 }
836
837 /**
838 * Main implementation of remove(Object)
839 */
840 private boolean findAndRemove(Object e) {
841 if (e != null) {
842 Node pred = null;
843 Node p = head;
844 while (p != null) {
845 Object item = p.item;
846 if (p.isData) {
847 if (item != null && item != p && e.equals(item) &&
848 p.tryMatchData()) {
849 unsplice(pred, p);
850 return true;
851 }
852 }
853 else if (item == null)
854 break;
855 pred = p;
856 if ((p = p.next) == pred) {
857 pred = null;
858 p = head;
859 }
860 }
861 }
862 return false;
863 }
864
865
866 /**
867 * Creates an initially empty {@code LinkedTransferQueue}.
868 */
869 public LinkedTransferQueue() {
870 }
871
872 /**
873 * Creates a {@code LinkedTransferQueue}
874 * initially containing the elements of the given collection,
875 * added in traversal order of the collection's iterator.
876 *
877 * @param c the collection of elements to initially contain
878 * @throws NullPointerException if the specified collection or any
879 * of its elements are null
880 */
881 public LinkedTransferQueue(Collection<? extends E> c) {
882 this();
883 addAll(c);
884 }
885
886 /**
887 * Inserts the specified element at the tail of this queue.
888 * As the queue is unbounded, this method will never block.
889 *
890 * @throws NullPointerException if the specified element is null
891 */
892 public void put(E e) {
893 xfer(e, true, ASYNC, 0);
894 }
895
896 /**
897 * Inserts the specified element at the tail of this queue.
898 * As the queue is unbounded, this method will never block or
899 * return {@code false}.
900 *
901 * @return {@code true} (as specified by
902 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
903 * @throws NullPointerException if the specified element is null
904 */
905 public boolean offer(E e, long timeout, TimeUnit unit) {
906 xfer(e, true, ASYNC, 0);
907 return true;
908 }
909
910 /**
911 * Inserts the specified element at the tail of this queue.
912 * As the queue is unbounded, this method will never return {@code false}.
913 *
914 * @return {@code true} (as specified by
915 * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
916 * @throws NullPointerException if the specified element is null
917 */
918 public boolean offer(E e) {
919 xfer(e, true, ASYNC, 0);
920 return true;
921 }
922
923 /**
924 * Inserts the specified element at the tail of this queue.
925 * As the queue is unbounded, this method will never throw
926 * {@link IllegalStateException} or return {@code false}.
927 *
928 * @return {@code true} (as specified by {@link Collection#add})
929 * @throws NullPointerException if the specified element is null
930 */
931 public boolean add(E e) {
932 xfer(e, true, ASYNC, 0);
933 return true;
934 }
935
936 /**
937 * Transfers the element to a waiting consumer immediately, if possible.
938 *
939 * <p>More precisely, transfers the specified element immediately
940 * if there exists a consumer already waiting to receive it (in
941 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
942 * otherwise returning {@code false} without enqueuing the element.
943 *
944 * @throws NullPointerException if the specified element is null
945 */
946 public boolean tryTransfer(E e) {
947 return xfer(e, true, NOW, 0) == null;
948 }
949
950 /**
951 * Transfers the element to a consumer, waiting if necessary to do so.
952 *
953 * <p>More precisely, transfers the specified element immediately
954 * if there exists a consumer already waiting to receive it (in
955 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
956 * else inserts the specified element at the tail of this queue
957 * and waits until the element is received by a consumer.
958 *
959 * @throws NullPointerException if the specified element is null
960 */
961 public void transfer(E e) throws InterruptedException {
962 if (xfer(e, true, SYNC, 0) != null) {
963 Thread.interrupted(); // failure possible only due to interrupt
964 throw new InterruptedException();
965 }
966 }
967
968 /**
969 * Transfers the element to a consumer if it is possible to do so
970 * before the timeout elapses.
971 *
972 * <p>More precisely, transfers the specified element immediately
973 * if there exists a consumer already waiting to receive it (in
974 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
975 * else inserts the specified element at the tail of this queue
976 * and waits until the element is received by a consumer,
977 * returning {@code false} if the specified wait time elapses
978 * before the element can be transferred.
979 *
980 * @throws NullPointerException if the specified element is null
981 */
982 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
983 throws InterruptedException {
984 if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
985 return true;
986 if (!Thread.interrupted())
987 return false;
988 throw new InterruptedException();
989 }
990
991 public E take() throws InterruptedException {
992 Object e = xfer(null, false, SYNC, 0);
993 if (e != null)
994 return (E)e;
995 Thread.interrupted();
996 throw new InterruptedException();
997 }
998
999 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1000 Object e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1001 if (e != null || !Thread.interrupted())
1002 return (E)e;
1003 throw new InterruptedException();
1004 }
1005
1006 public E poll() {
1007 return (E)xfer(null, false, NOW, 0);
1008 }
1009
1010 /**
1011 * @throws NullPointerException {@inheritDoc}
1012 * @throws IllegalArgumentException {@inheritDoc}
1013 */
1014 public int drainTo(Collection<? super E> c) {
1015 if (c == null)
1016 throw new NullPointerException();
1017 if (c == this)
1018 throw new IllegalArgumentException();
1019 int n = 0;
1020 E e;
1021 while ( (e = poll()) != null) {
1022 c.add(e);
1023 ++n;
1024 }
1025 return n;
1026 }
1027
1028 /**
1029 * @throws NullPointerException {@inheritDoc}
1030 * @throws IllegalArgumentException {@inheritDoc}
1031 */
1032 public int drainTo(Collection<? super E> c, int maxElements) {
1033 if (c == null)
1034 throw new NullPointerException();
1035 if (c == this)
1036 throw new IllegalArgumentException();
1037 int n = 0;
1038 E e;
1039 while (n < maxElements && (e = poll()) != null) {
1040 c.add(e);
1041 ++n;
1042 }
1043 return n;
1044 }
1045
1046 /**
1047 * Returns an iterator over the elements in this queue in proper
1048 * sequence, from head to tail.
1049 *
1050 * <p>The returned iterator is a "weakly consistent" iterator that
1051 * will never throw
1052 * {@link ConcurrentModificationException ConcurrentModificationException},
1053 * and guarantees to traverse elements as they existed upon
1054 * construction of the iterator, and may (but is not guaranteed
1055 * to) reflect any modifications subsequent to construction.
1056 *
1057 * @return an iterator over the elements in this queue in proper sequence
1058 */
1059 public Iterator<E> iterator() {
1060 return new Itr();
1061 }
1062
1063 public E peek() {
1064 return (E) firstDataItem();
1065 }
1066
1067 /**
1068 * Returns {@code true} if this queue contains no elements.
1069 *
1070 * @return {@code true} if this queue contains no elements
1071 */
1072 public boolean isEmpty() {
1073 return firstOfMode(true) == null;
1074 }
1075
1076 public boolean hasWaitingConsumer() {
1077 return firstOfMode(false) != null;
1078 }
1079
1080 /**
1081 * Returns the number of elements in this queue. If this queue
1082 * contains more than {@code Integer.MAX_VALUE} elements, returns
1083 * {@code Integer.MAX_VALUE}.
1084 *
1085 * <p>Beware that, unlike in most collections, this method is
1086 * <em>NOT</em> a constant-time operation. Because of the
1087 * asynchronous nature of these queues, determining the current
1088 * number of elements requires an O(n) traversal.
1089 *
1090 * @return the number of elements in this queue
1091 */
1092 public int size() {
1093 return countOfMode(true);
1094 }
1095
1096 public int getWaitingConsumerCount() {
1097 return countOfMode(false);
1098 }
1099
1100 /**
1101 * Removes a single instance of the specified element from this queue,
1102 * if it is present. More formally, removes an element {@code e} such
1103 * that {@code o.equals(e)}, if this queue contains one or more such
1104 * elements.
1105 * Returns {@code true} if this queue contained the specified element
1106 * (or equivalently, if this queue changed as a result of the call).
1107 *
1108 * @param o element to be removed from this queue, if present
1109 * @return {@code true} if this queue changed as a result of the call
1110 */
1111 public boolean remove(Object o) {
1112 return findAndRemove(o);
1113 }
1114
1115 /**
1116 * Always returns {@code Integer.MAX_VALUE} because a
1117 * {@code LinkedTransferQueue} is not capacity constrained.
1118 *
1119 * @return {@code Integer.MAX_VALUE} (as specified by
1120 * {@link BlockingQueue#remainingCapacity()})
1121 */
1122 public int remainingCapacity() {
1123 return Integer.MAX_VALUE;
1124 }
1125
1126 /**
1127 * Save the state to a stream (that is, serialize it).
1128 *
1129 * @serialData All of the elements (each an {@code E}) in
1130 * the proper order, followed by a null
1131 * @param s the stream
1132 */
1133 private void writeObject(java.io.ObjectOutputStream s)
1134 throws java.io.IOException {
1135 s.defaultWriteObject();
1136 for (E e : this)
1137 s.writeObject(e);
1138 // Use trailing null as sentinel
1139 s.writeObject(null);
1140 }
1141
1142 /**
1143 * Reconstitute the Queue instance from a stream (that is,
1144 * deserialize it).
1145 *
1146 * @param s the stream
1147 */
1148 private void readObject(java.io.ObjectInputStream s)
1149 throws java.io.IOException, ClassNotFoundException {
1150 s.defaultReadObject();
1151 for (;;) {
1152 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1153 if (item == null)
1154 break;
1155 else
1156 offer(item);
1157 }
1158 }
1159
1160
1161 // Unsafe mechanics
1162
1163 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1164 private static final long headOffset =
1165 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1166 private static final long tailOffset =
1167 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1168 private static final long cleanMeOffset =
1169 objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1170
1171 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1172 String field, Class<?> klazz) {
1173 try {
1174 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1175 } catch (NoSuchFieldException e) {
1176 // Convert Exception to corresponding Error
1177 NoSuchFieldError error = new NoSuchFieldError(field);
1178 error.initCause(e);
1179 throw error;
1180 }
1181 }
1182
1183 private static sun.misc.Unsafe getUnsafe() {
1184 try {
1185 return sun.misc.Unsafe.getUnsafe();
1186 } catch (SecurityException se) {
1187 try {
1188 return java.security.AccessController.doPrivileged
1189 (new java.security
1190 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1191 public sun.misc.Unsafe run() throws Exception {
1192 java.lang.reflect.Field f = sun.misc
1193 .Unsafe.class.getDeclaredField("theUnsafe");
1194 f.setAccessible(true);
1195 return (sun.misc.Unsafe) f.get(null);
1196 }});
1197 } catch (java.security.PrivilegedActionException e) {
1198 throw new RuntimeException("Could not initialize intrinsics",
1199 e.getCause());
1200 }
1201 }
1202 }
1203
1204 }