ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.57
Committed: Wed Oct 28 09:28:30 2009 UTC (14 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.56: +1 -1 lines
Log Message:
avoid double negation

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.AbstractQueue;
12 import java.util.Collection;
13 import java.util.ConcurrentModificationException;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Queue;
17 import java.util.concurrent.locks.LockSupport;
18 /**
19 * An unbounded {@link TransferQueue} based on linked nodes.
20 * This queue orders elements FIFO (first-in-first-out) with respect
21 * to any given producer. The <em>head</em> of the queue is that
22 * element that has been on the queue the longest time for some
23 * producer. The <em>tail</em> of the queue is that element that has
24 * been on the queue the shortest time for some producer.
25 *
26 * <p>Beware that, unlike in most collections, the {@code size}
27 * method is <em>NOT</em> a constant-time operation. Because of the
28 * asynchronous nature of these queues, determining the current number
29 * of elements requires a traversal of the elements.
30 *
31 * <p>This class and its iterator implement all of the
32 * <em>optional</em> methods of the {@link Collection} and {@link
33 * Iterator} interfaces.
34 *
35 * <p>Memory consistency effects: As with other concurrent
36 * collections, actions in a thread prior to placing an object into a
37 * {@code LinkedTransferQueue}
38 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
39 * actions subsequent to the access or removal of that element from
40 * the {@code LinkedTransferQueue} in another thread.
41 *
42 * <p>This class is a member of the
43 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
44 * Java Collections Framework</a>.
45 *
46 * @since 1.7
47 * @author Doug Lea
48 * @param <E> the type of elements held in this collection
49 */
50 public class LinkedTransferQueue<E> extends AbstractQueue<E>
51 implements TransferQueue<E>, java.io.Serializable {
52 private static final long serialVersionUID = -3223113410248163686L;
53
54 /*
55 * *** Overview of Dual Queues with Slack ***
56 *
57 * Dual Queues, introduced by Scherer and Scott
58 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 * (linked) queues in which nodes may represent either data or
60 * requests. When a thread tries to enqueue a data node, but
61 * encounters a request node, it instead "matches" and removes it;
62 * and vice versa for enqueuing requests. Blocking Dual Queues
63 * arrange that threads enqueuing unmatched requests block until
64 * other threads provide the match. Dual Synchronous Queues (see
65 * Scherer, Lea, & Scott
66 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 * additionally arrange that threads enqueuing unmatched data also
68 * block. Dual Transfer Queues support all of these modes, as
69 * dictated by callers.
70 *
71 * A FIFO dual queue may be implemented using a variation of the
72 * Michael & Scott (M&S) lock-free queue algorithm
73 * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 * It maintains two pointer fields, "head", pointing to a
75 * (matched) node that in turn points to the first actual
76 * (unmatched) queue node (or null if empty); and "tail" that
77 * points to the last node on the queue (or again null if
78 * empty). For example, here is a possible queue with four data
79 * elements:
80 *
81 * head tail
82 * | |
83 * v v
84 * M -> U -> U -> U -> U
85 *
86 * The M&S queue algorithm is known to be prone to scalability and
87 * overhead limitations when maintaining (via CAS) these head and
88 * tail pointers. This has led to the development of
89 * contention-reducing variants such as elimination arrays (see
90 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 * optimistic back pointers (see Ladan-Mozes & Shavit
92 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 * However, the nature of dual queues enables a simpler tactic for
94 * improving M&S-style implementations when dual-ness is needed.
95 *
96 * In a dual queue, each node must atomically maintain its match
97 * status. While there are other possible variants, we implement
98 * this here as: for a data-mode node, matching entails CASing an
99 * "item" field from a non-null data value to null upon match, and
100 * vice-versa for request nodes, CASing from null to a data
101 * value. (Note that the linearization properties of this style of
102 * queue are easy to verify -- elements are made available by
103 * linking, and unavailable by matching.) Compared to plain M&S
104 * queues, this property of dual queues requires one additional
105 * successful atomic operation per enq/deq pair. But it also
106 * enables lower cost variants of queue maintenance mechanics. (A
107 * variation of this idea applies even for non-dual queues that
108 * support deletion of interior elements, such as
109 * j.u.c.ConcurrentLinkedQueue.)
110 *
111 * Once a node is matched, its match status can never again
112 * change. We may thus arrange that the linked list of them
113 * contain a prefix of zero or more matched nodes, followed by a
114 * suffix of zero or more unmatched nodes. (Note that we allow
115 * both the prefix and suffix to be zero length, which in turn
116 * means that we do not use a dummy header.) If we were not
117 * concerned with either time or space efficiency, we could
118 * correctly perform enqueue and dequeue operations by traversing
119 * from a pointer to the initial node; CASing the item of the
120 * first unmatched node on match and CASing the next field of the
121 * trailing node on appends. (Plus some special-casing when
122 * initially empty). While this would be a terrible idea in
123 * itself, it does have the benefit of not requiring ANY atomic
124 * updates on head/tail fields.
125 *
126 * We introduce here an approach that lies between the extremes of
127 * never versus always updating queue (head and tail) pointers.
128 * This offers a tradeoff between sometimes requiring extra
129 * traversal steps to locate the first and/or last unmatched
130 * nodes, versus the reduced overhead and contention of fewer
131 * updates to queue pointers. For example, a possible snapshot of
132 * a queue is:
133 *
134 * head tail
135 * | |
136 * v v
137 * M -> M -> U -> U -> U -> U
138 *
139 * The best value for this "slack" (the targeted maximum distance
140 * between the value of "head" and the first unmatched node, and
141 * similarly for "tail") is an empirical matter. We have found
142 * that using very small constants in the range of 1-3 work best
143 * over a range of platforms. Larger values introduce increasing
144 * costs of cache misses and risks of long traversal chains, while
145 * smaller values increase CAS contention and overhead.
146 *
147 * Dual queues with slack differ from plain M&S dual queues by
148 * virtue of only sometimes updating head or tail pointers when
149 * matching, appending, or even traversing nodes; in order to
150 * maintain a targeted slack. The idea of "sometimes" may be
151 * operationalized in several ways. The simplest is to use a
152 * per-operation counter incremented on each traversal step, and
153 * to try (via CAS) to update the associated queue pointer
154 * whenever the count exceeds a threshold. Another, that requires
155 * more overhead, is to use random number generators to update
156 * with a given probability per traversal step.
157 *
158 * In any strategy along these lines, because CASes updating
159 * fields may fail, the actual slack may exceed targeted
160 * slack. However, they may be retried at any time to maintain
161 * targets. Even when using very small slack values, this
162 * approach works well for dual queues because it allows all
163 * operations up to the point of matching or appending an item
164 * (hence potentially allowing progress by another thread) to be
165 * read-only, thus not introducing any further contention. As
166 * described below, we implement this by performing slack
167 * maintenance retries only after these points.
168 *
169 * As an accompaniment to such techniques, traversal overhead can
170 * be further reduced without increasing contention of head
171 * pointer updates: Threads may sometimes shortcut the "next" link
172 * path from the current "head" node to be closer to the currently
173 * known first unmatched node, and similarly for tail. Again, this
174 * may be triggered with using thresholds or randomization.
175 *
176 * These ideas must be further extended to avoid unbounded amounts
177 * of costly-to-reclaim garbage caused by the sequential "next"
178 * links of nodes starting at old forgotten head nodes: As first
179 * described in detail by Boehm
180 * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181 * delays noticing that any arbitrarily old node has become
182 * garbage, all newer dead nodes will also be unreclaimed.
183 * (Similar issues arise in non-GC environments.) To cope with
184 * this in our implementation, upon CASing to advance the head
185 * pointer, we set the "next" link of the previous head to point
186 * only to itself; thus limiting the length of connected dead lists.
187 * (We also take similar care to wipe out possibly garbage
188 * retaining values held in other Node fields.) However, doing so
189 * adds some further complexity to traversal: If any "next"
190 * pointer links to itself, it indicates that the current thread
191 * has lagged behind a head-update, and so the traversal must
192 * continue from the "head". Traversals trying to find the
193 * current tail starting from "tail" may also encounter
194 * self-links, in which case they also continue at "head".
195 *
196 * It is tempting in slack-based scheme to not even use CAS for
197 * updates (similarly to Ladan-Mozes & Shavit). However, this
198 * cannot be done for head updates under the above link-forgetting
199 * mechanics because an update may leave head at a detached node.
200 * And while direct writes are possible for tail updates, they
201 * increase the risk of long retraversals, and hence long garbage
202 * chains, which can be much more costly than is worthwhile
203 * considering that the cost difference of performing a CAS vs
204 * write is smaller when they are not triggered on each operation
205 * (especially considering that writes and CASes equally require
206 * additional GC bookkeeping ("write barriers") that are sometimes
207 * more costly than the writes themselves because of contention).
208 *
209 * Removal of interior nodes (due to timed out or interrupted
210 * waits, or calls to remove(x) or Iterator.remove) can use a
211 * scheme roughly similar to that described in Scherer, Lea, and
212 * Scott's SynchronousQueue. Given a predecessor, we can unsplice
213 * any node except the (actual) tail of the queue. To avoid
214 * build-up of cancelled trailing nodes, upon a request to remove
215 * a trailing node, it is placed in field "cleanMe" to be
216 * unspliced upon the next call to unsplice any other node.
217 * Situations needing such mechanics are not common but do occur
218 * in practice; for example when an unbounded series of short
219 * timed calls to poll repeatedly time out but never otherwise
220 * fall off the list because of an untimed call to take at the
221 * front of the queue. Note that maintaining field cleanMe does
222 * not otherwise much impact garbage retention even if never
223 * cleared by some other call because the held node will
224 * eventually either directly or indirectly lead to a self-link
225 * once off the list.
226 *
227 * *** Overview of implementation ***
228 *
229 * We use a threshold-based approach to updates, with a slack
230 * threshold of two -- that is, we update head/tail when the
231 * current pointer appears to be two or more steps away from the
232 * first/last node. The slack value is hard-wired: a path greater
233 * than one is naturally implemented by checking equality of
234 * traversal pointers except when the list has only one element,
235 * in which case we keep slack threshold at one. Avoiding tracking
236 * explicit counts across method calls slightly simplifies an
237 * already-messy implementation. Using randomization would
238 * probably work better if there were a low-quality dirt-cheap
239 * per-thread one available, but even ThreadLocalRandom is too
240 * heavy for these purposes.
241 *
242 * With such a small slack threshold value, it is rarely
243 * worthwhile to augment this with path short-circuiting; i.e.,
244 * unsplicing nodes between head and the first unmatched node, or
245 * similarly for tail, rather than advancing head or tail
246 * proper. However, it is used (in awaitMatch) immediately before
247 * a waiting thread starts to block, as a final bit of helping at
248 * a point when contention with others is extremely unlikely
249 * (since if other threads that could release it are operating,
250 * then the current thread wouldn't be blocking).
251 *
252 * We allow both the head and tail fields to be null before any
253 * nodes are enqueued; initializing upon first append. This
254 * simplifies some other logic, as well as providing more
255 * efficient explicit control paths instead of letting JVMs insert
256 * implicit NullPointerExceptions when they are null. While not
257 * currently fully implemented, we also leave open the possibility
258 * of re-nulling these fields when empty (which is complicated to
259 * arrange, for little benefit.)
260 *
261 * All enqueue/dequeue operations are handled by the single method
262 * "xfer" with parameters indicating whether to act as some form
263 * of offer, put, poll, take, or transfer (each possibly with
264 * timeout). The relative complexity of using one monolithic
265 * method outweighs the code bulk and maintenance problems of
266 * using separate methods for each case.
267 *
268 * Operation consists of up to three phases. The first is
269 * implemented within method xfer, the second in tryAppend, and
270 * the third in method awaitMatch.
271 *
272 * 1. Try to match an existing node
273 *
274 * Starting at head, skip already-matched nodes until finding
275 * an unmatched node of opposite mode, if one exists, in which
276 * case matching it and returning, also if necessary updating
277 * head to one past the matched node (or the node itself if the
278 * list has no other unmatched nodes). If the CAS misses, then
279 * a loop retries advancing head by two steps until either
280 * success or the slack is at most two. By requiring that each
281 * attempt advances head by two (if applicable), we ensure that
282 * the slack does not grow without bound. Traversals also check
283 * if the initial head is now off-list, in which case they
284 * start at the new head.
285 *
286 * If no candidates are found and the call was untimed
287 * poll/offer, (argument "how" is NOW) return.
288 *
289 * 2. Try to append a new node (method tryAppend)
290 *
291 * Starting at current tail pointer, find the actual last node
292 * and try to append a new node (or if head was null, establish
293 * the first node). Nodes can be appended only if their
294 * predecessors are either already matched or are of the same
295 * mode. If we detect otherwise, then a new node with opposite
296 * mode must have been appended during traversal, so we must
297 * restart at phase 1. The traversal and update steps are
298 * otherwise similar to phase 1: Retrying upon CAS misses and
299 * checking for staleness. In particular, if a self-link is
300 * encountered, then we can safely jump to a node on the list
301 * by continuing the traversal at current head.
302 *
303 * On successful append, if the call was ASYNC, return.
304 *
305 * 3. Await match or cancellation (method awaitMatch)
306 *
307 * Wait for another thread to match node; instead cancelling if
308 * the current thread was interrupted or the wait timed out. On
309 * multiprocessors, we use front-of-queue spinning: If a node
310 * appears to be the first unmatched node in the queue, it
311 * spins a bit before blocking. In either case, before blocking
312 * it tries to unsplice any nodes between the current "head"
313 * and the first unmatched node.
314 *
315 * Front-of-queue spinning vastly improves performance of
316 * heavily contended queues. And so long as it is relatively
317 * brief and "quiet", spinning does not much impact performance
318 * of less-contended queues. During spins threads check their
319 * interrupt status and generate a thread-local random number
320 * to decide to occasionally perform a Thread.yield. While
321 * yield has underdefined specs, we assume that might it help,
322 * and will not hurt in limiting impact of spinning on busy
323 * systems. We also use smaller (1/2) spins for nodes that are
324 * not known to be front but whose predecessors have not
325 * blocked -- these "chained" spins avoid artifacts of
326 * front-of-queue rules which otherwise lead to alternating
327 * nodes spinning vs blocking. Further, front threads that
328 * represent phase changes (from data to request node or vice
329 * versa) compared to their predecessors receive additional
330 * chained spins, reflecting longer paths typically required to
331 * unblock threads during phase changes.
332 */
333
334 /** True if on multiprocessor */
335 private static final boolean MP =
336 Runtime.getRuntime().availableProcessors() > 1;
337
338 /**
339 * The number of times to spin (with randomly interspersed calls
340 * to Thread.yield) on multiprocessor before blocking when a node
341 * is apparently the first waiter in the queue. See above for
342 * explanation. Must be a power of two. The value is empirically
343 * derived -- it works pretty well across a variety of processors,
344 * numbers of CPUs, and OSes.
345 */
346 private static final int FRONT_SPINS = 1 << 7;
347
348 /**
349 * The number of times to spin before blocking when a node is
350 * preceded by another node that is apparently spinning. Also
351 * serves as an increment to FRONT_SPINS on phase changes, and as
352 * base average frequency for yielding during spins. Must be a
353 * power of two.
354 */
355 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
356
357 /**
358 * Queue nodes. Uses Object, not E, for items to allow forgetting
359 * them after use. Relies heavily on Unsafe mechanics to minimize
360 * unnecessary ordering constraints: Writes that intrinsically
361 * precede or follow CASes use simple relaxed forms. Other
362 * cleanups use releasing/lazy writes.
363 */
364 static final class Node<E> {
365 final boolean isData; // false if this is a request node
366 volatile Object item; // initially non-null if isData; CASed to match
367 volatile Node<E> next;
368 volatile Thread waiter; // null until waiting
369
370 // CAS methods for fields
371 final boolean casNext(Node<E> cmp, Node<E> val) {
372 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
373 }
374
375 final boolean casItem(Object cmp, Object val) {
376 assert cmp == null || cmp.getClass() != Node.class;
377 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
378 }
379
380 /**
381 * Creates a new node. Uses relaxed write because item can only
382 * be seen if followed by CAS.
383 */
384 Node(E item, boolean isData) {
385 UNSAFE.putObject(this, itemOffset, item); // relaxed write
386 this.isData = isData;
387 }
388
389 /**
390 * Links node to itself to avoid garbage retention. Called
391 * only after CASing head field, so uses relaxed write.
392 */
393 final void forgetNext() {
394 UNSAFE.putObject(this, nextOffset, this);
395 }
396
397 /**
398 * Sets item to self (using a releasing/lazy write) and waiter
399 * to null, to avoid garbage retention after extracting or
400 * cancelling.
401 */
402 final void forgetContents() {
403 UNSAFE.putOrderedObject(this, itemOffset, this);
404 UNSAFE.putOrderedObject(this, waiterOffset, null);
405 }
406
407 /**
408 * Returns true if this node has been matched, including the
409 * case of artificial matches due to cancellation.
410 */
411 final boolean isMatched() {
412 Object x = item;
413 return (x == this) || ((x == null) == isData);
414 }
415
416 /**
417 * Returns true if a node with the given mode cannot be
418 * appended to this node because this node is unmatched and
419 * has opposite data mode.
420 */
421 final boolean cannotPrecede(boolean haveData) {
422 boolean d = isData;
423 Object x;
424 return d != haveData && (x = item) != this && (x != null) == d;
425 }
426
427 /**
428 * Tries to artificially match a data node -- used by remove.
429 */
430 final boolean tryMatchData() {
431 Object x = item;
432 if (x != null && x != this && casItem(x, null)) {
433 LockSupport.unpark(waiter);
434 return true;
435 }
436 return false;
437 }
438
439 // Unsafe mechanics
440 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
441 private static final long nextOffset =
442 objectFieldOffset(UNSAFE, "next", Node.class);
443 private static final long itemOffset =
444 objectFieldOffset(UNSAFE, "item", Node.class);
445 private static final long waiterOffset =
446 objectFieldOffset(UNSAFE, "waiter", Node.class);
447
448 private static final long serialVersionUID = -3375979862319811754L;
449 }
450
451 /** head of the queue; null until first enqueue */
452 transient volatile Node<E> head;
453
454 /** predecessor of dangling unspliceable node */
455 private transient volatile Node<E> cleanMe; // decl here reduces contention
456
457 /** tail of the queue; null until first append */
458 private transient volatile Node<E> tail;
459
460 // CAS methods for fields
461 private boolean casTail(Node<E> cmp, Node<E> val) {
462 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
463 }
464
465 private boolean casHead(Node<E> cmp, Node<E> val) {
466 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
467 }
468
469 private boolean casCleanMe(Node<E> cmp, Node<E> val) {
470 return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
471 }
472
473 /*
474 * Possible values for "how" argument in xfer method. Beware that
475 * the order of assigned numerical values matters.
476 */
477 private static final int NOW = 0; // for untimed poll, tryTransfer
478 private static final int ASYNC = 1; // for offer, put, add
479 private static final int SYNC = 2; // for transfer, take
480 private static final int TIMEOUT = 3; // for timed poll, tryTransfer
481
482 @SuppressWarnings("unchecked")
483 static <E> E cast(Object item) {
484 assert item == null || item.getClass() != Node.class;
485 return (E) item;
486 }
487
488 /**
489 * Implements all queuing methods. See above for explanation.
490 *
491 * @param e the item or null for take
492 * @param haveData true if this is a put, else a take
493 * @param how NOW, ASYNC, SYNC, or TIMEOUT
494 * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
495 * @return an item if matched, else e
496 * @throws NullPointerException if haveData mode but e is null
497 */
498 private E xfer(E e, boolean haveData, int how, long nanos) {
499 if (haveData && (e == null))
500 throw new NullPointerException();
501 Node<E> s = null; // the node to append, if needed
502
503 retry: for (;;) { // restart on append race
504
505 for (Node<E> h = head, p = h; p != null;) {
506 // find & match first node
507 boolean isData = p.isData;
508 Object item = p.item;
509 if (item != p && (item != null) == isData) { // unmatched
510 if (isData == haveData) // can't match
511 break;
512 if (p.casItem(item, e)) { // match
513 for (Node<E> q = p; q != h;) {
514 Node<E> n = q.next; // update head by 2
515 if (n != null) // unless singleton
516 q = n;
517 if (head == h && casHead(h, q)) {
518 h.forgetNext();
519 break;
520 } // advance and retry
521 if ((h = head) == null ||
522 (q = h.next) == null || !q.isMatched())
523 break; // unless slack < 2
524 }
525 LockSupport.unpark(p.waiter);
526 return this.<E>cast(item);
527 }
528 }
529 Node<E> n = p.next;
530 p = (p != n) ? n : (h = head); // Use head if p offlist
531 }
532
533 if (how >= ASYNC) { // No matches available
534 if (s == null)
535 s = new Node<E>(e, haveData);
536 Node<E> pred = tryAppend(s, haveData);
537 if (pred == null)
538 continue retry; // lost race vs opposite mode
539 if (how >= SYNC)
540 return awaitMatch(s, pred, e, how, nanos);
541 }
542 return e; // not waiting
543 }
544 }
545
546 /**
547 * Tries to append node s as tail.
548 *
549 * @param s the node to append
550 * @param haveData true if appending in data mode
551 * @return null on failure due to losing race with append in
552 * different mode, else s's predecessor, or s itself if no
553 * predecessor
554 */
555 private Node<E> tryAppend(Node<E> s, boolean haveData) {
556 for (Node<E> t = tail, p = t;;) { // move p to last node and append
557 Node<E> n, u; // temps for reads of next & tail
558 if (p == null && (p = head) == null) {
559 if (casHead(null, s))
560 return s; // initialize
561 }
562 else if (p.cannotPrecede(haveData))
563 return null; // lost race vs opposite mode
564 else if ((n = p.next) != null) // not last; keep traversing
565 p = p != t && t != (u = tail) ? (t = u) : // stale tail
566 (p != n) ? n : null; // restart if off list
567 else if (!p.casNext(null, s))
568 p = p.next; // re-read on CAS failure
569 else {
570 if (p != t) { // update if slack now >= 2
571 while ((tail != t || !casTail(t, s)) &&
572 (t = tail) != null &&
573 (s = t.next) != null && // advance and retry
574 (s = s.next) != null && s != t);
575 }
576 return p;
577 }
578 }
579 }
580
581 /**
582 * Spins/yields/blocks until node s is matched or caller gives up.
583 *
584 * @param s the waiting node
585 * @param pred the predecessor of s, or s itself if it has no
586 * predecessor, or null if unknown (the null case does not occur
587 * in any current calls but may in possible future extensions)
588 * @param e the comparison value for checking match
589 * @param how either SYNC or TIMEOUT
590 * @param nanos timeout value
591 * @return matched item, or e if unmatched on interrupt or timeout
592 */
593 private E awaitMatch(Node<E> s, Node<E> pred, E e, int how, long nanos) {
594 long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
595 Thread w = Thread.currentThread();
596 int spins = -1; // initialized after first item and cancel checks
597 ThreadLocalRandom randomYields = null; // bound if needed
598
599 for (;;) {
600 Object item = s.item;
601 if (item != e) { // matched
602 assert item != s;
603 s.forgetContents(); // avoid garbage
604 return this.<E>cast(item);
605 }
606 if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
607 s.casItem(e, s)) { // cancel
608 unsplice(pred, s);
609 return e;
610 }
611
612 if (spins < 0) { // establish spins at/near front
613 if ((spins = spinsFor(pred, s.isData)) > 0)
614 randomYields = ThreadLocalRandom.current();
615 }
616 else if (spins > 0) { // spin
617 if (--spins == 0)
618 shortenHeadPath(); // reduce slack before blocking
619 else if (randomYields.nextInt(CHAINED_SPINS) == 0)
620 Thread.yield(); // occasionally yield
621 }
622 else if (s.waiter == null) {
623 s.waiter = w; // request unpark then recheck
624 }
625 else if (how == TIMEOUT) {
626 long now = System.nanoTime();
627 if ((nanos -= now - lastTime) > 0)
628 LockSupport.parkNanos(this, nanos);
629 lastTime = now;
630 }
631 else {
632 LockSupport.park(this);
633 s.waiter = null;
634 spins = -1; // spin if front upon wakeup
635 }
636 }
637 }
638
639 /**
640 * Returns spin/yield value for a node with given predecessor and
641 * data mode. See above for explanation.
642 */
643 private static int spinsFor(Node<?> pred, boolean haveData) {
644 if (MP && pred != null) {
645 if (pred.isData != haveData) // phase change
646 return FRONT_SPINS + CHAINED_SPINS;
647 if (pred.isMatched()) // probably at front
648 return FRONT_SPINS;
649 if (pred.waiter == null) // pred apparently spinning
650 return CHAINED_SPINS;
651 }
652 return 0;
653 }
654
655 /**
656 * Tries (once) to unsplice nodes between head and first unmatched
657 * or trailing node; failing on contention.
658 */
659 private void shortenHeadPath() {
660 Node<E> h, hn, p, q;
661 if ((p = h = head) != null && h.isMatched() &&
662 (q = hn = h.next) != null) {
663 Node<E> n;
664 while ((n = q.next) != q) {
665 if (n == null || !q.isMatched()) {
666 if (hn != q && h.next == hn)
667 h.casNext(hn, q);
668 break;
669 }
670 p = q;
671 q = n;
672 }
673 }
674 }
675
676 /* -------------- Traversal methods -------------- */
677
678 /**
679 * Returns the first unmatched node of the given mode, or null if
680 * none. Used by methods isEmpty, hasWaitingConsumer.
681 */
682 private Node<E> firstOfMode(boolean data) {
683 for (Node<E> p = head; p != null; ) {
684 if (!p.isMatched())
685 return (p.isData == data) ? p : null;
686 Node<E> n = p.next;
687 p = (n != p) ? n : head;
688 }
689 return null;
690 }
691
692 /**
693 * Returns the item in the first unmatched node with isData; or
694 * null if none. Used by peek.
695 */
696 private E firstDataItem() {
697 for (Node<E> p = head; p != null; ) {
698 boolean isData = p.isData;
699 Object item = p.item;
700 if (item != p && (item != null) == isData)
701 return isData ? this.<E>cast(item) : null;
702 Node<E> n = p.next;
703 p = (n != p) ? n : head;
704 }
705 return null;
706 }
707
708 /**
709 * Traverses and counts unmatched nodes of the given mode.
710 * Used by methods size and getWaitingConsumerCount.
711 */
712 private int countOfMode(boolean data) {
713 int count = 0;
714 for (Node<E> p = head; p != null; ) {
715 if (!p.isMatched()) {
716 if (p.isData != data)
717 return 0;
718 if (++count == Integer.MAX_VALUE) // saturated
719 break;
720 }
721 Node<E> n = p.next;
722 if (n != p)
723 p = n;
724 else {
725 count = 0;
726 p = head;
727 }
728 }
729 return count;
730 }
731
732 final class Itr implements Iterator<E> {
733 private Node<E> nextNode; // next node to return item for
734 private E nextItem; // the corresponding item
735 private Node<E> lastRet; // last returned node, to support remove
736
737 /**
738 * Moves to next node after prev, or first node if prev null.
739 */
740 private void advance(Node<E> prev) {
741 lastRet = prev;
742 Node<E> p;
743 if (prev == null || (p = prev.next) == prev)
744 p = head;
745 while (p != null) {
746 Object item = p.item;
747 if (p.isData) {
748 if (item != null && item != p) {
749 nextItem = LinkedTransferQueue.this.<E>cast(item);
750 nextNode = p;
751 return;
752 }
753 }
754 else if (item == null)
755 break;
756 Node<E> n = p.next;
757 p = (n != p) ? n : head;
758 }
759 nextNode = null;
760 }
761
762 Itr() {
763 advance(null);
764 }
765
766 public final boolean hasNext() {
767 return nextNode != null;
768 }
769
770 public final E next() {
771 Node<E> p = nextNode;
772 if (p == null) throw new NoSuchElementException();
773 E e = nextItem;
774 advance(p);
775 return e;
776 }
777
778 public final void remove() {
779 Node<E> p = lastRet;
780 if (p == null) throw new IllegalStateException();
781 lastRet = null;
782 findAndRemoveNode(p);
783 }
784 }
785
786 /* -------------- Removal methods -------------- */
787
788 /**
789 * Unsplices (now or later) the given deleted/cancelled node with
790 * the given predecessor.
791 *
792 * @param pred predecessor of node to be unspliced
793 * @param s the node to be unspliced
794 */
795 private void unsplice(Node<E> pred, Node<E> s) {
796 s.forgetContents(); // clear unneeded fields
797 /*
798 * At any given time, exactly one node on list cannot be
799 * unlinked -- the last inserted node. To accommodate this, if
800 * we cannot unlink s, we save its predecessor as "cleanMe",
801 * processing the previously saved version first. Because only
802 * one node in the list can have a null next, at least one of
803 * node s or the node previously saved can always be
804 * processed, so this always terminates.
805 */
806 if (pred != null && pred != s) {
807 while (pred.next == s) {
808 Node<E> oldpred = (cleanMe == null) ? null : reclean();
809 Node<E> n = s.next;
810 if (n != null) {
811 if (n != s)
812 pred.casNext(s, n);
813 break;
814 }
815 if (oldpred == pred || // Already saved
816 (oldpred == null && casCleanMe(null, pred)))
817 break; // Postpone cleaning
818 }
819 }
820 }
821
822 /**
823 * Tries to unsplice the deleted/cancelled node held in cleanMe
824 * that was previously uncleanable because it was at tail.
825 *
826 * @return current cleanMe node (or null)
827 */
828 private Node<E> reclean() {
829 /*
830 * cleanMe is, or at one time was, predecessor of a cancelled
831 * node s that was the tail so could not be unspliced. If it
832 * is no longer the tail, try to unsplice if necessary and
833 * make cleanMe slot available. This differs from similar
834 * code in unsplice() because we must check that pred still
835 * points to a matched node that can be unspliced -- if not,
836 * we can (must) clear cleanMe without unsplicing. This can
837 * loop only due to contention.
838 */
839 Node<E> pred;
840 while ((pred = cleanMe) != null) {
841 Node<E> s = pred.next;
842 Node<E> n;
843 if (s == null || s == pred || !s.isMatched())
844 casCleanMe(pred, null); // already gone
845 else if ((n = s.next) != null) {
846 if (n != s)
847 pred.casNext(s, n);
848 casCleanMe(pred, null);
849 }
850 else
851 break;
852 }
853 return pred;
854 }
855
856 /**
857 * Main implementation of Iterator.remove(). Find
858 * and unsplice the given node.
859 */
860 final void findAndRemoveNode(Node<E> s) {
861 if (s.tryMatchData()) {
862 Node<E> pred = null;
863 Node<E> p = head;
864 while (p != null) {
865 if (p == s) {
866 unsplice(pred, p);
867 break;
868 }
869 if (!p.isData && !p.isMatched())
870 break;
871 pred = p;
872 if ((p = p.next) == pred) { // stale
873 pred = null;
874 p = head;
875 }
876 }
877 }
878 }
879
880 /**
881 * Main implementation of remove(Object)
882 */
883 private boolean findAndRemove(Object e) {
884 if (e != null) {
885 Node<E> pred = null;
886 Node<E> p = head;
887 while (p != null) {
888 Object item = p.item;
889 if (p.isData) {
890 if (item != null && item != p && e.equals(item) &&
891 p.tryMatchData()) {
892 unsplice(pred, p);
893 return true;
894 }
895 }
896 else if (item == null)
897 break;
898 pred = p;
899 if ((p = p.next) == pred) {
900 pred = null;
901 p = head;
902 }
903 }
904 }
905 return false;
906 }
907
908
909 /**
910 * Creates an initially empty {@code LinkedTransferQueue}.
911 */
912 public LinkedTransferQueue() {
913 }
914
915 /**
916 * Creates a {@code LinkedTransferQueue}
917 * initially containing the elements of the given collection,
918 * added in traversal order of the collection's iterator.
919 *
920 * @param c the collection of elements to initially contain
921 * @throws NullPointerException if the specified collection or any
922 * of its elements are null
923 */
924 public LinkedTransferQueue(Collection<? extends E> c) {
925 this();
926 addAll(c);
927 }
928
929 /**
930 * Inserts the specified element at the tail of this queue.
931 * As the queue is unbounded, this method will never block.
932 *
933 * @throws NullPointerException if the specified element is null
934 */
935 public void put(E e) {
936 xfer(e, true, ASYNC, 0);
937 }
938
939 /**
940 * Inserts the specified element at the tail of this queue.
941 * As the queue is unbounded, this method will never block or
942 * return {@code false}.
943 *
944 * @return {@code true} (as specified by
945 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
946 * @throws NullPointerException if the specified element is null
947 */
948 public boolean offer(E e, long timeout, TimeUnit unit) {
949 xfer(e, true, ASYNC, 0);
950 return true;
951 }
952
953 /**
954 * Inserts the specified element at the tail of this queue.
955 * As the queue is unbounded, this method will never return {@code false}.
956 *
957 * @return {@code true} (as specified by
958 * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
959 * @throws NullPointerException if the specified element is null
960 */
961 public boolean offer(E e) {
962 xfer(e, true, ASYNC, 0);
963 return true;
964 }
965
966 /**
967 * Inserts the specified element at the tail of this queue.
968 * As the queue is unbounded, this method will never throw
969 * {@link IllegalStateException} or return {@code false}.
970 *
971 * @return {@code true} (as specified by {@link Collection#add})
972 * @throws NullPointerException if the specified element is null
973 */
974 public boolean add(E e) {
975 xfer(e, true, ASYNC, 0);
976 return true;
977 }
978
979 /**
980 * Transfers the element to a waiting consumer immediately, if possible.
981 *
982 * <p>More precisely, transfers the specified element immediately
983 * if there exists a consumer already waiting to receive it (in
984 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
985 * otherwise returning {@code false} without enqueuing the element.
986 *
987 * @throws NullPointerException if the specified element is null
988 */
989 public boolean tryTransfer(E e) {
990 return xfer(e, true, NOW, 0) == null;
991 }
992
993 /**
994 * Transfers the element to a consumer, waiting if necessary to do so.
995 *
996 * <p>More precisely, transfers the specified element immediately
997 * if there exists a consumer already waiting to receive it (in
998 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
999 * else inserts the specified element at the tail of this queue
1000 * and waits until the element is received by a consumer.
1001 *
1002 * @throws NullPointerException if the specified element is null
1003 */
1004 public void transfer(E e) throws InterruptedException {
1005 if (xfer(e, true, SYNC, 0) != null) {
1006 Thread.interrupted(); // failure possible only due to interrupt
1007 throw new InterruptedException();
1008 }
1009 }
1010
1011 /**
1012 * Transfers the element to a consumer if it is possible to do so
1013 * before the timeout elapses.
1014 *
1015 * <p>More precisely, transfers the specified element immediately
1016 * if there exists a consumer already waiting to receive it (in
1017 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1018 * else inserts the specified element at the tail of this queue
1019 * and waits until the element is received by a consumer,
1020 * returning {@code false} if the specified wait time elapses
1021 * before the element can be transferred.
1022 *
1023 * @throws NullPointerException if the specified element is null
1024 */
1025 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1026 throws InterruptedException {
1027 if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1028 return true;
1029 if (!Thread.interrupted())
1030 return false;
1031 throw new InterruptedException();
1032 }
1033
1034 public E take() throws InterruptedException {
1035 E e = xfer(null, false, SYNC, 0);
1036 if (e != null)
1037 return e;
1038 Thread.interrupted();
1039 throw new InterruptedException();
1040 }
1041
1042 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1043 E e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1044 if (e != null || !Thread.interrupted())
1045 return e;
1046 throw new InterruptedException();
1047 }
1048
1049 public E poll() {
1050 return xfer(null, false, NOW, 0);
1051 }
1052
1053 /**
1054 * @throws NullPointerException {@inheritDoc}
1055 * @throws IllegalArgumentException {@inheritDoc}
1056 */
1057 public int drainTo(Collection<? super E> c) {
1058 if (c == null)
1059 throw new NullPointerException();
1060 if (c == this)
1061 throw new IllegalArgumentException();
1062 int n = 0;
1063 E e;
1064 while ( (e = poll()) != null) {
1065 c.add(e);
1066 ++n;
1067 }
1068 return n;
1069 }
1070
1071 /**
1072 * @throws NullPointerException {@inheritDoc}
1073 * @throws IllegalArgumentException {@inheritDoc}
1074 */
1075 public int drainTo(Collection<? super E> c, int maxElements) {
1076 if (c == null)
1077 throw new NullPointerException();
1078 if (c == this)
1079 throw new IllegalArgumentException();
1080 int n = 0;
1081 E e;
1082 while (n < maxElements && (e = poll()) != null) {
1083 c.add(e);
1084 ++n;
1085 }
1086 return n;
1087 }
1088
1089 /**
1090 * Returns an iterator over the elements in this queue in proper
1091 * sequence, from head to tail.
1092 *
1093 * <p>The returned iterator is a "weakly consistent" iterator that
1094 * will never throw
1095 * {@link ConcurrentModificationException ConcurrentModificationException},
1096 * and guarantees to traverse elements as they existed upon
1097 * construction of the iterator, and may (but is not guaranteed
1098 * to) reflect any modifications subsequent to construction.
1099 *
1100 * @return an iterator over the elements in this queue in proper sequence
1101 */
1102 public Iterator<E> iterator() {
1103 return new Itr();
1104 }
1105
1106 public E peek() {
1107 return firstDataItem();
1108 }
1109
1110 /**
1111 * Returns {@code true} if this queue contains no elements.
1112 *
1113 * @return {@code true} if this queue contains no elements
1114 */
1115 public boolean isEmpty() {
1116 return firstOfMode(true) == null;
1117 }
1118
1119 public boolean hasWaitingConsumer() {
1120 return firstOfMode(false) != null;
1121 }
1122
1123 /**
1124 * Returns the number of elements in this queue. If this queue
1125 * contains more than {@code Integer.MAX_VALUE} elements, returns
1126 * {@code Integer.MAX_VALUE}.
1127 *
1128 * <p>Beware that, unlike in most collections, this method is
1129 * <em>NOT</em> a constant-time operation. Because of the
1130 * asynchronous nature of these queues, determining the current
1131 * number of elements requires an O(n) traversal.
1132 *
1133 * @return the number of elements in this queue
1134 */
1135 public int size() {
1136 return countOfMode(true);
1137 }
1138
1139 public int getWaitingConsumerCount() {
1140 return countOfMode(false);
1141 }
1142
1143 /**
1144 * Removes a single instance of the specified element from this queue,
1145 * if it is present. More formally, removes an element {@code e} such
1146 * that {@code o.equals(e)}, if this queue contains one or more such
1147 * elements.
1148 * Returns {@code true} if this queue contained the specified element
1149 * (or equivalently, if this queue changed as a result of the call).
1150 *
1151 * @param o element to be removed from this queue, if present
1152 * @return {@code true} if this queue changed as a result of the call
1153 */
1154 public boolean remove(Object o) {
1155 return findAndRemove(o);
1156 }
1157
1158 /**
1159 * Always returns {@code Integer.MAX_VALUE} because a
1160 * {@code LinkedTransferQueue} is not capacity constrained.
1161 *
1162 * @return {@code Integer.MAX_VALUE} (as specified by
1163 * {@link BlockingQueue#remainingCapacity()})
1164 */
1165 public int remainingCapacity() {
1166 return Integer.MAX_VALUE;
1167 }
1168
1169 /**
1170 * Saves the state to a stream (that is, serializes it).
1171 *
1172 * @serialData All of the elements (each an {@code E}) in
1173 * the proper order, followed by a null
1174 * @param s the stream
1175 */
1176 private void writeObject(java.io.ObjectOutputStream s)
1177 throws java.io.IOException {
1178 s.defaultWriteObject();
1179 for (E e : this)
1180 s.writeObject(e);
1181 // Use trailing null as sentinel
1182 s.writeObject(null);
1183 }
1184
1185 /**
1186 * Reconstitutes the Queue instance from a stream (that is,
1187 * deserializes it).
1188 *
1189 * @param s the stream
1190 */
1191 private void readObject(java.io.ObjectInputStream s)
1192 throws java.io.IOException, ClassNotFoundException {
1193 s.defaultReadObject();
1194 for (;;) {
1195 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1196 if (item == null)
1197 break;
1198 else
1199 offer(item);
1200 }
1201 }
1202
1203 // Unsafe mechanics
1204
1205 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1206 private static final long headOffset =
1207 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1208 private static final long tailOffset =
1209 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1210 private static final long cleanMeOffset =
1211 objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1212
1213 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1214 String field, Class<?> klazz) {
1215 try {
1216 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1217 } catch (NoSuchFieldException e) {
1218 // Convert Exception to corresponding Error
1219 NoSuchFieldError error = new NoSuchFieldError(field);
1220 error.initCause(e);
1221 throw error;
1222 }
1223 }
1224
1225 /**
1226 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1227 * Replace with a simple call to Unsafe.getUnsafe when integrating
1228 * into a jdk.
1229 *
1230 * @return a sun.misc.Unsafe
1231 */
1232 static sun.misc.Unsafe getUnsafe() {
1233 try {
1234 return sun.misc.Unsafe.getUnsafe();
1235 } catch (SecurityException se) {
1236 try {
1237 return java.security.AccessController.doPrivileged
1238 (new java.security
1239 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1240 public sun.misc.Unsafe run() throws Exception {
1241 java.lang.reflect.Field f = sun.misc
1242 .Unsafe.class.getDeclaredField("theUnsafe");
1243 f.setAccessible(true);
1244 return (sun.misc.Unsafe) f.get(null);
1245 }});
1246 } catch (java.security.PrivilegedActionException e) {
1247 throw new RuntimeException("Could not initialize intrinsics",
1248 e.getCause());
1249 }
1250 }
1251 }
1252
1253 }