ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.46
Committed: Thu Oct 22 08:19:44 2009 UTC (14 years, 7 months ago) by jsr166
Branch: MAIN
Changes since 1.45: +20 -19 lines
Log Message:
minor doc fixes

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.AbstractQueue;
12 import java.util.Collection;
13 import java.util.ConcurrentModificationException;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Queue;
17 import java.util.concurrent.locks.LockSupport;
18 /**
19 * An unbounded {@link TransferQueue} based on linked nodes.
20 * This queue orders elements FIFO (first-in-first-out) with respect
21 * to any given producer. The <em>head</em> of the queue is that
22 * element that has been on the queue the longest time for some
23 * producer. The <em>tail</em> of the queue is that element that has
24 * been on the queue the shortest time for some producer.
25 *
26 * <p>Beware that, unlike in most collections, the {@code size}
27 * method is <em>NOT</em> a constant-time operation. Because of the
28 * asynchronous nature of these queues, determining the current number
29 * of elements requires a traversal of the elements.
30 *
31 * <p>This class and its iterator implement all of the
32 * <em>optional</em> methods of the {@link Collection} and {@link
33 * Iterator} interfaces.
34 *
35 * <p>Memory consistency effects: As with other concurrent
36 * collections, actions in a thread prior to placing an object into a
37 * {@code LinkedTransferQueue}
38 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
39 * actions subsequent to the access or removal of that element from
40 * the {@code LinkedTransferQueue} in another thread.
41 *
42 * <p>This class is a member of the
43 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
44 * Java Collections Framework</a>.
45 *
46 * @since 1.7
47 * @author Doug Lea
48 * @param <E> the type of elements held in this collection
49 */
50 public class LinkedTransferQueue<E> extends AbstractQueue<E>
51 implements TransferQueue<E>, java.io.Serializable {
52 private static final long serialVersionUID = -3223113410248163686L;
53
54 /*
55 * *** Overview of Dual Queues with Slack ***
56 *
57 * Dual Queues, introduced by Scherer and Scott
58 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 * (linked) queues in which nodes may represent either data or
60 * requests. When a thread tries to enqueue a data node, but
61 * encounters a request node, it instead "matches" and removes it;
62 * and vice versa for enqueuing requests. Blocking Dual Queues
63 * arrange that threads enqueuing unmatched requests block until
64 * other threads provide the match. Dual Synchronous Queues (see
65 * Scherer, Lea, & Scott
66 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 * additionally arrange that threads enqueuing unmatched data also
68 * block. Dual Transfer Queues support all of these modes, as
69 * dictated by callers.
70 *
71 * A FIFO dual queue may be implemented using a variation of the
72 * Michael & Scott (M&S) lock-free queue algorithm
73 * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 * It maintains two pointer fields, "head", pointing to a
75 * (matched) node that in turn points to the first actual
76 * (unmatched) queue node (or null if empty); and "tail" that
77 * points to the last node on the queue (or again null if
78 * empty). For example, here is a possible queue with four data
79 * elements:
80 *
81 * head tail
82 * | |
83 * v v
84 * M -> U -> U -> U -> U
85 *
86 * The M&S queue algorithm is known to be prone to scalability and
87 * overhead limitations when maintaining (via CAS) these head and
88 * tail pointers. This has led to the development of
89 * contention-reducing variants such as elimination arrays (see
90 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 * optimistic back pointers (see Ladan-Mozes & Shavit
92 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 * However, the nature of dual queues enables a simpler tactic for
94 * improving M&S-style implementations when dual-ness is needed.
95 *
96 * In a dual queue, each node must atomically maintain its match
97 * status. While there are other possible variants, we implement
98 * this here as: for a data-mode node, matching entails CASing an
99 * "item" field from a non-null data value to null upon match, and
100 * vice-versa for request nodes, CASing from null to a data
101 * value. (Note that the linearization properties of this style of
102 * queue are easy to verify -- elements are made available by
103 * linking, and unavailable by matching.) Compared to plain M&S
104 * queues, this property of dual queues requires one additional
105 * successful atomic operation per enq/deq pair. But it also
106 * enables lower cost variants of queue maintenance mechanics. (A
107 * variation of this idea applies even for non-dual queues that
108 * support deletion of embedded elements, such as
109 * j.u.c.ConcurrentLinkedQueue.)
110 *
111 * Once a node is matched, its item can never again change. We
112 * may thus arrange that the linked list of them contains a prefix
113 * of zero or more matched nodes, followed by a suffix of zero or
114 * more unmatched nodes. (Note that we allow both the prefix and
115 * suffix to be zero length, which in turn means that we do not
116 * use a dummy header.) If we were not concerned with either time
117 * or space efficiency, we could correctly perform enqueue and
118 * dequeue operations by traversing from a pointer to the initial
119 * node; CASing the item of the first unmatched node on match and
120 * CASing the next field of the trailing node on appends. While
121 * this would be a terrible idea in itself, it does have the
122 * benefit of not requiring ANY atomic updates on head/tail
123 * fields.
124 *
125 * We introduce here an approach that lies between the extremes of
126 * never versus always updating queue (head and tail) pointers
127 * that reflects the tradeoff of sometimes requiring extra traversal
128 * steps to locate the first and/or last unmatched nodes, versus
129 * the reduced overhead and contention of fewer updates to queue
130 * pointers. For example, a possible snapshot of a queue is:
131 *
132 * head tail
133 * | |
134 * v v
135 * M -> M -> U -> U -> U -> U
136 *
137 * The best value for this "slack" (the targeted maximum distance
138 * between the value of "head" and the first unmatched node, and
139 * similarly for "tail") is an empirical matter. We have found
140 * that using very small constants in the range of 1-3 work best
141 * over a range of platforms. Larger values introduce increasing
142 * costs of cache misses and risks of long traversal chains.
143 *
144 * Dual queues with slack differ from plain M&S dual queues by
145 * virtue of only sometimes updating head or tail pointers when
146 * matching, appending, or even traversing nodes; in order to
147 * maintain a targeted slack. The idea of "sometimes" may be
148 * operationalized in several ways. The simplest is to use a
149 * per-operation counter incremented on each traversal step, and
150 * to try (via CAS) to update the associated queue pointer
151 * whenever the count exceeds a threshold. Another, that requires
152 * more overhead, is to use random number generators to update
153 * with a given probability per traversal step.
154 *
155 * In any strategy along these lines, because CASes updating
156 * fields may fail, the actual slack may exceed targeted
157 * slack. However, they may be retried at any time to maintain
158 * targets. Even when using very small slack values, this
159 * approach works well for dual queues because it allows all
160 * operations up to the point of matching or appending an item
161 * (hence potentially releasing another thread) to be read-only,
162 * thus not introducing any further contention. As described
163 * below, we implement this by performing slack maintenance
164 * retries only after these points.
165 *
166 * As an accompaniment to such techniques, traversal overhead can
167 * be further reduced without increasing contention of head
168 * pointer updates. During traversals, threads may sometimes
169 * shortcut the "next" link path from the current "head" node to
170 * be closer to the currently known first unmatched node. Again,
171 * this may be triggered with using thresholds or randomization.
172 *
173 * These ideas must be further extended to avoid unbounded amounts
174 * of costly-to-reclaim garbage caused by the sequential "next"
175 * links of nodes starting at old forgotten head nodes: As first
176 * described in detail by Boehm
177 * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
178 * delays noticing that any arbitrarily old node has become
179 * garbage, all newer dead nodes will also be unreclaimed.
180 * (Similar issues arise in non-GC environments.) To cope with
181 * this in our implementation, upon CASing to advance the head
182 * pointer, we set the "next" link of the previous head to point
183 * only to itself; thus limiting the length of connected dead lists.
184 * (We also take similar care to wipe out possibly garbage
185 * retaining values held in other Node fields.) However, doing so
186 * adds some further complexity to traversal: If any "next"
187 * pointer links to itself, it indicates that the current thread
188 * has lagged behind a head-update, and so the traversal must
189 * continue from the "head". Traversals trying to find the
190 * current tail starting from "tail" may also encounter
191 * self-links, in which case they also continue at "head".
192 *
193 * It is tempting in slack-based scheme to not even use CAS for
194 * updates (similarly to Ladan-Mozes & Shavit). However, this
195 * cannot be done for head updates under the above link-forgetting
196 * mechanics because an update may leave head at a detached node.
197 * And while direct writes are possible for tail updates, they
198 * increase the risk of long retraversals, and hence long garbage
199 * chains which can be much more costly than is worthwhile
200 * considering that the cost difference of performing a CAS vs
201 * write is smaller when they are not triggered on each operation
202 * (especially considering that writes and CASes equally require
203 * additional GC bookkeeping ("write barriers") that are sometimes
204 * more costly than the writes themselves because of contention).
205 *
206 * Removal of internal nodes (due to timed out or interrupted
207 * waits, or calls to remove or Iterator.remove) uses a scheme
208 * roughly similar to that in Scherer, Lea, and Scott
209 * SynchronousQueue. Given a predecessor, we can unsplice any node
210 * except the (actual) tail of the queue. To avoid build-up of
211 * cancelled trailing nodes, upon a request to remove a trailing
212 * node, it is placed in field "cleanMe" to be unspliced later.
213 *
214 * *** Overview of implementation ***
215 *
216 * We use a threshold-based approach to updates, with a target
217 * slack of two. The slack value is hard-wired: a path greater
218 * than one is naturally implemented by checking equality of
219 * traversal pointers except when the list has only one element,
220 * in which case we keep max slack at one. Avoiding tracking
221 * explicit counts across situations slightly simplifies an
222 * already-messy implementation. Using randomization would
223 * probably work better if there were a low-quality dirt-cheap
224 * per-thread one available, but even ThreadLocalRandom is too
225 * heavy for these purposes.
226 *
227 * With such a small slack value, path short-circuiting is rarely
228 * worthwhile. However, it is used (in awaitMatch) immediately
229 * before a waiting thread starts to block, as a final bit of
230 * helping at a point when contention with others is extremely
231 * unlikely (since if other threads that could release it are
232 * operating, then the current thread wouldn't be blocking).
233 *
234 * All enqueue/dequeue operations are handled by the single method
235 * "xfer" with parameters indicating whether to act as some form
236 * of offer, put, poll, take, or transfer (each possibly with
237 * timeout). The relative complexity of using one monolithic
238 * method outweighs the code bulk and maintenance problems of
239 * using nine separate methods.
240 *
241 * Operation consists of up to three phases. The first is
242 * implemented within method xfer, the second in tryAppend, and
243 * the third in method awaitMatch.
244 *
245 * 1. Try to match an existing node
246 *
247 * Starting at head, skip already-matched nodes until finding
248 * an unmatched node of opposite mode, if one exists, in which
249 * case matching it and returning, also if necessary updating
250 * head to one past the matched node (or the node itself if the
251 * list has no other unmatched nodes). If the CAS misses, then
252 * a retry loops until the slack is at most two. Traversals
253 * also check if the initial head is now off-list, in which
254 * case they start at the new head.
255 *
256 * If no candidates are found and the call was untimed
257 * poll/offer, (argument "how" is NOW) return.
258 *
259 * 2. Try to append a new node (method tryAppend)
260 *
261 * Starting at current tail pointer, try to append a new node
262 * to the list (or if head was null, establish the first
263 * node). Nodes can be appended only if their predecessors are
264 * either already matched or are of the same mode. If we detect
265 * otherwise, then a new node with opposite mode must have been
266 * appended during traversal, so must restart at phase 1. The
267 * traversal and update steps are otherwise similar to phase 1:
268 * Retrying upon CAS misses and checking for staleness. In
269 * particular, if a self-link is encountered, then we can
270 * safely jump to a node on the list by continuing the
271 * traversal at current head.
272 *
273 * On successful append, if the call was ASYNC, return.
274 *
275 * 3. Await match or cancellation (method awaitMatch)
276 *
277 * Wait for another thread to match node; instead cancelling if
278 * current thread was interrupted or the wait timed out. On
279 * multiprocessors, we use front-of-queue spinning: If a node
280 * appears to be the first unmatched node in the queue, it
281 * spins a bit before blocking. In either case, before blocking
282 * it tries to unsplice any nodes between the current "head"
283 * and the first unmatched node.
284 *
285 * Front-of-queue spinning vastly improves performance of
286 * heavily contended queues. And so long as it is relatively
287 * brief and "quiet", spinning does not much impact performance
288 * of less-contended queues. During spins threads check their
289 * interrupt status and generate a thread-local random number
290 * to decide to occasionally perform a Thread.yield. While
291 * yield has underdefined specs, we assume that might it help,
292 * and will not hurt in limiting impact of spinning on busy
293 * systems. We also use much smaller (1/4) spins for nodes
294 * that are not known to be front but whose predecessors have
295 * not blocked -- these "chained" spins avoid artifacts of
296 * front-of-queue rules which otherwise lead to alternating
297 * nodes spinning vs blocking. Further, front threads that
298 * represent phase changes (from data to request node or vice
299 * versa) compared to their predecessors receive additional
300 * spins, reflecting the longer code path lengths necessary to
301 * release them under contention.
302 */
303
304 /** True if on multiprocessor */
305 private static final boolean MP =
306 Runtime.getRuntime().availableProcessors() > 1;
307
308 /**
309 * The number of times to spin (with on average one randomly
310 * interspersed call to Thread.yield) on multiprocessor before
311 * blocking when a node is apparently the first waiter in the
312 * queue. See above for explanation. Must be a power of two. The
313 * value is empirically derived -- it works pretty well across a
314 * variety of processors, numbers of CPUs, and OSes.
315 */
316 private static final int FRONT_SPINS = 1 << 7;
317
318 /**
319 * The number of times to spin before blocking when a node is
320 * preceded by another node that is apparently spinning.
321 */
322 private static final int CHAINED_SPINS = FRONT_SPINS >>> 2;
323
324 /**
325 * Queue nodes. Uses Object, not E, for items to allow forgetting
326 * them after use. Relies heavily on Unsafe mechanics to minimize
327 * unnecessary ordering constraints: Writes that intrinsically
328 * precede or follow CASes use simple relaxed forms. Other
329 * cleanups use releasing/lazy writes.
330 */
331 static final class Node {
332 final boolean isData; // false if this is a request node
333 volatile Object item; // initially non-null if isData; CASed to match
334 volatile Node next;
335 volatile Thread waiter; // null until waiting
336
337 // CAS methods for fields
338 final boolean casNext(Node cmp, Node val) {
339 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
340 }
341
342 final boolean casItem(Object cmp, Object val) {
343 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
344 }
345
346 /**
347 * Creates a new node. Uses relaxed write because item can only
348 * be seen if followed by CAS.
349 */
350 Node(Object item, boolean isData) {
351 UNSAFE.putObject(this, itemOffset, item); // relaxed write
352 this.isData = isData;
353 }
354
355 /**
356 * Links node to itself to avoid garbage retention. Called
357 * only after CASing head field, so uses relaxed write.
358 */
359 final void forgetNext() {
360 UNSAFE.putObject(this, nextOffset, this);
361 }
362
363 /**
364 * Sets item to self (using a releasing/lazy write) and waiter
365 * to null, to avoid garbage retention after extracting or
366 * cancelling.
367 */
368 final void forgetContents() {
369 UNSAFE.putOrderedObject(this, itemOffset, this);
370 UNSAFE.putOrderedObject(this, waiterOffset, null);
371 }
372
373 /**
374 * Returns true if this node has been matched, including the
375 * case of artificial matches due to cancellation.
376 */
377 final boolean isMatched() {
378 Object x = item;
379 return x == this || (x != null) != isData;
380 }
381
382 /**
383 * Returns true if a node with the given mode cannot be
384 * appended to this node because this node is unmatched and
385 * has opposite data mode.
386 */
387 final boolean cannotPrecede(boolean haveData) {
388 boolean d = isData;
389 Object x;
390 return d != haveData && (x = item) != this && (x != null) == d;
391 }
392
393 /**
394 * Tries to artificially match a data node -- used by remove.
395 */
396 final boolean tryMatchData() {
397 Object x = item;
398 if (x != null && x != this && casItem(x, null)) {
399 LockSupport.unpark(waiter);
400 return true;
401 }
402 return false;
403 }
404
405 // Unsafe mechanics
406 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
407 private static final long nextOffset =
408 objectFieldOffset(UNSAFE, "next", Node.class);
409 private static final long itemOffset =
410 objectFieldOffset(UNSAFE, "item", Node.class);
411 private static final long waiterOffset =
412 objectFieldOffset(UNSAFE, "waiter", Node.class);
413
414 private static final long serialVersionUID = -3375979862319811754L;
415 }
416
417 /** head of the queue; null until first enqueue */
418 private transient volatile Node head;
419
420 /** predecessor of dangling unspliceable node */
421 private transient volatile Node cleanMe; // decl here to reduce contention
422
423 /** tail of the queue; null until first append */
424 private transient volatile Node tail;
425
426 // CAS methods for fields
427 private boolean casTail(Node cmp, Node val) {
428 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
429 }
430
431 private boolean casHead(Node cmp, Node val) {
432 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
433 }
434
435 private boolean casCleanMe(Node cmp, Node val) {
436 return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
437 }
438
439 /*
440 * Possible values for "how" argument in xfer method. Beware that
441 * the order of assigned numerical values matters.
442 */
443 private static final int NOW = 0; // for untimed poll, tryTransfer
444 private static final int ASYNC = 1; // for offer, put, add
445 private static final int SYNC = 2; // for transfer, take
446 private static final int TIMEOUT = 3; // for timed poll, tryTransfer
447
448 /**
449 * Implements all queuing methods. See above for explanation.
450 *
451 * @param e the item or null for take
452 * @param haveData true if this is a put, else a take
453 * @param how NOW, ASYNC, SYNC, or TIMEOUT
454 * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
455 * @return an item if matched, else e
456 * @throws NullPointerException if haveData mode but e is null
457 */
458 private Object xfer(Object e, boolean haveData, int how, long nanos) {
459 if (haveData && (e == null))
460 throw new NullPointerException();
461 Node s = null; // the node to append, if needed
462
463 retry: for (;;) { // restart on append race
464
465 for (Node h = head, p = h; p != null;) { // find & match first node
466 boolean isData = p.isData;
467 Object item = p.item;
468 if (item != p && (item != null) == isData) { // unmatched
469 if (isData == haveData) // can't match
470 break;
471 if (p.casItem(item, e)) { // match
472 Thread w = p.waiter;
473 while (p != h) { // update head
474 Node n = p.next; // by 2 unless singleton
475 if (n != null)
476 p = n;
477 if (head == h && casHead(h, p)) {
478 h.forgetNext();
479 break;
480 } // advance and retry
481 if ((h = head) == null ||
482 (p = h.next) == null || !p.isMatched())
483 break; // unless slack < 2
484 }
485 LockSupport.unpark(w);
486 return item;
487 }
488 }
489 Node n = p.next;
490 p = p != n ? n : (h = head); // Use head if p offlist
491 }
492
493 if (how >= ASYNC) { // No matches available
494 if (s == null)
495 s = new Node(e, haveData);
496 Node pred = tryAppend(s, haveData);
497 if (pred == null)
498 continue retry; // lost race vs opposite mode
499 if (how >= SYNC)
500 return awaitMatch(pred, s, e, how, nanos);
501 }
502 return e; // not waiting
503 }
504 }
505
506 /**
507 * Tries to append node s as tail.
508 *
509 * @param haveData true if appending in data mode
510 * @param s the node to append
511 * @return null on failure due to losing race with append in
512 * different mode, else s's predecessor, or s itself if no
513 * predecessor
514 */
515 private Node tryAppend(Node s, boolean haveData) {
516 for (Node t = tail, p = t;;) { // move p to actual tail and append
517 Node n, u; // temps for reads of next & tail
518 if (p == null && (p = head) == null) {
519 if (casHead(null, s))
520 return s; // initialize
521 }
522 else if (p.cannotPrecede(haveData))
523 return null; // lost race vs opposite mode
524 else if ((n = p.next) != null) // Not tail; keep traversing
525 p = p != t && t != (u = tail) ? (t = u) : // stale tail
526 p != n ? n : null; // restart if off list
527 else if (!p.casNext(null, s))
528 p = p.next; // re-read on CAS failure
529 else {
530 if (p != t) { // Update if slack now >= 2
531 while ((tail != t || !casTail(t, s)) &&
532 (t = tail) != null &&
533 (s = t.next) != null && // advance and retry
534 (s = s.next) != null && s != t);
535 }
536 return p;
537 }
538 }
539 }
540
541 /**
542 * Spins/yields/blocks until node s is matched or caller gives up.
543 *
544 * @param pred the predecessor of s or s or null if none
545 * @param s the waiting node
546 * @param e the comparison value for checking match
547 * @param how either SYNC or TIMEOUT
548 * @param nanos timeout value
549 * @return matched item, or e if unmatched on interrupt or timeout
550 */
551 private Object awaitMatch(Node pred, Node s, Object e,
552 int how, long nanos) {
553 long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
554 Thread w = Thread.currentThread();
555 int spins = -1; // initialized after first item and cancel checks
556 ThreadLocalRandom randomYields = null; // bound if needed
557
558 for (;;) {
559 Object item = s.item;
560 if (item != e) { // matched
561 s.forgetContents(); // avoid garbage
562 return item;
563 }
564 if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
565 s.casItem(e, s)) { // cancel
566 unsplice(pred, s);
567 return e;
568 }
569
570 if (spins < 0) { // establish spins at/near front
571 if ((spins = spinsFor(pred, s.isData)) > 0)
572 randomYields = ThreadLocalRandom.current();
573 }
574 else if (spins > 0) { // spin, occasionally yield
575 if (randomYields.nextInt(FRONT_SPINS) == 0)
576 Thread.yield();
577 --spins;
578 }
579 else if (s.waiter == null) {
580 shortenHeadPath(); // reduce slack before blocking
581 s.waiter = w; // request unpark
582 }
583 else if (how == TIMEOUT) {
584 long now = System.nanoTime();
585 if ((nanos -= now - lastTime) > 0)
586 LockSupport.parkNanos(this, nanos);
587 lastTime = now;
588 }
589 else {
590 LockSupport.park(this);
591 spins = -1; // spin if front upon wakeup
592 }
593 }
594 }
595
596 /**
597 * Returns spin/yield value for a node with given predecessor and
598 * data mode. See above for explanation.
599 */
600 private static int spinsFor(Node pred, boolean haveData) {
601 if (MP && pred != null) {
602 boolean predData = pred.isData;
603 if (predData != haveData) // front and phase change
604 return FRONT_SPINS + (FRONT_SPINS >>> 1);
605 if (predData != (pred.item != null)) // probably at front
606 return FRONT_SPINS;
607 if (pred.waiter == null) // pred apparently spinning
608 return CHAINED_SPINS;
609 }
610 return 0;
611 }
612
613 /**
614 * Tries (once) to unsplice nodes between head and first unmatched
615 * or trailing node; failing on contention.
616 */
617 private void shortenHeadPath() {
618 Node h, hn, p, q;
619 if ((p = h = head) != null && h.isMatched() &&
620 (q = hn = h.next) != null) {
621 Node n;
622 while ((n = q.next) != q) {
623 if (n == null || !q.isMatched()) {
624 if (hn != q && h.next == hn)
625 h.casNext(hn, q);
626 break;
627 }
628 p = q;
629 q = n;
630 }
631 }
632 }
633
634 /* -------------- Traversal methods -------------- */
635
636 /**
637 * Returns the first unmatched node of the given mode, or null if
638 * none. Used by methods isEmpty, hasWaitingConsumer.
639 */
640 private Node firstOfMode(boolean data) {
641 for (Node p = head; p != null; ) {
642 if (!p.isMatched())
643 return p.isData == data? p : null;
644 Node n = p.next;
645 p = n != p ? n : head;
646 }
647 return null;
648 }
649
650 /**
651 * Returns the item in the first unmatched node with isData; or
652 * null if none. Used by peek.
653 */
654 private Object firstDataItem() {
655 for (Node p = head; p != null; ) {
656 boolean isData = p.isData;
657 Object item = p.item;
658 if (item != p && (item != null) == isData)
659 return isData ? item : null;
660 Node n = p.next;
661 p = n != p ? n : head;
662 }
663 return null;
664 }
665
666 /**
667 * Traverses and counts unmatched nodes of the given mode.
668 * Used by methods size and getWaitingConsumerCount.
669 */
670 private int countOfMode(boolean data) {
671 int count = 0;
672 for (Node p = head; p != null; ) {
673 if (!p.isMatched()) {
674 if (p.isData != data)
675 return 0;
676 if (++count == Integer.MAX_VALUE) // saturated
677 break;
678 }
679 Node n = p.next;
680 if (n != p)
681 p = n;
682 else {
683 count = 0;
684 p = head;
685 }
686 }
687 return count;
688 }
689
690 final class Itr implements Iterator<E> {
691 private Node nextNode; // next node to return item for
692 private Object nextItem; // the corresponding item
693 private Node lastRet; // last returned node, to support remove
694
695 /**
696 * Moves to next node after prev, or first node if prev null.
697 */
698 private void advance(Node prev) {
699 lastRet = prev;
700 Node p;
701 if (prev == null || (p = prev.next) == prev)
702 p = head;
703 while (p != null) {
704 Object item = p.item;
705 if (p.isData) {
706 if (item != null && item != p) {
707 nextItem = item;
708 nextNode = p;
709 return;
710 }
711 }
712 else if (item == null)
713 break;
714 Node n = p.next;
715 p = n != p ? n : head;
716 }
717 nextNode = null;
718 }
719
720 Itr() {
721 advance(null);
722 }
723
724 public final boolean hasNext() {
725 return nextNode != null;
726 }
727
728 public final E next() {
729 Node p = nextNode;
730 if (p == null) throw new NoSuchElementException();
731 Object e = nextItem;
732 advance(p);
733 return (E) e;
734 }
735
736 public final void remove() {
737 Node p = lastRet;
738 if (p == null) throw new IllegalStateException();
739 lastRet = null;
740 findAndRemoveNode(p);
741 }
742 }
743
744 /* -------------- Removal methods -------------- */
745
746 /**
747 * Unsplices (now or later) the given deleted/cancelled node with
748 * the given predecessor.
749 *
750 * @param pred predecessor of node to be unspliced
751 * @param s the node to be unspliced
752 */
753 private void unsplice(Node pred, Node s) {
754 s.forgetContents(); // clear unneeded fields
755 /*
756 * At any given time, exactly one node on list cannot be
757 * deleted -- the last inserted node. To accommodate this, if
758 * we cannot delete s, we save its predecessor as "cleanMe",
759 * processing the previously saved version first. Because only
760 * one node in the list can have a null next, at least one of
761 * node s or the node previously saved can always be
762 * processed, so this always terminates.
763 */
764 if (pred != null && pred != s) {
765 while (pred.next == s) {
766 Node oldpred = cleanMe == null? null : reclean();
767 Node n = s.next;
768 if (n != null) {
769 if (n != s)
770 pred.casNext(s, n);
771 break;
772 }
773 if (oldpred == pred || // Already saved
774 (oldpred == null && casCleanMe(null, pred)))
775 break; // Postpone cleaning
776 }
777 }
778 }
779
780 /**
781 * Tries to unsplice the deleted/cancelled node held in cleanMe
782 * that was previously uncleanable because it was at tail.
783 *
784 * @return current cleanMe node (or null)
785 */
786 private Node reclean() {
787 /*
788 * cleanMe is, or at one time was, predecessor of a cancelled
789 * node s that was the tail so could not be unspliced. If it
790 * is no longer the tail, try to unsplice if necessary and
791 * make cleanMe slot available. This differs from similar
792 * code in unsplice() because we must check that pred still
793 * points to a matched node that can be unspliced -- if not,
794 * we can (must) clear cleanMe without unsplicing. This can
795 * loop only due to contention.
796 */
797 Node pred;
798 while ((pred = cleanMe) != null) {
799 Node s = pred.next;
800 Node n;
801 if (s == null || s == pred || !s.isMatched())
802 casCleanMe(pred, null); // already gone
803 else if ((n = s.next) != null) {
804 if (n != s)
805 pred.casNext(s, n);
806 casCleanMe(pred, null);
807 }
808 else
809 break;
810 }
811 return pred;
812 }
813
814 /**
815 * Main implementation of Iterator.remove(). Find
816 * and unsplice the given node.
817 */
818 final void findAndRemoveNode(Node s) {
819 if (s.tryMatchData()) {
820 Node pred = null;
821 Node p = head;
822 while (p != null) {
823 if (p == s) {
824 unsplice(pred, p);
825 break;
826 }
827 if (!p.isData && !p.isMatched())
828 break;
829 pred = p;
830 if ((p = p.next) == pred) { // stale
831 pred = null;
832 p = head;
833 }
834 }
835 }
836 }
837
838 /**
839 * Main implementation of remove(Object)
840 */
841 private boolean findAndRemove(Object e) {
842 if (e != null) {
843 Node pred = null;
844 Node p = head;
845 while (p != null) {
846 Object item = p.item;
847 if (p.isData) {
848 if (item != null && item != p && e.equals(item) &&
849 p.tryMatchData()) {
850 unsplice(pred, p);
851 return true;
852 }
853 }
854 else if (item == null)
855 break;
856 pred = p;
857 if ((p = p.next) == pred) {
858 pred = null;
859 p = head;
860 }
861 }
862 }
863 return false;
864 }
865
866
867 /**
868 * Creates an initially empty {@code LinkedTransferQueue}.
869 */
870 public LinkedTransferQueue() {
871 }
872
873 /**
874 * Creates a {@code LinkedTransferQueue}
875 * initially containing the elements of the given collection,
876 * added in traversal order of the collection's iterator.
877 *
878 * @param c the collection of elements to initially contain
879 * @throws NullPointerException if the specified collection or any
880 * of its elements are null
881 */
882 public LinkedTransferQueue(Collection<? extends E> c) {
883 this();
884 addAll(c);
885 }
886
887 /**
888 * Inserts the specified element at the tail of this queue.
889 * As the queue is unbounded, this method will never block.
890 *
891 * @throws NullPointerException if the specified element is null
892 */
893 public void put(E e) {
894 xfer(e, true, ASYNC, 0);
895 }
896
897 /**
898 * Inserts the specified element at the tail of this queue.
899 * As the queue is unbounded, this method will never block or
900 * return {@code false}.
901 *
902 * @return {@code true} (as specified by
903 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
904 * @throws NullPointerException if the specified element is null
905 */
906 public boolean offer(E e, long timeout, TimeUnit unit) {
907 xfer(e, true, ASYNC, 0);
908 return true;
909 }
910
911 /**
912 * Inserts the specified element at the tail of this queue.
913 * As the queue is unbounded, this method will never return {@code false}.
914 *
915 * @return {@code true} (as specified by
916 * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
917 * @throws NullPointerException if the specified element is null
918 */
919 public boolean offer(E e) {
920 xfer(e, true, ASYNC, 0);
921 return true;
922 }
923
924 /**
925 * Inserts the specified element at the tail of this queue.
926 * As the queue is unbounded, this method will never throw
927 * {@link IllegalStateException} or return {@code false}.
928 *
929 * @return {@code true} (as specified by {@link Collection#add})
930 * @throws NullPointerException if the specified element is null
931 */
932 public boolean add(E e) {
933 xfer(e, true, ASYNC, 0);
934 return true;
935 }
936
937 /**
938 * Transfers the element to a waiting consumer immediately, if possible.
939 *
940 * <p>More precisely, transfers the specified element immediately
941 * if there exists a consumer already waiting to receive it (in
942 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
943 * otherwise returning {@code false} without enqueuing the element.
944 *
945 * @throws NullPointerException if the specified element is null
946 */
947 public boolean tryTransfer(E e) {
948 return xfer(e, true, NOW, 0) == null;
949 }
950
951 /**
952 * Transfers the element to a consumer, waiting if necessary to do so.
953 *
954 * <p>More precisely, transfers the specified element immediately
955 * if there exists a consumer already waiting to receive it (in
956 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
957 * else inserts the specified element at the tail of this queue
958 * and waits until the element is received by a consumer.
959 *
960 * @throws NullPointerException if the specified element is null
961 */
962 public void transfer(E e) throws InterruptedException {
963 if (xfer(e, true, SYNC, 0) != null) {
964 Thread.interrupted(); // failure possible only due to interrupt
965 throw new InterruptedException();
966 }
967 }
968
969 /**
970 * Transfers the element to a consumer if it is possible to do so
971 * before the timeout elapses.
972 *
973 * <p>More precisely, transfers the specified element immediately
974 * if there exists a consumer already waiting to receive it (in
975 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
976 * else inserts the specified element at the tail of this queue
977 * and waits until the element is received by a consumer,
978 * returning {@code false} if the specified wait time elapses
979 * before the element can be transferred.
980 *
981 * @throws NullPointerException if the specified element is null
982 */
983 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
984 throws InterruptedException {
985 if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
986 return true;
987 if (!Thread.interrupted())
988 return false;
989 throw new InterruptedException();
990 }
991
992 public E take() throws InterruptedException {
993 Object e = xfer(null, false, SYNC, 0);
994 if (e != null)
995 return (E)e;
996 Thread.interrupted();
997 throw new InterruptedException();
998 }
999
1000 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1001 Object e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1002 if (e != null || !Thread.interrupted())
1003 return (E)e;
1004 throw new InterruptedException();
1005 }
1006
1007 public E poll() {
1008 return (E)xfer(null, false, NOW, 0);
1009 }
1010
1011 /**
1012 * @throws NullPointerException {@inheritDoc}
1013 * @throws IllegalArgumentException {@inheritDoc}
1014 */
1015 public int drainTo(Collection<? super E> c) {
1016 if (c == null)
1017 throw new NullPointerException();
1018 if (c == this)
1019 throw new IllegalArgumentException();
1020 int n = 0;
1021 E e;
1022 while ( (e = poll()) != null) {
1023 c.add(e);
1024 ++n;
1025 }
1026 return n;
1027 }
1028
1029 /**
1030 * @throws NullPointerException {@inheritDoc}
1031 * @throws IllegalArgumentException {@inheritDoc}
1032 */
1033 public int drainTo(Collection<? super E> c, int maxElements) {
1034 if (c == null)
1035 throw new NullPointerException();
1036 if (c == this)
1037 throw new IllegalArgumentException();
1038 int n = 0;
1039 E e;
1040 while (n < maxElements && (e = poll()) != null) {
1041 c.add(e);
1042 ++n;
1043 }
1044 return n;
1045 }
1046
1047 /**
1048 * Returns an iterator over the elements in this queue in proper
1049 * sequence, from head to tail.
1050 *
1051 * <p>The returned iterator is a "weakly consistent" iterator that
1052 * will never throw
1053 * {@link ConcurrentModificationException ConcurrentModificationException},
1054 * and guarantees to traverse elements as they existed upon
1055 * construction of the iterator, and may (but is not guaranteed
1056 * to) reflect any modifications subsequent to construction.
1057 *
1058 * @return an iterator over the elements in this queue in proper sequence
1059 */
1060 public Iterator<E> iterator() {
1061 return new Itr();
1062 }
1063
1064 public E peek() {
1065 return (E) firstDataItem();
1066 }
1067
1068 /**
1069 * Returns {@code true} if this queue contains no elements.
1070 *
1071 * @return {@code true} if this queue contains no elements
1072 */
1073 public boolean isEmpty() {
1074 return firstOfMode(true) == null;
1075 }
1076
1077 public boolean hasWaitingConsumer() {
1078 return firstOfMode(false) != null;
1079 }
1080
1081 /**
1082 * Returns the number of elements in this queue. If this queue
1083 * contains more than {@code Integer.MAX_VALUE} elements, returns
1084 * {@code Integer.MAX_VALUE}.
1085 *
1086 * <p>Beware that, unlike in most collections, this method is
1087 * <em>NOT</em> a constant-time operation. Because of the
1088 * asynchronous nature of these queues, determining the current
1089 * number of elements requires an O(n) traversal.
1090 *
1091 * @return the number of elements in this queue
1092 */
1093 public int size() {
1094 return countOfMode(true);
1095 }
1096
1097 public int getWaitingConsumerCount() {
1098 return countOfMode(false);
1099 }
1100
1101 /**
1102 * Removes a single instance of the specified element from this queue,
1103 * if it is present. More formally, removes an element {@code e} such
1104 * that {@code o.equals(e)}, if this queue contains one or more such
1105 * elements.
1106 * Returns {@code true} if this queue contained the specified element
1107 * (or equivalently, if this queue changed as a result of the call).
1108 *
1109 * @param o element to be removed from this queue, if present
1110 * @return {@code true} if this queue changed as a result of the call
1111 */
1112 public boolean remove(Object o) {
1113 return findAndRemove(o);
1114 }
1115
1116 /**
1117 * Always returns {@code Integer.MAX_VALUE} because a
1118 * {@code LinkedTransferQueue} is not capacity constrained.
1119 *
1120 * @return {@code Integer.MAX_VALUE} (as specified by
1121 * {@link BlockingQueue#remainingCapacity()})
1122 */
1123 public int remainingCapacity() {
1124 return Integer.MAX_VALUE;
1125 }
1126
1127 /**
1128 * Saves the state to a stream (that is, serializes it).
1129 *
1130 * @serialData All of the elements (each an {@code E}) in
1131 * the proper order, followed by a null
1132 * @param s the stream
1133 */
1134 private void writeObject(java.io.ObjectOutputStream s)
1135 throws java.io.IOException {
1136 s.defaultWriteObject();
1137 for (E e : this)
1138 s.writeObject(e);
1139 // Use trailing null as sentinel
1140 s.writeObject(null);
1141 }
1142
1143 /**
1144 * Reconstitutes the Queue instance from a stream (that is,
1145 * deserializes it).
1146 *
1147 * @param s the stream
1148 */
1149 private void readObject(java.io.ObjectInputStream s)
1150 throws java.io.IOException, ClassNotFoundException {
1151 s.defaultReadObject();
1152 for (;;) {
1153 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1154 if (item == null)
1155 break;
1156 else
1157 offer(item);
1158 }
1159 }
1160
1161
1162 // Unsafe mechanics
1163
1164 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1165 private static final long headOffset =
1166 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1167 private static final long tailOffset =
1168 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1169 private static final long cleanMeOffset =
1170 objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1171
1172 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1173 String field, Class<?> klazz) {
1174 try {
1175 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1176 } catch (NoSuchFieldException e) {
1177 // Convert Exception to corresponding Error
1178 NoSuchFieldError error = new NoSuchFieldError(field);
1179 error.initCause(e);
1180 throw error;
1181 }
1182 }
1183
1184 private static sun.misc.Unsafe getUnsafe() {
1185 try {
1186 return sun.misc.Unsafe.getUnsafe();
1187 } catch (SecurityException se) {
1188 try {
1189 return java.security.AccessController.doPrivileged
1190 (new java.security
1191 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1192 public sun.misc.Unsafe run() throws Exception {
1193 java.lang.reflect.Field f = sun.misc
1194 .Unsafe.class.getDeclaredField("theUnsafe");
1195 f.setAccessible(true);
1196 return (sun.misc.Unsafe) f.get(null);
1197 }});
1198 } catch (java.security.PrivilegedActionException e) {
1199 throw new RuntimeException("Could not initialize intrinsics",
1200 e.getCause());
1201 }
1202 }
1203 }
1204
1205 }