ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.62
Committed: Mon Nov 2 03:01:10 2009 UTC (14 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.61: +22 -17 lines
Log Message:
add succ method

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.AbstractQueue;
12 import java.util.Collection;
13 import java.util.ConcurrentModificationException;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Queue;
17 import java.util.concurrent.locks.LockSupport;
18 /**
19 * An unbounded {@link TransferQueue} based on linked nodes.
20 * This queue orders elements FIFO (first-in-first-out) with respect
21 * to any given producer. The <em>head</em> of the queue is that
22 * element that has been on the queue the longest time for some
23 * producer. The <em>tail</em> of the queue is that element that has
24 * been on the queue the shortest time for some producer.
25 *
26 * <p>Beware that, unlike in most collections, the {@code size}
27 * method is <em>NOT</em> a constant-time operation. Because of the
28 * asynchronous nature of these queues, determining the current number
29 * of elements requires a traversal of the elements.
30 *
31 * <p>This class and its iterator implement all of the
32 * <em>optional</em> methods of the {@link Collection} and {@link
33 * Iterator} interfaces.
34 *
35 * <p>Memory consistency effects: As with other concurrent
36 * collections, actions in a thread prior to placing an object into a
37 * {@code LinkedTransferQueue}
38 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
39 * actions subsequent to the access or removal of that element from
40 * the {@code LinkedTransferQueue} in another thread.
41 *
42 * <p>This class is a member of the
43 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
44 * Java Collections Framework</a>.
45 *
46 * @since 1.7
47 * @author Doug Lea
48 * @param <E> the type of elements held in this collection
49 */
50 public class LinkedTransferQueue<E> extends AbstractQueue<E>
51 implements TransferQueue<E>, java.io.Serializable {
52 private static final long serialVersionUID = -3223113410248163686L;
53
54 /*
55 * *** Overview of Dual Queues with Slack ***
56 *
57 * Dual Queues, introduced by Scherer and Scott
58 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 * (linked) queues in which nodes may represent either data or
60 * requests. When a thread tries to enqueue a data node, but
61 * encounters a request node, it instead "matches" and removes it;
62 * and vice versa for enqueuing requests. Blocking Dual Queues
63 * arrange that threads enqueuing unmatched requests block until
64 * other threads provide the match. Dual Synchronous Queues (see
65 * Scherer, Lea, & Scott
66 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 * additionally arrange that threads enqueuing unmatched data also
68 * block. Dual Transfer Queues support all of these modes, as
69 * dictated by callers.
70 *
71 * A FIFO dual queue may be implemented using a variation of the
72 * Michael & Scott (M&S) lock-free queue algorithm
73 * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 * It maintains two pointer fields, "head", pointing to a
75 * (matched) node that in turn points to the first actual
76 * (unmatched) queue node (or null if empty); and "tail" that
77 * points to the last node on the queue (or again null if
78 * empty). For example, here is a possible queue with four data
79 * elements:
80 *
81 * head tail
82 * | |
83 * v v
84 * M -> U -> U -> U -> U
85 *
86 * The M&S queue algorithm is known to be prone to scalability and
87 * overhead limitations when maintaining (via CAS) these head and
88 * tail pointers. This has led to the development of
89 * contention-reducing variants such as elimination arrays (see
90 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 * optimistic back pointers (see Ladan-Mozes & Shavit
92 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 * However, the nature of dual queues enables a simpler tactic for
94 * improving M&S-style implementations when dual-ness is needed.
95 *
96 * In a dual queue, each node must atomically maintain its match
97 * status. While there are other possible variants, we implement
98 * this here as: for a data-mode node, matching entails CASing an
99 * "item" field from a non-null data value to null upon match, and
100 * vice-versa for request nodes, CASing from null to a data
101 * value. (Note that the linearization properties of this style of
102 * queue are easy to verify -- elements are made available by
103 * linking, and unavailable by matching.) Compared to plain M&S
104 * queues, this property of dual queues requires one additional
105 * successful atomic operation per enq/deq pair. But it also
106 * enables lower cost variants of queue maintenance mechanics. (A
107 * variation of this idea applies even for non-dual queues that
108 * support deletion of interior elements, such as
109 * j.u.c.ConcurrentLinkedQueue.)
110 *
111 * Once a node is matched, its match status can never again
112 * change. We may thus arrange that the linked list of them
113 * contain a prefix of zero or more matched nodes, followed by a
114 * suffix of zero or more unmatched nodes. (Note that we allow
115 * both the prefix and suffix to be zero length, which in turn
116 * means that we do not use a dummy header.) If we were not
117 * concerned with either time or space efficiency, we could
118 * correctly perform enqueue and dequeue operations by traversing
119 * from a pointer to the initial node; CASing the item of the
120 * first unmatched node on match and CASing the next field of the
121 * trailing node on appends. (Plus some special-casing when
122 * initially empty). While this would be a terrible idea in
123 * itself, it does have the benefit of not requiring ANY atomic
124 * updates on head/tail fields.
125 *
126 * We introduce here an approach that lies between the extremes of
127 * never versus always updating queue (head and tail) pointers.
128 * This offers a tradeoff between sometimes requiring extra
129 * traversal steps to locate the first and/or last unmatched
130 * nodes, versus the reduced overhead and contention of fewer
131 * updates to queue pointers. For example, a possible snapshot of
132 * a queue is:
133 *
134 * head tail
135 * | |
136 * v v
137 * M -> M -> U -> U -> U -> U
138 *
139 * The best value for this "slack" (the targeted maximum distance
140 * between the value of "head" and the first unmatched node, and
141 * similarly for "tail") is an empirical matter. We have found
142 * that using very small constants in the range of 1-3 work best
143 * over a range of platforms. Larger values introduce increasing
144 * costs of cache misses and risks of long traversal chains, while
145 * smaller values increase CAS contention and overhead.
146 *
147 * Dual queues with slack differ from plain M&S dual queues by
148 * virtue of only sometimes updating head or tail pointers when
149 * matching, appending, or even traversing nodes; in order to
150 * maintain a targeted slack. The idea of "sometimes" may be
151 * operationalized in several ways. The simplest is to use a
152 * per-operation counter incremented on each traversal step, and
153 * to try (via CAS) to update the associated queue pointer
154 * whenever the count exceeds a threshold. Another, that requires
155 * more overhead, is to use random number generators to update
156 * with a given probability per traversal step.
157 *
158 * In any strategy along these lines, because CASes updating
159 * fields may fail, the actual slack may exceed targeted
160 * slack. However, they may be retried at any time to maintain
161 * targets. Even when using very small slack values, this
162 * approach works well for dual queues because it allows all
163 * operations up to the point of matching or appending an item
164 * (hence potentially allowing progress by another thread) to be
165 * read-only, thus not introducing any further contention. As
166 * described below, we implement this by performing slack
167 * maintenance retries only after these points.
168 *
169 * As an accompaniment to such techniques, traversal overhead can
170 * be further reduced without increasing contention of head
171 * pointer updates: Threads may sometimes shortcut the "next" link
172 * path from the current "head" node to be closer to the currently
173 * known first unmatched node, and similarly for tail. Again, this
174 * may be triggered with using thresholds or randomization.
175 *
176 * These ideas must be further extended to avoid unbounded amounts
177 * of costly-to-reclaim garbage caused by the sequential "next"
178 * links of nodes starting at old forgotten head nodes: As first
179 * described in detail by Boehm
180 * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181 * delays noticing that any arbitrarily old node has become
182 * garbage, all newer dead nodes will also be unreclaimed.
183 * (Similar issues arise in non-GC environments.) To cope with
184 * this in our implementation, upon CASing to advance the head
185 * pointer, we set the "next" link of the previous head to point
186 * only to itself; thus limiting the length of connected dead lists.
187 * (We also take similar care to wipe out possibly garbage
188 * retaining values held in other Node fields.) However, doing so
189 * adds some further complexity to traversal: If any "next"
190 * pointer links to itself, it indicates that the current thread
191 * has lagged behind a head-update, and so the traversal must
192 * continue from the "head". Traversals trying to find the
193 * current tail starting from "tail" may also encounter
194 * self-links, in which case they also continue at "head".
195 *
196 * It is tempting in slack-based scheme to not even use CAS for
197 * updates (similarly to Ladan-Mozes & Shavit). However, this
198 * cannot be done for head updates under the above link-forgetting
199 * mechanics because an update may leave head at a detached node.
200 * And while direct writes are possible for tail updates, they
201 * increase the risk of long retraversals, and hence long garbage
202 * chains, which can be much more costly than is worthwhile
203 * considering that the cost difference of performing a CAS vs
204 * write is smaller when they are not triggered on each operation
205 * (especially considering that writes and CASes equally require
206 * additional GC bookkeeping ("write barriers") that are sometimes
207 * more costly than the writes themselves because of contention).
208 *
209 * Removal of interior nodes (due to timed out or interrupted
210 * waits, or calls to remove(x) or Iterator.remove) can use a
211 * scheme roughly similar to that described in Scherer, Lea, and
212 * Scott's SynchronousQueue. Given a predecessor, we can unsplice
213 * any node except the (actual) tail of the queue. To avoid
214 * build-up of cancelled trailing nodes, upon a request to remove
215 * a trailing node, it is placed in field "cleanMe" to be
216 * unspliced upon the next call to unsplice any other node.
217 * Situations needing such mechanics are not common but do occur
218 * in practice; for example when an unbounded series of short
219 * timed calls to poll repeatedly time out but never otherwise
220 * fall off the list because of an untimed call to take at the
221 * front of the queue. Note that maintaining field cleanMe does
222 * not otherwise much impact garbage retention even if never
223 * cleared by some other call because the held node will
224 * eventually either directly or indirectly lead to a self-link
225 * once off the list.
226 *
227 * *** Overview of implementation ***
228 *
229 * We use a threshold-based approach to updates, with a slack
230 * threshold of two -- that is, we update head/tail when the
231 * current pointer appears to be two or more steps away from the
232 * first/last node. The slack value is hard-wired: a path greater
233 * than one is naturally implemented by checking equality of
234 * traversal pointers except when the list has only one element,
235 * in which case we keep slack threshold at one. Avoiding tracking
236 * explicit counts across method calls slightly simplifies an
237 * already-messy implementation. Using randomization would
238 * probably work better if there were a low-quality dirt-cheap
239 * per-thread one available, but even ThreadLocalRandom is too
240 * heavy for these purposes.
241 *
242 * With such a small slack threshold value, it is rarely
243 * worthwhile to augment this with path short-circuiting; i.e.,
244 * unsplicing nodes between head and the first unmatched node, or
245 * similarly for tail, rather than advancing head or tail
246 * proper. However, it is used (in awaitMatch) immediately before
247 * a waiting thread starts to block, as a final bit of helping at
248 * a point when contention with others is extremely unlikely
249 * (since if other threads that could release it are operating,
250 * then the current thread wouldn't be blocking).
251 *
252 * We allow both the head and tail fields to be null before any
253 * nodes are enqueued; initializing upon first append. This
254 * simplifies some other logic, as well as providing more
255 * efficient explicit control paths instead of letting JVMs insert
256 * implicit NullPointerExceptions when they are null. While not
257 * currently fully implemented, we also leave open the possibility
258 * of re-nulling these fields when empty (which is complicated to
259 * arrange, for little benefit.)
260 *
261 * All enqueue/dequeue operations are handled by the single method
262 * "xfer" with parameters indicating whether to act as some form
263 * of offer, put, poll, take, or transfer (each possibly with
264 * timeout). The relative complexity of using one monolithic
265 * method outweighs the code bulk and maintenance problems of
266 * using separate methods for each case.
267 *
268 * Operation consists of up to three phases. The first is
269 * implemented within method xfer, the second in tryAppend, and
270 * the third in method awaitMatch.
271 *
272 * 1. Try to match an existing node
273 *
274 * Starting at head, skip already-matched nodes until finding
275 * an unmatched node of opposite mode, if one exists, in which
276 * case matching it and returning, also if necessary updating
277 * head to one past the matched node (or the node itself if the
278 * list has no other unmatched nodes). If the CAS misses, then
279 * a loop retries advancing head by two steps until either
280 * success or the slack is at most two. By requiring that each
281 * attempt advances head by two (if applicable), we ensure that
282 * the slack does not grow without bound. Traversals also check
283 * if the initial head is now off-list, in which case they
284 * start at the new head.
285 *
286 * If no candidates are found and the call was untimed
287 * poll/offer, (argument "how" is NOW) return.
288 *
289 * 2. Try to append a new node (method tryAppend)
290 *
291 * Starting at current tail pointer, find the actual last node
292 * and try to append a new node (or if head was null, establish
293 * the first node). Nodes can be appended only if their
294 * predecessors are either already matched or are of the same
295 * mode. If we detect otherwise, then a new node with opposite
296 * mode must have been appended during traversal, so we must
297 * restart at phase 1. The traversal and update steps are
298 * otherwise similar to phase 1: Retrying upon CAS misses and
299 * checking for staleness. In particular, if a self-link is
300 * encountered, then we can safely jump to a node on the list
301 * by continuing the traversal at current head.
302 *
303 * On successful append, if the call was ASYNC, return.
304 *
305 * 3. Await match or cancellation (method awaitMatch)
306 *
307 * Wait for another thread to match node; instead cancelling if
308 * the current thread was interrupted or the wait timed out. On
309 * multiprocessors, we use front-of-queue spinning: If a node
310 * appears to be the first unmatched node in the queue, it
311 * spins a bit before blocking. In either case, before blocking
312 * it tries to unsplice any nodes between the current "head"
313 * and the first unmatched node.
314 *
315 * Front-of-queue spinning vastly improves performance of
316 * heavily contended queues. And so long as it is relatively
317 * brief and "quiet", spinning does not much impact performance
318 * of less-contended queues. During spins threads check their
319 * interrupt status and generate a thread-local random number
320 * to decide to occasionally perform a Thread.yield. While
321 * yield has underdefined specs, we assume that might it help,
322 * and will not hurt in limiting impact of spinning on busy
323 * systems. We also use smaller (1/2) spins for nodes that are
324 * not known to be front but whose predecessors have not
325 * blocked -- these "chained" spins avoid artifacts of
326 * front-of-queue rules which otherwise lead to alternating
327 * nodes spinning vs blocking. Further, front threads that
328 * represent phase changes (from data to request node or vice
329 * versa) compared to their predecessors receive additional
330 * chained spins, reflecting longer paths typically required to
331 * unblock threads during phase changes.
332 */
333
334 /** True if on multiprocessor */
335 private static final boolean MP =
336 Runtime.getRuntime().availableProcessors() > 1;
337
338 /**
339 * The number of times to spin (with randomly interspersed calls
340 * to Thread.yield) on multiprocessor before blocking when a node
341 * is apparently the first waiter in the queue. See above for
342 * explanation. Must be a power of two. The value is empirically
343 * derived -- it works pretty well across a variety of processors,
344 * numbers of CPUs, and OSes.
345 */
346 private static final int FRONT_SPINS = 1 << 7;
347
348 /**
349 * The number of times to spin before blocking when a node is
350 * preceded by another node that is apparently spinning. Also
351 * serves as an increment to FRONT_SPINS on phase changes, and as
352 * base average frequency for yielding during spins. Must be a
353 * power of two.
354 */
355 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
356
357 /**
358 * Queue nodes. Uses Object, not E, for items to allow forgetting
359 * them after use. Relies heavily on Unsafe mechanics to minimize
360 * unnecessary ordering constraints: Writes that intrinsically
361 * precede or follow CASes use simple relaxed forms. Other
362 * cleanups use releasing/lazy writes.
363 */
364 static final class Node {
365 final boolean isData; // false if this is a request node
366 volatile Object item; // initially non-null if isData; CASed to match
367 volatile Node next;
368 volatile Thread waiter; // null until waiting
369
370 // CAS methods for fields
371 final boolean casNext(Node cmp, Node val) {
372 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
373 }
374
375 final boolean casItem(Object cmp, Object val) {
376 assert cmp == null || cmp.getClass() != Node.class;
377 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
378 }
379
380 /**
381 * Creates a new node. Uses relaxed write because item can only
382 * be seen if followed by CAS.
383 */
384 Node(Object item, boolean isData) {
385 UNSAFE.putObject(this, itemOffset, item); // relaxed write
386 this.isData = isData;
387 }
388
389 /**
390 * Links node to itself to avoid garbage retention. Called
391 * only after CASing head field, so uses relaxed write.
392 */
393 final void forgetNext() {
394 UNSAFE.putObject(this, nextOffset, this);
395 }
396
397 /**
398 * Sets item to self (using a releasing/lazy write) and waiter
399 * to null, to avoid garbage retention after extracting or
400 * cancelling.
401 */
402 final void forgetContents() {
403 UNSAFE.putOrderedObject(this, itemOffset, this);
404 UNSAFE.putOrderedObject(this, waiterOffset, null);
405 }
406
407 /**
408 * Returns true if this node has been matched, including the
409 * case of artificial matches due to cancellation.
410 */
411 final boolean isMatched() {
412 Object x = item;
413 return (x == this) || ((x == null) == isData);
414 }
415
416 /**
417 * Returns true if this is an unmatched request node.
418 */
419 final boolean isUnmatchedRequest() {
420 return !isData && item == null;
421 }
422
423 /**
424 * Returns true if a node with the given mode cannot be
425 * appended to this node because this node is unmatched and
426 * has opposite data mode.
427 */
428 final boolean cannotPrecede(boolean haveData) {
429 boolean d = isData;
430 Object x;
431 return d != haveData && (x = item) != this && (x != null) == d;
432 }
433
434 /**
435 * Tries to artificially match a data node -- used by remove.
436 */
437 final boolean tryMatchData() {
438 assert isData;
439 Object x = item;
440 if (x != null && x != this && casItem(x, null)) {
441 LockSupport.unpark(waiter);
442 return true;
443 }
444 return false;
445 }
446
447 // Unsafe mechanics
448 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
449 private static final long nextOffset =
450 objectFieldOffset(UNSAFE, "next", Node.class);
451 private static final long itemOffset =
452 objectFieldOffset(UNSAFE, "item", Node.class);
453 private static final long waiterOffset =
454 objectFieldOffset(UNSAFE, "waiter", Node.class);
455
456 private static final long serialVersionUID = -3375979862319811754L;
457 }
458
459 /** head of the queue; null until first enqueue */
460 transient volatile Node head;
461
462 /** predecessor of dangling unspliceable node */
463 private transient volatile Node cleanMe; // decl here reduces contention
464
465 /** tail of the queue; null until first append */
466 private transient volatile Node tail;
467
468 // CAS methods for fields
469 private boolean casTail(Node cmp, Node val) {
470 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
471 }
472
473 private boolean casHead(Node cmp, Node val) {
474 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
475 }
476
477 private boolean casCleanMe(Node cmp, Node val) {
478 return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
479 }
480
481 /*
482 * Possible values for "how" argument in xfer method. Beware that
483 * the order of assigned numerical values matters.
484 */
485 private static final int NOW = 0; // for untimed poll, tryTransfer
486 private static final int ASYNC = 1; // for offer, put, add
487 private static final int SYNC = 2; // for transfer, take
488 private static final int TIMEOUT = 3; // for timed poll, tryTransfer
489
490 @SuppressWarnings("unchecked")
491 static <E> E cast(Object item) {
492 assert item == null || item.getClass() != Node.class;
493 return (E) item;
494 }
495
496 /**
497 * Implements all queuing methods. See above for explanation.
498 *
499 * @param e the item or null for take
500 * @param haveData true if this is a put, else a take
501 * @param how NOW, ASYNC, SYNC, or TIMEOUT
502 * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
503 * @return an item if matched, else e
504 * @throws NullPointerException if haveData mode but e is null
505 */
506 private E xfer(E e, boolean haveData, int how, long nanos) {
507 if (haveData && (e == null))
508 throw new NullPointerException();
509 Node s = null; // the node to append, if needed
510
511 retry: for (;;) { // restart on append race
512
513 for (Node h = head, p = h; p != null;) { // find & match first node
514 boolean isData = p.isData;
515 Object item = p.item;
516 if (item != p && (item != null) == isData) { // unmatched
517 if (isData == haveData) // can't match
518 break;
519 if (p.casItem(item, e)) { // match
520 for (Node q = p; q != h;) {
521 Node n = q.next; // update head by 2
522 if (n != null) // unless singleton
523 q = n;
524 if (head == h && casHead(h, q)) {
525 h.forgetNext();
526 break;
527 } // advance and retry
528 if ((h = head) == null ||
529 (q = h.next) == null || !q.isMatched())
530 break; // unless slack < 2
531 }
532 LockSupport.unpark(p.waiter);
533 return this.<E>cast(item);
534 }
535 }
536 Node n = p.next;
537 p = (p != n) ? n : (h = head); // Use head if p offlist
538 }
539
540 if (how >= ASYNC) { // No matches available
541 if (s == null)
542 s = new Node(e, haveData);
543 Node pred = tryAppend(s, haveData);
544 if (pred == null)
545 continue retry; // lost race vs opposite mode
546 if (how >= SYNC)
547 return awaitMatch(s, pred, e, how, nanos);
548 }
549 return e; // not waiting
550 }
551 }
552
553 /**
554 * Tries to append node s as tail.
555 *
556 * @param s the node to append
557 * @param haveData true if appending in data mode
558 * @return null on failure due to losing race with append in
559 * different mode, else s's predecessor, or s itself if no
560 * predecessor
561 */
562 private Node tryAppend(Node s, boolean haveData) {
563 for (Node t = tail, p = t;;) { // move p to last node and append
564 Node n, u; // temps for reads of next & tail
565 if (p == null && (p = head) == null) {
566 if (casHead(null, s))
567 return s; // initialize
568 }
569 else if (p.cannotPrecede(haveData))
570 return null; // lost race vs opposite mode
571 else if ((n = p.next) != null) // not last; keep traversing
572 p = p != t && t != (u = tail) ? (t = u) : // stale tail
573 (p != n) ? n : null; // restart if off list
574 else if (!p.casNext(null, s))
575 p = p.next; // re-read on CAS failure
576 else {
577 if (p != t) { // update if slack now >= 2
578 while ((tail != t || !casTail(t, s)) &&
579 (t = tail) != null &&
580 (s = t.next) != null && // advance and retry
581 (s = s.next) != null && s != t);
582 }
583 return p;
584 }
585 }
586 }
587
588 /**
589 * Spins/yields/blocks until node s is matched or caller gives up.
590 *
591 * @param s the waiting node
592 * @param pred the predecessor of s, or s itself if it has no
593 * predecessor, or null if unknown (the null case does not occur
594 * in any current calls but may in possible future extensions)
595 * @param e the comparison value for checking match
596 * @param how either SYNC or TIMEOUT
597 * @param nanos timeout value
598 * @return matched item, or e if unmatched on interrupt or timeout
599 */
600 private E awaitMatch(Node s, Node pred, E e, int how, long nanos) {
601 long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
602 Thread w = Thread.currentThread();
603 int spins = -1; // initialized after first item and cancel checks
604 ThreadLocalRandom randomYields = null; // bound if needed
605
606 for (;;) {
607 Object item = s.item;
608 if (item != e) { // matched
609 assert item != s;
610 s.forgetContents(); // avoid garbage
611 return this.<E>cast(item);
612 }
613 if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
614 s.casItem(e, s)) { // cancel
615 unsplice(pred, s);
616 return e;
617 }
618
619 if (spins < 0) { // establish spins at/near front
620 if ((spins = spinsFor(pred, s.isData)) > 0)
621 randomYields = ThreadLocalRandom.current();
622 }
623 else if (spins > 0) { // spin
624 if (--spins == 0)
625 shortenHeadPath(); // reduce slack before blocking
626 else if (randomYields.nextInt(CHAINED_SPINS) == 0)
627 Thread.yield(); // occasionally yield
628 }
629 else if (s.waiter == null) {
630 s.waiter = w; // request unpark then recheck
631 }
632 else if (how == TIMEOUT) {
633 long now = System.nanoTime();
634 if ((nanos -= now - lastTime) > 0)
635 LockSupport.parkNanos(this, nanos);
636 lastTime = now;
637 }
638 else {
639 LockSupport.park(this);
640 s.waiter = null;
641 spins = -1; // spin if front upon wakeup
642 }
643 }
644 }
645
646 /**
647 * Returns spin/yield value for a node with given predecessor and
648 * data mode. See above for explanation.
649 */
650 private static int spinsFor(Node pred, boolean haveData) {
651 if (MP && pred != null) {
652 if (pred.isData != haveData) // phase change
653 return FRONT_SPINS + CHAINED_SPINS;
654 if (pred.isMatched()) // probably at front
655 return FRONT_SPINS;
656 if (pred.waiter == null) // pred apparently spinning
657 return CHAINED_SPINS;
658 }
659 return 0;
660 }
661
662 /**
663 * Tries (once) to unsplice nodes between head and first unmatched
664 * or trailing node; failing on contention.
665 */
666 private void shortenHeadPath() {
667 Node h, hn, p, q;
668 if ((p = h = head) != null && h.isMatched() &&
669 (q = hn = h.next) != null) {
670 Node n;
671 while ((n = q.next) != q) {
672 if (n == null || !q.isMatched()) {
673 if (hn != q && h.next == hn)
674 h.casNext(hn, q);
675 break;
676 }
677 p = q;
678 q = n;
679 }
680 }
681 }
682
683 /* -------------- Traversal methods -------------- */
684
685 /**
686 * Returns the successor of p, or the head node if p.next has been
687 * linked to self, which will only be true if traversing with a
688 * stale pointer that is now off the list.
689 */
690 final Node succ(Node p) {
691 Node next = p.next;
692 return (p == next) ? head : next;
693 }
694
695 /**
696 * Returns the first unmatched node of the given mode, or null if
697 * none. Used by methods isEmpty, hasWaitingConsumer.
698 */
699 private Node firstOfMode(boolean isData) {
700 for (Node p = head; p != null; p = succ(p)) {
701 if (!p.isMatched())
702 return (p.isData == isData) ? p : null;
703 }
704 return null;
705 }
706
707 /**
708 * Returns the item in the first unmatched node with isData; or
709 * null if none. Used by peek.
710 */
711 private E firstDataItem() {
712 for (Node p = head; p != null; p = succ(p)) {
713 Object item = p.item;
714 if (p.isData) {
715 if (item != null && item != p)
716 return this.<E>cast(item);
717 }
718 else if (item == null)
719 return null;
720 }
721 return null;
722 }
723
724 /**
725 * Traverses and counts unmatched nodes of the given mode.
726 * Used by methods size and getWaitingConsumerCount.
727 */
728 private int countOfMode(boolean data) {
729 int count = 0;
730 for (Node p = head; p != null; ) {
731 if (!p.isMatched()) {
732 if (p.isData != data)
733 return 0;
734 if (++count == Integer.MAX_VALUE) // saturated
735 break;
736 }
737 Node n = p.next;
738 if (n != p)
739 p = n;
740 else {
741 count = 0;
742 p = head;
743 }
744 }
745 return count;
746 }
747
748 final class Itr implements Iterator<E> {
749 private Node nextNode; // next node to return item for
750 private E nextItem; // the corresponding item
751 private Node lastRet; // last returned node, to support remove
752 private Node lastPred; // predecessor to unlink lastRet
753
754 /**
755 * Moves to next node after prev, or first node if prev null.
756 */
757 private void advance(Node prev) {
758 lastPred = lastRet;
759 lastRet = prev;
760 for (Node p = (prev == null) ? head : succ(prev);
761 p != null; p = succ(p)) {
762 Object item = p.item;
763 if (p.isData) {
764 if (item != null && item != p) {
765 nextItem = LinkedTransferQueue.this.<E>cast(item);
766 nextNode = p;
767 return;
768 }
769 }
770 else if (item == null)
771 break;
772 }
773 nextNode = null;
774 }
775
776 Itr() {
777 advance(null);
778 }
779
780 public final boolean hasNext() {
781 return nextNode != null;
782 }
783
784 public final E next() {
785 Node p = nextNode;
786 if (p == null) throw new NoSuchElementException();
787 E e = nextItem;
788 advance(p);
789 return e;
790 }
791
792 public final void remove() {
793 Node p = lastRet;
794 if (p == null) throw new IllegalStateException();
795 findAndRemoveDataNode(lastPred, p);
796 }
797 }
798
799 /* -------------- Removal methods -------------- */
800
801 /**
802 * Unsplices (now or later) the given deleted/cancelled node with
803 * the given predecessor.
804 *
805 * @param pred predecessor of node to be unspliced
806 * @param s the node to be unspliced
807 */
808 private void unsplice(Node pred, Node s) {
809 s.forgetContents(); // clear unneeded fields
810 /*
811 * At any given time, exactly one node on list cannot be
812 * unlinked -- the last inserted node. To accommodate this, if
813 * we cannot unlink s, we save its predecessor as "cleanMe",
814 * processing the previously saved version first. Because only
815 * one node in the list can have a null next, at least one of
816 * node s or the node previously saved can always be
817 * processed, so this always terminates.
818 */
819 if (pred != null && pred != s) {
820 while (pred.next == s) {
821 Node oldpred = (cleanMe == null) ? null : reclean();
822 Node n = s.next;
823 if (n != null) {
824 if (n != s)
825 pred.casNext(s, n);
826 break;
827 }
828 if (oldpred == pred || // Already saved
829 ((oldpred == null || oldpred.next == s) &&
830 casCleanMe(oldpred, pred))) {
831 break;
832 }
833 }
834 }
835 }
836
837 /**
838 * Tries to unsplice the deleted/cancelled node held in cleanMe
839 * that was previously uncleanable because it was at tail.
840 *
841 * @return current cleanMe node (or null)
842 */
843 private Node reclean() {
844 /*
845 * cleanMe is, or at one time was, predecessor of a cancelled
846 * node s that was the tail so could not be unspliced. If it
847 * is no longer the tail, try to unsplice if necessary and
848 * make cleanMe slot available. This differs from similar
849 * code in unsplice() because we must check that pred still
850 * points to a matched node that can be unspliced -- if not,
851 * we can (must) clear cleanMe without unsplicing. This can
852 * loop only due to contention.
853 */
854 Node pred;
855 while ((pred = cleanMe) != null) {
856 Node s = pred.next;
857 Node n;
858 if (s == null || s == pred || !s.isMatched())
859 casCleanMe(pred, null); // already gone
860 else if ((n = s.next) != null) {
861 if (n != s)
862 pred.casNext(s, n);
863 casCleanMe(pred, null);
864 }
865 else
866 break;
867 }
868 return pred;
869 }
870
871 /**
872 * Main implementation of Iterator.remove(). Find
873 * and unsplice the given data node.
874 * @param possiblePred possible predecessor of s
875 * @param s the node to remove
876 */
877 final void findAndRemoveDataNode(Node possiblePred, Node s) {
878 assert s.isData;
879 if (s.tryMatchData()) {
880 if (possiblePred != null && possiblePred.next == s)
881 unsplice(possiblePred, s); // was actual predecessor
882 else {
883 for (Node pred = null, p = head; p != null; ) {
884 if (p == s) {
885 unsplice(pred, p);
886 break;
887 }
888 if (p.isUnmatchedRequest())
889 break;
890 pred = p;
891 if ((p = p.next) == pred) { // stale
892 pred = null;
893 p = head;
894 }
895 }
896 }
897 }
898 }
899
900 /**
901 * Main implementation of remove(Object)
902 */
903 private boolean findAndRemove(Object e) {
904 if (e != null) {
905 for (Node pred = null, p = head; p != null; ) {
906 Object item = p.item;
907 if (p.isData) {
908 if (item != null && item != p && e.equals(item) &&
909 p.tryMatchData()) {
910 unsplice(pred, p);
911 return true;
912 }
913 }
914 else if (item == null)
915 break;
916 pred = p;
917 if ((p = p.next) == pred) { // stale
918 pred = null;
919 p = head;
920 }
921 }
922 }
923 return false;
924 }
925
926
927 /**
928 * Creates an initially empty {@code LinkedTransferQueue}.
929 */
930 public LinkedTransferQueue() {
931 }
932
933 /**
934 * Creates a {@code LinkedTransferQueue}
935 * initially containing the elements of the given collection,
936 * added in traversal order of the collection's iterator.
937 *
938 * @param c the collection of elements to initially contain
939 * @throws NullPointerException if the specified collection or any
940 * of its elements are null
941 */
942 public LinkedTransferQueue(Collection<? extends E> c) {
943 this();
944 addAll(c);
945 }
946
947 /**
948 * Inserts the specified element at the tail of this queue.
949 * As the queue is unbounded, this method will never block.
950 *
951 * @throws NullPointerException if the specified element is null
952 */
953 public void put(E e) {
954 xfer(e, true, ASYNC, 0);
955 }
956
957 /**
958 * Inserts the specified element at the tail of this queue.
959 * As the queue is unbounded, this method will never block or
960 * return {@code false}.
961 *
962 * @return {@code true} (as specified by
963 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
964 * @throws NullPointerException if the specified element is null
965 */
966 public boolean offer(E e, long timeout, TimeUnit unit) {
967 xfer(e, true, ASYNC, 0);
968 return true;
969 }
970
971 /**
972 * Inserts the specified element at the tail of this queue.
973 * As the queue is unbounded, this method will never return {@code false}.
974 *
975 * @return {@code true} (as specified by
976 * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
977 * @throws NullPointerException if the specified element is null
978 */
979 public boolean offer(E e) {
980 xfer(e, true, ASYNC, 0);
981 return true;
982 }
983
984 /**
985 * Inserts the specified element at the tail of this queue.
986 * As the queue is unbounded, this method will never throw
987 * {@link IllegalStateException} or return {@code false}.
988 *
989 * @return {@code true} (as specified by {@link Collection#add})
990 * @throws NullPointerException if the specified element is null
991 */
992 public boolean add(E e) {
993 xfer(e, true, ASYNC, 0);
994 return true;
995 }
996
997 /**
998 * Transfers the element to a waiting consumer immediately, if possible.
999 *
1000 * <p>More precisely, transfers the specified element immediately
1001 * if there exists a consumer already waiting to receive it (in
1002 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1003 * otherwise returning {@code false} without enqueuing the element.
1004 *
1005 * @throws NullPointerException if the specified element is null
1006 */
1007 public boolean tryTransfer(E e) {
1008 return xfer(e, true, NOW, 0) == null;
1009 }
1010
1011 /**
1012 * Transfers the element to a consumer, waiting if necessary to do so.
1013 *
1014 * <p>More precisely, transfers the specified element immediately
1015 * if there exists a consumer already waiting to receive it (in
1016 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1017 * else inserts the specified element at the tail of this queue
1018 * and waits until the element is received by a consumer.
1019 *
1020 * @throws NullPointerException if the specified element is null
1021 */
1022 public void transfer(E e) throws InterruptedException {
1023 if (xfer(e, true, SYNC, 0) != null) {
1024 Thread.interrupted(); // failure possible only due to interrupt
1025 throw new InterruptedException();
1026 }
1027 }
1028
1029 /**
1030 * Transfers the element to a consumer if it is possible to do so
1031 * before the timeout elapses.
1032 *
1033 * <p>More precisely, transfers the specified element immediately
1034 * if there exists a consumer already waiting to receive it (in
1035 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1036 * else inserts the specified element at the tail of this queue
1037 * and waits until the element is received by a consumer,
1038 * returning {@code false} if the specified wait time elapses
1039 * before the element can be transferred.
1040 *
1041 * @throws NullPointerException if the specified element is null
1042 */
1043 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1044 throws InterruptedException {
1045 if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1046 return true;
1047 if (!Thread.interrupted())
1048 return false;
1049 throw new InterruptedException();
1050 }
1051
1052 public E take() throws InterruptedException {
1053 E e = xfer(null, false, SYNC, 0);
1054 if (e != null)
1055 return e;
1056 Thread.interrupted();
1057 throw new InterruptedException();
1058 }
1059
1060 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1061 E e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1062 if (e != null || !Thread.interrupted())
1063 return e;
1064 throw new InterruptedException();
1065 }
1066
1067 public E poll() {
1068 return xfer(null, false, NOW, 0);
1069 }
1070
1071 /**
1072 * @throws NullPointerException {@inheritDoc}
1073 * @throws IllegalArgumentException {@inheritDoc}
1074 */
1075 public int drainTo(Collection<? super E> c) {
1076 if (c == null)
1077 throw new NullPointerException();
1078 if (c == this)
1079 throw new IllegalArgumentException();
1080 int n = 0;
1081 E e;
1082 while ( (e = poll()) != null) {
1083 c.add(e);
1084 ++n;
1085 }
1086 return n;
1087 }
1088
1089 /**
1090 * @throws NullPointerException {@inheritDoc}
1091 * @throws IllegalArgumentException {@inheritDoc}
1092 */
1093 public int drainTo(Collection<? super E> c, int maxElements) {
1094 if (c == null)
1095 throw new NullPointerException();
1096 if (c == this)
1097 throw new IllegalArgumentException();
1098 int n = 0;
1099 E e;
1100 while (n < maxElements && (e = poll()) != null) {
1101 c.add(e);
1102 ++n;
1103 }
1104 return n;
1105 }
1106
1107 /**
1108 * Returns an iterator over the elements in this queue in proper
1109 * sequence, from head to tail.
1110 *
1111 * <p>The returned iterator is a "weakly consistent" iterator that
1112 * will never throw
1113 * {@link ConcurrentModificationException ConcurrentModificationException},
1114 * and guarantees to traverse elements as they existed upon
1115 * construction of the iterator, and may (but is not guaranteed
1116 * to) reflect any modifications subsequent to construction.
1117 *
1118 * @return an iterator over the elements in this queue in proper sequence
1119 */
1120 public Iterator<E> iterator() {
1121 return new Itr();
1122 }
1123
1124 public E peek() {
1125 return firstDataItem();
1126 }
1127
1128 /**
1129 * Returns {@code true} if this queue contains no elements.
1130 *
1131 * @return {@code true} if this queue contains no elements
1132 */
1133 public boolean isEmpty() {
1134 return firstOfMode(true) == null;
1135 }
1136
1137 public boolean hasWaitingConsumer() {
1138 return firstOfMode(false) != null;
1139 }
1140
1141 /**
1142 * Returns the number of elements in this queue. If this queue
1143 * contains more than {@code Integer.MAX_VALUE} elements, returns
1144 * {@code Integer.MAX_VALUE}.
1145 *
1146 * <p>Beware that, unlike in most collections, this method is
1147 * <em>NOT</em> a constant-time operation. Because of the
1148 * asynchronous nature of these queues, determining the current
1149 * number of elements requires an O(n) traversal.
1150 *
1151 * @return the number of elements in this queue
1152 */
1153 public int size() {
1154 return countOfMode(true);
1155 }
1156
1157 public int getWaitingConsumerCount() {
1158 return countOfMode(false);
1159 }
1160
1161 /**
1162 * Removes a single instance of the specified element from this queue,
1163 * if it is present. More formally, removes an element {@code e} such
1164 * that {@code o.equals(e)}, if this queue contains one or more such
1165 * elements.
1166 * Returns {@code true} if this queue contained the specified element
1167 * (or equivalently, if this queue changed as a result of the call).
1168 *
1169 * @param o element to be removed from this queue, if present
1170 * @return {@code true} if this queue changed as a result of the call
1171 */
1172 public boolean remove(Object o) {
1173 return findAndRemove(o);
1174 }
1175
1176 /**
1177 * Always returns {@code Integer.MAX_VALUE} because a
1178 * {@code LinkedTransferQueue} is not capacity constrained.
1179 *
1180 * @return {@code Integer.MAX_VALUE} (as specified by
1181 * {@link BlockingQueue#remainingCapacity()})
1182 */
1183 public int remainingCapacity() {
1184 return Integer.MAX_VALUE;
1185 }
1186
1187 /**
1188 * Saves the state to a stream (that is, serializes it).
1189 *
1190 * @serialData All of the elements (each an {@code E}) in
1191 * the proper order, followed by a null
1192 * @param s the stream
1193 */
1194 private void writeObject(java.io.ObjectOutputStream s)
1195 throws java.io.IOException {
1196 s.defaultWriteObject();
1197 for (E e : this)
1198 s.writeObject(e);
1199 // Use trailing null as sentinel
1200 s.writeObject(null);
1201 }
1202
1203 /**
1204 * Reconstitutes the Queue instance from a stream (that is,
1205 * deserializes it).
1206 *
1207 * @param s the stream
1208 */
1209 private void readObject(java.io.ObjectInputStream s)
1210 throws java.io.IOException, ClassNotFoundException {
1211 s.defaultReadObject();
1212 for (;;) {
1213 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1214 if (item == null)
1215 break;
1216 else
1217 offer(item);
1218 }
1219 }
1220
1221 // Unsafe mechanics
1222
1223 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1224 private static final long headOffset =
1225 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1226 private static final long tailOffset =
1227 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1228 private static final long cleanMeOffset =
1229 objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1230
1231 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1232 String field, Class<?> klazz) {
1233 try {
1234 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1235 } catch (NoSuchFieldException e) {
1236 // Convert Exception to corresponding Error
1237 NoSuchFieldError error = new NoSuchFieldError(field);
1238 error.initCause(e);
1239 throw error;
1240 }
1241 }
1242
1243 /**
1244 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1245 * Replace with a simple call to Unsafe.getUnsafe when integrating
1246 * into a jdk.
1247 *
1248 * @return a sun.misc.Unsafe
1249 */
1250 static sun.misc.Unsafe getUnsafe() {
1251 try {
1252 return sun.misc.Unsafe.getUnsafe();
1253 } catch (SecurityException se) {
1254 try {
1255 return java.security.AccessController.doPrivileged
1256 (new java.security
1257 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1258 public sun.misc.Unsafe run() throws Exception {
1259 java.lang.reflect.Field f = sun.misc
1260 .Unsafe.class.getDeclaredField("theUnsafe");
1261 f.setAccessible(true);
1262 return (sun.misc.Unsafe) f.get(null);
1263 }});
1264 } catch (java.security.PrivilegedActionException e) {
1265 throw new RuntimeException("Could not initialize intrinsics",
1266 e.getCause());
1267 }
1268 }
1269 }
1270
1271 }